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Abstract—The Internet of Things (IoT) is a rapidly growing
system of physical sensors and connected devices, enabling
advanced information gathering, interpretation, and monitoring.
The realization of a versatile IoT edge computing framework will
accelerate seamless integration of the cyber-world with new phys-
ical IoT devices, and will fundamentally change and empower the
way humans interact with the world. While there are many cloud-
based IoT computing frameworks, they cannot support the needs
of IoT applications that require local processing and guarantee
of consumer’s privacy. This paper presents experimentation with
the open source plug and play IoT middleware called Cordova
Accesor Host. We demonstrated that Cordova Accessor Host
supports the essential ingredients of the composition and re-
usability of IoT services using accessor as the basic building
block and adopting an accessor-module-plugin design pattern.
The portability is demonstrated by using the same accessor
for collecting sensor data from radically different IoT devices
such as wearables (e.g., smartwatches) and micro-controllers
(e.g., Arduino). Our energy profiling experiments show that IoT
services deployed using Cordova Accessor Host consume around
35% less battery power than the same IoT services deployed in
the native Android operating system.

Index Terms—Service Middleware and Platform, Open Service
Platform, Edge Computing

I. INTRODUCTION

The Internet of Things (IoT) is a domain that represents
the next most exciting technological revolution since the
Internet [1], [2], [3], [4]. IoT will bring endless opportunities
and impact in every corner of our planet. With IoT, we
can build smart cities where parking spaces, urban noise,
traffic congestion, street lighting, irrigation, and waste can be
monitored in real time and managed more effectively. We can
build smart homes that are safe and energy-efficient. We can
build smart environments that automatically monitor air and
water pollution and enable early detection of earthquake, forest
fire and many other devastating disasters. IoT can transform
manufacturing, making it leaner and smarter. In recent years,
IoT is increasingly seen as the technology that will transform
healthcare by providing unobtrusive and passive monitoring of
a patient’s vitals via sensors [5].

While IoT offers numerous exciting potentials and oppor-
tunities, it remains challenging to effectively manage things
to achieve seamless integration of the physical world and the
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cyber ones [6], [7], [8], [2], [9]. Many IoT middleware and
connectivity protocols are being developed and the number
is still increasing each day. For example, Message Oriented
Telemetry Transport (MQTT), Constrained Application Pro-
tocol (CoAP) and BLE (Bluetooth Low Energy) are popular
connectivity protocols designed specifically for IoT devices.
However, the plethora of IoT connectivity protocols and mid-
dleware are not facilitating the ease of connecting IoT devices
and building applications to collect and interpret the data to
gain wisdom from them. This is compounded by the fact
that each IoT middleware advocates a different programming
abstraction and architecture for accessing and connecting to
IoT devices [1]. For example, in the Global Sensor Network
(GSN) [10] project, the concept of virtual sensor, which is
specified in XML and implemented with a corresponding
wrapper, is provided as the main abstraction for developing
and connecting a new IoT device. One of the challenges of
using virtual sensor is that it can incur additional latency
due to the overhead of mapping virtual sensors to physical
sensors. All virtual sensors must be hosted in a powerful cloud
server. In the Node-RED project at IBM (http://nodered.org),
a node is proposed as the main abstraction. In the Google
Fit project1, no particular high level abstraction is provided
for encapsulating a new device type. The system is pre-
programmed to support a fixed set of IoT devices, which
can be accessed by Representational State Transfer (REST)
APIs [11]. Adding an IoT device that is not supported requires
expert Java programming experience in extending Google
Fit’s FitnessSensorService class. In addition, data are
collected and stored solely in the cloud in GoogleFit, which
might not be acceptable for privacy conscious consumers.
The Kubernetes Open Programmable Acceleration Engine
project2 is a recent player tackling this problem emphasizing
on robustness of IoT edge computing via their orchestration
engine. The importance of a light-weight IoT edge computing
is also highlighted in [12].

The current state-of-the-art support for IoT service develop-
ment is application specific, similar to the scenario where ev-
ery IoT device requires a different Web browser for connection
to the Internet as echoed by Zachariah et al. [13]. In order for
consumers to tap into the next IoT revolution, there is an urgent
need to launch an IoT computing framework in the same spirit
as the launch of the Web frameworks such as XAMPP, Laravel,
ASP.NET, Django and Express.js that revolutionized how Web
applications can be engineered and built for on-line businesses

1https://developers.google.com/fit/.
2https://opae.github.io/latest/index.html.
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using ensemble of micro services, as well as the launch of
the mobile operating systems (iOS and Android) that brought
disruptive applications such as AirBnB and Uber. We believe
the launch of an IoT edge computing framework, which can
be deployed on the computation constrained edge devices,
can open up an astounding range of IoT services that have
impacts beyond our imagination and fundamentally change
and empower human interaction with the physical world [14].

This paper demonstrates the opportunities and challenges
of using the open source Cordova Accessor Host3 as an IoT
edge computing framework. Cordova host leverages the cross
platform design of Apache Cordova tools, its plugins, and the
integration with accessor host [15] for instantiating and exe-
cuting network of accessors as IoT services running on edge
devices. An experimental Cordova host has been developed
and listed on TerraSwarm’s Accessor project website4 since
2016, but there has never been a development of a real-world
IoT service/application using that experimental host. There is
no empirical evaluation of the benefits or opportunities of
using Cordova host for IoT services development in terms
of composibilty and re-usability of accessors, reduction of
programming and deployment barriers, ease of plugins devel-
opment for accessors, and the impact of battery power of the
edge device with running an Cordova host.

We first demonstrated in this paper how Cordova host is
used for the development and deployment of a real-world Fall
Detection App (an IoT service that will improve the health of
the older population) as a composition of accessors running
on a WearOS or a MSBAND commodity-based smartwatch
that paired with a smartphone. This involves development
of Cordova plugins for WearOS and MSBAND. We then
demonstrated the re-usability of accessors, by composing a
different IoT service that can perform real-time heart rate
monitoring. We also showed that IoT service composed based
on accessors can be ported to smartwatches from different
vendors with minimal programming via the accessor-module-
plugin design pattern. We further demonstrated that a radically
different hardware source e.g., the micro-controller based
device such as Arduino can be used for data collection without
any additional programming so long as the Cordova’s plugin
for that micro-controller is available or has been developed.
Finally, we demonstrated the platform portability of Cordova
based IoT services by showing the cross-platform deployment
of the same IoT service to a different platform (iOS, Android,
or Browser) using a simple add platform command available
in Apache Cordova’s tool. The main contributions of this paper
are:

• Providing a methodology for using the Accessor-Module-
Plugin design pattern for the creation of IoT applications
in the Cordova host that facilitates the context-aware
dynamic binding with native implementations.

