Interpretable Graph Similarity Computation via Differentiable
Optimal Alignment of Node Embeddings

Khoa D. Doan'*, Saurav Manchanda?*, Suchismit Mahapatra®, Chandan K. Reddy
1Department of Computer Science, Virginia Tech, Arlington, VA, USA
2Department of Computer Science, University of Minnesota, Minneapolis, MN, USA
3Depar’tment of Computer Science, University at Buffalo, NY, USA
khoadoan@vt.edu,manch043@umn.edu,suchismi@buffalo.edu,reddy@cs.vt.edu

ABSTRACT

Computing graph similarity is an important task in many graph-
related applications such as retrieval in graph databases or graph
clustering. While numerous measures have been proposed to cap-
ture the similarity between a pair of graphs, Graph Edit Distance
(GED) and Maximum Common Subgraphs (MCS) are the two widely
used measures in practice. GED and MCS are domain-agnostic mea-
sures of structural similarity between the graphs and define the
similarity as a function of pairwise alignment of different entities
(such as nodes, edges, and subgraphs) in the two graphs. The ex-
plicit explainability offered by the pairwise alignment provides
transparency and justification of the similarity score, thus, GED
and MCS have important practical applications. However, their
exact computations are known to be NP-hard. While recently pro-
posed neural-network based approximations have been shown to
accurately compute these similarity scores, they have limited abil-
ity in providing comprehensive explanations compared to classical
combinatorial algorithms, e.g., BEAM search. This paper aims at ef-
ficiently approximating these domain-agnostic similarity measures
through a neural network, and simultaneously learning the align-
ments (i.e., explanations) similar to those of classical intractable
methods. Specifically, we formulate the similarity between a pair
of graphs as the minimal “transformation” cost from one graph to
another in the learnable node-embedding space. We show that, if
node embedding is able to capture its neighborhood context closely,
our proposed similarity function closely approximates both the
alignment and the similarity score of classical methods. Further-
more, we also propose an efficient differentiable computation of our
proposed objective for model training. Empirically, we demonstrate
that the proposed method achieves up to 50%-100% reduction in
the Mean Squared Error for the graph similarity approximation
task and up to 20% improvement in the retrieval evaluation met-
rics for the graph retrieval task. The source code is available at
https://github.com/khoadoan/GraphOTSim.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8037-9/21/07...$15.00
https://doi.org/10.1145/3404835.3462960

CCS CONCEPTS

» Mathematics of computing — Graph algorithms; « Comput-
ing methodologies — Neural networks; « Information sys-
tems — Similarity measures; Top-k retrieval in databases.

KEYWORDS
Graph similarity, GCN, similarity search, model interpretability

ACM Reference Format:

Khoa D. Doan![1], Saurav Manchanda?®[1], Suchismit Mahapatra®, Chandan
K. Reddy'. 2021. Interpretable Graph Similarity Computation via Differen-
tiable Optimal Alignment of Node Embeddings. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’21), July 11-15, 2021, Virtual Event, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3404835.3462960

1 INTRODUCTION

Graphs are non-linear data structures used to model a set of inter-
connected objects (nodes) and their relationships (edges). Recently,
the ubiquitous expressive power of graphs has received immense
attention in data modeling across various research areas including
social networks, natural sciences (drugs and protein-protein inter-
action networks), and knowledge graphs. Consequently, a wide
range of graph analytical techniques are being developed to learn
and extract useful patterns from graph data. One of the challeng-
ing problems when dealing with graph databases is to compute
the similarity between a pair of graphs, which is critical to sev-
eral graph applications such as retrieval from graph databases and
graph clustering. To tackle this problem, different graph similar-
ity measures have been proposed in the literature. Among them,
Graph Edit Distance (GED) and Maximum Common Subgraphs
(MCS) are two examples of the most prevalent measures. GED
and MCS, which are domain-agnostic measures of structural sim-
ilarity between the graphs, define the similarity as a function of
pairwise alignment of different entities (such as nodes, edges, and
subgraphs) in the two graphs. As such, GED and MCS have im-
portant applications in many domains such as bioinformatics and
cheminformatics [12, 13], because the explicit explainability of the
similarity score provides transparency and justification, as well
as additional informative inductive knowledge towards decision
making in downstream analysis in these domains. For example, in
medicinal chemistry in particular, the availability of ‘rules of thumb’
underscores the willingness, in certain situations, to sacrifice ac-
curacy in favor of models that better fit the human intuition [15].
In addition to being domain-agnostic similarity measures, GED

*Both authors are equal contributors.

Table 1: Characteristics of graph similarity algorithms along with the representative methods. x indicates the method lacks the
specific characteristic. v'indicates the method achieves the objective. ‘N/A’ stands for Not Applicable. A desirable approach will
have high accuracy, high interpretability, and low computation. Our proposed GOTSim method satisfies all these characteristics

by employing an end-to-end learning-based approach.

BIPARTITE | SIMGNN | GRAPHSIM Graph Matching OAK GOTSim
[8, 25] (1] [2] [6, 19, 21] [23] (Ours)
Learning-based X v v v v v
End-to-End X v v v X v
Accuracy Low High High High Low High
Interpretability High N/A N/A Low Low High
Computation High Low Low Low Low Low

and MCS can be deployed in a real application without any prior
domain knowledge.

Formally, GED finds the number of edit operations which trans-
forms one graph to another, and MCS finds the most common
subgraphs between the two graphs. GED, under a particular cost
function setup, is equivalent to MCS [4]. Exact computation of GED
or MCS, using classical, combinatorial search approaches, however,
is NP-Hard. Computing GED and MCS is intractable for larger
graphs that have more than a few tens of nodes. Recently, by learn-
ing a similarity function to approximate the similarity metric of
interest, the works in [1, 2] show that one can efficiently find similar
graphs to a query graph, compared to using classical combinatorial
methods such as BEaM [22], or BIPARTITE [8, 25]. These methods
model the similarity function as a neural network either on the
two graph-level embeddings representing the two graphs or on the
two sets of node embeddings representing the two graphs. While
their performance in both similarity approximation and retrieval
tasks approaches that of the classical computations of GED and
MCS, they lack several important characteristics that are typically
seen in the classical methods, specifically the explainable alignment
between nodes or edges between the two graphs.

A similar research setting is also seen in several works solving the
graph matching problem [6, 9, 19, 21]. However, their primary goal
is fundamentally different. Specifically, graph matching focuses on
approximating the similarity between graph entities such as nodes
or edges, regardless of the overall structural similarity between the
entire graphs. The learned matching is only required to be a discrete
distribution over potential correspondences of a node in a graph
to each node in the other graph, but not necessarily an injective
mapping between nodes. Furthermore, some methods require fine-
grained annotations such as node-node or edge-edge similarities
in order to learn a sparse correspondence distribution [9]. Our
work is different from these methods and primarily focuses on
approximating not only the injective assignment, but also capturing
the explanation for node deletion and insertions. Hence, this will be
similar to the explicit explanability found in classical combinatorial
methods by using only annotated graph-level similarities.

