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multimodal deep learning model
for visual question answering

in the medical domain
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Medical images are difficult to comprehend for a person without expertise. The scarcity of medical
practitioners across the globe often face the issue of physical and mental fatigue due to the high
number of cases, inducing human errors during the diagnosis. In such scenarios, having an additional
opinion can be helpful in boosting the confidence of the decision maker. Thus, it becomes crucial

to have a reliable visual question answering (VQA) system to provide a ‘second opinion’ on medical
cases. However, most of the VQA systems that work today cater to real-world problems and are not
specifically tailored for handling medical images. Moreover, the VQA system for medical images

needs to consider a limited amount of training data available in this domain. In this paper, we develop
MedFuseNet, an attention-based multimodal deep learning model, for VQA on medical images

taking the associated challenges into account. Our MedFuseNet aims at maximizing the learning with
minimal complexity by breaking the problem statement into simpler tasks and predicting the answer.
We tackle two types of answer prediction—categorization and generation. We conducted an extensive
set of quantitative and qualitative analyses to evaluate the performance of MedFuseNet. Our
experiments demonstrate that MedFuseNet outperforms the state-of-the-art VQA methods, and that
visualization of the captured attentions showcases the intepretability of our model’s predicted results.

According to World Health Organization (WHO)', over 45% of the countries across the globe have less than
one physician available per 1000 population. This burdens each medical practitioner to examine a large number
of medical reports, which increases the likelihood of human error due to fatigue?. Computer-Aided Diagnosis
(CAD) systems® have proven to reduce human-generated medical errors. Moreover, CAD systems can also help
provide deeper insights into the case, which might not be comprehensible to a naked eye, and thus are very
useful for providing a second opinion to the doctor. The push towards digital delivery of medical reports to
patients and doctors via CAD enhanced online portals has resulted in better communication of information to
the patients. These portals can provide good interfaces to the patients for reliable and trustworthy information
directly from doctors or healthcare providers compared to the vast amount of misleading information available
online. Moreover, these portals augmented with automated intelligent systems such as a visual question answer-
ing system can help divert a lot of patient communication traffic from hospitals and doctors, thus reducing their
stress. The primary focus of this paper is the development of an automated visual question answering system
for the medical domain.

The advancements in the field of deep learning have demonstrated tremendous success in achieving state-
of-the-art results in various problems in the fields of computer vision, natural language processing, information
retrieval, to name a few. This was primarily due to the recent enhancements in the computational power of the
machines and the development of new learning and optimization methods for neural networks. Several applica-
tion domains have also benefited enormously due to these recent advances. In particular, the medical domain
has seen a significant boost in the use of deep learning techniques for gathering more meaningful insights about
various complex data sources ranging from radiology scans to medical records. Significant improvements in
the performance metrics have been recorded for tasks related to image understanding, such as segmentation of
tumors present in brain*, skin®, and other organs®. There has also been much compelling research done in natu-
ral language processing tasks (NLP) and medical records, such as the predictive analysis using clinical records
of patients”®. A more interesting problem is the one with both vision and NLP components— Visual Question
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Figure 1. Sample radiology scans and the corresponding question-answer pairs from the MED-VQA and
PathVQA dataset. The first three (a—c) belong to the MED-VQA dataset and the last one (d) belongs to the
PathVQA dataset.

Answering (VQA). VQA aims to answer a natural language question associated with an image. In the medical
domain, an image corresponds to a radiology scan of a patient accompanied by a clinically relevant question-
answer pair, where the answer might belong to a pre-defined limited set or can be a sequence of words.

Apart from being a problem related to both Computer Vision and NLP (i.e., multimodal components), VQA
for the medical domain has its own new challenges’. The main challenge is the limited availability of labeled
medical data due to the patients’ privacy concerns. Moreover, the labeling or annotation of the available medi-
cal data is in itself a challenge due to the limited number (and availability) of practitioners/experts. As a result,
the number of VQA datasets available in the medical domain and the number of VQA data samples in them are
quite less compared to the VQA datasets for the other real-world domains. In fact, the medical VQA datasets
have data points in the order of hundreds to a few thousands'®, while the popular VQA datasets have hundreds
of times more data points'!. Thus, the limited data poses a challenge in using the existing deep learning-based
VQA approaches for VQA in the medical domain. As VQA deals with multimodal data inputs (natural language
question and an associated image), it is important to maximize the information from these two modalities. In the
medical domain, the medical data is implicitly complicated due to the high amount of information packed in a
single clinical report or a radiology scan. The scan or report could be for any anatomical region, and there could
be noise or artifacts induced during scanning or while documenting clinical reports. Thus, a good VQA system
for the medical domain should handle these data availability and heterogeneity challenges. Another challenge
for VQA is the generation of the answer i.e., the model should output a meaningful sequence of words, which we
refer to as the answer generation task. Furthermore, in the medical domain, the transparency and trustworthiness
of the model’s predictions are needed, and therefore, VQA results should be interpretable. Thus, there is a need
to develop novel approaches for VQA in the medical domain, which can judiciously use the available limited
annotated medical data to minimize the answer prediction and answer generation errors, and at the same time,
provide interpretable results.

To address the above challenges, we propose MedFuseNet, an attention based multimodal deep learning
model which learns representations by optimal fusion of the multimodal inputs using attention mechanism.
Our MedFuseNet has four major components—image feature extraction, question feature extraction, a feature
fusion module, and an answer prediction module. In addition, we employ attention modules to focus on the most
relevant part of the medical images and questions. The answer prediction module has two submodules for answer
categorization and answer generation tasks. For answer categorization task, MedFuseNet selects an answer from
the set of possible answers while for answer generation task our model produces a meaningful sequence of words
that answers the input question by utilizing a a full-fledged generative decoder. We conducted experiments on
the MED-VQA 2019 dataset and PathVQA datasets, and show superior performance when compared to multiple
VQA approaches including state-of-the-art attention-based VQA models. A few sample question-answer pairs
from these datasets are shown in Fig. 1. The high-level illustration of our model is shown in Fig. 2.

The major contributions of this paper are as follows:

®  We propose MedFuseNet, an attention based multimodal deep learning model for answer categorization and
answer generation tasks in medical domain VQA. We show that a LSTM-based generative decoder along
with heuristics can improve our model performance for the answer generation task.

® We demonstrate state-of-the-art results on two real-world medical VQA datasets. In addition, we conducted
an exhaustive ablation study to investigate the importance of each component in our proposed model.

® We study the interpretability of our MedFuseNet by visualizing various attention mechanisms used in the
model. This provides a deeper insight into understanding the VQA capability of our model.
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Figure 2. A high-level model design for the task of VQA. The model has four major components—image
feature extraction, question feature extraction, feature fusion amalgamated with the attention mechanism,
followed by answer categorization or generation depending on the task.

The rest of the paper is organized as follows. The “Related works” section explores the existing methods for learn-
ing features from the multi-modal inputs, their fusion, and the existing models for VQA pertaining to real-world
and medical VQA. The “Our proposed MedFuseNet model” section presents the entire MedFuseNet framework,
and the approach to tackling the VQA problem for the medical domain. This is followed by the comprehensive
discussions of the experiments and the results in the “Experiments” section. The “Conclusion” section presents
the conclusions and the future work.

Related works
In this section, we first provide an overview of related works for VQA tasks for real-world and medical domains,
and then discuss the related works on components of VQA approaches.

Visual question answering. VQA for real-world domains has been a well-explored problem using vari-
ous datasets such as DAQUAR', VQA'?, VQA 2.0, and CLEVR'. There are mainly two lines of works in VQA:
approaches that use attention mechanism, and approaches that do not use attention mechanism. Early works
such as'®!” used simple concatenation of image-based and question-based features to obtain a representation of
these multmodal inputs. These works obtained good results on VQA for natural images without using attention
mechanism. Recent works such as'"!*-?! used attention mechanism or attention modules to focus on the impor-
tant parts of the image relevant to the question model, thus finding the correct and accurate answers. All these
works were designed for VQA in natural images and trained on large datasets.

