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ABSTRACT

Representation learning methods for heterogeneous networks pro-
duce a low-dimensional vector embedding (that is typically fixed
for all tasks) for each node. Many of the existing methods focus on
obtaining a static vector representation for a node in a way that is
agnostic to the downstream application where it is being used. In
practice, however, downstream tasks such as link prediction require
specific contextual information that can be extracted from the sub-
graphs related to the nodes provided as input to the task. To tackle
this challenge, we develop SLiCE, a framework for bridging static
representation learning methods using global information from the
entire graph with localized attention driven mechanisms to learn
contextual node representations. We first pre-train our model in
a self-supervised manner by introducing higher-order semantic
associations and masking nodes, and then fine-tune our model for
a specific link prediction task. Instead of training node represen-
tations by aggregating information from all semantic neighbors
connected via metapaths, we automatically learn the composition
of different metapaths that characterize the context for a specific
task without the need for any pre-defined metapaths. SLiCE signif-
icantly outperforms both static and contextual embedding learning
methods on several publicly available benchmark network datasets.
We also demonstrate the interpretability, effectiveness of contextual
learning, and the scalability of SLiCE through extensive evaluation.
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1 INTRODUCTION

The topic of representation learning for heterogeneous networks
has gained a lot of attention in recent years [1, 5, 10, 29, 33, 35],
where a low-dimensional vector representation of each node in
the graph is used for downstream applications such as link pre-
diction [1, 5, 37] or multi-hop reasoning [8, 13, 40]. Many of the
existing methods focus on obtaining a static vector representation
per node that is agnostic to any specific context and is typically
obtained by learning the importance of all of the node’s imme-
diate and multi-hop neighbors in the graph. However, we argue
that nodes in a heterogeneous network exhibit a different behavior,
based on different relation types and their participation in diverse
network communities. Further, most downstream tasks such as link
prediction are dependent on the specific contextual information
related to the input nodes that can be extracted in the form of task
specific subgraphs.

Incorporation of contextual learning has led to major break-
throughs in the natural language processing community [9, 24], in
which the same word is associated with different concepts depend-
ing on the context of the surrounding words. A similar phenomenon
can be exploited in graph structured data and it becomes particu-
larly pronounced in heterogeneous networks where the addition
of relation types as well as node and relation attributes leads to
increased diversity in a node’s contexts. Figure 1 provides an illus-
tration of this problem for an academic network. Given two authors
who publish in diverse communities, we posit that the task of pre-
dicting link (𝐴𝑢𝑡ℎ𝑜𝑟1, 𝑐𝑜 − 𝑎𝑢𝑡ℎ𝑜𝑟, 𝐴𝑢𝑡ℎ𝑜𝑟2) would perform better
if their node representation is reflective of the common publication
topics and venues, i.e., Representation Learning and NeurIPS. This
is in contrast to existing methods where author embeddings would
reflect information aggregation from all of their publications, in-
cluding the publications in healthcare and climate science which
are not part of the common context.

Contextual learning of node representations in network data has
recently gained attentionwith different notions of context emerging
(see Table 1). In homogeneous networks, communities provide a
natural definition of a node’s participation in different contexts
referred to as facets or aspects [11, 19, 21, 32, 34]. Given a task
such as link prediction, inferring the cluster-driven connectivity
between the nodes has been the primary basis for these approaches.
However, accounting for higher-order effects over diverse meta-
paths (defined as paths connected via heterogeneous relations) is
demonstrated to be essential in representation learning and link
prediction in heterogeneous networks [5, 16, 33, 35]. Therefore,
contextual learning methods that primarily rely on the well-defined
notion of graph clustering will be limited in their effectiveness for
heterogeneous networks where modeling semantic association (via
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(a) (b) (c)

Figure 1: Subgraph driven contextual learning in an academic network. (a) Author nodes publish on diverse topics (participate in diverse

contexts) (b) State-of-the-art methods aggregate global semantics for authors based on all published papers (c) Our approach uses context

subgraph between authors to contextualize their node embeddings during link prediction.

meta-paths or meta-graphs) is at least equal or more important
than community structure for link prediction.

