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ABSTRACT
Computing graph similarity is an important task in many graph-

related applications such as retrieval in graph databases or graph

clustering. While numerous measures have been proposed to cap-

ture the similarity between a pair of graphs, Graph Edit Distance

(GED) andMaximumCommon Subgraphs (MCS) are the twowidely

used measures in practice. GED and MCS are domain-agnostic mea-

sures of structural similarity between the graphs and define the

similarity as a function of pairwise alignment of different entities

(such as nodes, edges, and subgraphs) in the two graphs. The ex-

plicit explainability offered by the pairwise alignment provides

transparency and justification of the similarity score, thus, GED

and MCS have important practical applications. However, their

exact computations are known to be NP-hard. While recently pro-

posed neural-network based approximations have been shown to

accurately compute these similarity scores, they have limited abil-

ity in providing comprehensive explanations compared to classical

combinatorial algorithms, e.g., Beam search. This paper aims at ef-

ficiently approximating these domain-agnostic similarity measures

through a neural network, and simultaneously learning the align-

ments (i.e., explanations) similar to those of classical intractable

methods. Specifically, we formulate the similarity between a pair

of graphs as the minimal “transformation” cost from one graph to

another in the learnable node-embedding space. We show that, if

node embedding is able to capture its neighborhood context closely,

our proposed similarity function closely approximates both the

alignment and the similarity score of classical methods. Further-

more, we also propose an efficient differentiable computation of our

proposed objective for model training. Empirically, we demonstrate

that the proposed method achieves up to 50%-100% reduction in

the Mean Squared Error for the graph similarity approximation

task and up to 20% improvement in the retrieval evaluation met-

rics for the graph retrieval task. The source code is available at

https://github.com/khoadoan/GraphOTSim.
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1 INTRODUCTION
Graphs are non-linear data structures used to model a set of inter-

connected objects (nodes) and their relationships (edges). Recently,

the ubiquitous expressive power of graphs has received immense

attention in data modeling across various research areas including

social networks, natural sciences (drugs and protein-protein inter-

action networks), and knowledge graphs. Consequently, a wide

range of graph analytical techniques are being developed to learn

and extract useful patterns from graph data. One of the challeng-

ing problems when dealing with graph databases is to compute

the similarity between a pair of graphs, which is critical to sev-

eral graph applications such as retrieval from graph databases and

graph clustering. To tackle this problem, different graph similar-

ity measures have been proposed in the literature. Among them,

Graph Edit Distance (GED) and Maximum Common Subgraphs

(MCS) are two examples of the most prevalent measures. GED

and MCS, which are domain-agnostic measures of structural sim-

ilarity between the graphs, define the similarity as a function of

pairwise alignment of different entities (such as nodes, edges, and

subgraphs) in the two graphs. As such, GED and MCS have im-

portant applications in many domains such as bioinformatics and

cheminformatics [12, 13], because the explicit explainability of the

similarity score provides transparency and justification, as well

as additional informative inductive knowledge towards decision

making in downstream analysis in these domains. For example, in

medicinal chemistry in particular, the availability of ‘rules of thumb’

underscores the willingness, in certain situations, to sacrifice ac-

curacy in favor of models that better fit the human intuition [15].

In addition to being domain-agnostic similarity measures, GED

*Both authors are equal contributors.



Table 1: Characteristics of graph similarity algorithms alongwith the representativemethods.× indicates themethod lacks the
specific characteristic.✓indicates themethod achieves the objective. ‘N/A’ stands for Not Applicable. A desirable approachwill
havehigh accuracy,high interpretability, and low computation. Our proposedGOTSimmethod satisfies all these characteristics
by employing an end-to-end learning-based approach.

Bipartite

[8, 25]

SimGNN

[1]

GraphSim

[2]

Graph Matching

[6, 19, 21]

OAK

[23]

GOTSim

(Ours)

Learning-based × ✓ ✓ ✓ ✓ ✓
End-to-End × ✓ ✓ ✓ × ✓
Accuracy Low High High High Low High

Interpretability High N/A N/A Low Low High

Computation High Low Low Low Low Low

and MCS can be deployed in a real application without any prior

domain knowledge.

Formally, GED finds the number of edit operations which trans-

forms one graph to another, and MCS finds the most common

subgraphs between the two graphs. GED, under a particular cost

function setup, is equivalent to MCS [4]. Exact computation of GED

or MCS, using classical, combinatorial search approaches, however,

is NP-Hard. Computing GED and MCS is intractable for larger

graphs that have more than a few tens of nodes. Recently, by learn-

ing a similarity function to approximate the similarity metric of

interest, the works in [1, 2] show that one can efficiently find similar

graphs to a query graph, compared to using classical combinatorial

methods such as Beam [22], or Bipartite [8, 25]. These methods

model the similarity function as a neural network either on the

two graph-level embeddings representing the two graphs or on the

two sets of node embeddings representing the two graphs. While

their performance in both similarity approximation and retrieval

tasks approaches that of the classical computations of GED and

MCS, they lack several important characteristics that are typically

seen in the classical methods, specifically the explainable alignment

between nodes or edges between the two graphs.

A similar research setting is also seen in several works solving the

graph matching problem [6, 9, 19, 21]. However, their primary goal

is fundamentally different. Specifically, graph matching focuses on

approximating the similarity between graph entities such as nodes

or edges, regardless of the overall structural similarity between the

entire graphs. The learned matching is only required to be a discrete

distribution over potential correspondences of a node in a graph

to each node in the other graph, but not necessarily an injective

mapping between nodes. Furthermore, some methods require fine-

grained annotations such as node-node or edge-edge similarities

in order to learn a sparse correspondence distribution [9]. Our

work is different from these methods and primarily focuses on

approximating not only the injective assignment, but also capturing

the explanation for node deletion and insertions. Hence, this will be

similar to the explicit explanability found in classical combinatorial

methods by using only annotated graph-level similarities.

It should be noted that a low similarity computation cost and an

explainable alignment as part of the computation are two of the

desired properties of graph similarity search. To the best of our

knowledge, none of the existing learning-based methods can achieve
the explicit node alignment results while approximating the graph-
graph similarity score somewhat identical to classical methods. In

this paper, we denote such explicit node-alignment as the “inter-

pretability” of the graph similarity algorithm. In this work, we first

propose to learn the graph embedding through a context-aware

Graph Neural Network (GNN) model, such as Graph Convolutional

Network (GCN), so that we can capture the local and global struc-

tures around the nodes in the embedding space. Then, we propose

to directly solve for the optimal alignment between nodes of the

two graphs from their node-node similarity matrix. However, our
proposed optimal alignment formulation is guaranteed to have a sta-
ble and differentiable solution, which is crucial for both gradient-based
stochastic optimization of the neural models and finding sparse exact
alignment solutions similar to those of classical GED computations.