• Investigating the effectiveness of the Cordova host for the
rapid IoT service development by composing two differ-
ent IoT services using accessors as basic components and
measures the reusability and code changes required.

3We use the term Cordova Accessor Host and Cordova host interchangeably.
4https://wiki.eecs.berkeley.edu/accessors/Main/CordovaHost.

• Demonstrating Cordova host’s support of the seamless
integration with various type of IoT devices and facil-
itating sensor data collection across multi-vendors IoT
devices (smartwatches from Google, Microsoft, Huawei
and micro-kernel devices) with minimal additional pro-
gramming.

• Demonstrating the energy and computation efficiency of
accessor-based edge IoT services as compared with native
implementation.

We are the first to show that Cordova Accessor host is a true
edge-based IoT middleware that can be deployed on popular
mobile phones and micro-controllers with no dependence
on cloud technology. The novelty of this work comes from
the implementation of the original conceptual and skeleton
platform to demonstrate the practicality of a true edge-based
IoT computing framework for the composition of more than a
simple “Hello World” IoT application across radically different
IoT devices and operating systems.

The remainder of this paper is organized as follows. We first
present the related IoT service frameworks in Section II. This
is followed by the background of the accessor design pattern
and accessor hosts in Section III. In Section IV, we present
the architecture of an edge-based IoT computing framework,
Cordova host, and its capabilities. We present two IoT services
developed and deployed on the Cordova host and document the
reusability of accessors and reduction in deployment barriers
across heterogeneous IoT devices. In Section V, we present the
performance study in battery power consumption and memory
utilization of IoT services implemented on the Cordova host
verses the one on the native Android environment. Finally, in
Section VI, we provide some concluding remarks and discuss
the future work.

II. RELATED WORK

We explored four classical IoT frameworks: Service-
oriented, Cloud based, Actor oriented, and Container-based.
We explored these four options in search of a framework that
can allow seamless integration of heterogeneous IoT devices
from multiple vendors to build real-time IoT applications with
on the edge analysis and data storage yet without dictating a
particular communication protocol or be dependent on cloud.
The availability of edge/local storage is important to avoid the
unpredictable latency from wireless transmission of data to
the cloud or server for real-time analytic [16]. In addition, to
ensure that users’ privacy is not violated, users should have
the option to archive data generated from their personal IoT
devices in a secure local storage of their own choice.

The service oriented framework that we explored was
Global Sensor Network (GSN) in [10]. GSN aims to provide
a uniform platform for flexible integration, sharing and de-
ployment of heterogeneous IoT devices. The central concept
is the virtual sensor abstraction, which enables developers to
declaratively specify XML-based deployment descriptors to
describe how to connect to a virtual sensor. This is similar to
the concept of deployment descriptors used in the deployment
of enterprise Java beans in J2EE server. The architecture of
GSN follows the same container architecture as in J2EE where
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each container can host multiple virtual sensors. The container
provides functionalities/capabilities for lifecycle management
of the sensors including persistence, security, communication,
resource pooling and event processing. GSN servers can fulfill
our local data storage requirement, however, GSN is a heavy
weight system to run on an edge device like a smartwatch
or smartphone. To date, there is no working edge-based
GSN framework. Another service oriented platform for IoT
is presented in [17]. The main architecture is similar to GSN.
The key contribution of this service framework is its scalability
and robust scheduling that has shown to support more than
1,000 services. However, it can only be deployed on high-end
servers or cloud.

Another service-oriented IoT framework was proposed
in [18]. This is a server/cloud level system where IoT services
are composed based on task-oriented computing approach.
This framework requires the development of a common IoT
service ontology and adoption of a common standard.

We examined various cloud based frameworks such as AWS
IoT from Amazon5, Watson IoT from IBM6, ThingSpeak IoT7,
and Google IoT Cloud8 (e.g., GoogleFit). These cloud-based
frameworks usually provide the following four fundamental
services: 1) Web-based administrative console for managing
device connection; 2) cloud-based data storage; 3) cloud-based
analytic services, and 4) advanced reporting or visualization.
We examined Google’s GoogleFit cloud service in details for
IoT application development. GoogleFit provides a set of APIs
for connecting third-party IoT devices to its cloud storage.
For example, it provides APIs for subscribing to a particular
fitness data type or a particular fitness source (e.g., Fitbit or
Samsung Smartwatch) and APIs for querying of historical data
or persistent recording of the sensor data from a particular
source (e.g., a smartwatch). With GoogleFit, the user is tied to
storing his/her sensor data in GoogleFit’s cloud storage, in the
format dictated by GoogleFit and in the size limit enforced by
GoogleFit. It is not possible to get access to the collected raw
data and pre-process them for analysis and visualization, which
is a critical component for many IoT applications. Moreover,
GoogleFit requires all collected data to be stored remotely in
the Google cloud. GoogleFit is not suitable for IoT services
that must be performed quickly in real-time on board the edge
device.

To date, there are several commercial edge-based computing
frameworks that leverage container technology. For instance,
Microsoft Azure IoT Edge [19] consists of three components:
IoT Edge modules, IoT Edge runtime and a cloud-based
interface. The first two components run on edge devices and
the cloud-based interface allows remote monitoring of edge
devices. The Azure IoT Edge runtime leverages Docker to
run IoT Edge modules on the device with the embedded
instructions on what modules to download and run via a
connection to Microsoft Azure IoT Hub. The current Azure
IoT Edge runtime engine only supports Windows and Linux
systems, which means an IoT application developed using

5https://aws.amazon.com/iot
6https://www.ibm.com/internet-of-things
7https://thingspeak.com/
8https://cloud.google.com/solutions/iot

Azure’s cloud cannot be deployed on popular edge devices
that run Android, IOS or WearOS. Azure IoT Edge is thus a
cloud based IoT computing framework like GoodgleFit. The
developer is constrained by the cost of subscribing to the cloud
and the type of APIs provided by the cloud’s vendor. For
example, the Azure services like Azure Machine Learning and
Azure Stream are costly to use [20]. If an IoT device is not
supported by Azure IoT Edge runtime, then it is not possible
to use that as a sensing device in this framework. Moreover,
the high end-to-end latency of Azure IoT Edge poses an issue
for latency sensitive applications as discussed in [20].