In this paper, we seek to make a fundamental advancement over
these categories that aim to contextualize a node’s representation
with regards to either a cluster membership or association with
meta-paths or meta-graphs. We believe that the definition of a con-
text needs to be expanded to subgraphs (comprising heterogeneous
relations) that are task-specific and learn node representations that
represent the collective heterogeneous context. With such a design,
a node’s embedding will be dynamically changing based on its
participation in one input subgraph to another. Our experiments
indicate that this approach has a strong merit with link prediction
performance, thus improving it by 10%-25% over many state-of-the-
art approaches.

We propose shifting the node representation learning from a
node’s perspective to a subgraph point of view. Instead, of focusing
on “what is the best representation for a node 𝑣", we seek to answer
“what are the best collective node representations for a given sub-
graph 𝑔𝑐 " and “how such representations can be potentially useful
in a downstream application?" Our proposed framework SLiCE
(which is an acronym for Self-supervised LearnIng of Contextual
Embeddings), accomplishes this by bridging static representation
learning methods using global information from the entire graph
with localized attention driven mechanisms to learn contextual node
representations in heterogeneous networks. While bridging global
and local information is a common approach for many algorithms,
the primary novelty of SLiCE lies in learning an operator for con-
textual translation by learning higher-order interactions through
self-supervised learning.
Contextualized Representations: Building on the concept of
translation-based embedding models [3], given a node 𝑢 and its
embedding ℎ𝑢 computed using a global representation method, we
formulate graph-based learning of contextual embeddings as per-
forming a vector-space translation Δ𝑢 (informally referred to as
shifting process) such that ℎ𝑢 + Δ𝑢 ≈ ℎ̃𝑢 , where ℎ̃𝑢 is the contextu-
alized representation of 𝑢. The key idea behind SLiCE is to learn
the translation Δ𝑢 where 𝑢 ∈ 𝑉 (𝑔𝑐 ). Figure 1(c) shows an illus-
tration of this concept where the embedding of both Author1 and
Author2 are shifted using the common subgraph with (Paper P1,
Representation learning , NeurIPS, Paper P3) as context. We achieve
this contextualization as follows: We first learn the higher-order

semantic association (HSA) between nodes in a context subgraph.
We do not assume any prior knowledge about important metap-
aths, and SLiCE learns important task specific subgraph structures
during training (see section 4.3). More specifically, we first develop
a self-supervised learning approach that pre-trains a model to learn
a HSA matrix on a context-by-context basis. We then fine-tune the
model in a task-specific manner, where given a context subgraph
𝑔𝑐 as input, we encode the subgraph with global features and then
transform that initial representation via a HSA-based non-linear
transformation to produce contextual embeddings (see Figure 2).
Our Contributions: The main contributions of our work are:
• Propose contextual embedding learning for graphs from single
relation context to arbitrary subgraphs.
• Introduce a novel self-supervised learning approach to learn higher-
order semantic associations between nodes by simultaneously cap-
turing the global and local factors that characterize a context
subgraph.
• Show that SLiCE significantly outperforms existing static and
contextual embedding learning methods using standard evalua-
tion metrics for the task of link prediction.
• Demonstrate the interpretability, effectiveness of contextual trans-
lation, and the scalability of SLiCE through an extensive set of
experiments and contribution of a new benchmark dataset.
The rest of this paper is organized as follows. Section 2 provides

an overview of related work about network embedding learning and
differentiates our work from other existing work. In Section 3, we
introduce the problem formulation and present the proposed SLiCE
model. We describe the details of experimental analysis and show
the comparison of our model with the state-of-the-art methods in
Section 4. Finally, Section 5 conclude the discussion of the paper.

2 RELATEDWORK

We begin with an overview of the state-of-the-art methods for
representation learning in heterogeneous network and then follow
with a discussion on the nascent area of contextual representation
learning. Table 1 provides a summarized view of this discussion.
Node Representation Learning: Earlier representation learning
algorithms for networks can be broadly categorized into two groups
based on their usage of matrix factorization versus random walks
or skip-gram-based methods. Given a graph𝐺 , matrix factorization
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Table 1: Comparison of representative approaches for learning heterogeneous network (HN) embeddings proposed in the

recent literature from contextual learning perspective. Other abbreviations used: graph convolutional network (GCN), graph

neural network (GNN), random walk (RW), skip-gram (SG). N/A stands for “Not Applicable”.