We name our method GOTSim. Given two graphs, GOTSim first

learns node embeddings using any suitable graph embedding frame-

work, such as GCN [18]. Then, GOTSim directly solves the optimal

assignment problem between the two sets of embeddings using a

novel differentiable algorithm. Our contributions are as follows:

• Propose a novel optimal assignment objective based on the graphs’

node embeddings to approximate graph similarity. In this frame-

work, the similarity between the two graphs is related to the

optimal assignment cost, which is the minimum cost of trans-

forming one graph to another in the (node) embedding space.

This learning-based framework works on any notion of graph

similarity, such as GED or MCS.

• Develop an efficient differentiable algorithm to solve the opti-

mal assignment objective with a polynomial computational com-

plexity, which is also the complexity of existing neural learning-

based graph-similarity methods. The algorithm is suitable for any

gradient-based learning (such as SGD).

• Demonstrate the effectiveness of our approach on various widely

used graph benchmark datasets. GOTSim achieves the lowest

error in similarity estimation and superior ranking performance

(on several ranking metrics) compared to existing state-of-the-art

graph similarity methods.

For domain experts, GOTSim can provide valuable insights into

the downstream tasks that are being studied; for example, one

can visualize the learned node alignment between two predictably

similar protein graphs for further biological investigation. Thus,

GOTSim fulfills the desired characteristics of an ideal graph simi-

larity algorithm (as shown in Table 1).

The rest of the paper is organized as follows. We discuss the

related work in Section 2. In Section 3, we describe the problem



definition and the details of the proposed GOTSim method. Finally,

we present quantitative and qualitative experimental results in

Section 4 and conclude our discussion in Section 5.

2 RELATED WORK
We first discuss representation learning in graphs and then discuss

other works related to graph similarity and graph matching.

2.1 Graph Representation Learning
GNNs have gained huge popularity in the past few years. These

models apply deep neural networks on graph data and can ad-

dress the limitations of earlier representation learning methods.

GCNs are a special class of GNNs, that apply message passing on

graphs and compute node representations with input node/edge

features and graph structures. These models can be trained with

any downstream task to learn node representations specifically for

a given task and achieve better performance. Specifically, GCNs

use a convolutional layer to perform neighborhood aggregation,

thus generating a node’s representation by aggregating its own

features and its neighbors’ features, where the neighbors generally

correspond to directly connected nodes. By stacking multiple such

convolutional layers, GCNs enable us to estimate context-aware

representations of the nodes in graphs.

The initial GCN network, proposed by [18], uses all nodes that

are directly connected to 𝑣 (the target node for which we want to

estimate the representation), in addition to 𝑣 itself (i.e., self-edge),

as the neighbors of 𝑣 . The message is constructed as a projection

of the features of the neighboring nodes, and the aggregation is

modeled by taking the sum of the incoming messages and normal-

izing the sum. GAT [31] extends GCN by introducing the attention

mechanism as a substitute for the statically normalized convolution

operation. The attention weights are used to perform a weighted

combination of the messages from the neighbors, as opposed to

the vanilla sum used in GCN. We can apply message passing on a

graph multiple times to have a node gather information from nodes

multiple hops away, instead of just its direct neighbors. When con-

sidering tasks on graphs, one critical component to design is the

readout function , i.e., the mapping from the set of node representa-

tions to a fixed-size vector representation of the graph. A readout

function can be a pooling operation (such as mean, max etc., similar

to CNNs) or can also have learnable parameters.

The message passing formulation of GCNs has also been ex-

tended to heterogeneous graphs, i.e., graphs with multiple node-

types and edge-types. Popular examples include Relational Graph

Convolution Network [27], Heterogeneous Graph Attention Net-

work [33], Metapath Aggregated Graph Neural Network [11] and

Deep Heterogenous Graph Convolutional Networks [20].

2.2 Graph Similarity Search
Searching for graphs involves selection of the appropriate pairwise,

graph-graph similarity measure and an efficient similarity com-

putation. In this section, we provide a detailed discussion in this

direction.

2.2.1 Characteristics of graph similarity algorithms. Computing

similarity between the structured graph objects is a challenging

problem with many important real-world applications, in particular,

similarity-based retrieval in graph databases. For example, in the

field of computer security, we need to search for similar binary

functions, where given a binary which may or may not contain

code with known vulnerabilities, we wish to check whether any

control-flow graph in this binary is sufficiently similar to a database

of known vulnerable functions [19].

Graph similarity is typically defined based on (sub-)graph iso-

morphism [3, 28] or some structural similarity measure such as

GED or MCS [24, 34]. Exact similarity computation is known to

be computationally expensive in practice. For example, exact GED

calculation is NP-Hard and does not scale well to graphs with more

than a few tens of nodes. Thus, approximation algorithms have

been designed to calculate these similarity measures. These ap-

proximate methods can be broadly divided into two categories: (i)

search-based similarity computation, and (ii) function-estimation

similarity computation.

2.2.2 Search-based similarity computation. Examples of the search-

based methods (specifically GED) include Beam search [22], Bipar-

tite approximation [8, 25], and Hausdorff approximation [10].

Beam heuristically explores the search-graph by expanding the

most promising node in a limited set, thus approximating the 𝐴∗ al-
gorithm to find the GED. Bipartite provides an upper bound, while

Hausdorff provides a lower bound to the GED. These algorithms

essentially estimate the set of edit operations with a minimal cost of

transforming one graph to another graph and this minimal cost rep-

resents the edit distance between the pair of graphs. Consequently,

such optimal edit operations can be used as an explanation of the

associated edit similarity score. Such explainable characteristic of

these classical algorithms is extremely useful for downstream tasks

in domains such as bioinformatics and cheminformatics.

2.2.3 Function-estimation similarity computation. Recently, several
function-estimation similarity computation methods have been pro-

posed, including SimGNN [1], GraphSim [2] and Graph Matching

Network (GMN) [19]. Function-estimation algorithms have a sig-

nificant computational advantage over search-based approaches.

These approaches learn their functional parameters from empir-

ical data using the principle of empirical risk minimization, and

hence they are also suitable for any similarity definition, including

GED and MCS. By employing end-to-end deep GNN models, recent

works [1, 2] have demonstrated a superior performance over clas-

sical methods such as Bipartite or Hausdorff. Although these

existing methods effectively estimate the graph similarity, their

lack of explanation in node alignments is a crucial limitation.

Our proposed method also belongs to the category of learning-

based similarity computation. Unlike existing learning-based ap-

proaches, our method is capable of both accurately approximating

the graph similarity and providing similar explanation which is

found in classical search-based approaches when approximating

similarity measures such as the GED.