Researchers started exploring VQA in the medical domain recently with small medical VQA datasets such
as RAD-VQA?, Indian Diabetic Retinopathy Image Dataset (IDRiD)*; and the ImageCLEF MED-VQA 2019
dataset!® released at ImageCLEF competitions has accelerated more research on this topic. The majority of works
on VQA in the medical domain tried the VQA task as a classification problem?*-%, i.e., build models for VQA
answer categorization task. However, there have been limited research conducted on the answer generation task
for medical VQA. Work in* presented an approach to tackle both answer generation and answer categoriza-
tion tasks. This work used a transformer model to generate a sequence of words for answer generation task. The
authors of?® presented a different perspective on solving VQA for the medical domain by presenting a model
that is more aware of the input question. However, all these works do not present a robust way to handle mul-
timodal inputs for medical VQA tasks, and do not perform comparison of popular and state-of-the-art VQA
models. Moreover, these works do not provide an interpretation of the VQA results which is important in medi-
cal domain. In our work, we address the limitations of the previous works by proposing a novel MedFuseNet
and conduct experiments on two medical VQA datasets—MED-VQA!" (a radiology based VQA dataset) and
PathVQA? (a pathology based VQA dataset).

VQA components. A typical VQA model contains image feature extraction, question feature extraction
and a feature fusion component. We will now briefly discuss the related works for each of these components/
modules.

Image representation learning. The superior performance of the Convolutional Neural Networks (CNN) in
computer vision tasks has established CNN models as a reliable tool for robust feature representation from
images. Generally speaking, the intermediate layer just before the output layer is used as the feature vector and
popular models like VGGNet*®, AlexNet®, DenseNet*, ResNet* trained on large-scale image datasets such as
ImageNet* are used for image representation learning. That is, the features obtained from the intermediate lay-
ers of these pre-trained deep learning models provide a rich feature representation of the input image.

Textual representation learning.  For textual data, there have been various strategies to represent the features.
Word2Vec™®, GloVe?*, FastText” are some of the word embedding algorithms that have been successful in obtain-
ing a robust representation of the text at a word level. Sequential networks such as Recurrent Neural Networks
(RNNs)*, Long-Short Term Memory (LSTM) networks® have been then used to learn richer representations
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Notation Description

v Input image

4 Image feature vector

e Attended image feature vector

q Input question

q Question feature vector

e Attended question feature vector
z Combined feature vector

d; Attention output for the i step of the decoder
hi LSTM output for the i?" step of the decoder
g Number of attention glimpses

a Actual answer

a Predicted answer

[a1,..., 4] Actual answer sequence
[ay,...,a;] Predicted answer sequence

(C] Model parameters

<z Loss function

of Possible set of answers

W Vocabulary of words in answers
o Inner product operation

Ny Batch size

&y Image Attention

&q Question Attention

&4 Decoder Attention

Table 1. Notations used in this paper.

from these embeddings. BERT*’ and XLNet*! have become the state-of-the-art models for many NLP tasks, and,
hence, have been used for question feature extraction in VQA tasks.

Feature fusion techniques. 'The most intuitive way of combining the feature vectors is through the element-
wise multiplication of vectors. However, due to the limited interaction of the elements of the two participating
vectors, the outer product or the bilinear product of the two vectors is a better strategy to capture a robust and
complete interaction of all the elements. Various fusion techniques relevant to VQA have been devised over time
to maximize vector interactions and to reduce computational cost. These include Multimodal Compact Bilinear
Pooling (MCB)®, Multimodal Low-rank Bilinear Pooling (MLB)*?, Multimodal Tucker Fusion (MUTAN)*,
Multimodal Factorized Bilinear Pooling (MFB)*. All these approaches are build on similar idea of making the
bilinear pooling of two vectors computationally feasible.

Our work leverages the recent advances of the above components, and we propose a novel multimodal atten-
tion model (described in detail in the next section) for medical VQA tasks.

Our proposed MedFuseNet model
In this section, we will first define the problem statements for VQA answer categorization and answer generation
tasks for the medical domain, and then discuss our proposed MedFuseNet model and it’s components in detail.

Problem definitions. Using the notations mentioned in Table 1, we define the medical VQA answer cat-
egorization and generation tasks as follows:

Definition 1 Answer Categorization task. Given a medical image v, an associated natural language question g,
the aim of this task is to produce the answer a from a possible set of answers .2/, where the ground truth answer
is represented by a. This can be formulated as follows

a = argmax P(alv, q; ©) (1)
acof

where @ is the set of model parameters, v is the input radiology scan, and g is the natural language question
associated with the image in Eq. (1).

Definition 2 Answer Generation task. Given a medical image v, a natural language question associated with
the image ¢, the aim of this task is to generate a sequence of words @ = [dy, . .., a;], where the ground truth
answer is represented bya = [ay,. . ., ail, whereay,...,a;and ay, ..., a; belong to the answer word vocabulary
Wy. This can be represented as
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[@1,...,a;] = argmax P(ai,...,qjv,q; ©)
al,...,ajewc/ (2)

where O is the set of model parameters, v is the input radiology scan, and q is the natural language question
associated with the image. We define the VQA answer generation task as generating a sequence of words from
the answer word vocabulary W, as shown in Eq. (2).

For the answer categorization task, we use a softmax cross-entropy loss function to find the error in the answer
prediction of the model, and this loss is given by:

Z(@a) =) —plalog(p@)) 3)

1

where p(d;) is the probability of a; being the answer, and p(a;) is the probability of g; being the ground-truth
answer. For the answer generation task, we use the cross-entropy loss defined in Eq. (3) to calculate the error in
predicting each word of the generated answer from the word vocabulary W .

Overview of the MedFuseNet model. Our MedFuseNet is an attention based multimodal deep learning model
which learns representations by optimal fusion of the inputs using attention mechanism. MedFuseNet consists of four
main components—Image feature extraction, question feature extraction, feature fusion, and answer prediction. The
image feature extraction component takes medical image v as input and will output an image feature vector . Similarly,
the question feature extraction component will generate the feature vector g for the input question g. The feature vectors
are then combined to form z. The combined vector z and attention modules are used to predict the answer depending
on the VQA task—answer categorization or answer generation.

Components of MedFuseNet model. Here, we will describe in detail the different components of our Med-
FuseNet.

Image feature extraction. 'The feature learning from images has been an active research area for decades. An inter-
mediate layer of a CNN captures the features of the image at varying levels of abstraction. While the shallow layers
represent a more elementary level of features, the deeper layers encapsulate a more abstract set of features. Exploiting
this interpretation, generally, the penultimate layer just before the output layer of CNN is used to extract a feature vec-
tor for an input image. As described in “Image representation learning” section, VGGNet-16*, DenseNet-121°?, and
ResNet-152 models® can be used for image feature extraction. Since the medical images are complex compared to the
standard real-world images, models like DenseNet-121 and ResNet-152 which have skip connections, provide more
robust feature representations through deeper convolutional layers. Due to the superior performance of ResNet-152
over the other two, our MedFuseNet model uses it as the image feature extraction module to learn representations of
medical images. In our experiments and ablation studies described in the “Experiments” section, we have used all these
models—VGGNet-16, DenseNet-121, and ResNet-152 models for learning medical image feature representations. It
should be noted that the intermediate output from the last convolutional block of each of these model was used as the
feature representation of the medical image, and these models were pre-trained on the ImageNet dataset.

Question feature extraction. ~ As discussed earlier in “Textual representation learning” section, word embeddings form
the primary method for expressing the underlying context of natural language. However, they are insufficient and do
not capture the context properly. While modeling the feature representation of the natural text, it is necessary that
we appropriately capture the positional semantics of each word and not just the word-level semantics. The state-of-
the-art NLP models such as BERT and XLNet can capture positional and word-level semantics and are thus better at
representing the features of the input question. The primary idea behind these models is to learn an exhaustive textual
representation of the question. Our MedFuseNet model uses BERT for the question feature extraction. Also, note that
in our experiments and ablation studies described in the “Experiments” section, we have used both BERT and XLNet
for question feature extraction, and we noticed that BERT generally obtains better results than XLNet. The pre-trained
versions of both these models were used for the question feature extraction of the question.

Feature fusion techniques. ~An intuitive way to combine multiple feature vectors is by concatenation. However, such a
simple concatenation does not capture the feature interactions. Another common way of combining the multiple fea-
ture vectors is through the inner product or the element-wise multiplication of the vectors. However, due to the limited
interaction of the elements of the two vectors in the inner product, it is considered a primitive strategy for feature fusion.
The outer product or the bilinear product of the two vectors is a better strategy as it can capture a robust and complete
set of interactions of all the feature vector elements. A simple bilinear model for two vectors v € R™ and q € R" is
shown in Eq. (4).

zi = vT Wiq (4)

where W; € R™*"and z; € R°. Thus, the model needs to learn the parameter matrix W = [W, ..., W,] € R">*"x¢
which is typically computationally expensive for large values of 11, 1, and o. For example, if m = 1024, n = 1024, 0 = 512,
then the number of parameters in the projection matrix W will be ~ 530 million parameters, and computationally
expensive and infeasible to learn it. Recently, various works such as Multimodal Compact Bilinear (MCB) Pooling®,
Multimodal Tucker Decomposition (MUTAN)*, and Multimodal Factorized Bilinear Pooling (MFB)* have been pro-
posed to address this problem. Each of these techniques simplify the process of Bilinear Pooling by presenting a way to
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Figure 3. Our end-to-end framework for Medical Visual Question Answering for answer categorization.