Method

Multi-Embeddings

per Node

Context Scope HN support Learning Approach

Automated Learning

of Meta-Paths/Graphs

HetGNN [36], HetGAT [33] N N/A Y GNN N
GTN [35], HGT [16] N N/A Y Transformer Y
GAN [1], RGCN [26] N N/A Y GCN N
Polysemy [19], MCNE [32] Y Per aspect N Extends SG/GCN, GNN N
GATNE [5], CompGCN [29] Y Per relation Y HN-SG, GCN N/A
SPLITTER [11], asp2vec [21] Y Per aspect Y Extends RW-SG N
SLiCE (proposed) Y Per subgraph Y Self-supervision Y

based methods [4] seek to learn a representation Γ that minimizes
a loss function of the form | |Γ𝑇 Γ − 𝑃𝑉 | |2, where 𝑃𝑉 is a matrix con-
taining pairwise proximity measures for𝑉 (𝐺). Random walk based
methods such as DeepWalk [23] and node2vec [12] try to learn
representations that approximately minimize a cross-entry loss
function of the form

∑
𝑣𝑖 ,𝑣𝑗 ∈𝑉 (𝐺) −𝑙𝑜𝑔(𝑝𝐿 (𝑣 𝑗 |𝑣𝑖 )), where 𝑝𝐿 (𝑣 𝑗 |𝑣𝑖 )

is the probability of visiting a node 𝑣 𝑗 on a random walk of length
𝐿 starting from node 𝑣𝑖 . Node2vec based approach has been further
extended to incorporate multi-relational properties of networks by
constraining random walks to ones conforming to specific metap-
aths [7, 10]. Recent efforts [25] seek to unify the first two categories
by demonstrating the equivalence of [23] and [12]-like methods to
matrix factorization approaches.
Attention-based Methods: A newer category represents graph
neural networks and their variants [18, 26]. Attention mechanisms
that learn a distribution for aggregating information from a node’s
immediate neighbors is investigated in [31]. Aggregation of at-
tention from semantic neighbors, or nodes that are connected via
multi-hop metapaths have been exhaustively investigated over the
past few years and can be grouped by the underlying neural archi-
tectures such as graph convolutional networks [29], graph neural
network [33, 36], and graph transformers [16, 35]. Extending the
above methods from meta-paths to meta-graphs [15, 39] as a basis
for sampling and learning has emerged as a new direction as well.
Contextual Representation Learning: Works such as [2, 11, 19,
28, 32, 34] study the “multi-aspect” effect. Typically, “aspect” is
defined as a node’s participation in a community or cluster in the
graph or even being an outlier, and these methods produce a node
embedding by accounting for it’s membership in different clusters.
However, most of these methods are studied in detail for homo-
geneous networks. More recently, this line of work has evolved
towards addressing finer issues such as inferring the context, ad-
dressing limitations with offline clustering, producing different
vectors depending on the context as well as extension towards
heterogeneous networks [20, 21].

Beyond these works, a number of newer approaches and objec-
tives have also emerged. The authors of [1] compute a node’s repre-
sentation by learning the attention distribution over a graph walk
context where it occurs. The work presented in [5] is a metapath-
constrained random walk based method that contextualizes node
representations per relation. It combines a base embedding derived
from the global structure (similar to above methods) with a relation-
specific component learnt from the metapaths. In a similar vein,

[29] provides operators to adapt a node’s embedding based on the
associated relational context.
Key Distinctions of SLiCE: To summarize, the key differences
between SLiCE and existing works are as follows: (i) Our contex-
tualization objective is formulated on the basis of a subgraph that
distinguishes SLiCE from [5] and [29]. While subgraph-based rep-
resentation learning objectives have been superficially investigated
in the literature [38], they do not focus on generating contextual
embeddings. (ii) From a modeling perspective, our self-supervised
approach is distinct from both the metapath-based learning ap-
proaches outlined in the attention-based methods section (we learn
important metapaths automatically without requiring any user su-
pervision) as well as the clustering-centric multi-aspect approaches
discussed in the contextual representation learning category.