2.3 Graph Matching
Identifying correspondences between nodes of graphs, such as in

the case of calculating GED, is a prevalent problem that arises in

different domains, and thus has been studied under various termi-

nologies. A set of fundamentally different techniques commonly



referred to as graph matching or graph alignment have been de-

veloped in bioinformatics and computer vision. The techniques

developed in these areas, however, are non-exact because large

networks without any specific structural properties are commonly

studied. In graph matching, given two graphs𝐺𝑠 and𝐺𝑡 with node

sets V𝑠 and V𝑡 , respectively, and adjacency matrices 𝐴𝑠 and 𝐴𝑡 ,

respectively, the goal is to find correspondences that can avoid

mapping of adjacent nodes in the source graph to different regions

in the target graph [26], as expressed in the following maximization

objective function:∑
(𝑖,𝑖′) ∈V𝑠

∑
( 𝑗, 𝑗 ′) ∈V𝑡

𝐴𝑖,𝑖′𝐴 𝑗, 𝑗 ′𝑆𝑖, 𝑗𝑆𝑖′, 𝑗 ′ (1)

Recently, various deep graph-matching methods which employ

GNN embeddings have been developed. In soft graph matching

methods, such as Graph Matching Network (GMN) [19], Graph Op-

timal Transport [21], and Optimal Assignment Kernel (OAK) [23],

the rectangular matching matrix 𝑆 ∈ RV𝑠×V𝑡
is a doubly stochastic

matrix. In sparse graph matching methods, such as in [9], 𝑆 is con-

strained to be a rectangular permutation matrix. To learn the model

parameters, either node-level (each pair of nodes of two graphs

have a similarity label) or graph-level (each pair of graphs has a

similarity label) matching annotation is used.

It can be shown that optimizing the objective in Equation (1)

is equivalent to solving Equation (2) in Section 3.2 under certain

constraints. When GED is used as a graph-level annotation, graph

matching approximates the GED. However, the learned assignments

between graph matching methods and classical GED computation

can be very different. For example, soft graph matching learns a

doubly stochastic matrix, while GED computation learns a permuta-

tion matrix. While some of the graph matching works [9] attempt to

approximate a sparse assignment matrix (equivalently, this can be

seen as an approximation to the permutationmatrix), thesemethods

require domain-specific node-level annotation. Thus, they are not

capable of estimating the graph-level similarity scores. Furthermore,

as discussed previously, the requirement of this type of annotation

significantly limits the applications of these approaches in several

domains. Contrary to this, our work can approximate the graph

similarity while simultaneously learning a sparse permutation as-

signment only using the graph-level annotation. Furthermore, our

method can additionally provide explanation for operations such

as deletion and insertion similar to those of classical methods.

3 THE PROPOSED GOTSIM MODEL

We can formally define graph as G = {V,A}, whereV repre-

sents the node set consisting of nodes {𝑣𝑖 }𝑖=1,...,𝑁 and A ∈ R𝑁×𝑁
is the corresponding adjacency matrix where A𝑖 𝑗 represents the
edge weight between nodes 𝑣𝑖 and 𝑣 𝑗 . We only consider undirected

and unweighted graphs in this work and thus A is symmetric and

generally sparse. However, our method is a general graph-similarity

computation framework, and can be extended to other graph types.

The notations used in this paper are given in Table 2.

Problem Statement: Given two graphs 𝐺1 = {V1,A1} and 𝐺2 =

{V2,A2}, the goal of the graph similarity computation task is to

Table 2: Notations used in this paper.

Notation Description
h𝐺,𝑘,𝑖 Embedding of 𝑖𝑡ℎ node of graph𝐺 at layer 𝑘 in the GCN.

H𝐺,𝑘 Set of node embeddings of a graph𝐺 at layer 𝑘 in the GCN.

C𝐺
1
,𝐺

2
,𝑘 Pairwise similarity matrix between two graphs𝐺1 and𝐺2 at

layer 𝑘 in the GCN.

𝑐𝑘,𝑖,𝑗 Distance (in embedding space) between the nodes 𝑣𝑖 and 𝑣𝑗
of𝐺1 and𝐺2 , respectively, i.e., the substitution cost.

d𝑘,𝑖 Deletion cost of node 𝑣𝑖 in𝐺1 .

a𝑘,𝑗 Insertion cost of node 𝑣𝑗 in𝐺2 .

s(𝐺1,𝐺2) True similarity score of graphs𝐺1 and𝐺2 .

ŝ(𝐺1,𝐺2) Predicted similarity score of graphs𝐺1 and𝐺2 .

𝜃 Parameters of the network.

M∗ Permumation matrix that is the optimal solution to the LP

problem.

𝜂 Learning rate.

𝐾𝑒 Number of training epochs.

approximate the similarity score between the graphs, denoted by

ŝ(𝐺1,𝐺2).
The proposed GOTSimmodel consists of two sequential modules:

1) multiple-scaled convolutional aggregations and 2) differentiable

graph matching. For a pair of graphs, GOTSim first computes the

vector embeddings of the nodes in the graphs at multiple GCN

layers; then, at each layer, GOTSim computes the pairwise similarity

matrix between the two sets of node embeddings representing the

graphs; finally, GOTSim computes the optimal graph transformation

cost, at each layer, from the similarity matrix and approximates

the similarity score by aggregating the optimal costs from all GCN

layers. The parameters of all computational operations are learned

in an end-to-end manner.

3.1 Multiple-scaled Node Embeddings
In our proposed approach we use context-aware node embeddings.

To compute them, we employ GCN [7, 18] which uses a convolu-

tional layer to perform neighborhood aggregation, thus generating

a node’s representation by aggregating its own features and its

neighbors’ features, where the neighbors generally correspond

to directly connected nodes. By stacking multiple convolutional

layers, GCNs enable us to learn context-aware representations of

the nodes in graphs, when a 𝐾-depth GCN is able to estimate the

representation of a node using the context within 𝐾-hops.

More concretely, the Graph Convolution operator at the k-th
GCN layer transforms the representation of node 𝑣𝑖 as follows:

h𝐺,𝑘,𝑖 = 𝜎 ( ˆh𝐺,𝑘−1,𝑖W𝑘 + b𝑘 ), ˆh𝐺,𝑘−1,𝑖 =
∑

𝑗 ∈N(𝑖)

1√
d𝑖d𝑗

h𝐺,𝑘−1, 𝑗

where 𝜎 (·) is nonlinear activation, d𝑖 is the degree of node 𝑣𝑖 plus
1 (assuming self-loop), N(𝑖) represents the set of first-order neigh-
bors of 𝑣𝑖 and {W𝑘 , b𝑘 } represent the filter parameters of the k-th
GCN layer, which are shared by all nodes.