It should be noted that a low similarity computation cost and an
explainable alignment as part of the computation are two of the
desired properties of graph similarity search. To the best of our
knowledge, none of the existing learning-based methods can achieve
the explicit node alignment results while approximating the graph-
graph similarity score somewhat identical to classical methods. In

this paper, we denote such explicit node-alignment as the “inter-
pretability” of the graph similarity algorithm. In this work, we first
propose to learn the graph embedding through a context-aware
Graph Neural Network (GNN) model, such as Graph Convolutional
Network (GCN), so that we can capture the local and global struc-
tures around the nodes in the embedding space. Then, we propose
to directly solve for the optimal alignment between nodes of the
two graphs from their node-node similarity matrix. However, our
proposed optimal alignment formulation is guaranteed to have a sta-
ble and differentiable solution, which is crucial for both gradient-based
stochastic optimization of the neural models and finding sparse exact
alignment solutions similar to those of classical GED computations.
We name our method GOTS1m. Given two graphs, GOTS1u first
learns node embeddings using any suitable graph embedding frame-
work, such as GCN [18]. Then, GOTSu directly solves the optimal
assignment problem between the two sets of embeddings using a
novel differentiable algorithm. Our contributions are as follows:

e Propose a novel optimal assignment objective based on the graphs’
node embeddings to approximate graph similarity. In this frame-
work, the similarity between the two graphs is related to the
optimal assignment cost, which is the minimum cost of trans-
forming one graph to another in the (node) embedding space.
This learning-based framework works on any notion of graph
similarity, such as GED or MCS.

e Develop an efficient differentiable algorithm to solve the opti-
mal assignment objective with a polynomial computational com-
plexity, which is also the complexity of existing neural learning-
based graph-similarity methods. The algorithm is suitable for any
gradient-based learning (such as SGD).

e Demonstrate the effectiveness of our approach on various widely
used graph benchmark datasets. GOTSiM achieves the lowest
error in similarity estimation and superior ranking performance
(on several ranking metrics) compared to existing state-of-the-art
graph similarity methods.

For domain experts, GOTSim can provide valuable insights into
the downstream tasks that are being studied; for example, one
can visualize the learned node alignment between two predictably
similar protein graphs for further biological investigation. Thus,
GOTS1m fulfills the desired characteristics of an ideal graph simi-
larity algorithm (as shown in Table 1).

The rest of the paper is organized as follows. We discuss the
related work in Section 2. In Section 3, we describe the problem

definition and the details of the proposed GOTSim method. Finally,
we present quantitative and qualitative experimental results in
Section 4 and conclude our discussion in Section 5.

2 RELATED WORK

We first discuss representation learning in graphs and then discuss
other works related to graph similarity and graph matching.

2.1 Graph Representation Learning

GNNs have gained huge popularity in the past few years. These
models apply deep neural networks on graph data and can ad-
dress the limitations of earlier representation learning methods.
GCNss are a special class of GNNs, that apply message passing on
graphs and compute node representations with input node/edge
features and graph structures. These models can be trained with
any downstream task to learn node representations specifically for
a given task and achieve better performance. Specifically, GCNs
use a convolutional layer to perform neighborhood aggregation,
thus generating a node’s representation by aggregating its own
features and its neighbors’ features, where the neighbors generally
correspond to directly connected nodes. By stacking multiple such
convolutional layers, GCNs enable us to estimate context-aware
representations of the nodes in graphs.

The initial GCN network, proposed by [18], uses all nodes that
are directly connected to v (the target node for which we want to
estimate the representation), in addition to v itself (i.e., self-edge),
as the neighbors of v. The message is constructed as a projection
of the features of the neighboring nodes, and the aggregation is
modeled by taking the sum of the incoming messages and normal-
izing the sum. GAT [31] extends GCN by introducing the attention
mechanism as a substitute for the statically normalized convolution
operation. The attention weights are used to perform a weighted
combination of the messages from the neighbors, as opposed to
the vanilla sum used in GCN. We can apply message passing on a
graph multiple times to have a node gather information from nodes
multiple hops away, instead of just its direct neighbors. When con-
sidering tasks on graphs, one critical component to design is the
readout function , i.e., the mapping from the set of node representa-
tions to a fixed-size vector representation of the graph. A readout
function can be a pooling operation (such as mean, max etc., similar
to CNNGs) or can also have learnable parameters.

The message passing formulation of GCNs has also been ex-
tended to heterogeneous graphs, i.e., graphs with multiple node-
types and edge-types. Popular examples include Relational Graph
Convolution Network [27], Heterogeneous Graph Attention Net-
work [33], Metapath Aggregated Graph Neural Network [11] and
Deep Heterogenous Graph Convolutional Networks [20].

2.2 Graph Similarity Search

Searching for graphs involves selection of the appropriate pairwise,
graph-graph similarity measure and an efficient similarity com-
putation. In this section, we provide a detailed discussion in this
direction.

2.2.1 Characteristics of graph similarity algorithms. Computing
similarity between the structured graph objects is a challenging
problem with many important real-world applications, in particular,

similarity-based retrieval in graph databases. For example, in the
field of computer security, we need to search for similar binary
functions, where given a binary which may or may not contain
code with known vulnerabilities, we wish to check whether any
control-flow graph in this binary is sufficiently similar to a database
of known vulnerable functions [19].

Graph similarity is typically defined based on (sub-)graph iso-
morphism [3, 28] or some structural similarity measure such as
GED or MCS [24, 34]. Exact similarity computation is known to
be computationally expensive in practice. For example, exact GED
calculation is NP-Hard and does not scale well to graphs with more
than a few tens of nodes. Thus, approximation algorithms have
been designed to calculate these similarity measures. These ap-
proximate methods can be broadly divided into two categories: (i)
search-based similarity computation, and (ii) function-estimation
similarity computation.

2.2.2 Search-based similarity computation. Examples of the search-
based methods (specifically GED) include BEaM search [22], Bipar-
TITE approximation [8, 25], and HAUSDORFF approximation [10].
BeAM heuristically explores the search-graph by expanding the
most promising node in a limited set, thus approximating the A* al-
gorithm to find the GED. BIPARTITE provides an upper bound, while
HausDoRFF provides a lower bound to the GED. These algorithms
essentially estimate the set of edit operations with a minimal cost of
transforming one graph to another graph and this minimal cost rep-
resents the edit distance between the pair of graphs. Consequently,
such optimal edit operations can be used as an explanation of the
associated edit similarity score. Such explainable characteristic of
these classical algorithms is extremely useful for downstream tasks
in domains such as bioinformatics and cheminformatics.