It takes the medical image and the associated question as the inputs, followed by the feature extraction. The
question features are further processed using the question attention mechanism. The attended question features
and the image features are then passed through the image attention mechanism to get the attended image
features. These attended vectors are finally combined using MFB to build the answer classification module.

decompose the outer product projection matrix W. Due to the simplicity of the MFB algorithm, ease of implementation
and high convergence rate, our MedFuseNet uses it over other approaches for multimodal feature fusion. In addition, to
avoid our MedFuseNet model from converging to a local minima, the output of the MFB module is normalized using
power normalization and L-2 normalization*. Our experiments and ablation studies described in the “Experiments”
section also support that MFB fusion strategy typically performs better than MCB and MUTAN fusion strategies.

Attention mechanisms. A typical model for VQA first extracts the feature vectors from multiple modalities (image and
question text), and then combines the vectors using any one of the above-stated fusion techniques, and then predicts
the answer from the fused vector. However, questions that are very specific to the input image require a more specific
context of the image. This is where attention mechanisms prove to be useful as they help to focus on the most relevant
parts of the input. Our model, MedFuseNet, uses two types of attention mechanisms namely Immage Attention and Image-
Question Co-Attention—to capture the context in medical images that are relevant to answer the question. Below, we
describe these attention mechanisms and the role played by them in the training of our MedFuseNet.

Image Attention: The image attention mechanism aims at spanning the attention of the MedFuseNet model to the
most relevant part of the image on the basis of the input question. This establishes a correlation between the multimodal
input and helps the model converge faster. The image attention mechanism combines the feature fusion technique with
the attention maps to come up with the attended image feature vector as given in lines 20-30 of Algorithm 1. Firstly,
the image features ¥ and question features g are combined using the fusion technique (line 21). The attention maps are
then computed from this combined feature vector (lines 22-23). The input image features ¥ are then overlaid with the
attention glimpses (lines 24-28) to get the attended image feature vector . The pictorial representation of the algorithm
is shown in Fig. 3.

Image-Question Co-Attention: The image attention mechanism focuses on the significant parts of the image, how-
ever, it takes the entire question into consideration. A co-attention mechanism exploits the intuition that the key parts
of the question can be solely computed for the question which can further be used to enhance the image attention. So,
our MedFuseNet model first computes the attended question feature vector g, using the Question attention mechanism
& 4 as shown in Fig. 3. It then uses this attended vector as an input to the image attention mechanism as described in
Algorithm 1 from lines 8-18, instead of question feature vector g.

MedFuseNet model for medical VQA tasks. As described in the various components of our MedFuseNet
model, our approach aims at maximizing the performance for answer prediction and minimizing the model complex-
ity. The three main components of our model include (a) pre-trained ResNet-152 for image feature extraction, (b)
pre-trained BERT for question feature extraction, and (c) MFB for feature fusion. Moreover, MedFuseNet uses attention
techniques so that the model focuses only on the most relevant parts of the image and the question while predicting the
answer. The pictorial representation of the model is shown in Fig. 3.
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Algorithm 1: MedFuseNet Training Algorithm
Input: Image v, Question g, Answer a, Batch size N,
Output: Trained model parameters ©

1 Extract the image features (V), from image (v)

2 Extract the question features (¢) from question (g)

3 for a few iterations do

4 for batch of size Ny in {9, §, a} do
5 Perform Question Attention &;(g) on § to get attended question features (g.)
6 Perform Image Attention &, (¥, §., MFB,2) on ¥ to get attended image features (¥,)
7 Combine g, and ¥, using MFB(ge, V., 5000, 3) to get intermediate vector (z)
8 Find the predicted answer (@) depending on the task as defined in Eq. (1) and Eq. (2)
9 Calculate the loss .Z for a and 4 using Eq. (3)
10 Update the model parameters ® with the loss &
11 end
12 end

13 return trained model parameters ®
14 Procedure MFB (V,§,d,, k)

15 V' = Fully — Connected (9,m,d,)
16 g’ = Fully — Connected(G,n,d,)

17 Compute and store inner product (o) of vector v/ and vector ¢ in vector z
18 Perform SumPooling of vector z with a window size of k

19 Normalize vector z using L2-normalization

20 return z

21 Procedure Tmage Attention (V,4,.%#,g)

22 Combine ¥ and § using .# (§,,.) to get intermediate vector f

23 Seonv = ReLU(Conv2d(f,d,,512))

24 Saumaps = Softmax(Conv2d(feony,512,8))

25 Initialize v, as an empty list to store the attention glimpses
26 for i < 1to gdo

27 Find the attended image feature e; for i;;, glimpse as follows:

28 € = fAttMapx [1} op

29 Add e; to the list v,

30 end

31 Sum over all the attention glimpses in v, to get attended image feature vector (v,)
32 return v,

Our MedFuseNet model tackles all the challenges specific to the VQA in medical domain as stated in
the “Introduction” section. The following aspects help in boosting the performance of MedFuseNet for medical
VQA:

® ResNet and BERT models are pretrained on very large datasets, and they provide a much better generalization
for the features by the virtue of transfer learning.

® Due to the simplistic implementation of MFB, it reduces the complexity of calculating the outer product
to a large extent, while conserving the information from the fusion of the two modalities. This reduces the
computation of model parameters and works well for the limited MED-VQA datasets.

e The attention and co-attention mechanisms help in reducing the attention span of the model to the significant
parts of the input, thus, reducing the search space for the model.

Answer categorization. As shown in Algorithm 1 (lines 1-12), the MedFuseNet first extracts the feature vectors
v and g for input image v and question g, respectively. This is followed by the computation of the attended ques-
tion features g, using question attention mechanism &' (g). Then, it uses the Image Attention mechanism &, as
explained in Algorithm 1 (lines 20-30) to get the attended image features ¥,. ¥, and g, are then combined using
MEB (lines 13-19) to get vector z. For answer categorization VQA task, a classification model is then built over z
to find the loss and update the model parameters ®.

Answer generation. As described in definition 2, the problem of answer generation is not a straightforward task
as we need to generate a meaningful sequence of words from the answer word vocabulary W, to predict the
answer. Hence, we propose and develop a more sophisticated model for the answer prediction task. Our answer
prediction module shown in Fig. 4 consists of a LSTM-based decoder model which uses the fused feature vector
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Figure 4. The architecture used for the answer generation task. This module takes the image and the question
as the input. It generates the feature vectors for both and produces the combined vector after fusing them using
MFB as part of the image-question co-attention mechanism. This is followed by an LSTM-based decoder to
generate the answer. The two major components of this decoder are—the attention mechanism and teacher
forcing. The attention mechanism helps the model in focusing on various parts of the image while generating a
word, and the teacher enforcing helps the model converge faster.

for answer prediction. Our decoder model is inspired by the work presented in*. The novel characteristics of our
answer generation decoder module are as follows:

e Teacher Forcing: Due to the inherent complexity of the task of sequence generation, the decoder is suscepti-
ble to a slower convergence rate. Moreover, the limited amount of data in the medical domain may cause more
hindrance to the model convergence rate. Thus, to increase the learning rate of the model, we use Teacher
Forcing?. As shown in Fig. 4, we pass to the decoder the ground-truth word for the i’ time-step to predict
the next word at (i + 1) time-step.

e Attention Mechanism: To make each LSTM step prediction more accurate, we also incorporate the atten-
tion mechanism in the decoder. We use the output of the i — 1 time-step to span the focus of the model on
those parts of the image feature vector ¥, that have already been answered. This helps the model to guide its
search for the i word in the generated answer more precisely.

e Beam Search: During inference, we use Beam Search heuristic*® to avoid the model from greedily generating
the answer by choosing the best word at each decoding step.