In multi-layer GCN, each layer has the effect of capturing a

particular higher-order structural information around node 𝑣 in

its representation. While comparing two graphs using their node

embeddings, using a particular higher-order representation is usu-

ally not sufficient. An intuitive and effective approach is to utilize

the embeddings at multiple GCN layers. Specifically, let H𝐺,𝑘 =

{h𝐺,𝑘,𝑖 | 𝑣𝑖 ∈ V𝐺 , 𝑖 = 1, ..., 𝑁 } be the set of node embeddings of a



Figure 1: GOTSim model (a) and an illustration of the learned graph matching (b). (a) the one-hot encoded node input are
given as input to the GCN, which estimates the node embeddings; the ‘Differentiable Optimal Assignment’ block computes the
optimal assignment between two sets of node embeddings; the final similarity score is the average of the optimal assignment
costs for each GCN layer. Solving the optimal assignment problem at each GCN layer results in an interpretable alignment (b)
between the two graphs using the information at that layer; for two isormorphic graphs, GOTSim gives the perfect alignment.

graph𝐺 at layer 𝑘 in the GCN,𝐺 is represented by 𝐾 sets of vectors

as H𝐺 = {H𝐺,𝑘 | 𝑘 = 1, ..., 𝐾}.
At each layer 𝑘 , we can compute the pairwise similarity matrix

C𝐺1,𝐺2,𝑘 between two graphs 𝐺1 and 𝐺2. Since node orderings are

not graph invariant, it is very strict to assume an order in the similar-

ity matrix. For this reason, we take a completely different modeling

approach than existing learning-based graph similarity methods

and compare graphs using their bag-of-vectors representations.

3.2 Optimal-Assignment Similarity
As discussed earlier, a graph can be represented as a “bag” of its

building blocks, e.g., context-aware nodes where the context en-

codes the structural information around the node. Given two bag-

of-vectors H𝐺1,𝑘 and H𝐺2,𝑘 from graphs 𝐺1 and 𝐺2, respectively,

at layer 𝑘 , and c is a pairwise distance function between two node

embeddings, we define the similarity matrix between𝐺1 and𝐺2 as:

C𝐺1,𝐺2,𝑘 = H𝑇
𝐺1,𝑘

H𝐺2,𝑘 =


c𝑘,1,1 · · · c𝑘,1,𝑁
.
.
.

. . .
.
.
.

c𝑘,𝑁 ,1 · · · c𝑘,𝑁 ,𝑁


where c𝑘,𝑖, 𝑗 = c(h𝐺1,𝑘,𝑖 , h𝐺2,𝑘, 𝑗 ) is the distance (in embedding space)

between nodes 𝑣𝑖 and 𝑣 𝑗 from 𝐺1 and 𝐺2, respectively. First, let us

assume that 𝐺1 and 𝐺2 have the same cardinality 𝑁 . The graph

similarity at layer 𝑘 can be defined as the optimal transformation

cost from 𝐺1 to 𝐺2 as follows:

L𝐺1,𝐺2,𝑘 = min

M
M ◦ C𝐺1,𝐺2,𝑘 , (2)

where M is subject to the following constraints:∑
𝑖

M𝑖 𝑗 = 1 ∀𝑗,
∑
𝑗

M𝑖 𝑗 = 1 ∀𝑖, M𝑖 𝑗 ≥ 0 ∀𝑖, 𝑗 (3)

Intuitively, this objective is the optimal transformation cost from𝐺1

to𝐺2 in the embedding space. When a node 𝑣𝑖 in𝐺1 is assigned to a

node 𝑣 𝑗 in 𝐺2, they should have similar local and global structures,

which are captured in the embedding space. In other words, the

embedding vectors of h𝐺1,∗,𝑖 (and h𝐺2,∗, 𝑗 ) of 𝑣𝑖 (and 𝑣 𝑗 ) are closer
in the embedding space. Therefore, the minimal assignment cost

directly approximates the similarity between two graphs. Note that

this formulation is order invariant. In fact, any permutation of the

similarity matrix still results in the same optimal solution.

However, the above formulation has two major problems. First,

its solution and the gradients are highly unstable when𝑀 is a dou-

bly stochastic matrix [14]. Second, it is only applicable when 𝐺1

and 𝐺2 have the same cardinality 𝑁 . By changing to a new square

matrix 𝑀 in the formulation of the optimal assignment problem

(proposed in this Section) and enforcing a permutation matrix so-

lution (proposed in Section 3.3), we simultaneously achieve both

stable solution/gradients and a highly interpretable model.

Without loss of generality, let us now assume that 𝑁1 ≠ 𝑁2,

where 𝑁1 = |𝐺1 | and 𝑁2 = |𝐺2 |. In this scenario, besides the

node-assignment cost, we need to account for the costs of the

node-deletion and the node-insertion operations. Specifically, from

the perspective of 𝐺1, there are at most 𝑁2 node-insertion and at

most 𝑁1 node-deletion operations. This motivates us to extend the

similarity matrix 𝐶𝐺1,𝐺2,𝑘 as follows:

C𝐺1,𝐺2,𝑘 =



c𝑘,1,1 · · · c𝑘,1,𝑁2
d𝑘,1 · · · ∞

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

c𝑘,𝑁1,1 · · · c𝑘,𝑁1,𝑁2
∞ · · · d𝑘,𝑁1

a𝑘,1 · · · ∞ 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∞ · · · a𝑘,𝑁2
0 · · · 0


(4)

The original similarity matrix is extended to include the cost blocks

for deletion and insertion operations. d𝑘,𝑖 denotes the deletion cost

of node 𝑣𝑖 in 𝐺1 while a𝑘,𝑗 denotes the insertion cost of node 𝑣 𝑗 in

𝐺2. Note that, a deletion of a node in a graph is equivalent to an



insertion of another node in the other graph, thus, this configuration

covers both node insertions and deletions in both the graphs.

There are several ways to define d𝑘,𝑖 and a𝑘,𝑗 fromnode-embedding

vectors h𝐺1,𝑘,𝑖 and h𝐺2,𝑘, 𝑗 of the two graphs. One can define d𝑘,𝑖 and
a𝑘,𝑖 as constant costs, i.e., ∀𝑖, 𝑗 and 𝔡𝑘 , 𝔞𝑘 ∈ {𝑥 : 𝑥 ∈ R, 0 ≤ 𝑥 < ∞},
d𝑘,𝑖 = 𝔡𝑘 and a𝑘,𝑗 = 𝔞𝑘 , which are independent of the nodes. How-

ever, such definition results in hyperparameter choices, which in

turn, require additional training time for model selection. Therefore,

we propose to approximate such cost by first defining two global

embedding vectors h𝑘,𝑑 and h𝑘,𝑎 and then computing deletion and

insertion costs as follows:

d𝑘,𝑖 = 𝑐 (h𝐺1,𝑘,𝑖 , h𝑘,𝑑 ), a𝑘,𝑖 = 𝑐 (h𝐺2,𝑘,𝑖 , h𝑘,𝑎) (5)

The global embedding vectors h𝑘,𝑑 and h𝑘,𝑎 are learned in model

training, along with other GCN vectors h𝐺1,𝑘,𝑖 and h𝐺2,𝑘, 𝑗 of the

two graphs. We can show that this is related to the Hungarian

formulation [25] of approximating the GED. However, our formu-

lation is more powerful because it generalizes to graph embedding

and is suitable for similarity function estimation (because of its

differentiable solution, which will be discussed in the next section).