2.2.3 Function-estimation similarity computation. Recently, several
function-estimation similarity computation methods have been pro-
posed, including SIMGNN [1], GRaPHSIM [2] and Graph Matching
Network (GMN) [19]. Function-estimation algorithms have a sig-
nificant computational advantage over search-based approaches.
These approaches learn their functional parameters from empir-
ical data using the principle of empirical risk minimization, and
hence they are also suitable for any similarity definition, including
GED and MCS. By employing end-to-end deep GNN models, recent
works [1, 2] have demonstrated a superior performance over clas-
sical methods such as BIPARTITE or HAUSDORFF. Although these
existing methods effectively estimate the graph similarity, their
lack of explanation in node alignments is a crucial limitation.

Our proposed method also belongs to the category of learning-
based similarity computation. Unlike existing learning-based ap-
proaches, our method is capable of both accurately approximating
the graph similarity and providing similar explanation which is
found in classical search-based approaches when approximating
similarity measures such as the GED.

2.3 Graph Matching

Identifying correspondences between nodes of graphs, such as in
the case of calculating GED, is a prevalent problem that arises in
different domains, and thus has been studied under various termi-
nologies. A set of fundamentally different techniques commonly

referred to as graph matching or graph alignment have been de-
veloped in bioinformatics and computer vision. The techniques
developed in these areas, however, are non-exact because large
networks without any specific structural properties are commonly
studied. In graph matching, given two graphs Gs and G; with node
sets Vs and V;, respectively, and adjacency matrices As and A,
respectively, the goal is to find correspondences that can avoid
mapping of adjacent nodes in the source graph to different regions
in the target graph [26], as expressed in the following maximization
objective function:

AirA;jjrSijSe.j (1)
(1,i")eVs (J.J) Ve

Recently, various deep graph-matching methods which employ
GNN embeddings have been developed. In soft graph matching
methods, such as Graph Matching Network (GMN) [19], Graph Op-
timal Transport [21], and Optimal Assignment Kernel (OAK) [23],
the rectangular matching matrix S € RVs*V is a doubly stochastic
matrix. In sparse graph matching methods, such as in [9], S is con-
strained to be a rectangular permutation matrix. To learn the model
parameters, either node-level (each pair of nodes of two graphs
have a similarity label) or graph-level (each pair of graphs has a
similarity label) matching annotation is used.

It can be shown that optimizing the objective in Equation (1)
is equivalent to solving Equation (2) in Section 3.2 under certain
constraints. When GED is used as a graph-level annotation, graph
matching approximates the GED. However, the learned assignments
between graph matching methods and classical GED computation
can be very different. For example, soft graph matching learns a
doubly stochastic matrix, while GED computation learns a permuta-
tion matrix. While some of the graph matching works [9] attempt to
approximate a sparse assignment matrix (equivalently, this can be
seen as an approximation to the permutation matrix), these methods
require domain-specific node-level annotation. Thus, they are not
capable of estimating the graph-level similarity scores. Furthermore,
as discussed previously, the requirement of this type of annotation
significantly limits the applications of these approaches in several
domains. Contrary to this, our work can approximate the graph
similarity while simultaneously learning a sparse permutation as-
signment only using the graph-level annotation. Furthermore, our
method can additionally provide explanation for operations such
as deletion and insertion similar to those of classical methods.

3 THE PROPOSED GOTSIM MODEL

We can formally define graph as G = {V, A}, where V repre-
sents the node set consisting of nodes {v;};=; _ny and A € RNXN
is the corresponding adjacency matrix where A;; represents the
edge weight between nodes v; and ;. We only consider undirected
and unweighted graphs in this work and thus A is symmetric and
generally sparse. However, our method is a general graph-similarity
computation framework, and can be extended to other graph types.
The notations used in this paper are given in Table 2.

Problem Statement: Given two graphs G; = {V1,A1} and G2 =
{V,, A2}, the goal of the graph similarity computation task is to

Table 2: Notations used in this paper.

[Notation [Description l
hG ki Embedding of i node of graph G at layer k in the GCN.
Hg r Set of node embeddings of a graph G at layer k in the GCN.
CG,.Gy.k Pairwise similarity matrix between two graphs G; and G, at
layer k in the GCN.

Ch.ij Distance (in embedding space) between the nodes v; and v;
of Gy and Gy, respectively, i.e., the substitution cost.

di i Deletion cost of node v; in Gy.

ag,j Insertion cost of node v; in G,.

s(Gy, Gy) True similarity score of graphs G; and G,.

$(Gy, Gy) Predicted similarity score of graphs G; and G,.

[Parameters of the network.

M* Permumation matrix that is the optimal solution to the LP
problem.

n Learning rate.

K. Number of training epochs.

approximate the similarity score between the graphs, denoted by
8(G1,Go).

The proposed GOTS1M model consists of two sequential modules:
1) multiple-scaled convolutional aggregations and 2) differentiable
graph matching. For a pair of graphs, GOTSiM first computes the
vector embeddings of the nodes in the graphs at multiple GCN
layers; then, at each layer, GOTS1M computes the pairwise similarity
matrix between the two sets of node embeddings representing the
graphs; finally, GOTS1M computes the optimal graph transformation
cost, at each layer, from the similarity matrix and approximates
the similarity score by aggregating the optimal costs from all GCN
layers. The parameters of all computational operations are learned
in an end-to-end manner.

3.1 Multiple-scaled Node Embeddings

In our proposed approach we use context-aware node embeddings.
To compute them, we employ GCN [7, 18] which uses a convolu-
tional layer to perform neighborhood aggregation, thus generating
a node’s representation by aggregating its own features and its
neighbors’ features, where the neighbors generally correspond
to directly connected nodes. By stacking multiple convolutional
layers, GCNs enable us to learn context-aware representations of
the nodes in graphs, when a K-depth GCN is able to estimate the
representation of a node using the context within K-hops.

More concretely, the Graph Convolution operator at the k-th
GCN layer transforms the representation of node v; as follows:

N N 1
hg ;= U(hG,k—l,iWk +b), hgj_1; = E ——hg i1
JEN(D) vdid;

where o(+) is nonlinear activation, d; is the degree of node v; plus
1 (assuming self-loop), N (i) represents the set of first-order neigh-
bors of v; and {WK, bk} represent the filter parameters of the k-th
GCN layer, which are shared by all nodes.