3 THE PROPOSED FRAMEWORK

3.1 Problem Formulation

Before presenting our overall framework, we first briefly provide the
formal definitions and notations that are required to comprehend
the proposed approach.
Definition: (Heterogeneous Graph). We represent a het-
erogeneous graph as a 6-tuple 𝐺 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑣, 𝜆𝑒 ) where, 𝑉
(alternatively referred to as 𝑉 (𝐺)) is the set of nodes and 𝐸 (or
𝐸 (𝐺)) denotes the set of edges between the nodes. 𝜆𝑣 and 𝜆𝑒 are
functions mapping the node (or edge) to its node (or edge) type Σ𝑉
and Σ𝐸 , respectively.
Definition: (Context Subgraph). Given a heterogeneous graph
𝐺 , the context of a node 𝑣 or node-pair (𝑢, 𝑣) in𝐺 can be represented
as the subgraph 𝑔𝑐 that includes a set of nodes selected with certain
criteria (e.g., 𝑘-hop neighbors for 𝑣 or 𝑘-hop neighbors connecting
(𝑢, 𝑣)) along with their related edges. The context of the node or
node-pair can be represented as 𝑔𝑐 (𝑣) and 𝑔𝑐 (𝑢, 𝑣).
Problem definition. Given a heterogeneous graph 𝐺 , a sub-
graph𝑔𝑐 and the link prediction task𝑇 , compute a function 𝑓 (𝐺,𝑔𝑐 ,𝑇 )
that maps each node 𝑣𝑖 in the set of vertices in 𝑔𝑐 , denoted as𝑉 (𝑔𝑐 ),
to a real-valued embedding vector ℎ𝑖 in a low-dimensional space
𝑑 such that ℎ𝑖 ∈ R𝑑 . We also require that 𝑆 , a scoring function
serving as a proxy for the link prediction task, satisfies the follow-
ing: 𝑆 (𝑣𝑖 , 𝑣 𝑗 ) ≥ 𝛿 for a positive edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) in graph 𝐺 and
𝑆 (𝑣𝑖 , 𝑣 𝑗 ) < 𝛿 if 𝑒 is a negative edge, where 𝛿 is a threshold.
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Figure 2: Overview of SLiCE architecture. Subgraph context is initialized using global features for each node. Each layer in SLiCE shifts the

embedding of all nodes in 𝑔𝑐 to emphasize the local dependencies in the contextual subgraph. The final embeddings for nodes in context

subgraphs are determined as a function of output from last 𝑖 layers to combine global with local contextual semantics for each node.

Overview of SLiCE. In this paper, the proposed SLiCE frame-
work mainly consists of the following four components: (1) Con-
textual Subgraph Generation and Encoding: generating a col-
lection of context subgraphs and transforming them into a vector
representation. (2) Contextual Translation: for nodes in a con-
text subgraph, translating the global embeddings, which consider
various heterogeneous attributes about nodes, relations and graph
structure, to contextual embeddings based on the specific local
context. (3) Model Pre-training: learning higher order relations
with the self-supervised contextualized node prediction task. (4)
Model Fine-tuning: the model is then tuned by the supervised
link prediction task with more fine-grained contexts for node pairs.
Figure 2 shows the framework of the proposed SLiCEmodel. In the
following sections, we will introduce more details layer-by-layer.

3.2 Context Subgraphs: Generation and

Representation

3.2.1 Context Subgraph Generation. In this work, we generate
the pre-training subgraphs 𝐺𝐶 for each node in the graph using a
random walk strategy. Masking and predicting nodes in the ran-
dom walks helps SLiCE learn the global connectivity patterns in
𝐺 during the pre-training phase. In fine tuning phase, the con-
text subgraphs for link prediction are generated using following
approaches: (1) Shortest Path strategy considers the shortest path
between two nodes as the context. (2) Random strategy, on the other
hand, generates contexts following the random walks between two
nodes, limited to a pre-defined maximum number of hops. Note
that the context generation strategies are generic and can be ap-
plied for generating contexts in many downstream tasks such as
link prediction [37], knowledge base completion [27] or multi-hop
reasoning [8, 13].