Similarly, Huawei Intelligent EdgeFabric (IEF) allows IoT
applications to be deployed on edge nodes as containers [21].
IoT applications are packaged using the Software Repository
for Container (SWR) on Huawei Cloud leveraging the edge
application template created on IEF for deployment to edge
nodes. IEF is based on the open-source KubeEdge software
built upon Kubernetes which aims to provide orchestration
infrastructure that supports robust collaboration between cloud
and edge. Similar to Azure IoT Edge, IEF requires a fee-
based subscription and the developer is burdened by the cost
of invoking supported services and the lack of SDKs for
the integration with new IoT devices. IEF is not designed to
faciliate the ease of composing IoT applications. Currently IEF
is only available on the Linux systems.

ThingWorx is a commercial IoT platform designed for the
industrial Internet of Things which highlights a fast and robust
two-way communication between the industrial Things and the
cloud server [22]. ThingWorx platform consists of four layers:
device, client, platform, and database layers. The device layer
consists of things or IoT devices that send data to the platform
layer. The client layer contains the web-based interface that
users can use to access the ThingWorx platform. The client
offers several tools for building IoT applications including the
Composer and the Mashup Builder. While the Composer helps
the designer to maintain a uniform modeling environment, the
Mashup Builder offers a dashboard for building new functions
through common components, for example, buttons, lists, and
gauges. The platform layer is where ThingWorx foundation
resides, which serves as the hub of the ThingWorx’s runtime
environment and provides common services as well as mon-
itoring the behavior of remote devices. The database layer
provides the persistence services for ThingWrox’s runtime
data. Similarly, ThingWorx leverages Docker to deploy IoT
applications as containerized applications on edge nodes. Same
as Azure IoT Edge, ThingWorx is only available in Windows
and Linux systems and is targeted for industrial IoT.

KubeEdge is the most well known open source container
based edge computing framework [23]. It is part of the recent
new generation of Cloud-to-Edge infrastructure that is known
for its ability to scale out and the support for security and
fault tolerance. KubEdge leverages container technology to
bring native cloud capability to the edge. It consists of a
cloud part and an edge part. While the cloud part interfaces
with Kubernetes API and takes care of node management, the
edge part has control of container deployment on the edge and
provides an infrastructure for storage as well as event-based
communication based on MQTT [24]. However, it has been



IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO.XX, APRIL 2021 4

reported in [23] that Kubernetes deployment leads to several
performance and stability problems on some low memory edge
devices (e.g., Raspberry Pi 3).

In summary, all the aforementioned container-based frame-
works are not true IoT Edge Computing frameworks where IoT
applications can be composed and shared and run independent
of a cloud. The container-based approach will incur high
computation resources at the edge. For example, an image
of one Docker container is at least 500 MB. Docker container
requires a high-end edge device that must have at least 5 to 6
GB RAM and multiple cores. Container-based IoT computing
frameworks mainly address the efficient coordination across
large number of edge nodes with the cloud. They do not
address the ease of integration with heterogeneous IoT devices
and the privacy concern of IoT applications. Cordova host is a
cross platform IoT Edge Computing framework which allows
sharing of plugins and accessors among the community of
developers and composition of custom IoT applications using
accessors as the building block. Accessors are based on the
light-weight Javascript programming model. Acessor design
pattern is designed to address the heterogeneity of IoT devices
without dictating a particular standard or limiting the use of
only certain approved devices.

The last framework that we investigated is the actor
based framework from the Accessor project in Terraswarm
Research Center in Berkeley9. The advantage of an actor-
based framework is that it is light-weight and portable
for capability and energy constrained IoT devices. The
actor-based framework (accessor host) was first presented in
the paper entitled “A Vision of Swarmlets” by Latronico et
al. [15]. As stated in the accessor homepage10:

“Accessors are a technology for making the Internet of
Things accessible to a broader community of citizens,
inventors, and service providers through open interfaces, an
open community of developers, and an open repository of
technology. Developed by the TerraSwarm Research Center,
accessors enable composing heterogeneous devices and
services in the Internet of Things (IoT)”.

An accessor is designed with the actor model of computation
that embraces concurrency, atomicity and asynchrony. In
other words, an accessor can be viewed as an actor that
wraps a sensor, an actuator, or a service and hide the different
implementations from developers. An accessor host is a
service or application running on the client platform that
can provide execution environment for accessors. The client
platform can be a server (e.g., a high end desktop computer),
a gateway (e.g., smartphone) or an edge device (e.g., a
wearable device). In the context of the Terraswarm project,
accessor host is also known as Swarmlet host.

In the iCyPhy (industrial Cyber-Physical Systems) project11,
a sequel to the Terraswarm’s accessor project, a semantic
accessor framework is proposed [25]. This framework attempts

9https://ptolemy.berkeley.edu/projects/terraswarm/accessors/
10https://www.terraswarm.org/accessors
11https://github.comiCyPhy/accessor

to combine Semantic Web with accessor technologies to
create a platform that can dynamically discover and instan-
tiate context-relevant accessors for dynamic real-time service
provisioning such as the connected cars applications.

Our final choice of using the actor-based framework with
accessor and accessor host came from the fact that it is
light-weight and gives us the flexibility to use IoT devices
from multiple vendors without dictating a specific standard.
Moreover, an accessor host can be deployed in any of the
three layer architecture of an IoT ecosystem. We describe
the functionalities of accessors and accessor hosts in more
details in Section III. Note that the sole accessor host from the
Terraswarm project that can be deployed on edge devices is
a conceptual and experimental Cordova host with no practical
demonstration as a viable edge computing framework.