In multi-layer GCN, each layer has the effect of capturing a
particular higher-order structural information around node v in
its representation. While comparing two graphs using their node
embeddings, using a particular higher-order representation is usu-
ally not sufficient. An intuitive and effective approach is to utilize
the embeddings at multiple GCN layers. Specifically, let Hg x =
{hgkilvi € Vg, i =1,..,N} be the set of node embeddings of a

Component .
[[0 Deletion Embedding .
*—¢ = EE Insertion Embedding : 5
e) 8 [7] One-hot Input HIRC) \
o~ [GCN Embedding H = -
61 P @
s k] = H
£ £ E H
8% 8% & g LLITLTTT N 1T :
o E o o X . ~ H
35 85 £5 ; CPMk—3(61,6G2)) i
o] . 8
5 5 5 P -
S
I e T A4
e |z z| = = H
./ — T Q|— Q> O [— H .
! — — O 9 | © (a) Similarity Computation : (b) Learned Alignment

Hg,1 Hg, Hg,x

Figure 1: GOTS1M model (a) and an illustration of the learned graph matching (b). (a) the one-hot encoded node input are
given as input to the GCN, which estimates the node embeddings; the ‘Differentiable Optimal Assignment’ block computes the
optimal assignment between two sets of node embeddings; the final similarity score is the average of the optimal assignment
costs for each GCN layer. Solving the optimal assignment problem at each GCN layer results in an interpretable alignment (b)
between the two graphs using the information at that layer; for two isormorphic graphs, GOTS1m gives the perfect alignment.

graph G at layer k in the GCN, G is represented by K sets of vectors
asHg ={Hgy | k=1,..,K}.

At each layer k, we can compute the pairwise similarity matrix
CG,.G, k between two graphs G and G». Since node orderings are
not graph invariant, it is very strict to assume an order in the similar-
ity matrix. For this reason, we take a completely different modeling
approach than existing learning-based graph similarity methods
and compare graphs using their bag-of-vectors representations.

3.2 Optimal-Assignment Similarity

As discussed earlier, a graph can be represented as a “bag” of its
building blocks, e.g., context-aware nodes where the context en-
codes the structural information around the node. Given two bag-
of-vectors Hg, 1 and Hg, i from graphs G; and G, respectively,
at layer k, and c is a pairwise distance function between two node
embeddings, we define the similarity matrix between G; and G as:

Ck,1,1 Ck 1N

_uT _
C6,,6,k = Hg, 1 Ho,k =

Ck,N,1 Ck,N,N

where ¢y ; j = c(hg, ki, hg, i, ;) is the distance (in embedding space)
between nodes v; and v; from G; and Gy, respectively. First, let us
assume that G; and G, have the same cardinality N. The graph
similarity at layer k can be defined as the optimal transformation
cost from Gy to G as follows:

LG,.G,k =minMo Cg, G, -)
where M is subject to the following constraints:
®)

ZMU‘ =1Vj, ZMijzl Vi, Mjj >0 Vi, j
i J

Intuitively, this objective is the optimal transformation cost from Gy
to Gz in the embedding space. When a node v; in Gy is assigned to a
node v; in Gy, they should have similar local and global structures,

which are captured in the embedding space. In other words, the
embedding vectors of hg, . ; (and hg, . ;) of v; (and v;) are closer
in the embedding space. Therefore, the minimal assignment cost
directly approximates the similarity between two graphs. Note that
this formulation is order invariant. In fact, any permutation of the
similarity matrix still results in the same optimal solution.

However, the above formulation has two major problems. First,
its solution and the gradients are highly unstable when M is a dou-
bly stochastic matrix [14]. Second, it is only applicable when G
and G have the same cardinality N. By changing to a new square
matrix M in the formulation of the optimal assignment problem
(proposed in this Section) and enforcing a permutation matrix so-
lution (proposed in Section 3.3), we simultaneously achieve both
stable solution/gradients and a highly interpretable model.

Without loss of generality, let us now assume that N; # Na,
where N1 = |Gi1| and Ny = |Gz|. In this scenario, besides the
node-assignment cost, we need to account for the costs of the
node-deletion and the node-insertion operations. Specifically, from
the perspective of Gy, there are at most Ny node-insertion and at
most N1 node-deletion operations. This motivates us to extend the
similarity matrix Cg, g, i as follows:

Ck,1,1 Ck,1,N, dk,l o
Ck,N,1 CLNLN, | di.N,
C = EAS) 21V1,4N2 54N 4
G1,Gp.k aj 00 0 ... 0)
I o0 ak,Ng 0 e 0

The original similarity matrix is extended to include the cost blocks
for deletion and insertion operations. dy ; denotes the deletion cost
of node v; in Gy while a; ; denotes the insertion cost of node v; in
G3. Note that, a deletion of a node in a graph is equivalent to an

insertion of another node in the other graph, thus, this configuration
covers both node insertions and deletions in both the graphs.
There are several ways to define d. ; and a ; from node-embedding

vectors hg, i ; and hg, i ; of the two graphs. One can define dy ; and
ay ; as constant costs, i.e., Vi, j and by, a; € {x:x€eR,0<x < oo},
dy; = D and ag ; = ag, which are independent of the nodes. How-
ever, such definition results in hyperparameter choices, which in
turn, require additional training time for model selection. Therefore,
we propose to approximate such cost by first defining two global
embedding vectors hy ; and hy , and then computing deletion and
insertion costs as follows:

di; = cthg, ki hia), ag; =clhg, ki hiq) 5

The global embedding vectors hy 4 and hy , are learned in model
training, along with other GCN vectors hg, f; and hg, i ; of the
two graphs. We can show that this is related to the Hungarian
formulation [25] of approximating the GED. However, our formu-
lation is more powerful because it generalizes to graph embedding
and is suitable for similarity function estimation (because of its
differentiable solution, which will be discussed in the next section).

Given the optimal assignment cost at each layer-k of the GCN,
the final similarity score can be computed from the weighted aver-
age of the normalized assignment costs at all GCN levels as:

LG,,G,.k

0.5 X (N1 + Np) ©)

LK
8(G,G) =1~ Ezk:

We learn the parameters of GOTSim by minimizing the empirical
mean squared error, as follows:

1
L=@ Z

(G1,.G2)eD

18(G1, G2) — s(G1, Ga)lI5, (7)

where s(Gy, G2) is the target similarity score of graphs G and G
and D is the set of training graph pairs.

3.3 Solving the Optimal Assignment Problem

The objective in Equation (2) admits the solution M* that is doubly
stochastic. This means that each node v; in G; can be partially
assigned to a node v; in G;. However, it is known that this Linear
Programming (LP) formulation has an unstable and not always
unique solution [14] i.e., Ly is not continuously differentiable.

Fortunately, since our objective is to learn an explainable solu-
tion similar to that of the classical GED computations, we have
a more stringent constraint: a node in G; can be mapped to one
and only one node in Gj. This is also true for the insertion and
deletion operations. We can easily show that enforcing this sparsity
constraint turns our optimal assignment problem into a linear sum
assignment program [5]. Consequently, instead of the doubly sto-
chastic matching matrix M*, the solution is a permutation matrix,
ie, M;; € {0,1}. The permutation-matrix is also a more stable
solution and we can easily compute the derivative of the objective
LG, G,k With respect to the model’s parameters. Specifically, Theo-
rem 1 shows that the model parameters can be efficiently computed
by solving for the optimal solution.