Given the optimal assignment cost at each layer-𝑘 of the GCN,

the final similarity score can be computed from the weighted aver-

age of the normalized assignment costs at all GCN levels as:

ŝ(𝐺1,𝐺2) = 1 − 1

𝐾

𝐾∑
𝑘

L𝐺1,𝐺2,𝑘

0.5 × (𝑁1 + 𝑁2)
(6)

We learn the parameters of GOTSim by minimizing the empirical

mean squared error, as follows:

L =
1

|D|
∑

(𝐺1,𝐺2) ∈D
| |ŝ(𝐺1,𝐺2) − s(𝐺1,𝐺2) | |22, (7)

where s(𝐺1,𝐺2) is the target similarity score of graphs 𝐺1 and 𝐺2

and D is the set of training graph pairs.

3.3 Solving the Optimal Assignment Problem
The objective in Equation (2) admits the solution M∗ that is doubly
stochastic. This means that each node 𝑣𝑖 in 𝐺1 can be partially

assigned to a node 𝑣 𝑗 in 𝐺2. However, it is known that this Linear

Programming (LP) formulation has an unstable and not always

unique solution [14] i.e., L𝑘 is not continuously differentiable.

Fortunately, since our objective is to learn an explainable solu-

tion similar to that of the classical GED computations, we have

a more stringent constraint: a node in 𝐺1 can be mapped to one

and only one node in 𝐺2. This is also true for the insertion and

deletion operations. We can easily show that enforcing this sparsity

constraint turns our optimal assignment problem into a linear sum

assignment program [5]. Consequently, instead of the doubly sto-

chastic matching matrix M∗, the solution is a permutation matrix,

i.e., M𝑖 𝑗 ∈ {0, 1}. The permutation-matrix is also a more stable

solution and we can easily compute the derivative of the objective

L𝐺1,𝐺2,𝑘 with respect to the model’s parameters. Specifically, Theo-

rem 1 shows that the model parameters can be efficiently computed

by solving for the optimal solution.

Theorem 1. The derivative of 𝐿𝐺1,𝐺2,𝑘 can be calculated as follows:

𝜕 L𝐺1,𝐺2,𝑘

𝜕𝜃
= M∗

𝑘

𝜕 C𝐺1,𝐺2,𝑘

𝜕𝜃
(8)

Algorithm 1: GOTSim Model Training

1 Require: Training graph pairs (𝐺𝑖 ,𝐺 𝑗 ), number of training

epochs 𝐾𝑒 , learning rate 𝜂.

2 Output: parameters of the network {𝜃 }.
3 for number of training epochs 𝐾𝑒 do
4 Sample a minibatch {(𝐺1,𝐺2)𝑙 |𝑙 = 1, · · · ,𝑚} of𝑚 graph

pairs.

5 for each graph pair (𝐺1,𝐺2) do
6 for GCN layer 𝑘 do
7 Compute ℎ𝐺1,𝑖 and ℎ𝐺2, 𝑗 ∀ 𝑣𝑖 ∈ 𝐺1, 𝑣 𝑗 ∈ 𝐺2.

8 Compute similarity matrix 𝐶𝐺1,𝐺2,𝑘 using Eq. (4).

9 Solve for the solution𝑀∗
𝑘
of RHS of Eq. (2) and

compute L𝐺1,𝐺2,𝑘 using Eq. (2).

10 Compute the gradient of L𝐺1,𝐺2,𝑘 with respect to

the network parameters using the Eq. (8).

11 end
12 Compute 𝑠 (𝐺1,𝐺2) in Eq. (6) using L𝐺1,𝐺2,𝑘

computed at each GCN layer 𝑘 .

13 end
14 Compute the mini-batch loss L using Eq. (7).

15 Update 𝜃 ←− 𝜃 − 𝜂 𝜕L
𝜕𝜃

.

16 end

where M∗
𝑘
is the permutation-matrix solution at layer 𝑘 .

Proof. Using the chain rule, the derivative of L𝐺1,𝐺2,𝑘 is:

𝜕 L𝐺1,𝐺2,𝑘

𝜕𝜃
=
𝜕 M∗

𝑘

𝜕𝜃
C𝐺1,𝐺2,𝑘 +M

∗
𝑘

𝜕 C𝐺1,𝐺2,𝑘

𝜕𝜃
(9)

Using sensitivity analysis, we can see that the first derivative

𝜕M∗
𝑘

𝜕𝜃
=

0 for non-degenerate solutions𝑀∗
𝑘
. Intuitively, a infinitesimal change

in 𝜃 results in the exact same optimal solutionM∗
𝑘
. Therefore, we

arrive at the formulation of the derivative in the Theorem. □

Given Theorem 1, any continuously differentiable distance func-

tion c is suitable. Some examples are the euclidean distance or the

cosine distance. In our paper, we employ the cosine distance, which

is also used in other learning-based graph similarity methods.

The algorithm of training GOTSim is described in Algorithm 1.

GOTSim has a computational complexity of 𝑂 (𝑚𝑎𝑥 (𝑁1, 𝑁2)2.5)
(dominated by the optimal assignment complexity [16]). Also, sim-

ilar to high computation costs in existing learning-based graph-

similarity methods [2, 19], this is a non-trivial cost. The price to

pay for the generalization ability of (neural) learning-based graph-

similarity methods is that they cannot directly be used for large

graphs. In practice, however, GOTSim is very efficient when being

trained on all real-world datasets which are evaluated in this paper.

Also note that, GOTSim, and other learning-based methods, can

easily approximate the similarity between graphs with an order of

magnitude more number of nodes than the current limit of existing

classical, non-learning based approaches.



Table 3: Results of graph similarity approximation when training with GED targets. On AIDS and LINUX, the ground-truth
targets are provided by𝐴∗ algorithm (ExactGT). On PTC and IMDB, the ground-truth target of each pair is theminimumGED
returned by Bipartite and Beam. The values are in 10

−3 unit.