III. BACKGROUND: ACCESSOR AND ACCESSOR HOST

An IoT middleware/computing framework typically exhibits
a three-layer architecture (i.e., edge, gateway, cloud) [1]. IoT
Middleware usually refers to a software system designed to
be the intermediary between physical IoT devices and IoT
applications. Terraswarm’s accessor project focuses on the
open, plug and play component architecture [26] for an IoT
middleware. A unique feature of that IoT framework is a
lightweight host endowed with standardized capabilities for
running and deploying IoT services in any layer of a three-
layer IoT architecture. The main concept in this framework for
seamless interaction with a physical IoT device is accessor.

A. Accessor

Accessors provide the abstraction for smart “Things” across
different hardware or software platforms to interact, bridg-
ing the heterogeneity among IoT systems and allowing for
smarter interactions, sharing and portability. Accessors are im-
plemented using lightweight JavaScript programming model,
which is ubiquitous and allows things to communicate and
share information in a message-oriented fashion. Figure 1
shows an accessor pattern taken from [15]. The horizontal
contract governs interactions among accessors using ports and
the vertical contract governs the asynchronous interaction with
physical devices on the edge. As shown in Figure 1, the blue
box (lower box) represents the proxy of an IoT device or
a service on the cloud. An accessor can send a request to
and receive a response from the blue box. An Asynchronous
Atomic Callbacks (AAC) protocol is used for sending the
request. AAC is a non-blocking protocol and enables many
concurrent pending requests to be active at once without
having the overhead of managing threads. Moreover, AAC
invocation is atomic and thus more robust as contrasted to
interrupt-driven threads or RPC. An AAC call does not use
locks and thus cannot deadlock. The accessor isolates the low-
level device specific communication protocol from the high
level IoT application.

An accessor is defined by an interface with a number of
input and output ports for managing and processing the data
transfer between “Things”. Ports provide a common paradigm
of communication independent from the low level device
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Fig. 1: Accessor Design Pattern from [15]

communication protocols. These ports also connect accessors
together to provide a complex service as well as to enable
the ease in the change, deletion or addition of capabilities to
the service. The JavaScript programming model of accessors
also enables accessors to essentially act like web pages on
a browser, exchanging information with a variety of other
services compliant with the vertical contract as shown in
Figure 1.

B. Accessor Host

An Accessor host functions as a middleware which instan-
tiates and executes accessors, similar to Java Virtual Machine
(JVM) providing the uniform execution environment for Java
programs in different operating systems. All existing accessor
hosts share the functionalities defined in the common host12 so
as to provide a standardized set of capabilities for the execution
of accessors in different environments. The following are
examples of some action functions provided by the common
host:

• require(): load the required library for the accessor to
function correctly.

• setParameter(): set a parameter with a reference
name and value for the ports.

• initialize(): initialize the accessor by the host on
startup,

• fire(): perform a set action upon receiving the appro-
priate input signal,

• setup(): provide information to establish the names and
initial values of all input and output ports,

• send(): send an output to another port,
• setTimeout(): set the specified function to execute at

certain time,
• setInterval(): set the specified function to execute

after certain time interval, and repeat at interval,
• wrapup(): release used resources and terminate the

accessor.
The following is an example of a Hello World accessor:

exports.setup = function () {
this.input(’name’);
this.output(’greeting’);

};

12https://wiki.eecs.berkeley.edu/accessors/Main/CommonHost

exports.initialize = function () {
this.addInputHandler(’name’,
function () {
this.send(’greeting’,
’Hello World,’ +this.get(’name’));

});
};

This accessor takes a string value in its input port “name”,
outputs a “Hello World” concatenated with the input name,
and sends the result to its output port named “greeting”. The
function “send” is triggered with the arrival of input events.

The CapeCode host is the most established accessor host13

but only runs on high end desktop computers. It is built
on top of Ptolemy II14, which is an open actor-oriented
software development platform for the modeling, simulating,
and designing of concurrent, real-time, embedded devices
(a.k.a IoT devices). The central modeling concept in Ptolemy
II is an actor, which is a software component that executes
concurrently and communicates through messages sent via
interconnected ports. CapeCode host extends the Ptolemy’s
actor-oriented framework with an accessor abstraction. In this
context, an accessor encapsulates an IoT device and exposes it
as an actor in CapeCode. The interface of an accessor serves
as the local proxy for the physical IoT device or other remote
services. The IoT device vendor provides the device specific
implementation of communication and connectivity. CapeCode
host leverages Ptolemy II’s graphical-based interface for cre-
ating and composing accessors and uses Java’s Nashorn V8
Script engine for executing the accessors.

Other accessor hosts are Browser, Node and Cordova. A
Browser host supports executing accessors within the web
browser. Accessors are instantiated as HTML pages in a
Browser host. A Node host is basically a Node.js engine with
support for the common host’s capabilities. A Cordova host
is an extension of Apache Cordova’s cross mobile program
development platform that is used for building applications
using HTML, CSS and JavaScript15 in one code base and tar-
geted to multiple platforms such as Android, IOS, and Browser
with no additional programming. The JavaScript interface of
the accessor in Cordova interacts with native languages and
APIs of physical or virtual IoT devices through a number of
plugins. In essence, the plugin hides the various native code
implementations behind a common JavaScript interface.

C. Why Cordova Host?

Although there exist many accessor hosts implemented by
the TerraSwarm project team, only Cordova host, Node host,
and Browser host have been shown to run on edge devices.
The Browser host is light weight and ubiquitous. It can
execute accessors using a web browser’s native JavaScript
engine. However, the Browser host places a lot of limitation
on interaction with local hardware and has many security
restrictions which restricted the type of accessors that could

13https://ptolemy.berkeley.edu/projects/terraswarm/accessors/.
14http://ptolemy.eecs.berkeley.edu
15https://cordova.apache.org/.



IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO.XX, APRIL 2021 6

be implemented. Currently, it can only interacts with IoT
devices that have RESTful interfaces. The Node.js host is
light weight and has an efficient run-time environment for
accessors. However, it has the same problem as the Browser
host in having limited interaction with local hardware.

The experimental Cordova host from Terraswarm team has
not been used for creating any real-world IoT applications.
The version that we downloaded only has a simple TestOnce
accessor which sends a single input to a HelloWorld accessor.
A very limited working accessor modules in Capecode is
available for Cordova host.