TuEOREM 1. The derivative of L, G, i can be calculated as follows:

ILG, Gk M 9Cg, .G,k
30 ko o0

®)

Algorithm 1: GOTS1m Model Training

1 Require: Training graph pairs (G;, G;), number of training
epochs K, learning rate 7.

2 Output: parameters of the network {6}.

3 for number of training epochs K, do

4 Sample a minibatch {(G1,G2);|l = 1,-- - ,m} of m graph
pairs.

5 for each graph pair (G1,Gz) do

6 for GCN layer k do

7 Compute hg, ; and hg, ; V v; € Gy, vj € Go.

8 Compute similarity matrix Cg, g, x using Eq. (4).
9 Solve for the solution MZ of RHS of Eq. (2) and
compute Lg, g, k using Eq. (2).

10 Compute the gradient of Lg, g, x With respect to

the network parameters using the Eq. (8).
11 end
12 Compute §(Gy, Gz) in Eq. (6) using Lg, G, k
computed at each GCN layer k.
13 end
14 Compute the mini-batch loss £ using Eq. (7).
15 Update9<—9—ry%.

16 end

where MZ is the permutation-matrix solution at layer k.

Proor. Using the chain rule, the derivative of L, g, i is:

LG, G,k IMy +9CG Gk
—_— = _CGth,k +Mk—89

a0 a0 ©)

Using sensitivity analysis, we can see that the first derivative 39" =

0 for non-degenerate solutions MZ. Intuitively, a infinitesimal change
in 6 results in the exact same optimal solution Mz. Therefore, we
arrive at the formulation of the derivative in the Theorem. m]

Given Theorem 1, any continuously differentiable distance func-
tion c is suitable. Some examples are the euclidean distance or the
cosine distance. In our paper, we employ the cosine distance, which
is also used in other learning-based graph similarity methods.

The algorithm of training GOTSiM is described in Algorithm 1.
GOTSiM has a computational complexity of O(max(Ni, N2)>>)
(dominated by the optimal assignment complexity [16]). Also, sim-
ilar to high computation costs in existing learning-based graph-
similarity methods [2, 19], this is a non-trivial cost. The price to
pay for the generalization ability of (neural) learning-based graph-
similarity methods is that they cannot directly be used for large
graphs. In practice, however, GOTS1M is very efficient when being
trained on all real-world datasets which are evaluated in this paper.
Also note that, GOTS1m, and other learning-based methods, can
easily approximate the similarity between graphs with an order of
magnitude more number of nodes than the current limit of existing
classical, non-learning based approaches.

Table 3: Results of graph similarity approximation when training with GED targets. On AIDS and LINUX, the ground-truth
targets are provided by A* algorithm (ExAcTGT). On PTC and IMDB, the ground-truth target of each pair is the minimum GED

returned by BIPARTITE and BEaM. The values are in 107> unit.

AIDS LINUX PTC IMDB
MSE MAE MSE MAE MSE MAE MSE MAE
ExactGT 0.00 + 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 + 0.00 - - - -
BIPARTITE 130.68 £9.91 337.28 £ 16.11 | 266.11 £5.60 485.26 £ 6.66 60.68 +£1.10 177.72 +£3.36 | 13.22 £ 0.60 69.23 £3.93
HAUSDORFF 77.48 £ 5.64 255.39 + 11.58 58.07 £ 1.46 221.84 £3.41 | 171.57 £7.94 38830 £ 9.62 | 24.98 £ 1.71 90.91 + 4.39
EmbMEAN 8.34 + 0.50 69.60 £ 2.15 1529 +£1.92 151.12£4.23 10.98 + 1.22 79.92£7.07 | 63.72 237 102.63 £ 4.24
EmbMax 9.37 £0.24 74.44 £ 0.90 13.11 £ 1.88 140.73 £ 4.27 10.60 £ 1.52 80.18 £8.29 | 54.74 £ 1.94 98.12 £ 3.38
EmbGATED 5.92 £ 0.32 65.46 + 2.35 14.54 £2.01 119.01 £5.17 571221 51.05%16.10 6.28 £3.23 99.23 £ 4.87
GMN 5.01+£0.25 61.23 £ 6.56 7.23 £0.94 55.78 £ 3.38 5.82 + 1.89 56.7+820 | 74.12+4.22 168.02 +9.73
SIMGNN 2.70 = 0.30 38.34 £ 0.30 4.43 + 0.62 50.41 £ 3.52 1.98 £ 0.43 27.85 £ 3.02 9.05 + 4.12 78.01 £ 3.01
GRAPHSIM 8.60 + 0.33 37.06 £ 0.21 4.75 £ 0.78 45.72 £ 5.12 5.85 +0.83 55.17 £ 4.79 6.87 £4.02 111.39+7.96
GOTSim 2.36 £ 0.12 35.19 +0.15 4.25 +£0.60 44.27 +3.23 190 £ 043 26.79+0.43 | 5.92+3.19 75.31+3.33

Table 4: Graph similarity retrieval results when training with GED targets. On AIDS and LINUX, the ground-truth targets are
provided by A* (ExacTGT). On PTC and IMDB, the ground-truth target is the minimum GED returned by BIPARTITE and BEam.

AIDS LINUX PTC IMDB
T P P@10 T P P@10 T P P@10 T P P@10
ExactGT 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 - - - - - -
BIPARTITE 0.26 + 0.02 0.37 £ 0.02 0.32 £ 0.04 0.32 +0.02 0.43 £ 0.03 0.45 + 0.03 0.65 + 0.02 0.82 + 0.02 0.79 £ 0.03 0.85 + 0.01 0.92 £ 0.01 0.97 £ 0.01
HAUSDORFF 0.48 + 0.02 0.63 + 0.03 0.54 + 0.05 0.78 + 0.01 0.88 +0.01 0.78 + 0.05 0.78 + 0.01 0.91 +0.01 0.90 + 0.02 0.64 + 0.01 0.76 + 0.01 0.88 + 0.04
EmbMEAN 0.41 +0.04 0.53 + 0.04 0.60 + 0.10 0.55 + 0.02 0.60 £ 0.02 0.51 +£0.01 0.16 + 0.04 0.23 + 0.06 0.41 +0.08 0.56 + 0.03 0.09 £ 0.02 0.09 + 0.02
EmbMax 0.42 + 0.02 0.57 £ 0.01 0.61 + 0.06 0.57 £ 0.03 0.65 £ 0.01 0.71 £ 0.01 0.21 +£0.03 0.29 +0.03 0.49 +0.03 0.58 + 0.02 0.10 £ 0.01 0.23 +0.02
EmbGATED 0.43 + 0.02 0.66 + 0.02 0.70 + 0.04 0.58 +0.03 0.88 £0.01 0.81 +£0.01 0.66 + 0.10 0.81+0.13 0.84 +0.08 0.60 + 0.03 0.82 £ 0.01 0.41 £ 0.01
GMN 0.47 £ 0.05 0.69 + 0.02 0.72 £ 0.02 0.78 +0.03 0.88 £0.01 0.80 £ 0.01 0.40 + 0.02 0.71 £ 0.03 0.70 + 0.04 0.46 = 0.03 0.62 + 0.02 0.35 £ 0.03
SIMGNN 0.67 £ 0.03 0.82 + 0.02 0.84 +0.04 0.80 = 0.01 0.92 £ 0.01 0.82 £ 0.05 0.80 + 0.02 0.93 +0.01 0.91 £ 0.01 0.71 £ 0.03 0.66 £ 0.02 0.63 £ 0.02
GRAPHSIM 0.68 + 0.03 0.57 + 0.03 0.76 + 0.03 0.83 + 0.02 0.92 + 0.02 0.84 + 0.03 0.79 + 0.01 0.91 +0.01 0.91+ 0.02 0.74 + 0.02 0.71+ 0.02 0.66 + 0.02
GOTSim 0.72 + 0.02 0.86+ 0.02 0.87+ 0.03 0.89 + 0.02 0.92+ 0.01 0.86+ 0.02 0.82 + 0.01 0.95+ 0.01 0.94+ 0.01 0.80 + 0.03 0.85+ 0.01 0.73+ 0.02