AIDS LINUX PTC IMDB

MSE MAE MSE MAE MSE MAE MSE MAE

ExactGT 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 – – – –

Bipartite 130.68 ± 9.91 337.28 ± 16.11 266.11 ± 5.60 485.26 ± 6.66 60.68 ± 1.10 177.72 ± 3.36 13.22 ± 0.60 69.23 ± 3.93

Hausdorff 77.48 ± 5.64 255.39 ± 11.58 58.07 ± 1.46 221.84 ± 3.41 171.57 ± 7.94 388.30 ± 9.62 24.98 ± 1.71 90.91 ± 4.39

EmbMean 8.34 ± 0.50 69.60 ± 2.15 15.29 ± 1.92 151.12 ± 4.23 10.98 ± 1.22 79.92 ± 7.07 63.72 ± 2.37 102.63 ± 4.24

EmbMax 9.37 ± 0.24 74.44 ± 0.90 13.11 ± 1.88 140.73 ± 4.27 10.60 ± 1.52 80.18 ± 8.29 54.74 ± 1.94 98.12 ± 3.38

EmbGated 5.92 ± 0.32 65.46 ± 2.35 14.54 ± 2.01 119.01 ± 5.17 5.71 ± 2.21 51.05 ± 16.10 6.28 ± 3.23 99.23 ± 4.87

GMN 5.01 ± 0.25 61.23 ± 6.56 7.23 ± 0.94 55.78 ± 3.38 5.82 ± 1.89 56.7 ± 8.20 74.12 ± 4.22 168.02 ± 9.73

SimGNN 2.70 ± 0.30 38.34 ± 0.30 4.43 ± 0.62 50.41 ± 3.52 1.98 ± 0.43 27.85 ± 3.02 9.05 ± 4.12 78.01 ± 3.01

GraphSim 8.60 ± 0.33 37.06 ± 0.21 4.75 ± 0.78 45.72 ± 5.12 5.85 ± 0.83 55.17 ± 4.79 6.87 ± 4.02 111.39 ± 7.96

GOTSim 2.36 ± 0.12 35.19 ± 0.15 4.25 ± 0.60 44.27 ± 3.23 1.90 ± 0.43 26.79 ± 0.43 5.92 ± 3.19 75.31 ± 3.33

Table 4: Graph similarity retrieval results when training with GED targets. On AIDS and LINUX, the ground-truth targets are
provided by𝐴∗ (ExactGT). On PTC and IMDB, the ground-truth target is theminimumGED returned byBipartite andBeam.

AIDS LINUX PTC IMDB

𝜏 𝜌 P@10 𝜏 𝜌 P@10 𝜏 𝜌 P@10 𝜏 𝜌 P@10

ExactGT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 – – – – – –

Bipartite 0.26 ± 0.02 0.37 ± 0.02 0.32 ± 0.04 0.32 ± 0.02 0.43 ± 0.03 0.45 ± 0.03 0.65 ± 0.02 0.82 ± 0.02 0.79 ± 0.03 0.85 ± 0.01 0.92 ± 0.01 0.97 ± 0.01

Hausdorff 0.48 ± 0.02 0.63 ± 0.03 0.54 ± 0.05 0.78 ± 0.01 0.88 ± 0.01 0.78 ± 0.05 0.78 ± 0.01 0.91 ± 0.01 0.90 ± 0.02 0.64 ± 0.01 0.76 ± 0.01 0.88 ± 0.04

EmbMean 0.41 ± 0.04 0.53 ± 0.04 0.60 ± 0.10 0.55 ± 0.02 0.60 ± 0.02 0.51 ± 0.01 0.16 ± 0.04 0.23 ± 0.06 0.41 ± 0.08 0.56 ± 0.03 0.09 ± 0.02 0.09 ± 0.02

EmbMax 0.42 ± 0.02 0.57 ± 0.01 0.61 ± 0.06 0.57 ± 0.03 0.65 ± 0.01 0.71 ± 0.01 0.21 ± 0.03 0.29 ± 0.03 0.49 ± 0.03 0.58 ± 0.02 0.10 ± 0.01 0.23 ± 0.02

EmbGated 0.43 ± 0.02 0.66 ± 0.02 0.70 ± 0.04 0.58 ± 0.03 0.88 ± 0.01 0.81 ± 0.01 0.66 ± 0.10 0.81 ± 0.13 0.84 ± 0.08 0.60 ± 0.03 0.82 ± 0.01 0.41 ± 0.01

GMN 0.47 ± 0.05 0.69 ± 0.02 0.72 ± 0.02 0.78 ± 0.03 0.88 ± 0.01 0.80 ± 0.01 0.40 ± 0.02 0.71 ± 0.03 0.70 ± 0.04 0.46 ± 0.03 0.62 ± 0.02 0.35 ± 0.03

SimGNN 0.67 ± 0.03 0.82 ± 0.02 0.84 ± 0.04 0.80 ± 0.01 0.92 ± 0.01 0.82 ± 0.05 0.80 ± 0.02 0.93 ± 0.01 0.91 ± 0.01 0.71 ± 0.03 0.66 ± 0.02 0.63 ± 0.02

GraphSim 0.68 ± 0.03 0.57 ± 0.03 0.76 ± 0.03 0.83 ± 0.02 0.92 ± 0.02 0.84 ± 0.03 0.79 ± 0.01 0.91 ± 0.01 0.91± 0.02 0.74 ± 0.02 0.71± 0.02 0.66 ± 0.02

GOTSim 0.72 ± 0.02 0.86± 0.02 0.87± 0.03 0.89 ± 0.02 0.92± 0.01 0.86± 0.02 0.82 ± 0.01 0.95± 0.01 0.94± 0.01 0.80 ± 0.03 0.85± 0.01 0.73± 0.02

4 EXPERIMENTAL RESULTS
We evaluate GOTSim against several existing state-of-the-art base-

lines for GED and MCS computation, with a primary goal of ad-

dressing the following aspects of the graph similarity task:

• (RQ1) Effectiveness: How accurate is GOTSim, compared to

the state-of-the-art approaches, in terms of both similarity score

approximation and graph similarity retrieval tasks? The results

are presented in Section 4.2.

• (RQ2) Interpretability: Can we explain how GOTSim makes

its prediction, in a similar way to classical methods like the

exact GED algorithm 𝐴∗ and the approximate GED algorithm

(Bipartite)? We discuss this in Section 4.3.