Before generating the answer sequence using the decoder, we fuse the input image v and question g to get
the attended image features . as described in the Image Attention procedure of the Algorithm 1. This obtained
vector ¥, is passed to the decoder to generate the answer. As shown in Algorithm 2, ¥, is first used to initialize
the states of the LSTM (line 1). Following this, for the ith step of the decoder, we concatenate the output d;_; of
the attention mechanism &4 for (i — 1)th step with the ith word in the ground truth answer, that is a;, as shown
in line 3 in Algorithm 2. This concatenated vector is then fed to the LSTM cell to get h; which is also a;, the
ith word in the predicted answer (lines 4-5 in Algorithm 2). The vectors h; and ¥, are then fed to the attention
mechanism (lines 6-7 in Algorithm 2). The pictorial representation of the end-to-end model for answer genera-
tion is shown in Fig. 4.

Algorithm 2: Decoder Algorithm for Answer Generation

Input: Attended Image Features ¥,, Answer ay,...,a,
Output: Generated Answer d@ = [dj,...,dn)

1 Initialize the decoder LSTM states using image features (v,)
2 Initialize generated answer @ as an empty list

3 Initialize dy as image features (V)

4 for each stepiin [ay,...,a,] do

5 Concatenate a; and d;_1, the output of Decoder Attention & for (i — 1)”’ step
6 Feed this concatenated vector to the i’ decoder step

7 Add h;, which is also 4;, to list d

8 Feed ¥, and 4; to decoder attention &y to get d;

9 end

return Generated Answer d

—
=
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Split Modality | Plane | Organ
Train 3200 3200 3200
Validation | 500 500 500
Test 125 125 125

Table 2. Train, validation, and test splits for the yes-no type question-answer pairs in MED-VQA dataset.

Experiments

We conducted several experiments on two real-world medical VQA datasets to compare the performance of our
proposed model with the state-of-the-art and many popular VQA approaches. Our experiments will answer the
following key questions:

e How does MedFuseNet, our proposed model, perform w.r.t. the state-of-the-art VQA models for the answer
categorization and answer generation tasks?

e Can we visualize and explain the results of our proposed model?

e  What is the impact of different attention mechanisms on model performance?

e How good are the answers generated by the proposed model in terms of BLEU scores?

To answer the above questions, we first describe the datasets used for the answer categorization and answer
generation tasks, and then describe in detail the dataset processing, implementation, evaluation metrics, and
baseline models for comparison.

Datasets for answer categorization task. MED-VQA. This dataset was released at the ImageCLEF
2019 MED-VQA challenge!?, and it contains 4200 medical images and medical questions associated with each
image. Examples are shown in Fig. 1 and the data distribution is shown in Table 2. Each question belongs to one
of the three categories—Modality, Plane, and Organ. In total, there are 3825 image-question-answer triplets for
each category. The three question categories are as follows:

® Modality: This category pertains to the modality of the input medical image, and the question-answer pairs
belong to 36 classes.

e Plane: This category pertains to the plane in which the medical image was taken/scanned, and the question-
answer pairs with planes come from 16 classes/categories.

® Organ System: This category describes the organ system captured in the medical image, and the question-
answer pairs belong to 10 unique organ systems.

The maximum question length for the three question categories combined is 13 words and the average question
length is around 8 words. The combined vocabulary of the questions contains about 100 words.

PathVQA. 'This is the VQA dataset®® on pathology images prepared using a novel pipeline from the captions of
the images in the medical textbooks. The dataset has 9000+ medical images and 47,000+ question-answer (QA)
pairs. We use only the ‘yes/no’ type question-answer pairs for the answer categorization experiments in this
paper. The dataset is divided into train, validation, and test splits. All the three splits have a fairly well distributed
yes-no types question answers with almost a 1:1 proportion. The details of the dataset is presented in Table 3.

Datasets for answer generation task. MED-VQA. Other than the three categories mentioned in
the “MED-VQA” section, there is one additional class of question in the ImageCLEF 2019 MED-VQA challenge'’
dataset—‘abnormality. The answers for this question category are open-ended, and they describe the abnor-
mality present in the medical image/scan. Answering these types of questions is typically more useful to the
healthcare providers as it can help them in getting a second opinion on some critical cases. We consider the
question-answer pairs for the abnormality question category as the dataset for our answer generation task for
the MED-VQA dataset. In total, we have 3817 question-answer pairs for abnormality question category. The
combined word vocabulary of the answers is 2109 words, out of which 756 words have an occurrence of one in
the entire dataset. This poses a greater challenge to the model the answer generation for this skewed dataset. The
average length of an answer is 2.63 words and the average length of a question is ~ 7 words.

PathVQA. As discussed in the “PathVQA” section, PathVQA is a dataset about the question-answers related
to pathology images. Apart from the yes-no type question-answers, it also has a great proportion of open-ended
answer type questions. For the set of experiments related to the answer generation task, we subsample a data-
set from open-ended answer type questions of the PathVQA dataset. To assure that the data is not skewed, we
sample only those answers which have a frequency of at least 5 in the entire dataset. This gives us a total of 6770
question-answer pairs with 4192 unique cases. The vocabulary size of the answers is about 480 words. The aver-
age number of words in an answer is 2.76 words. The average question length is ~ 6 words.
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Split Medical Images | ‘Yes’ type QA Pairs | ‘No’ type QA Pairs
Train 4271 9305 9163
Validation | 1176 2359 2335
Test 942 1874 1853

Table 3. Train, validation, and test splits for the yes-no type question-answer pairs in PathVQA dataset.

Dataset preprocessing.  For all the datasets described above, the medical images were resized to be of the same
dimension of 224 x 224 x 3. This was done as most of the well-accepted pre-trained models take the input in
this dimension. For each question, we first tokenized using the NLTK library in python®. Then, the question
vocabulary was prepared and the tokens in the vocabulary were enumerated, which was used to convert the
question to a list of numbers. The questions were also padded to make them all of the same lengths.

VQA baseline models for comparison. We establish the superior performance of MedFuseNet by com-
paring it with the five baselines for the answer categorization task. Three of the baselines are attention-based
VQA models, while the other two are popular VQA models.

e VIS + LSTM>**!—This is a relatively simpler model that uses vanilla LSTM for question feature extraction,
and a CNN model for image feature extraction. The LSTM of the question feature was initialized using the
image features. The last output of LSTM was used to predict the answer by using a dense-layer.

e Deeper LSTM + Norm. CNN (d-LSTM + n-I)*>—This model again uses a VGG16 for image feature extrac-
tion and a 2-layer LSTM model for question features. The two feature vectors are then combined using a
simple element-wise multiplication to get the output vector.

e Stacked Attention Networks (SAN)'*—SAN is an attention-based VQA model, and it uses multiple attention
layers to refine the search space of the two feature vectors. It uses VGG16 based image features and CNN to
extract the features of the question text. It then stacks attention layers over image vector and then applies an
array of attention vectors on the question to obtain the final combined feature vector.

e Hierarchical Co-attention (HiCAt)'*—This is another attention-based VQA model. The image features are
CNN-based while the question features are obtained by performing 1-D convolution over a word-embedding
to get a hierarchy of the text. Two attention schemes are used in this work: parallel attention and alternating
co-attention. In parallel attention, the model captures the attention of both vectors simultaneously while in
the latter one, attention is alternated between the feature vectors of the two inputs.

o Bilinear Attention Networks (BAN)?'—BAN is a state-of-the-art VQA method that combines the atten-
tion mechanism with the feature fusion technique to maximize the model performance. It uses a modified
version of MFB model for feature fusion wherein the attention mechanisms come into action during feature
combination. It uses FasterRCNN features with the aim of using localized feature fusion instead of using a
global feature vector.

For the task of answer generation, there are no suitable baselines that are appropriate for comparison. Hence, we
use BAN as one of the baseline comparison models and plug-in a decoder into the model architecture to make
it compatible for the answer generation task. This decoder is a simple LSTM-based model. We also incorporate
teacher forcing method in this decoder to help the model converge faster.

Evaluation metrics. For evaluating the performance of the model in all the datasets discussed in “Datasets
for answer categorization task” and “Datasets for answer generation task” sections, we use stratified 5-fold cross-
validation after combining the training, the validation, and the testing splits. This helps in understanding the
generalization capability of the proposed model.