On the Cordova Accessor host webpage, Moreover, there
is no study that demonstrates that this framework can handle
large streaming data from a real world IoT device and serves
as an efficient edge computing framework executing and
coordinating among multiple accessors. To demonstrate the
practicalities and advantages of Cordova host as an edge IoT
computing framework, we refactored two monolithic native
mobile Apps: 1) Fall Detection and 2) Heart Rate Monitoring
into composition of accessors. We analyzed the reusability
of accessors, the barrier of programming and deployment for
consumers and the power and memory consumption of IoT
services running on a Cordova host.

IV. IOT SERVICE DEVELOPMENT WITH ACCESSOR

A. Architecture of Cordova Host

The Cordova Host combines the functionality of the Com-
mon Host with the open-source mobile development frame-
work, Cordova by Apache. This framework, which itself is
built upon Node.js, utilizes standard Web technologies such
as HTML, CSS, and JavaScript for cross-platform application
development. Notably, Cordova achieves its cross-platform
deployment through the use of platform-targeted wrappers
in addition to bindings to native implementations. These
bindings, which are commonly referred to as plugins, provide
a means for developers to access features provided by the
platform-specific native codes through a JavaScript interface.

The Cordova Host architecture, which can be seen in
Figure 2, primarily consists of both a web view and a Cor-
dova Plugin component. Within the web view’s JS directory,
there are three separate sub-directories: i) one contains the
implementation for the Common Host (provides the founda-
tional functionalities of an accessor host), ii) one contains
the implementation for accessor host specific to Cordova,
and iii) one houses all the community-developed accessors
that can be shared. Those three sub-directories make up the
implementation of Cordova Accessor Host. The swarmlet.js is
used to programmatically compose a pipeline of accessors to
perform a specific task (a.k.a an IoT service). It is analogous
to an application launching function such as the Java’s main
method.

Cordova plugins provide us with a means of utilizing native
codes within web view wrapped applications. This is made
possible by the plugin’s Javascript interfaces. These interfaces
consist of function calls that mimic the same behavior to
that of the corresponding native methods. These Javascript
function calls can be accessed globally throughout the entire

project, which includes any specific platforms. An example of
this is how a data collection accessor can directly access a
Huawei brand smart watch’s specific sensor data by utilizing
the watch’s native WearOS’s API accessable via the WearOS
plugin. The data returned by the plugin can then be accessed
through the accessor’s output port by its connected down-
stream accessor, which could then use another plugin distinctly
designed to perform application-specific data analytics on the
collected data. This implies that given the native connectivity
protocols available via plugins, the data collection accessor has
the potential to facilitate the collection of data from a plethora
of sensors from a variety of IoT devices with minimal change
in the design of the accessor.

B. Cordova Accessor-Module

Cordova Plugin is a very important part of building a func-
tional accessor on the Cordova Host. Apache Cordova project
comes with a set of core plugins. These core plugins provide
functionalities to access common device capabilities such as
battery, camera, contacts, Emails, and SMS. In addition to the
core plugins, custom plugins (e.g., HTTP, web sockets) have
been developed for communicating with an ever increasing
set of IoT devices or services. Plugins require quite a bit of
scaffolding. Apache Cordova provides a tool called Plugman
to ease the development of plugins. The tool will create the
required directory structure and the default configuration files.

It is highly recommended that when designing a Cordova
plugin, one should do so with a more general use in mind as it
pertains to functionality. This allows for the plugin to be used
to develop a multitude of application specific functionalities
by arranging and accessing the application specific plugins
within certain modules. For example, we could have a data
prediction module developed with fusion of both camera data
and watch acceleration data. This module would have access
to two plugins (i.e., camera, WearOS).

We used the Accessor-Module-Plugin design pattern orig-
inally proposed by the Accessor project [27] to structure
our IoT applications. Figure 3 depicts an example Accessor-
Module-Plugin pattern to achieve the flexibility, reuse, and en-
capsulation of device specific native codes for IoT application
development.

The concept of module has been around for a long time in
block structured programming languages to provide encapsu-
lation of a set of related functionalities or sub programs. The
goal of modularization in this framework is to enable ease of
re-using of existing plugins and to reduce the code density of
assessors. The Accessor modules provide accessors with the
means to execute cordova host’s modules within the accessor’s
web view contained environment. Modularization promotes
the ability to rapidly develop IoT applications by allowing
developers to create application specific functionalities through
the augmentation of pre-existing open-source Cordova plugins
which tend to be very generic. For example, by creating
an Arduino-sensor module, we can re-use the Cordova-BLE
plugin provided by a third-party, Evothings, to collect Arduino
sensor data over bluetooth low energy without modifying
the plugin. Through modularization, development time was



IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO.XX, APRIL 2021 7

Fig. 2: The architecture of the Cordova Host
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Fig. 3: Accessor-Module-Plugin Design Pattern for Cordova

reduced and the new capability was seamlessly integrated into
the accessor without increasing the code density/complexity
of accessor making it easy to re-use, as demonstrated in our
example of collecting sensor data from either Ardunio or
WearOS sensors using the same data collection assessor.

In the design of an accessor, the first statement should be
to load the required module for accessing the desired devices
via plugin’s binding to the native codes knowing the context.
The following present some pseudo codes for collecting data
from the WearOS watch:

...
var context = discoveryContext("WearOS");
var deviceType = require(context);
exports.setup = function() {
deviceType.initialize(

function(result) {},
function(){alert("not Initialized");});}

exports.initialize = function() {
var self = this;
function getSensorData (fn)

{deviceType.subscribe(...);})}

getSensorData(function(result) {
self.send(’dataOut’, result);});};

The function “discoveryContext” will return the module that
needs to be downloaded to connect to that device. A module
groups a set of functionalities for a specific task for ease of
discovery. The module to be loaded for WearOS’s watch is the
“WearOSDataCollection”. A module can make use of one or
more plugins. The “subscribe()” function in the module will
bind to the native codes for reading sensor data via WearOS’s
plugin in this example. Each plugin is a wrapper for exactly
one native implementation. The above design pattern enables
sensing data from heterogeneous devices and processing the
sensed data using a variety of algorithms with minimal change
in the design of the accessors across different devices. New
plugin to different native implementation can be added without
having to modify the data collection accessor codes. Accessor
developers are thus shielded from the low level details of the
native implementation. The prediction accessor is designed to
bind to different predicting modules using the same design
pattern. Each module specializes in a particular prediction task,
for example, fall verses blood glucose prediction. For each
specific task, developers can choose to use a specific native
algorithm via the module.