4.1 Experimental Setup
4.1.1 Datasets: We employ four widely-used real-world datasets

AIDS, LINUX, IMDB and PTC. For each dataset, we employ five-fold

cross validation and split the dataset into 5 subsets: one for valida-

tion, one for testing and the rest for training.AIDS [32] is a collec-
tion of antivirus screen chemical compounds from the Developmen-

tal Therapeutics Program at NCI/NIH
1
, and has been used in several

existing works on graph similarity search [32, 36]. LINUX [32]
dataset consists of 48,747 Program Dependence Graphs (PDG) gen-

erated from the Linux kernel. Each graph represents a function

where a node represents one statement and an edge represents

the dependency between any two statements. PTC [30] dataset
consists of 344 chemical compound graphs that report the carcino-

genicity for male and female rats. Each node in the PTC dataset has

1
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

one out of 17 possible labels. IMDB [35] dataset consists of 1,500
ego-networks of movie actors, where there is an edge if two peo-

ple appear in the same movie. We follow the same pre-processing

steps that are described in [2]. These are the standard datasets that

have been used in existing works [1, 19]. While the number of

graphs may appear to be small, the similarity is computed between

each pair of the graphs, making the total number of unique data-

instances (~100K for PTC, ~0.5M for AIDS, ~1M for LINUX, ~2.25M

for IMDB).

4.1.2 Evaluation metrics: For evaluation on the similarity approxi-

mation task, we report the average Mean Square Error (MSE) and

Mean Absolute Error (MAE). For evaluation on the retrieval task, we

report Spearman’s Rank Correlation Coefficient (𝜌) [29], Kendall’s

Rank Correlation Coefficient (𝜏) [17], and Precision at 𝑘 (P@k).

4.1.3 Comparison methods: We evaluate GOTSim against a variety

of competing approaches, including various similarity-learning

neural approaches and classic approximation approaches. Since our

method is related to graph matching approaches and most of these

graph matching methods are not specifically designed for the graph

similarity task, we select a representative graph matching method

(GMN) which has been successfully used to predict graph similarity

in our experiments for a fair evaluation. Specifically, we compare

our method against the following baselines:

• Bipartite matching [8, 25]: It is a GED approximation deduced

from a linear sum assignment of the nodes of the two graphs,

which can be efficiently computed in polynomial time.



Table 5: Results of graph similarity approximation when training with MCS targets. The ground-truth targets are provided
by Mcsplit algorithm (ExactGT). Note that Bipartite is not included because it is not an MCS-estimation algorithm. The
values are in 10

−3 unit.

AIDS LINUX PTC IMDB

MSE MAE MSE MAE MSE MAE MSE MAE

ExactGT 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

EmbMean 7.83 ± 1.19 71.65 ± 6.44 1.11 ± 0.41 30.46 ± 1.27 8.22 ± 0.68 72.93 ± 3.65 8.63 ± 0.59 109.12 ± 3.75

EmbMax 5.84 ± 0.23 61.76 ± 1.62 1.07 ± 0.37 30.45 ± 1.16 7.92 ± 0.70 72.53 ± 4.49 11.84 ± 0.55 117.32 ± 3.99

EmbGated 5.91 ± 0.46 62.19 ± 3.50 1.03 ± 0.32 56.49 ± 4.03 5.32 ± 0.65 69.89 ± 2.37 4.59 ± 0.50 98.75 ± 3.45

GMN 3.73 ± 0.32 48.55 ± 2.32 0.90 ± 0.06 28.39 ± 2.57 5.01 ± 0.65 49.00 ± 0.94 3.75 ± 0.23 50.23 ± 3.47

SimGNN 3.65 ± 0.65 47.25 ± 4.67 0.71 ± 0.06 19.90 ± 1.07 3.09 ± 0.70 42.14 ± 5.07 2.66 ± 0.31 21.78 ± 3.23

GraphSim 7.28 ± 0.79 68.93 ± 3.97 0.69 ± 0.23 22.18 ± 1.35 8.61 ± 0.72 39.32 ± 1.48 2.60 ± 0.35 21.65 ± 2.89

GOTSim 2.26 ± 0.53 32.94 ± 3.90 0.65 ± 0.12 21.78 ± 1.01 2.97 ± 0.65 38.17 ± 1.57 2.38 ± 0.40 21.12 ± 1.37

Table 6: Graph similarity retrieval results when training with MCS targets. The ground-truth targets are provided byMcsplit
algorithm (ExactGT). Note that Bipartite is not included because it is not an MCS-estimation algorithm.

AIDS LINUX PTC IMDB

𝜏 𝜌 P@10 𝜏 𝜌 P@10 𝜏 𝜌 P@10 𝜏 𝜌 P@10

ExactGT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

EmbMean 0.36 ± 0.09 0.46 ± 0.12 0.20 ± 0.04 0.58 ± 0.03 0.40 ± 0.02 0.23 ± 0.01 0.32 ± 0.06 0.42 ± 0.70 0.30 ± 0.01 0.50 ± 0.02 0.67 ± 0.03 0.27 ± 0.04

EmbMax 0.50 ± 0.03 0.64 ± 0.03 0.31 ± 0.01 0.57 ± 0.02 0.41 ± 0.02 0.25 ± 0.01 0.45 ± 0.02 0.57 ± 0.03 0.33 ± 0.04 0.45 ± 0.02 0.38 ± 0.02 0.10 ± 0.03

EmbGated 0.51 ± 0.05 0.65 ± 0.05 0.32 ± 0.04 0.56 ± 0.04 0.43 ± 0.02 0.29 ± 0.02 0.47 ± 0.03 0.72 ± 0.05 0.51 ± 0.08 0.53 ± 0.03 0.62 ± 0.02 0.38 ± 0.02

GMN 0.57 ± 0.02 0.71 ± 0.03 0.45 ± 0.04 0.35 ± 0.03 0.37 ± 0.02 0.25 ± 0.03 0.27 ± 0.03 0.39 ± 0.03 0.31 ± 0.04 0.45 ± 0.02 0.39 ± 0.02 0.28 ± 0.02

SimGNN 0.56 ± 0.04 0.72 ± 0.05 0.47 ± 0.06 0.47 ± 0.02 0.58 ± 0.03 0.59 ± 0.09 0.61 ± 0.04 0.61 ± 0.04 0.61 ± 0.06 0.78 ± 0.03 0.63 ± 0.01 0.49 ± 0.02

GraphSim 0.57 ± 0.04 0.61 ± 0.05 0.27 ± 0.02 0.56 ± 0.02 0.62 ± 0.04 0.65 ± 0.05 0.63 ± 0.02 0.54 ± 0.04 0.42 ± 0.04 0.79 ± 0.01 0.65 ± 0.02 0.50 ± 0.02

GOTSim 0.58 ± 0.03 0.82± 0.03 0.67± 0.02 0.61 ± 0.01 0.68± 0.03 0.79± 0.03 0.69 ± 0.02 0.73± 0.03 0.65± 0.02 0.81 ± 0.02 0.73± 0.03 0.52± 0.02

• Hausdorff matching [10]: Hausdorff-matching is a quadratic-

time approximation of graph edit distance based on Hausdorff

matching, which underestimates the true distance.