Answer categorization task. 'We use three metrics to evaluate the performance of the model—Accuracy, Area
Under Curve—Receiver Operator Characteristics (AUC-ROC), and Area Under Curve—Precision-Recall Curve
(AUC-PRC)* for the task of answer categorization. Accuracy is the primary metric used for any classification/
categorization task and it quantifies the performance of the model in distinguishing between various classes.
However, accuracy scores can be misleading for the data with imbalanced classes, as in the case of the MED-
VQA dataset. So, we also calculate the AUC-ROC and AUC-PRC. AUC-ROC is defined by the area under the
Receiver Operating Characteristics (ROC) Curve. A ROC curve describes the ability of the model to separate
between various classes by plotting False Positive Rate (FPR) on X-axis and True Positive Rate (TPR) on the
y-axis. Higher the area under the curve the better the performance of the model will be. Similarly, AUC-PRC is
the area under the curve with Precision on Y-axis and Recall on X-axis. Higher the value AUC-PRC the better
the performance. These metrics help us gauge the performance of the model with respect to the answer predic-
tion task considering the class imbalance as well. For the PathVQA dataset, we use only the accuracy as a metric
to evaluate the performance of the models as the classes are fairly balanced with an equal proportion of yes and
no type answers.
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Answer generation task. To evaluate the answer generation capability of our model, we use generated sequence
evaluation metrics such as Bilingual Evaluation Understudy (BLEU) score®. BLEU score calculates the similar-
ity of the reference (ground truth answer) and the hypothesis (predicted answer) at an n-gram level. Thus, itis a
very useful metric for comparing two sequences or sentences. Specifically, we use BLEU-1, BLEU-2, and BLEU-3
scores to compare the sequences at 1-gram, 2-gram, and 3-gram levels, respectively. Apart from the BLEU score,
we also compute the F-1 score of the generated answer. In terms of sequence generation, the F-1 score gives a
good indication about the performance of the model in generating the correct words. We use the NLTK library
in Python for calculating these metric scores.

Implementation details. We have implemented all the components of MedFuseNet using PyTorch®. The
image feature extraction was developed using pre-trained models available in Keras®*. Embedding-as-a-Service®’
was used for extracting the features for question from the pre-trained BERT and XLNet models. The size of each
question was made uniform with 20 tokens. The size of the combined feature vector is set to be 16, 000 for MCB,
5000 for MFB and MUTAN. These feature sizes were chosen as suggested by the authors of the respective works.
The number of LSTM steps were fixed as 1024. For attention modules, 2 attention glimpses were used. We used
the ADAM optimizer™ with 8; = 0.9 and B, = 0.999 with a learning rate of 0.001. Cross-Entropy loss was used
to calculate the error between the predicted and the actual answer. The model was trained for 100 epochs with a
batch-size of 32. We used the Scikit-Learn package® to calculate the performance metrics. The codes for imple-
menting fusion techniques were obtained from MCB®, VQA PyTorch®, OpenVQA®* github repos.

The implementation of the decoder part of our MedFuseNet is done in PyTorch. The code for the same is
adapted from Image-Captioning-Pytorch®. We used the ADAM optimizer with a learning rate of 10e = and
Cross-Entropy loss function to calculate the sequence generation loss. The model was trained for 30 epochs with
a batch-size of 32. The BLEU-scores were evaluated using the NLTK Module® .

For the first three baselines, the code was adapted from SAN-VQA®. For HiCAt, the code was adapted from
HiCAt%. The code for BAN was adapted from ban-vqa®. The FasterRCNN features for BAN were extracted using
the code available in FasterRCNN-Visual Genome®. In order to ensure reproducibility of our work, we have
publicly released the source code of the proposed MedFuseNet model in PyTorch at this URL: https://github.
com/dhruvsharmal5/MEDVQA.

Experimental results. Comparisons for answer categorization task. We quantitatively evaluate the per-
formance of MedFuseNet and compare it with the baseline models described in the “VQA baseline models for
comparison” section for the tasks of answer categorization and answer generation.

The performance values of each model for answer categorization task with the MED-VQA dataset are sum-
marized in Table 4. Comparing the accuracy scores for all three question categories, we can clearly see that Med-
FuseNet outperforms the BAN model. MedFuseNet achieves accuracy scores of 0.840 for category 1 (Modality),
0.780 for category 2 (Plane), and 0.746 for category 3 (Organ). Whereas the BAN model is more competitive to
MedFuseNet model for category 3, while the BAN model under-performs our model for category 1 by 2 percent
and category 2 by 1.4 percent. In terms of AUC-ROC, BAN model outperforms MedFuseNet with a scores of
0.961 for category 1, 0.929 for category 2, while MedFuseNet leads with a score of 0.800 for category 3. For AUC-
PRC scores, MedFuseNet outperforms all the baselines. This superior performance of MedFuseNet demonstrates
that baseline VQA models (like VIS + LSTM and Deeper LSTM + normalized CNN) may be insufficient to
capture the underlying patterns in image question pairs. On the other hand, the attention mechanisms present
in SAN and Hierarchical Co-Attention model might make the architecture more complex which requires more
data to learn the parameters, and then leads to poor AUC-PRC scores. The AUC-PRC scores in Table 4 clearly
indicate that simpler models like VIS + LSTM outperform the attention-based models. Although, BAN proves to
be a strong contender, MedFuseNet quantitatively outperforms all the baselines and BAN model, as it is designed
to handle limited amount of data in the medical domain. Another observation worth noting is the difference in
the AUC-ROC and AUC-PRC scores of our MedFuseNet as shown in Table 4. This indicates that our MedFuseNet
is comparably better in detecting true negatives, due to comparably high AUC-ROC score, than detecting true
positives, because of the low AUC-PRC score, which can be attributed to the high class-imbalance.

For the PathVQA dataset with yes-no type answers, the accuracy scores of the baselines and MedFuseNet are
presented in Table 5. Since the PathVQA dataset is balanced for yes and no type answers, we only use the accuracy
score as the metric to compare the performance of different VQA models. As shown on Table 5, our MedFuseNet
outperforms all the other VQA approaches and obtains an accuracy score of 0.636. Amongst other baseline
methods, we can observe that the performance of SAN'® and Hierarchical Co-Attention Networks'? is competi-
tive, while that of BAN?! is relatively lower. This could be attributed to the fact that the answer categorization
task for PathVQA might not be inherently complex to justify the need for more complex models. Moreover, the
performance of the BAN is highly dependant on the bounding boxes extracted from the pre-trained FasterRCNN
model. These bounding boxes might not always be informative since the FasterRCNN model is pre-trained using
real-world images dataset like Visual Genome® (and not fined-tuned for medical images). Thus, using BAN for
pathological image categorization might provide misleading results.

Comparisons for answer generation task. 'The performance comparisons for the answer generation task on the
MED-VQA abnormality category data and the open-ended answer type questions in PathVQA dataset is sum-
marized in Table 6. For the MED-VQA dataset, we observe that MedFuseNet with the decoder performs better
than the BAN model (with Decoder) for the metrics of BLEU-1 and BLEU-3 scores, while BAN (with Decoder)
has better performance in terms of BLEU-2 and F-1 scores. This shows that two models compare favorably on
this dataset. As there are 2-3 words on an average in the answer of the MED-VQA dataset, we do not have a
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Accuracy AUC-ROC AUC-PRC
Methods | Modality Plane Organ Modality Plane Organ Modality Plane Organ
XSI’?‘IT/I” 0.704(0.012) | 0.701(0.017) | 0.652(0.020) | 0.899(0.012) | 0.851(0.011) | 0.775(0.015) | 0.478(0.024) | 0.453(0.022) | 0.456(0.025)
d-LSTM
+ 0.723(0.014) | 0.719(0.018) | 0.672(0.022) | 0.909(0.010) | 0.862(0.014) | 0.777(0.017) | 0.474(0.025) | 0.459(0.023) | 0.450(0.027)
n-CNN?*

SAN™ | 0.669(0.013) |0.729(0.015) |0.669(0.023) |0.926(0.011) | 0.870(0.011) | 0.783(0.015) | 0.459(0.025) | 0.415(0.023) | 0.406(0.026)
HIiCAt" | 0.760(0.010) |0.740(0.015) | 0.668(0.018) |0.929(0.011) | 0.869(0.010) | 0.797(0.014) | 0.468(0.023) |0.431(0.025) | 0.430(0.028)
BAN?' | 0.820(0.011) |0.766(0.016) |0.750(0.014) | 0.961(0.010) | 0.929(0.009) | 0.800(0.016) | 0.600(0.024) | 0.521(0.022) | 0.456(0.025)

MedFuse-
Net

0.840(0.010) | 0.780(0.017) | 0.746(0.015) | 0.942(0.010) | 0.901(0.010) | 0.800(0.013) | 0.618(0.023) | 0.526(0.024) | 0.510(0.023)

Table 4. Comparison of MedFuseNet with the baseline models on MED-VQA answer classification dataset.