In our experiments, context subgraphs are generated for each
node 𝑣 in the graph during pre-training and for each node-pair
during fine-tuning. Each generated subgraph 𝑔𝑐 ∈ 𝐺𝑐 is encoded
as a set of nodes denoted by 𝑔𝑐 = (𝑣1, 𝑣2, · · · , 𝑣 |𝑉𝑐 |), where |𝑉𝑐 |
represents the number of nodes in 𝑔𝑐 . Different from the sequential
orders enforced on graph sampled using pre-defined metapaths, the
order of nodes in this set is not important. Therefore, our context

subgraphs are not limited to paths, and can handle tree or star-
shaped subgraphs.

3.2.2 Context Subgraph Encoder. We first represent each node 𝑣𝑖
in the context subgraph as a low-dimensional vector representa-
tion by ℎ𝑖 = 𝑾𝑒 𝑓𝑎𝑡𝑡𝑟 (𝑣𝑖 ), where 𝑓𝑎𝑡𝑡𝑟 (.) is a function that returns
a stacked vector containing the structure-based embedding of 𝑣𝑖
and the embedding of its attributes. 𝑾𝑒 is the learnable embed-
ding matrix. We represent the input node embeddings in 𝑔𝑐 as
𝑯𝑐 = (ℎ1, ℎ2, · · · , ℎ |𝑉𝑐 |). It is flexible to incorporate the node and
relation attributes (if available) for attributed networks [5] in the
low-dimensional representations or initialize them with the output
embeddings learnt from other global feature generation approaches
that capture the multi-relational graph structure [10, 12, 29, 33, 35].

There are multiple approaches for generating global node fea-
tures in heterogeneous networks (see “related work"). Our experi-
ments show that the node embeddings obtained from random walk
based skip-gram methods (RW-SG) produces competitive perfor-
mance for link prediction tasks. Therefore, in the proposed SLiCE
model, we mainly consider the pre-trained node representation
vectors from node2vec for initialization of the node features.

3.3 Contextual Translation

Given a set of nodes 𝑉𝑐 in a context subgraph 𝑔𝑐 and their global
input embeddings 𝑯𝑐 ∈ R𝑑×|𝑉𝑐 | , the primary goal of contextual
learning is to translate (or shift) the global embeddings in the vector
space towards their new positions that indicate the most repre-
sentative roles of nodes in the structure of 𝑔𝑐 . We consider this
mechanism as a transformation layer and the model can include
multiple such layers according to the higher-order relations con-
tained in the graph. Before introducing the details of this contextual
translation mechanism, we first provide the definition of the se-
mantic association matrix, which serves as the primary indicator
about the translation of embeddings according to specific contexts.
Definition: (Semantic AssociationMatrix). A semantic as-
sociation matrix, denoted as 𝐴, is an asymmetric weight matrix that
indicates the high-order relational dependencies between nodes in
the context subgraph 𝑔𝑐 .
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Note that the semantic association matrix will be asymmetric
since the influences of two nodes on one another in a context sub-
graph tend to be different. The adjacency matrix of the context
subgraph, denoted by 𝐴𝑔𝑐 , can be considered as a trivial candidate
for 𝐴, which includes the local relational information of context
subgraph 𝑔𝑐 . However, the goal of contextual embedding learning
is to translate the global embeddings using the contextual informa-
tion contained in the specific context 𝑔𝑐 while keeping the nodes’
connectivity through the global graph. Hence, instead of setting it
to 𝐴𝑔𝑐 , we contextually learn the semantic associations, or more
specifically the weights of the matrix 𝐴𝑘 in each translation layer
𝑘 by incorporating the connectivity between nodes through both
local context subgraph 𝑔𝑐 and global graph 𝐺 .
Implementation of Contextual Translation: In the translation
layer 𝑘 + 1, the semantic association matrix 𝐴𝑘 ∈ R |𝑉𝑐 |× |𝑉𝑐 | is
updated by the transformation operation defined in Eq. (1). It is
accomplished by performing message passing across all nodes in
context subgraph 𝑔𝑐 and updating the node embeddings 𝑯𝑘𝑐 =

(ℎ𝑘1 , ℎ
𝑘
2 , · · · , ℎ

𝑘
|𝑉𝑐 |) to be 𝑯𝑘+1𝑐 .