4 EXPERIMENTAL RESULTS

We evaluate GOTSIM against several existing state-of-the-art base-
lines for GED and MCS computation, with a primary goal of ad-
dressing the following aspects of the graph similarity task:

o (RQ1) Effectiveness: How accurate is GOTS1m, compared to
the state-of-the-art approaches, in terms of both similarity score
approximation and graph similarity retrieval tasks? The results
are presented in Section 4.2.

o (RQ2) Interpretability: Can we explain how GOTSim makes
its prediction, in a similar way to classical methods like the
exact GED algorithm A* and the approximate GED algorithm
(BrparTITE)? We discuss this in Section 4.3.

4.1 Experimental Setup

4.1.1 Datasets: We employ four widely-used real-world datasets
AIDS, LINUX, IMDB and PTC. For each dataset, we employ five-fold
cross validation and split the dataset into 5 subsets: one for valida-
tion, one for testing and the rest for training. AIDS [32] is a collec-
tion of antivirus screen chemical compounds from the Developmen-
tal Therapeutics Program at NCI/NIH!, and has been used in several
existing works on graph similarity search [32, 36]. LINUX [32]
dataset consists of 48,747 Program Dependence Graphs (PDG) gen-
erated from the Linux kernel. Each graph represents a function
where a node represents one statement and an edge represents
the dependency between any two statements. PTC [30] dataset
consists of 344 chemical compound graphs that report the carcino-
genicity for male and female rats. Each node in the PTC dataset has

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

one out of 17 possible labels. IMDB [35] dataset consists of 1,500
ego-networks of movie actors, where there is an edge if two peo-
ple appear in the same movie. We follow the same pre-processing
steps that are described in [2]. These are the standard datasets that
have been used in existing works [1, 19]. While the number of
graphs may appear to be small, the similarity is computed between
each pair of the graphs, making the total number of unique data-
instances (~100K for PTC, ~0.5M for AIDS, ~1M for LINUX, ~2.25M
for IMDB).

4.1.2 Evaluation metrics: For evaluation on the similarity approxi-
mation task, we report the average Mean Square Error (MSE) and
Mean Absolute Error (MAE). For evaluation on the retrieval task, we
report Spearman’s Rank Correlation Coefficient (p) [29], Kendall’s
Rank Correlation Coefficient (r) [17], and Precision at k (P@Xk).

4.1.3 Comparison methods: We evaluate GOTS1Im against a variety
of competing approaches, including various similarity-learning
neural approaches and classic approximation approaches. Since our
method is related to graph matching approaches and most of these
graph matching methods are not specifically designed for the graph
similarity task, we select a representative graph matching method
(GMN) which has been successfully used to predict graph similarity
in our experiments for a fair evaluation. Specifically, we compare
our method against the following baselines:

o BIPARTITE matching [8, 25]: It is a GED approximation deduced
from a linear sum assignment of the nodes of the two graphs,
which can be efficiently computed in polynomial time.

Table 5: Results of graph similarity approximation when training with MCS targets. The ground-truth targets are provided
by McspLiT algorithm (ExacTGT). Note that BIPARTITE is not included because it is not an MCS-estimation algorithm. The

values are in 1073 unit.

AIDS LINUX PTC IMDB
MSE MAE MSE MAE MSE MAE MSE MAE
ExactGT 0.00 £ 0.00 0.00 £ 0.00 0.00 + 0.00 0.00 £ 0.00 0.00 + 0.00 0.00 + 0.00 0.00 £ 0.00 0.00 + 0.00
EmbMEAN 7.83 £1.19 71.65 + 6.44 1.11 £ 0.41 30.46 + 1.27 8.22 £ 0.68 72.93 + 3.65 8.63 £0.59 109.12 +£3.75
EmbMax 5.84 £ 0.23 61.76 + 1.62 1.07 £ 0.37 30.45 = 1.16 7.92 £0.70 7253 £4.49 | 11.84 £0.55 117.32 £3.99
EmbGATED 5.91 = 0.46 62.19 = 3.50 1.03 £ 0.32 56.49 + 4.03 5.32 £ 0.65 69.89 + 2.37 4.59 £0.50 98.75 + 3.45
GMN 3.73 £0.32 48.55 £ 2.32 0.90 £ 0.06 28.39 £ 2.57 5.01 £ 0.65 49.00 + 0.94 3.75+£0.23 50.23 + 3.47
SIMGNN 3.65 + 0.65 47.25 £ 4.67 0.71 + 0.06 19.90 £+ 1.07 3.09 £ 0.70 42.14 £ 5.07 2.66 = 0.31 21.78 +3.23
GRAPHSIM 7.28 £0.79 68.93 +3.97 0.69 + 0.23 22.18 + 1.35 8.61 +0.72 39.32 + 1.48 2.60 £ 0.35 21.65 + 2.89
GOTSm 2.26 £0.53 32.94+3.90 | 0.65+0.12 21.78+1.01 | 297 +£0.65 38.17 +1.57 | 2.38+0.40 21.12 + 1.37

Table 6: Graph similarity retrieval results when training with MCS targets. The ground-truth targets are provided by McspLIT

algorithm (ExacTGT). Note that BIPARTITE is not included because it is not an MCS-estimation algorithm.