Methods Accuracy

VIS + LSTM* 0.603(0.025)
d-LSTM +n-CNN% | 0.607(0.021)
SAN'® 0.627(0.023)
HiCAt" 0.629(0.018)
BAN? 0.604(0.021)
MedFuseNet 0.636(0.020)

Table 5. Comparison of MedFuseNet with the baseline models on PathVQA yes-no answer type dataset.

Dataset Method BELU-1 BLEU-2 BLEU-3 F-1

MED-VOA BAN + Decoder 0.266(0.015) | 0.083(0.008) | 0.013(0.002) | 0.274(0.012)
MedFuseNet + Decoder | 0.276(0.019) | 0.076(0.005) | 0.016(0.002) | 0.229(0.012)

PathVQA BAN + Decoder 0.542(0.023) | 0.216(0.023) | 0.054(0.008) | 0.378(0.009)
MedFuseNet + Decoder | 0.605(0.021) | 0.303(0.027) | 0.073(0.007) | 0.381(0.009)

Table 6. Comparison of MedFuseNet with the baseline models on answer generation dataset.

clear winner since MedFuseNet is marginally better at a 3-gram level while BAN (with Decoder) performs better
at answer generation evaluation at the 2-gram level. For the open-ended question-answer pairs of the Path-
VQA dataset, our MedFuseNet with the decoder significantly outperforms the state-of-the-art BAN model with
decoder. Our MedFuseNet obtains a BLEU-1 score of 0.605, BLEU-2 score of 0.303, BLEU-3 score of 0.073, and
an F-1 score of 0.381 for on this dataset.

These experiments on the two real-world datasets show that our MedFuseNet with a decoder works well for
the answer generation task. It should be noted that our contribution is the integration of decoder to our Med-
FuseNet model, and that this decoder is flexible and can be incorporated into any other VQA model such as BAN
as shown in our comparison experiments.

Ablation study. To justify the importance of each component in MedFuseNet, we conducted an ablation study
where we compare the performance of MedFuseNet against the various possible combinations of Image features,
Question features, and Fusion techniques—for all the answer categorization task. We conduct ablation studies
on 3 types of image features—VGG16, DenseNet121, and ResNet152; 2 types of question features—BERT and
XLNet; and 3 types of fusion techniques - MCB, MUTAN, and MFB, along with the attention mechanisms.
In total, there are 18 types of possible combinations that are tested and studied. The evaluation metric scores
obtained for each possible combinations and for different question categories are summarized in Table 7. In
terms of accuracy, MedFuseNet (BERT + ResNet + MFB) performs the best for question category 1 (Modality)
with an accuracy of 0.840 and for category 2 (Plane) with an accuracy of 0.780. Another close model for these
two categories is BERT + DenseNet + MFB with 0.813 accuracy score for Modality and 0.757 for Plane. These
scores suggest that image features are more generic for models with skip connections. Moreover, this asserts the
power of MFB as a fusion model. For category 3 (Organ), the XLNet + ResNet + MFB combination achieves the
best accuracy score of 0.844.

In terms of AUC-ROC scores, BERT + VGG16 + MFB performs the best with a score of 0.954, and is margin-
ally ahead of our MedFuseNet with a score of 0.942 for Modality. For category 2 (Plane), our MedFuseNet again
has the highest AUC-ROC score of 0.921. Our MedFuseNet also performs well on category 3 questions with an
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MCB MUTAN MFB
Question Category Image Feature | BERT XLNet BERT XLNet BERT XLNet
Accuracy
VGG16 0.718(0.019) | 0.697(0.018) | 0.751(0.016) | 0.686(0.019) | 0.805(0.012) | 0.680(0.019)
Category 1 Modality DenseNet121 0.704(0.015) | 0.675(0.019) | 0.768(0.014) | 0.688(0.021) | 0.813(0.014) | 0.675(0.020)
ResNet152 0.731(0.014) | 0.663(0.017) | 0.783(0.018) | 0.716(0.017) | 0.840(0.011) | 0.701(0.018)
VGG16 0.706(0.018) | 0.697(0.016) | 0.750(0.017) | 0.605(0.022) | 0.749(0.014) | 0.629(0.019)
Category 2 Plane DenseNet121 0.719(0.016) | 0.643(0.018) | 0.754(0.016) | 0.643(0.017) | 0.757(0.011) | 0.655(0.021)
ResNet152 0.712(0.015) | 0.659(0.019) | 0.763(0.015) | 0.693(0.019) | 0.780(0.010) | 0.735(0.016)
VGG16 0.718(0.018) | 0.625(0.015) | 0.785(0.012) | 0.683(0.016) | 0.798(0.011) | 0.692(0.019)
Category 3 Organ System | DenseNet121 0.753(0.013) | 0.630(0.018) | 0.774(0.015) | 0.696(0.018) | 0.774(0.012) | 0.720(0.016)
ResNet152 0.669(0.016) | 0.672(0.013) | 0.705(0.016) | 0.649(0.019) | 0.746(0.010) | 0.682(0.015)
AUC-ROC
VGG16 0.845(0.011) | 0.697(0.016) | 0.896(0.010) | 0.710(0.015) | 0.954(0.011) | 0.738(0.015)
Category 1 Modality DenseNet121 0.854(0.013) | 0.675(0.018) | 0.898(0.010) | 0.659(0.014) | 0.934(0.010) | 0.703(0.016)
ResNet152 0.861(0.012) | 0.703(0.018) | 0.906(0.011) | 0.740(0.017) | 0.942(0.013) | 0.700(0.014)
VGG16 0.833(0.012) | 0.697(0.018) | 0.866(0.011) | 0.718(0.017) | 0.899(0.013) | 0.729(0.014)
Category 2 Plane DenseNet121 0.832(0.013) | 0.743(0.017) | 0.867(0.012) | 0.801(0.013) | 0.894(0.012) | 0.839(0.015)
ResNet152 0.840(0.010) | 0.685(0.017) | 0.881(0.010) | 0.849(0.014) | 0.921(0.012) | 0.891(0.013)
VGG16 0.655(0.015) | 0.619(0.019) | 0.689(0.014) | 0.622(0.017) | 0.691(0.014) | 0.730(0.016)
Category 3 Organ System | DenseNet121 0.667(0.013) | 0.700(0.016) | 0.691(0.013) | 0.626(0.018) | 0.690(0.013) | 0.650(0.014)
ResNet152 0.803(0.010) | 0.674(0.018) | 0.854(0.012) | 0.795(0.014) | 0.800(0.010) | 0.790(0.015)
AUC-PRC
VGG16 0.322(0.019) | 0.312(0.017) | 0.379(0.017) | 0.373(0.020) | 0.590(0.016) | 0.352(0.019)
Category 1 Modality DenseNet121 0.287(0.021) | 0.310(0.019) | 0.407(0.016) | 0.390(0.019) | 0.572(0.018) | 0.219(0.021)
ResNet152 0.361(0.021) | 0.208(0.018) | 0.469(0.017) | 0.343(0.019) | 0.618(0.016) | 0.224(0.018)
VGG16 0.252(0.018) | 0.368(0.018) | 0.331(0.019) | 0.370(0.021) | 0.439(0.017) | 0.288(0.020)
Category 2 Plane DenseNet121 0.269(0.017) | 0.279(0.021) | 0.347(0.018) | 0.335(0.021) | 0.437(0.019) | 0.351(0.019)
ResNet152 0.248(0.020) | 0.293(0.021) | 0.365(0.017) | 0.321(0.020) | 0.526(0.016) | 0.435(0.017)

VGG16 0.341(0.016) | 0.348(0.020) | 0.393(0.018) 0.289(0.019) | 0.443(0.019) 0.351(0.016)
Category 3 Organ System | DenseNet121 0.364(0.018) | 0.420(0.018) | 0.377(0.016) | 0.289(0.021) | 0.433(0.021) | 0.330(0.018)
ResNet152 0.428(0.017) | 0.322(0.017) | 0.473(0.019) 0.396(0.018) | 0.510(0.016) | 0.352(0.018)

Table 7. Performance metric scores for the ablation study experiments on MED-VQA dataset.