• EmbMean, EmbMax: employ mean-readout and max-readout

functions, respectively, on the node-level embeddings to get the

graph-level embedding.

• EmbGated [19]: EmbGated employs a projection on the node-

level embeddings through a gated network, followed by mean-

readout to get the graph-level embedding.

• GMN [19]: a representative graph-matching method which learns

a soft matching between nodes.

• SimGNN [1]: SimGNN employs a differentiable attention-based

readout function and a non-differentiable histogram function on

the node-level embeddings to get the graph-level embedding.

• GraphSim [2]: GraphSim estimates the similarity function by

using CNN on the similarity matrices of the node-embeddings.

4.1.4 Implementation details. For a fair comparison, all learning-

based neural methods use GCN to learn the node embeddings. We

the same network architecture for the proposed method and the

learning-based graph similarity baselines, for all the datasets. For

the GCN-based baselines, the number of GCN layers is 3 and the

activation function is ReLU. For GraphSim and SimGNN, we used

the same network architectures as reported in their papers.

4.2 Effectiveness of Graph Similarity
Approximation (RQ1)

In this section, we present the results of graph similarity estimation

and graph retrieval ranking. Tables 3 and 4 show the similarity score

estimation and ranking results for the GED problem, respectively.

Similarly, Tables 5 and 6 show the similarity score estimation and

ranking results for theMCS problem, respectively. GOTSim achieves

the lowest estimation error, compared to other approaches (see

similarity score estimation results in Tables 3 and 5). In graph

retrieval, GOTSim also shows the highest ranking performance

across all the datasets. Note that, in the PTC and IMDB experiments

reported in Tables 3 and 4, Bipartite and Hausdorff provide the

approximate upperbound on the ranking performance because the

ground-truth targets are created by the minimum of the estimated

GEDs of Beam and Bipartite. It is computationally very expensive

to compute the exact ground-truth in these datasets, whose graphs

have much higher number of nodes than the graphs in AIDS and

LINUX
2
. Note that, all these methods are extremely efficient than

classical methods (Bipartite and Hausdorff), which require a

significant amount of computation. When the exact ground-truth

can be computed (AIDS and LINUX for GED in Tables 3 and 4),

GOTSim outperforms Bipartite and Hausdorff. Improvements of

our models over the compared methods are statistically significant

according to the corresponding paired t-tests (𝑝-value < 0.01).

ACase Study onGraphRanking:We present the ranking results

of two example queries on the AIDS (labeled) and IMDB (unlabeled)

datasets. In each example, the ground-truth ranking results (GT) are

provided for comparison. In Figure 7, when GOTSim approximates

the lower bound of Bipartite and Beam (IMDB dataset), GOTSim

ranks several isomorphic graphs (with respect to the query) in

the database on the top of the list. GOTSim’s retrieved graphs are

as relevant to the query as those graphs retrieved by Bipartite.

However, it is clear that when the exact ground truth is used as the

targets (AIDS dataset), GOTSim top-ranked, retrieved graphs are

very close to the ground truths.

2
Both GOTSim and GraphSim have very similar running times, which are about

3%-5% longer than SimGNN. It is expected that SimGNN is slightly faster than GOTSim

and GraphSim which are more expressive models with superior performance.



(a) AIDS

(b) IMDB

Figure 7: A sample of ranking results under the GED met-
ric on AIDS (labeled) and IMDB (unlabeled) datasets. Each
query graph (first column) is presented with a ranked list of
graphs. Node labels are color-coded in AIDS.

4.3 Interpretable Graph Matching (RQ2)
In this section, we demonstrate howwell GOTSim learns the ground-

truth node-assignment in GED estimation, similar to that of classical

methods, including the exact 𝐴∗ (ExactGT) and the approximate

Bipartite approaches. Specifically, we visualize the node matching

between a pair of graphs which has the optimal assignment cost.

Figure 8 shows examples of the AIDS and PTC datasets (with la-

beled nodes) and examples of the LINUX and IMDB datasets (with

unlabeled nodes). The selected pair of graphs have similar num-

ber of nodes for simpler visualization and discussion. As we can

observe in this figure, GOTSim learns a more similar matching

to ExactGT than the matching computed by Bipartite, one of

the most representative classical matching algorithms. In the unla-

beled graph datasets (LINUX and IMDB), GOTSim recovers almost

the exact same ground-truth node matchings between a pair of

graphs. In the multi-labeled graph dataset, AIDS and PTC, while

it is more difficult to visually investigate the node matchings, we

can still observe that GOTSim matches nodes with similar types

better than that of Bipartite and is also closer to the ground-truth

matchings. In the PTC and IMDB datasets, the result is even more

significant because the training labels of all the learning based

methods, including GOTSim, are provided by Bipartite and Beam.

This implies that GOTSim generalizes better than the non-learning

based approaches.

Different from soft graphmatchingmodels such as GMN [19] and

other approaches [6, 21], GOTSim’s matching is highly interpretable

because we can easily see the injective mapping between the nodes

of one graph to the other. Note that, this experiment is not possible

with GraphSim and SimGNN.

5 CONCLUSION
In this paper, we studied the problem of graph similarity and pro-

posed a learning-based graph similarity computation method. Com-

pared to the standard graph prediction problem, graph similarity

(a) AIDS

(b) LINUX

(c) PTC

(d) IMDB

Figure 8: Graphmatching for GOTSim on the last GCN layer
on AIDS (labeled), PTC (labeled), LINUX (unlabeled), and
IMDB (unlabeled) datasets. For each pair of graphs, the Ex-
actGT matching is provided by 𝐴∗. The cross-graph match-
ings are shown in green. AIDS Node labels are color-coded.

prediction poses unique challenges and has potential advantages.

For example, learning the similarity function directly from the set of

node embeddings is non-trivial when there does not exist a canon-

ical ordering of the nodes in the graphs. The proposed GOTSim

model directly compares graphs using their ( bag of) node embed-

ding vectors which can be learned by using a graph neural network

framework. GOTSim directly solves the optimal assignment prob-

lem on a novel cost matrix formulation which accounts for node

substitution, addition, and insertion. Computationally, the optimal

assignment objective can be solved efficiently in polynomial time.

Unlike existing optimal assignment based approaches, this objective

has a stable optimal matching solution and is differentiable (which

allows GOTSim to be efficiently trained using gradient learning).

GOTSim also has a distinct feature: it provides an interpretable pre-

diction. When predicting the similarity between a pair of graphs,

domain experts can also understand how the model makes its pre-

dictions by visually inspecting the optimal matching between the

nodes in the two graphs. To the best of our knowledge, GOTSim is

the first learning-based graph-similarity method that provides such

interpretable results. GOTSim can help in advancing or confirming

the domain-specific knowledge in domains which involve graphs.
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