AIDS LINUX PTC IMDB
T P P@10 T P P@10 T P P@10 T P P@10
ExactGT 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
EmbMEAN 0.36 + 0.09 0.46 +0.12 0.20 + 0.04 0.58 + 0.03 0.40 + 0.02 0.23 +0.01 0.32 + 0.06 0.42 +0.70 0.30 £ 0.01 0.50 + 0.02 0.67 = 0.03 0.27 = 0.04
EmbMax 0.50 + 0.03 0.64 + 0.03 0.31 £ 0.01 0.57 £ 0.02 0.41 +0.02 0.25 + 0.01 0.45 + 0.02 0.57 £ 0.03 0.33 +0.04 0.45 + 0.02 0.38 + 0.02 0.10 = 0.03
EmbGATED 0.51 £ 0.05 0.65 + 0.05 0.32 + 0.04 0.56 + 0.04 0.43 +0.02 0.29 + 0.02 0.47 £ 0.03 0.72 + 0.05 0.51 +0.08 0.53 £ 0.03 0.62 + 0.02 0.38 +0.02
GMN 0.57 £0.02 0.71 £ 0.03 0.45 + 0.04 0.35 +0.03 0.37 £ 0.02 0.25 +£0.03 0.27 £0.03 0.39 £ 0.03 0.31 +£0.04 0.45 £ 0.02 0.39 +0.02 0.28 +0.02
SIMGNN 0.56 + 0.04 0.72 £ 0.05 0.47 £ 0.06 0.47 £ 0.02 0.58 £0.03 0.59 £ 0.09 0.61 £ 0.04 0.61 £ 0.04 0.61 £ 0.06 0.78 £ 0.03 0.63 £ 0.01 0.49 +0.02
GRAPHSIM 0.57 £ 0.04 0.61 £ 0.05 0.27 £ 0.02 0.56 + 0.02 0.62 £ 0.04 0.65 £ 0.05 0.63 £ 0.02 0.54 £ 0.04 0.42 + 0.04 0.79 £ 0.01 0.65 + 0.02 0.50 + 0.02
GOTSm 0.58 + 0.03 0.82+ 0.03 0.67+ 0.02 0.61 +0.01 0.68+ 0.03 0.79+ 0.03 0.69 + 0.02 0.73+ 0.03 0.65+ 0.02 0.81 + 0.02 0.73+ 0.03 0.52+ 0.02

o HAUSDORFF matching [10]: Hausdorff-matching is a quadratic-
time approximation of graph edit distance based on Hausdorff
matching, which underestimates the true distance.

o EmbMEAN, EmbMax: employ mean-readout and max-readout
functions, respectively, on the node-level embeddings to get the
graph-level embedding.

o EmbGATED [19]: EmbGATED employs a projection on the node-
level embeddings through a gated network, followed by mean-
readout to get the graph-level embedding.

o GMN [19]: a representative graph-matching method which learns
a soft matching between nodes.

e SIMGNN [1]: SIMGNN employs a differentiable attention-based
readout function and a non-differentiable histogram function on
the node-level embeddings to get the graph-level embedding.

e GRAPHSIM [2]: GRAPHSIM estimates the similarity function by
using CNN on the similarity matrices of the node-embeddings.

4.1.4 Implementation details. For a fair comparison, all learning-
based neural methods use GCN to learn the node embeddings. We
the same network architecture for the proposed method and the
learning-based graph similarity baselines, for all the datasets. For
the GCN-based baselines, the number of GCN layers is 3 and the
activation function is ReLU. For GRAPHSIM and SIMGNN, we used
the same network architectures as reported in their papers.

4.2 Effectiveness of Graph Similarity
Approximation (RQ1)

In this section, we present the results of graph similarity estimation

and graph retrieval ranking. Tables 3 and 4 show the similarity score

estimation and ranking results for the GED problem, respectively.

Similarly, Tables 5 and 6 show the similarity score estimation and

ranking results for the MCS problem, respectively. GOTSim achieves

the lowest estimation error, compared to other approaches (see
similarity score estimation results in Tables 3 and 5). In graph
retrieval, GOTSim also shows the highest ranking performance
across all the datasets. Note that, in the PTC and IMDB experiments
reported in Tables 3 and 4, BIPARTITE and HAUSDORFF provide the
approximate upperbound on the ranking performance because the
ground-truth targets are created by the minimum of the estimated
GEDs of BEaM and BIPARTITE. It is computationally very expensive
to compute the exact ground-truth in these datasets, whose graphs
have much higher number of nodes than the graphs in AIDS and
LINUXZ. Note that, all these methods are extremely efficient than
classical methods (BIPARTITE and HAUSDORFF), which require a
significant amount of computation. When the exact ground-truth
can be computed (AIDS and LINUX for GED in Tables 3 and 4),
GOTS1m outperforms BrPARTITE and HAUSDORFF. Improvements of
our models over the compared methods are statistically significant
according to the corresponding paired t-tests (p-value < 0.01).

A Case Study on Graph Ranking: We present the ranking results
of two example queries on the AIDS (labeled) and IMDB (unlabeled)
datasets. In each example, the ground-truth ranking results (GT) are
provided for comparison. In Figure 7, when GOTS1m approximates
the lower bound of BipARTITE and BEam (IMDB dataset), GOTSim
ranks several isomorphic graphs (with respect to the query) in
the database on the top of the list. GOTS1M’s retrieved graphs are
as relevant to the query as those graphs retrieved by BIPARTITE.
However, it is clear that when the exact ground truth is used as the
targets (AIDS dataset), GOTS1m top-ranked, retrieved graphs are
very close to the ground truths.

2Both GOTS1M and GraPHSIM have very similar running times, which are about
3%-5% longer than SIMGNN. It is expected that SIMGNN is slightly faster than GOTSim
and GRAPHSIM which are more expressive models with superior performance.

EXACTGT/Query 1

@YQ*I iﬁ{?éﬁﬁ

GOTSIM/Query 1 . N-1

7 Dy S

B\PARHTE/Query 1

jage II#G?%V

a) AIDS
EXACTGT/Query 1 1
GOTSIM/Query 1 104...

PR N b B

BIPARTITE/Query 1

P v A L R

(b) IMDB
Figure 7: A sample of ranking results under the GED met-
ric on AIDS (labeled) and IMDB (unlabeled) datasets. Each
query graph (first column) is presented with a ranked list of
graphs. Node labels are color-coded in AIDS.

4.3 Interpretable Graph Matching (RQ2)

In this section, we demonstrate how well GOTS1iM learns the ground-
truth node-assignment in GED estimation, similar to that of classical
methods, including the exact A* (ExacTGT) and the approximate
BIPARTITE approaches. Specifically, we visualize the node matching
between a pair of graphs which has the optimal assignment cost.
Figure 8 shows examples of the AIDS and PTC datasets (with la-
beled nodes) and examples of the LINUX and IMDB datasets (with
unlabeled nodes). The selected pair of graphs have similar num-
ber of nodes for simpler visualization and discussion. As we can
observe in this figure, GOTSiM learns a more similar matching
to ExAcTGT than the matching computed by BIPARTITE, one of
the most representative classical matching algorithms. In the unla-
beled graph datasets (LINUX and IMDB), GOTS1M recovers almost
the exact same ground-truth node matchings between a pair of
graphs. In the multi-labeled graph dataset, AIDS and PTC, while
it is more difficult to visually investigate the node matchings, we
can still observe that GOTSiMm matches nodes with similar types
better than that of BIPARTITE and is also closer to the ground-truth
matchings. In the PTC and IMDB datasets, the result is even more
significant because the training labels of all the learning based
methods, including GOTS1M, are provided by BIPARTITE and BEAM.
This implies that GOTSiM generalizes better than the non-learning
based approaches.