AUC-ROC score of 0.800. The highest AUC-ROC score for category 3 is from BERT + ResNet + MUTAN with
a value of 0.854. These figures demonstrate that our MedFuseNet performs well with the inherent class imbal-
ance in the data.

The trend for accuracy scores continues for AUC-PRC scores as well. MedFuseNet has the highest AUC-PRC
for category 1 and category 2 with values of 0.618 and 0.526, respectively. In category 3, the highest AUC-PRC
is for BERT + XLNet + MFB with 0.578 followed by MedFuseNet with a score of 0.510. This quantitative analysis
establishes that our MedFuseNet is superior compared to all the other combinations with consistently performing
and achieving the maximum scores for the majority of the metrics.

The results of a similar ablation study on the PathVQA yes-no type dataset is shown in Table 8. We observe
that the combination of BERT + VGG16 + MFB performs best with an accuracy score of 0.645. This is followed
by BERT + VGG16 + MUTAN and BERT + DenseNet121 + MFB with accuracy scores of 0.637 and 0.636,
respectively. The combination of BERT + ResNet152 + MFB has an accuracy score of 0.621. This ablation study
again strengthens the claim that the PathVQA dataset for yes-no type answers is not very complex, which is also
supported by the results of the baseline methods. Thus, simpler models like VGG16 and BERT tend to perform
better for the answer categorization task for the PathVQA dataset.

Attention visualization. Here, we perform the qualitative analysis of MedFuseNet and compare its results
to the ones from SAN, and Hierarchical Co-Attention models. Since VIS+LSTM and Deeper-LSTM + Norm.
CNN do not have any attention modules, we do not perform a qualitative analysis for these models. We visual-
ized the image attention maps for each model to study and understand the performance of the model. These
interpretable results are summarized in Table 9. We have considered four cases, where each image belongs to
a different organ system. This helps us interpret how well the model is learning the underlying nuances of the
medical images. As mentioned in the “Implementation details” section, we use two attention glimpses. For the
first scan of the ankle, SAN can be seen to have a distributed attention span with a certain focus on the upper part
of the ankle, while Hierarchical Co-Attention focuses on two different parts of the ankle. Our MedFuseNet has its
attention maps spanned over the ankle joints and the lower bone. In the knee scan, SAN again fails to focus on
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MCB MUTAN MFB
Image Feature | BERT XLNet BERT XLNet BERT XLNet
VGG16 0.614(0.014) | 0.502(0.012) | 0.637(0.014) | 0.513(0.013) | 0.645(0.012) | 0.507(0.014)
DenseNet121 0.609(0.013) | 0.503(0.014) | 0.624(0.012) | 0.514(0.013) | 0.636(0.013) | 0.507(0.012)
ResNet152 0.611(0.015) | 0.505(0.014) | 0.620(0.013) | 0.505(0.012) | 0.621(0.013) | 0.503(0.015)

Table 8. Accuracy scores for the ablation study experiments of PathVQA yes-no answer type dataset.

Method muscfglillfletal ) knee skull and contents | spine and contents
Original

SAN!®

HiCAt!?

MedFuseNet

Table 9. Image Attention visualization for SAN, Hie. Co-Att, and MedFuseNet.

the appropriate location in the image and has distributed attention. Hierarchical Co-Attention spans its attention
to the posterior ligament. On the other hand, our MedFuseNet has a distributed attention span over the cartilage
and the lower shin bone, also known as the tibia. These visualizations support the fact that MedFuseNet is able
to attend to the crucial discriminatory parts of the organ. The third example case is a radiology scan of the skull.
Our MedFuseNet again has attention maps catered to both halves of the skull. The fourth case we visualized is
a CT scan of the spine and contents, and we see that from the attention maps of MedFuseNet is able to focus on
different parts of the scan, thus justifying the prediction. Therefore, observing the visualization of the attention
maps can provide us interesting interpretable insights on where the VQA models are focusing while trying to
answer the questions related to the medical scans. Through the above qualitative analysis we have shown that our
MedFuseNet is able to focus on the major distinguishing parts of the medical image which helps it to correctly
answer questions in for the medical VQA tasks.

In Fig. 5, we analyze the co-attention schema of the MedFuseNet model by laying the image and question
attention maps for a particular case over the input image and question. For the first category, we can see that
model spans its attention over keywords like “method” in the question which shows that the model is learning to
be aware of the modality. Similarly, Fig. 5b shows how the model focuses on the keyword “plane” in the category
2 question. Through the image attention maps, we can infer that model has an evenly distributed attention to
find the plane for the image. For category 3, again the question attention highlights the words like “organ” and
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what imaging -was used ?  what _is this ? —is shown in the image ?

(a) Modality : xr - plain film (b) Plane : lateral (c) Organ : musculoskeletal

Figure 5. Co-Attention Maps for a sample case to display the attention span of MedFuseNet with the input
image and the corresponding question attention. (a) Displays the image attention map and the corresponding
question attention map for category 1—modality, (b) for category 2—plane, and (c) for category 3—organ.

Q. what is the primary abnormality in this image?
A. sarcoidosis

<start> medullary

Q. what is abnormal in the mri?
A. imaging in traumatic brain injury

<start> imaging in traumatic brain injury <end>

Q. what is most alarming about this x-ray?
A. salter-harris fractures, salter and harris

harris

<start> salter-harris fractures <comma> salter

Figure 6. The attention maps produced by MedFuseNet while generating the words in the answer. There are
three cases (a) sarcoidosis in the genitourinary system, (b) anoxic brain injury, and (c) salter-harris fracture in
the bone.

“system’, thus, supporting the fact that the model knows where to span the textual attention. The image attention
for category 3 also has a distributed attention span over multiple regions of the image.

In Fig. 6, we visualize the attention maps obtained from MedFuseNet while generating each word in the
answer. As described in the “MedFuseNet model for medical VQA tasks” section, for each time step ¢;, the atten-
tion maps of the previous time step t;_; are also fed into the LSTM. Figure 6 demonstrates the attention map that
fed with each word to the model for three cases. The first case (a) is of sarcoidosis in the genitourinary organ
system. Our MedFuseNet generates an extra word “medullary” which is related to the medulla oblongata, located
in the stem of the spinal cord near the skull. For the other two cases, our model predicts the answer correctly
along with the punctuation of comma (,). The second case (b) is of a brain injury. In this case, we can observe how
our model is attending different parts of the brain to discover the cause of injury. The third case (c) is of salter
and harris fracture, a fracture specifically caused at the joint of two bones. As we can see in the attention maps,
our model is specifically attending at the joint portion of the scan multiple times while generating the words
“salter-harris” and “salter”. This shows that the model is slowly and steadily learning to identify this special type
of fracture and also localize it in the medical image. Thus, attention visualization of our MedFuseNet helps us to
understand the model performance for the answer generation task.
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Conclusion

Visual questions answering systems for medical images can be extremely helpful in providing the doctors with a
second-opinion. In this paper, we presented MedFuseNet—an attention-based multimodal deep learning model,
for VQA on medical images. MedFuseNet is specifically tailored for handling medical images and it aims to learn
the essential components of a medical image and effectively answer questions related to it. A rigorous quantita-
tive and qualitative analysis of MedFuseNet’s performance was done on two real-world medical VQA datasets
for two medical VQA tasks—answer categorization and answer generation tasks. Ablation study was conducted
to investigate the role of image features, question features, and fusion techniques on the model performance
for the two VQA tasks. For our future work, we will focus on improving and intergrating the decoder with our
MedFuseNet for better answer generation task. We are also working on annotating a large VQA medical domain
dataset for a diverse sets of scans, organs, and diseases.

Received: 17 April 2021; Accepted: 18 August 2021

References

. World-Health-Organization. Stats and analysis. https://www.who.int/gho/health_workforce/physicians_density/en/ (2019).

. Bates, D. W. & Gawande, A. A. Error in medicine: what have we learned?. Ann. Internal Med. 132, 763-767 (2000).

. Moukheibir, N. W. Universal computer assisted diagnosis (2000). US Patent 6,021,404.

. Havaei, M. ef al. Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18-31 (2017).

. Codella, N. C. et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on bio-
medical imaging (isbi), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), 168-172 (IEEE, 2018).

6. Wang, G. et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med.
Imaging 37, 1562-1573 (2018).

7. Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018).

8. Wang, P, Shi, T. & Reddy, C. K. Text-to-sql generation for question answering on electronic medical records. Proc. Web Conf. 2020,
350-361 (2020).