This Accessor-Module-Plugin design pattern enables com-
position of IoT applications by reusing accessors and dynam-
ically bind to the required module. The number of plugins
and modules for sensing data from different devices can
continuously be added without having to modify the original
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Fig. 4: Fall Detection App User Interface.

data collection accessor.
In summary, while the concept of “Accessor-Module-

Plugin” is originally proposed by the Terraswarm project
in Berkeley, no methodology is provided on how to use it
as an effective design pattern. In particular, there are no
details on how to design an IoT application into reusable
accessors, modules, and plugins in Cordova Accssor host. If
a developer installs the experimental Cordova host, a limited
number of modules just appear as sub directories. We provide
the concrete pattern of Accessor-Module-Plugin in Figure 3
for developers to learn the art of building composable IoT
applications in Cordova host using this specific pattern. We
also provide the pseudo codes associated with the design
pattern.

C. Accessors for Fall Detection

The Fall Detection App senses the streaming accelerometer
data from a commodity-based smartwatch and applies a deep
learning algorithm over the streaming data to predict falls.
The smartwatch is paired with a smart phone that has the fall
detection application installed in it. The application on the
smartphone performs the necessary computations required for
a fall prediction in real time with little or no latency. Figure 4
shows the main user interfaces of the Fall Detection App.

The screen on the left shows the home screen’s UI for the
application and the second screen shows the UI when a fall
is detected. The home screen (leftmost screen in Figure 4)
launches the App when the user presses the “ACTIVATE”
button. The user must set up a profile and load the profile
before the App can be activated.

When a fall is detected, the second screen of Figure 4
pops up on the smartphone, an audible sound is generated,
and a timer of 30 seconds is initiated. The user is shown
three buttons for interaction. The “NEED HELP” button will
send a text message to the caregiver and also save and label
the sensed data samples as true positives. The “FELL BUT
OK” button will save the sensed data during that prediction
interval as a true positive without notifying the caregiver. The
“I’M OKAY” button will save these data as false positives.
If a fall is detected and the user does not interact with any
of these three buttons, after the timer expires, the system
assumes that the user might be hurt or unconscious and an alert
message is generated and sent to the caregiver automatically.
The third UI screen is for the one time initialization of the

Fig. 5: Composition of Accessors for the Fall Detection App

user profile before the application can be launched. This UI
includes setting up the contact details of the caregiver. Note
that minimal personal data are collected and all the data are
stored locally in the phone.

We refactored the Java implementation of Fall Detection
App into four accessors as shown in Figure 5 such that each
accessor performs a particular function and interacts with other
accessors in the pipeline via message passing:

• Data Collection Accessor. When the App is activated,
the Data Collection Accessor is triggered to collect ac-
celerometer sensor data from the smartwatch in a set
interval/sampling period and send the data as output to
the Data Prediction Accessor. The phone and watch must
first be paired.

• Data Prediction Accessor. This accessor takes a se-
quence/stream of accelerometer sensor data as input and
predicts fall or not fall as output, which is then passed
to the Display Accessor. It predicts fall by using a pre-
trained deep learning RNN model that we developed
in [5], [28], [29].

• Alert Accessor. This accessor receives the prediction
status as input and sends either an E-mail or SMS to
a registered recipient (care giver) if a fall is detected.

• Display Accessor. This accessor is responsible for dis-
playing the output and the various options for the user to
respond when a fall is detected.

D. Accessors for Heart Rate Monitoring

The Heart Rate Monitoring App utilizes the heart rate data
collected from a smartwatch (IoT) device and a threshold
algorithm to detect if there is an unusual high heart beat per
minute (bpm) given the current context of the user and alert
the user. Figure 6 shows a composition of accessors that are
made up the Heart Rate Monitoring App:

• Data Collection Accessor. The Heart Rate Monitoring
App begins with the Data Collection accessor, which
senses heart rate data (bpm) from the smartwatch and
sends the data as output to the Data Processing Accessor.

• Data Processing Accessor. This accessor takes the heart
beats per minutes (bpm) data as input and gives an output
of status of high bpm, which is passed to the Display
Accessor. It performs a simple threshold algorithm to
determine high bpm. The threshold algorithm currently
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Fig. 6: Composition of Accessors for the Heart Rate Monitor-
ing App

Fig. 7: Reusability of accessors for developing Heart Rate
Monitoring App

is set to a simple conditional statement. This simple data
processing task does not require access to legacy/native
codes via plugin.

• Alert Accessor. This accessor receives the status as input
and sends either E-mail or text message to a registered
recipient if a high bpm is detected.

• Display Accessor. This accessor is responsible for dis-
playing the heart rate information to the user as well as
the status of monitoring.

E. Reusability of Accessors

The development of the assessor-based Fall Detection App
includes four major accessors: the Data Collection, Data
Prediction, Display and the Alert as shown on the left side of
Figure 7. On the right side of Figure 7 are the accessors for
the Heart Rate Monitoring App. Most of the accessors used
in the Fall Detection App can be reused when building the
Heart Rate Monitoring App. The only accessor that cannot be
reused completely is the application specific accessor which is
the second accessor,denoted in different colors in the left and
right part of the Figure 7 (i.e., the Data Prediction Accessor
and Data Processing Accessor). This is because the intention
of heart rate monitoring is to send alert on detection of high
or low heart rate. The application is not intended to predict
heart rate.

If a more complex heart rate monitoring application is
desired, such as using a sequence of heart rate data points

WatchMSBAND.java

DeviceDevice Specific APIs

MSBAND APIs

msband.js

Cordova PluginAccessors

Application Specific APIs

Bind Accessor to receive from MSBAND

DataCollection.js msbandDataCollection.js

Module

require

Fig. 8: Association of accessors with module and Cordova
plugin for device portability

(time series) in the past to predict the heart rate in the future,
then the data processing accessor can be exchanged with the
data prediction accessor loaded with the HeartRatePrediction
module. The actual prediction is accomplished by the native
implementation available via either PredDL or PredSVM plu-
gins given the input data and a pre-trained heart rate prediction
model available via the HeartRatePrediction module.