Different from soft graph matching models such as GMN [19] and
other approaches [6, 21], GOTSiM’s matching is highly interpretable
because we can easily see the injective mapping between the nodes
of one graph to the other. Note that, this experiment is not possible
with GRaAPHSIM and SIMGNN.

5 CONCLUSION

In this paper, we studied the problem of graph similarity and pro-
posed a learning-based graph similarity computation method. Com-
pared to the standard graph prediction problem, graph similarity

Graph 1 Graph 2 BIPARTITE

1) Q\ %u& %Q\ 3

N

a) AIDS

Graph 1 Graph 2 EXACTGT GOTSIM BIPARTITE
(b) LINUX

Graph 1 Graph 2 EXACTGT GOTSIM BIPARTITE
(c) PTC

Graph 1 TSIM BIPARTITE
(d) IMDB

Figure 8: Graph matching for GOTS1m on the last GCN layer
on AIDS (labeled), PTC (labeled), LINUX (unlabeled), and
IMDB (unlabeled) datasets. For each pair of graphs, the Ex-
AcTGT matching is provided by A*. The cross-graph match-
ings are shown in green. AIDS Node labels are color-coded.

prediction poses unique challenges and has potential advantages.
For example, learning the similarity function directly from the set of
node embeddings is non-trivial when there does not exist a canon-
ical ordering of the nodes in the graphs. The proposed GOTSim
model directly compares graphs using their (bag of) node embed-
ding vectors which can be learned by using a graph neural network
framework. GOTSmm directly solves the optimal assignment prob-
lem on a novel cost matrix formulation which accounts for node
substitution, addition, and insertion. Computationally, the optimal
assignment objective can be solved efficiently in polynomial time.
Unlike existing optimal assignment based approaches, this objective
has a stable optimal matching solution and is differentiable (which
allows GOTS1m to be efficiently trained using gradient learning).
GOTSm also has a distinct feature: it provides an interpretable pre-
diction. When predicting the similarity between a pair of graphs,
domain experts can also understand how the model makes its pre-
dictions by visually inspecting the optimal matching between the
nodes in the two graphs. To the best of our knowledge, GOTSIM is
the first learning-based graph-similarity method that provides such
interpretable results. GOTS1M can help in advancing or confirming
the domain-specific knowledge in domains which involve graphs.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation grant IIS-1838730, and Amazon AWS credits.

REFERENCES

(1]

A

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7

(18]

[19]

[20

[21]

[22

[23

[24

[25]

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.
2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining. 384-392.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. 2020. Learning-
Based Efficient Graph Similarity Computation via Multi-Scale Convolutional Set
Matching.. In AAAIL 3219-3226.

Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. 2001. Efficient matching
and indexing of graph models in content-based retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23, 10 (2001), 1089-1105.

Horst Bunke. 1997. On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters 18, 8 (1997), 689-694.

Rainer E Burkard, Mauro Dell’Amico, and Silvano Martello. 2009. Assignment
problems. Springer.

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. 2020.
Graph optimal transport for cross-domain alignment. In International Conference
on Machine Learning. PMLR, 1542-1553.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In Advances in neural
information processing systems. 2224-2232.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. 2011. Speeding up graph edit
distance computation through fast bipartite matching. In International Workshop
on Graph-Based Representations in Pattern Recognition. Springer, 102-111.
Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M
Kriege. 2019. Deep Graph Matching Consensus. In International Conference on
Learning Representations.

Andreas Fischer, Réjean Plamondon, Yvon Savaria, Kaspar Riesen, and Horst
Bunke. 2014. A hausdorff heuristic for efficient computation of graph edit dis-
tance. In Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer,
83-92.

Xinyu Fu, Jiani Zhang, Zigiao Meng, and Irwin King. 2020. MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In
Proceedings of The Web Conference 2020. 2331-2341.

Carlos Garcia-Hernandez, Alberto Fernandez, and Francesc Serratosa. 2019.
Ligand-based virtual screening using graph edit distance as molecular similarity
measure. Journal of chemical information and modeling 59, 4 (2019), 1410-1421.
Carlos Garcia-Hernandez, Alberto Fernandez, and Francesc Serratosa. 2020.
Learning the Edit Costs of Graph Edit Distance Applied to Ligand-Based Virtual
Screening. Current topics in medicinal chemistry 20, 18 (2020), 1582-1592.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. 2018. Learning generative mod-
els with sinkhorn divergences. In International Conference on Artificial Intelligence
and Statistics. 1608-1617.

José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. 2020. Drug dis-
covery with explainable artificial intelligence. Nature Machine Intelligence 2, 10
(2020), 573-584.

Roy Jonker and Anton Volgenant. 1987. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing 38, 4 (1987), 325-340.
Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81-93.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International Conference on Machine Learning. PMLR, 3835-3845.

Saurav Manchanda, Da Zheng, and George Karypis. 2021. Schema-
Aware Deep Graph Convolutional Networks for Heterogeneous Graphs.
arXiv:2105.00644 [cs.LG]

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal
Frossard. 2019. GOT: an optimal transport framework for graph comparison. In
Advances in Neural Information Processing Systems. 13876-13887.

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. 2006. Fast suboptimal algo-
rithms for the computation of graph edit distance. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Springer, 163-172.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching node embeddings for graph similarity. In Thirty-First AAAI Conference
on Artificial Intelligence.

John W Raymond, Eleanor] Gardiner, and Peter Willett. 2002. Rascal: Calculation
of graph similarity using maximum common edge subgraphs. Comput. J. 45, 6
(2002), 631-644.

Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and Vision computing 27, 7

(2009), 950-959.

Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovi¢, Akihiko Torii, Tomas Pajdla,
and Josef Sivic. 2018. Neighbourhood consensus networks. In Proceedings of the
32nd International Conference on Neural Information Processing Systems. 1658
1669.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593-607.

Dennis Shasha, Jason TL Wang, and Rosalba Giugno. 2002. Algorithmics and
applications of tree and graph searching. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 39-52.
Charles Spearman. 1987. The proof and measurement of association between
two things. The American journal of psychology 100, 3/4 (1987), 441-471.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph
Helma. 2003. Statistical evaluation of the predictive toxicology challenge 2000—
2001. Bioinformatics 19, 10 (2003), 1183-1193.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations. https://openreview.net/forum?id=
JXMpikCZ

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. 2012.
An efficient graph indexing method. In 2012 IEEE 28th International Conference
on Data Engineering. IEEE, 210-221.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The World Wide Web Conference.
2022-2032.

Peter Willett, John M Barnard, and Geoffrey M Downs. 1998. Chemical similarity
searching. Journal of chemical information and computer sciences 38, 6 (1998),
983-996.

Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1365-1374.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou.
2009. Comparing stars: On approximating graph edit distance. Proceedings of the
VLDB Endowment 2, 1 (2009), 25-36.