9. Ben Abacha, A., Sarrouti, M., Demner-Fushman, D., Hasan, S. A. & Miiller, H. Overview of the vqa-med task at imageclef 2021:
Visual question answering and generation in the medical domain. In CLEF 2021 Working Notes, CEUR Workshop Proceedings
(CEUR-WS.org, Bucharest, Romania, 2021).

10. Abacha, A. B. et al. Vqa-med: Overview of the medical visual question answering task at imageclef 2019. In CLEF2019 Working
Notes. CEUR Workshop Proceedings, 09-12 (2019).

11. Das, A., Agrawal, H., Zitnick, C. L., Parikh, D. & Batra, D. Human attention in visual question answering: Do humans and deep
networks look at the same regions? (2016). arXiv:1606.03556.

12. Malinowski, M. & Fritz, M. A multi-world approach to question answering about real-world scenes based on uncertain input. In
Advances in neural information processing systems, 1682-1690 (2014).

13. Antol, S. et al. Vqa: Visual question answering. In Proceedings of the IEEE international conference on computer vision, 2425-2433
(2015).

14. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D. & Parikh, D. Making the v in vqa matter: Elevating the role of image understand-
ing in visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6904-6913
(2017).

15. Johnson, J. et al. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2901-2910 (2017).

16. Wang, Z. & Ji, S. Learning convolutional text representations for visual question answering. Proceedings of the 2018 SIAM Inter-
national Conference on Data Mining 594-602, https://doi.org/10.1137/1.9781611975321.67 (2018).

17. Teney, D. & van den Hengel, A. Zero-shot visual question answering (2016). arXiv:1611.05546.

18. Yang, Z., He, X., Gao, J., Deng, L. & Smola, A. Stacked attention networks for image question answering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 21-29 (2016).

19. Lu, ], Yang, J., Batra, D. & Parikh, D. Hierarchical question-image co-attention for visual question answering (2016). arXiv:1606.
00061.

20. Fukui, A. et al. Multimodal compact bilinear pooling for visual question answering and visual grounding (2016). arXiv:1606.01847.

21. Kim, J.-H., Jun, J. & Zhang, B.-T. Bilinear attention networks (2018). arXiv:1805.07932.

22. Lau, J. ], Gayen, S., Abacha, A. B. & Demner-Fushman, D. A dataset of clinically generated visual questions and answers about
radiology images. Sci. Data 5, 1-10 (2018).

23. Porwal, P. et al. Indian diabetic retinopathy image dataset (idrid): A database for diabetic retinopathy screening research. Data 3,
25 (2018).

24. Al-Sadi, A., Talatha, B., Al-Ayyoub, M., Jararweh, Y. & Costen, E. Just at imageclef 2019 visual question answering in the medical
domain. Working Notes of CLEF (2019).

25. Allaouzi, I. & Ahmed, M. B. Deep neural networks and decision tree classifier for visual question answering in the medical domain.
In CLEF (Working Notes) (2018).

26. Yan, X,, Li, L, Xie, C., Xiao, J. & Gu, L. Zhejiang university at imageclef 2019 visual question answering in the medical domain.
Working Notes of CLEF (2019).

27. Ren, E & Zhou, Y. Cgmvqa: A new classification and generative model for medical visual question answering. IEEE Access 8,
50626-50636 (2020).

28. Vu, M. H,, Lofstedt, T., Nyholm, T. & Sznitman, R. A question-centric model for visual question answering in medical imaging.
IEEE Trans. Med. Imaging (2020).

29. He, X,, Zhang, Y., Mou, L., Xing, E. & Xie, P. Pathvqa: 30000+ questions for medical visual question answering. arXiv preprint
arXiv:2003.10286 (2020).

30. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556.

31. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, 1097-1105 (Curran Associates
Inc., Red Hook, NY, USA, 2012).

32. Huang, G,, Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks (2016). arXiv:1608.06993.

33. He, K, Zhang, X,, Ren, S. & Sun, J. Deep residual learning for image recognition (2015). arXiv:1512.03385.

34. Deng, J. et al. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 248-255 (2009).

G W N =

Scientific Reports | _######### ############_| https://doi.org/10.1038/541598-021-98390-1 nature portfolio



www.nature.com/scientificreports/

35. Mikolov, T., Chen, K., Corrado, G. & Dean, ]. Efficient estimation of word representations in vector space (2013). arXiv:1301.3781.

36. Pennington, J., Socher, R. & Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1532-1543, https://doi.org/10.3115/v1/D14-1162 Association for
Computational Linguistics, Doha, Qatar, 2014).

37. Bojanowski, P, Grave, E., Joulin, A. & Mikolov, T. Enriching word vectors with subword information (2016). arXiv:1607.04606.

38. Rumelhart, D. E.,, Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533-536 (1986).

39. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.
8.1735 (1997).

40. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding
(2018). arXiv:1810.04805.

41. Yang, Z. et al. Xlnet: Generalized autoregressive pretraining for language understanding (2019). arXiv:1906.08237.

42. Kim, J.-H. et al. Hadamard product for low-rank bilinear pooling (2016). arXiv:1610.04325.

43. Ben-younes, H., Cadene, R., Cord, M. & Thome, N. Mutan: Multimodal tucker fusion for visual question answering (2017). arXiv:
1705.06676.

44. Yu, Z., Yu, ], Fan, J. & Tao, D. Multi-modal factorized bilinear pooling with co-attention learning for visual question answering
(2017). arXiv:1708.01471.

45. Rabanser, S., Shchur, O. & Giinnemann, S. Introduction to tensor decompositions and their applications in machine learning
(2017). arXiv:1711.10781.

46. Xu, K. et al. Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine
learning, 2048-2057 (2015).

47. Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning, 41-48 (2009).

48. Wiseman, S. & Rush, A. M. Sequence-to-sequence learning as beam-search optimization. arXiv preprint arXiv:1606.02960 (2016).

49. Loper, E. & Bird, S. Nltk: the natural language toolkit. arXiv preprint ¢s/0205028 (2002).

50. Ren, M., Kiros, R. & Zemel, R. Image question answering: A visual semantic embedding model and a new dataset. Proc. Adv. Neural
Inf. Process. Syst. 1, 5 (2015).

51. Ren, M., Kiros, R. & Zemel, R. Exploring models and data for image question answering. Adv. Neural Inf. Process. Syst. 28,
2953-2961 (2015).

52. Lu, ], Lin, X,, Batra, D. & Parikh, D. Deeper Istm and normalized cnn visual question answering model. GitHub Reposit. 6, 1 (2015).

53. Aggarwal, C. C. Data mining: the textbook (Springer, Berlin, 2015).

54. Papineni, K., Roukos, S., Ward, T. & Zhu, W.-]. Bleu: a method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, 311-318 (Association for Computational Linguistics, 2002).

55. Paszke, A, et al. Automatic differentiation in pytorch. NIPS 2017 Workshop Autodiff (2017).

56. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intel-
ligent Systems (O’Reilly Media, 2019).

57. Srivastava, A. embedding-as-service. https://github.com/amansrivastaval7/embedding-as-service (2019).

58. Kingma, D. P. & Ba, ]. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

59. Pedregosa, E. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825-2830 (2011).

60. https://github.com/gdlg/pytorch_compact_bilinear_pooling.

61. https://github.com/Cadene/vqa.pytorch.

62. https://github.com/MILVLG/openvqa.

63. https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning.

64. https://www.nltk.org/_modules/nltk/translate/bleu_score.html.

65. https://github.com/Shivanshu-Gupta/Visual-Question- Answering.

66. https://github.com/karunraju/VQA.

67. https://github.com/jnhwkim/ban-vqa.

68. http://github.com/shilrley6/Faster-R-CNN-with-model-pretrained-on-Visual-Genome.

69. Krishna, R. et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. Int. . Comput.
Vis. 123, 32-73 (2017).

Acknowledgements

This work was supported in part by the US National Science Foundation grant IIS-1838730, IIS-1948399, and

Amazon AWS credits.

Author contributions

D.S. and C.R. developed the algorithm and conceived the experiment(s), D.S. conducted the experiment(s). All
authors analysed the results. D.S. prepared the manuscript. S.P. and C.R. edited and revised the manuscript. All
authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.P. or CK.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports | _######### ############_| https://doi.org/10.1038/541598-021-98390-1 nature portfolio



www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

Scientific Reports | _######### ############_| https://doi.org/10.1038/541598-021-98390-1 nature portfolio