On the other hand, the Data Collection accessor can be
reused since its main goal is to retrieve sensor data from an IoT
device (Smartwatch in this case). The only difference between
the two apps is in the type of sensor data that needs to be
collected from the smartwatch. They both use the watch for
sensing the data and require the same module for connection.
Only one line of code needs to be changed to reuse the data
collection accessor for the Heart Rate Monitoring App as
shown in the following JavaScript code snippet (line 3):

..
1 var sensors=["HEARTRATE","ACCELEROMETER"];
2 // set sensor to Heart rate
3 var sensor_type=sensors[1];
...

The Alert accessor for the Fall Detection App can be
completely reused without any change in code since it includes
the same functions responsible for alerting a caregiver as in
the case of the Heart Rate Monitoring App when the heart rate
goes beyond a defined threshold. The Display accessor for the
Fall Detection App can also be reused with minor modification
in building the Heart Rate Monitoring App. This is because
both apps present the user with a list of options for interaction
albeit the specific text in the options might be different.

The change in code for reusability is a single line of
JavaScript. This implies that we can easily build a graphical
user interface for non programmers (health professionals or
consumers) to compose their IoT applications using Cordova
Accessor Host.

F. Portability of Accessors

1) Across different vendors of watches:
The portability of services when using Cordova host refers

to the support provided by the host for different devices and
how easy it is to port applications from one device to another.
As previously discussed, the only accessor that interacts with
IoT devices is the Data Collection accessor. We demonstrate
in this section how easy it is to switch between devices.
Different smartphones (Huawei Mate 9 and Google Nexus 5)
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and different smartwatches (Huawei Watch 2, TicWatch Pro
and Microsoft Band 2) were used and tested for portability.

Figure 8 shows how the Data Collection accessor com-
municates with Microsoft Band watch using the MSBAND
SDK libraries via MSBand module and plugin. The MSBAND
plugin in the figure associates the accessor with the MSBAND
SDK via the MSBAND.java program. To port the IoT service
from one device vendor to another, in this case from Microsoft
watch to Huawei watch, we only need to make one line of
code change (line 1) to the Data Collection accessor as shown
below. Line 1 is for adding the correct context to download the
correct module. In this case the discoveryContext will figure
out that Huawei’s watch requires the WearOSDataCollection
module.

...
1 var context=discoveryContext("WearOS");
2 var deviceType=require(context);
...

The Cordova plugin for WearOS must first be imple-
mented or downloaded from the Cordova open-source Plugin
Database. The development of plugins follows a specific
design pattern and it only needs to be done once. The module
is a grouping of a set of distinct functions in a plugin that is
relevant to an application or task (i.e., data sensing).

2) Across different IoT device types:
Both Fall Detection and Heart Rate Monitoring applications

run on smartwatches and smartphones. However, to exhibit
Codova Accessor Host’s flexibility as an edge IoT computing
framework, we want to verify whether the same Data Collec-
tion accessor can be reused for sensing data on none-Android
based IoT devices such as Adruino, which is a popular micro-
controller based device. This device can communicate with the
smartphone via Bluetooth Low Energy (BLE). However, the
micro-controller such as Adrunio does not come with device
specific APIs. To collect sensor data from sensors mounted
on Adrunio board and display those data on a smartphone or
smartwatch, we need a BLE’s plugin. Apache Cordova has a
BLE plugin developed by Evothings16. By reusing Evothings’
BLE plugin and creating a BLE module that specializes in
data collection, we demonstrated that the same Data Collection
accessor can be used to sense data from an ultrasonic sensor or
an infrared temperature sensor mounted on Arduino MKR1010
WiFi Board. Line 1, 3 and 4 are the only lines of codes that
must be changed.

1 var context=discoveryContext("Adrunio");
2 var deviceType = require(context);
3 var sensors=["HEARTRATE","ACCELEROMETER",
"UNTRASONIC","INFRARED"]
// set sensor to Untrasonic

4 var sensor_type = sensors[2];
...

3) Cross-platform deployment:
To demonstrate the cross-platform capability of Cordova

Accessor Host, we deploy the Adrunio’s Ultrasonic sensor

16https://evothings.com/cordova-ble-plugin-updated/

application and the Heart Rate Monitoring App to iOS plaform
by just using the following simple command:

cordova platform add ios

Cordova will automatically structure the iOS version of the
application and utilize the BLE plugin that Evothings has
created for iOS. The Heart Rate Monitoring App does not
require any plugin. These two applications are deployed to
iOS without any modification to the code base targeted for an
Android platform.

G. Discussion

The reusability of accessors enables the accessor-based IoT
applications to be adapted or re-purposed easily. For example,
the accelerometer data collected can be used to analyze the gait
of an individual to determine the early onset of Alzheimer. In
this case, we can adapt the Fall Detection App by changing
the module required for the Prediction accessor to load, i.e.,
a module that specializes in predicting signs for Alzheimer.
Furthermore, if any of the aforementioned accessor-based IoT
applications finds a need to archive the sensor data for long
term storage or tracking, a Data Archiving accessor can be
developed and added as an additional accessor to the overall
composition. This will involve development of a plugin for a
storage medium such as a database. Currently, SQLite plugin
can be downloaded from Cordova plugin database for that
purpose. The ease of changing or adding accessors demon-
strates that accessor-base IoT applications can be updated
more efficiently than current monolithic IoT applications, by
replacing outdated accessors independently, without replacing
or updating the entire application.

Our proposed Accessor-Module-Plugin design pattern en-
ables streamlined addition of new IoT devices. So long as the
device’s plugin is available, it is a matter of simply changing
a few lines of code to connect and collect data from a new
type of device.

In summary, the logical requirement for many IoT applica-
tions are similar. Having to develop each separate application
with a dedicated set of resources from the ground up increases
the cost and the time for the development. An edge-based IoT
computing framework like Cordova host can serve as a bridge
across a variety of IoT devices and services to accelerate the
delivery of IoT services.

V. PERFORMANCE EVALUATION

An edge-based IoT computing framework must be energy
and computation efficient since it is deployed on power
constrained IoT devices. In this section, we evaluate the
performance of Cordova host by comparing the battery power
consumption and memory usage of running an accessor-based
Fall Detection App versus a native Java-based Fall Detection
App on Android. The two versions of Fall Detection App are
running on a TicWatch Pro smartwatch paired with Huawei
Mate 9 smartphone running Android OS (version 8.0). The
memory consumed by the app is recorded using Android’s
profiler tools.
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Fig. 9: SmartPhone battery usage of accessor-based App
versus native App

A. Experimental Setup

Both the phone and watch batteries are fully charged and
each application is made to run continuously for four hours
for each test. The test is carried out by wearing the watch and
activating the Fall Detection App on the phone while carrying
out daily activities and recording the battery percentage at
various intervals. Five tests are run for each version of the Fall
Detection App. The battery percentage of both the smartphone
and the smartwatch is recorded at every hour from the start
of the experiment having 100%. We report the average battery
consumption percentage over the five tests for each application
on the smartphone and the smartwatch, respectively.

We also evaluate the memory usage during the whole
lifecycle of the applications running on the Cordova host.
The memory usage is measured by the Android Profiler
tools on Android Studio, which provide real-time data to
help developers understand how their application makes use
of the CPU, memory, network, and battery resources. The
smartphone is connected to Android Studio, then the android
app is executed and a session is activated on Android’s Profiler
tools. In this way, the real-time memory consumption can be
monitored and recorded.

B. Results and Analysis

We run the first test for the accessor-based Fall Detection
App deployed on the Cordova host and its corresponding test
for the native Java Fall Detection App. We observe that the
accessor-based version performs a lot better than the native
Java version. For example, We notice that the native version
has its smartphone’s battery at 8% when the smartwatch
battery becomes 0% while the accessor-based version has
its smartphone’s battery still at 35% when the smartwatch
battery becomes 0%. We examine the code in the native
version and realize that it uses some background services that
might consume more battery as compared to the accessor-
based application that does not use the background services.
In order to compare them fairly, we remove the background
services code in the native version that might account for the
difference.

Fig. 10: Memory usage of the accessor-based App versus
native App

After the modification, we perform the second of the five
tests and notice that there is a little improvement but the
difference is not that significant. The remaining three tests
show the similar trend. The average battery usage over the five
tests at each one hour interval is recorded. Figure 9 shows the
battery usage at each time interval.

The battery usage of the smartwatch is the same because
in both experiments, the same service is run on the smart-
watch to send the sensed data to the phone periodically. The
accessor-based version running on the Cordova host used
around 32.65% less battery power than the native version. The
better battery utilization in accessor-based IoT applications is
attributed to the lightweight JavaScript programming model
and the accessor-module-plugin design pattern. The IoT ap-
plication is decoupled from the device-specific communication
code using this design pattern. Moreover, the communication
is asynchronous as shown in Figure 3. The device-specific
communication is invoked on demand as contrasted to contin-
uous interaction in the native version using Java thread. More
experiments with other IoT applications need to be conducted
to fully verify the benefits of our design pattern.

In terms of memory consumption, we observe that the native
Java version is more efficient than the accessor-based version.
Figure 10 shows a visual representation of memory consump-
tion at each time interval. The accessor-based version running
on the Cordova host consumes about 40MB more memory
than the native Jave version. The higher memory consumption
in the accessor-based IoT applications is attributed to the
usage of Threadpool inherent in the Cordova host’s plugins.
The advantage of using the Threadpool is to promote parallel
execution. It introduces the possibility of reading sensor data
from multiple sensors at once. Different functionalities of the
App can be run in parallel and the results are then converged
on the Main User Interface thread for display. The usage
of Threadpool introduces an overhead in terms of memory
usage, making it more memory intensive for simple IoT
applications. However, for more complex applications that
involve correlating multiple sensor data, Threadpool might be
essential.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the need for an edge-base
Internet of Things (IoT) computing framework and specifi-
cally explored the Cordova Accessor host. We presented the
architecture of the Cordova Accessor host and analyzed the
advantages of using it as an edge computing framework. Our
analysis is based on the first-hand development of three real-
world IoT applications using that framework. We demonstrated
that the Cordova host supports the essential ingredients of
composition, re-usability, and portability of IoT applications.
We outlined a methodology to create IoT applications using
the Accessor-Module-Plugin design pattern that provides ac-
cess to the device’s native codes in a modular and scalable
fashion.

We showed in this paper that IoT applications deployed on
Android compatible devices using this framework consume
around 35% less battery power than the same IoT applica-
tion deployed in native Java language. We also showed that
accessor-based IoT application uses around 40MB more mem-
ory than native app due to the support of parallel execution
of functions inherent in the Cordova host implementation.
We further demonstrated that our design pattern can support
sensing and collection of data from a non Android based
device such as Arduino with just one line of code change
in the Data Collection accessor codes and no change to the
Cordova Accessor host beside adding the third party BLE’s
plugin.

The container-based edge computing framework that tied
to various commercial cloud services is gaining traction.
However, the portability of an edge container is not proven
yet. Currently, there are no Docker compatible containers that
can run on an edge device like Android phone. There are
suggestions that Android’s kernel can be modified to support
containers. It is impractical to have to modify Android’s kernel
to support container’s run-time because different Android
devices are using different kernels and each modification and
compilation is highly specific. One possible solution is to
install an emulation layer on top of an Android OS and
run the container on the emulator. However, the resulting
container image would be very slow. Until a light weight
container’s run-time is released and Android kernel is modified
to support container like Docker, container based approach is
not practical. Moreover, performance will be an issue with
running containers on the edge with reasonably priced phones
that have only 4 GB RAM.

Designed to be cross platforms, the Cordova Accessor host
is a light-weight IoT Edge Computing framework, where
Accessor is coded solely in Javascript, which is a dynamically
typed, interpreted language with rising popularity in our net-
worked world. We have demonstrated that the accessor-based
applications,the data collection accessor, can be deployed to
heterogeneous IoT devices in this paper.

In the future, there is a need for more in-depth studies on
other performance advantages of the Cordova host such as
latency and reliability in data collection. There is also a need
to evaluate the performance of the Cordova Accessor host
in terms of energy, memory and portability compared with

other similar edge-based computing frameworks such as the
container-based approach.
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