𝑯𝑘+1𝑐 = 𝑓𝑁𝑁 (𝑾𝑠𝑯𝑘𝑐 𝐴𝑘 + 𝑯𝑘𝑐 ) (1)

where 𝑓𝑁𝑁 is a non-linear function and the transformation matrix
𝑾𝑠 ∈ R𝑑×𝑑 is the learnable parameter. The residual connection [14]
is applied to preserve the contextual embeddings in the previous
step. This allows us to still maintain the global relations by passing
the original global embeddings through layers while learning con-
textual embeddings. Given two nodes 𝑣𝑖 and 𝑣 𝑗 in context subgraph
𝑔𝑐 , the corresponding entry 𝐴𝑘

𝑖 𝑗
in semantic association matrix

can be computed using the multi-head (with 𝑁ℎ heads) attention
mechanism [30] in order to capture relational dependencies under
different subspaces. For each head, we calculate 𝐴𝑘

𝑖 𝑗
as follows:

𝐴𝑘𝑖 𝑗 =

𝑒𝑥𝑝

(
(𝑾1ℎ𝑘𝑖 )

𝑇 (𝑾2ℎ𝑘𝑗 )
)

∑ |𝑉𝑐 |
𝑡=1 𝑒𝑥𝑝

(
(𝑾1ℎ𝑘𝑖 )𝑇 (𝑾2ℎ𝑘𝑡 )

) (2)

where the transformation matrix𝑾1 and𝑾2 are learnable param-
eters. It should be noted that, different from the aggregation pro-
cedure performed across all nodes in the general graph G, the
proposed translation operation is only performed within the local
context subgraph 𝑔𝑐 . The updated embeddings after applying the
translation operation according to context 𝑔𝑐 indicate the most
representative roles of each node in the specific local context neigh-
borhood. In order to capture the higher-order association relations
within the context, we apply multiple layers of the transforma-
tion operation in Eq. (1) by stacking 𝐾 layers as shown in Figure 2,
where𝐾 is the largest diameter of the subgraphs sampled in context
generation process.

By applying multiple translation layers, we are able to obtain
multiple embeddings for each node in the context subgraph. In order
to collectively consider different embeddings in the downstream
tasks, we aggregate the node embeddings learnt from different
layers {ℎ𝑘

𝑖
}𝑘=1,...,𝐾 as the contextual embedding ℎ̃𝑖 for each node

as follows.
ℎ̃𝑖 = ℎ

1
𝑖 ⊕ ℎ

2
𝑖 ⊕ · · · ⊕ ℎ

𝐾
𝑖 (3)

Algorithm 1: Self-supervised Pre-training in SLiCE.
1 Require: Graph 𝐺 with nodes set 𝑉 and edges set 𝐸,

embedding size 𝑑 , context subgraph size𝑚, No. of
translation layers 𝐾 .

2 Pre-training dataset 𝐺𝑝𝑟𝑒𝑐 ← ∅
3 for each 𝑣 ∈ 𝑉 do

4 𝑔𝑣𝑐 =GetContext(𝐺 , 𝑣 ,𝑚) ▷ Generate context subgraph
5 𝑔𝑣𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑔𝑣𝑐 ) ▷ Encode context as a sequence
6 𝑣𝑚 = 𝑅𝑎𝑛𝑑𝑜𝑚(𝑔𝑣𝑐 ) ▷ Mask a node in 𝑔𝑣𝑐 for prediction
7 𝐺

𝑝𝑟𝑒
𝑐 .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑔𝑣𝑐 , 𝑣𝑚)

8 end

9 𝑯 ← 𝐸𝑚𝑏𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐺,𝑑) ▷ Learn global embeddings
10 Initialize node embeddings as 𝑯 0 = 𝑯 .
11 while not converged do

12 for 𝑔𝑣𝑐 to 𝐺
𝑝𝑟𝑒
𝑐 do

13 for 𝑘 = 1 to 𝐾 do

14 𝑯𝑘+1𝑐 = 𝑓𝑁𝑁 (𝑾𝑠𝑯𝑘𝑐 𝐴𝑘 + 𝑯𝑘𝑐 ) with 𝐴 calculated
by Eq. (2)

15 end

16 Contextual embeddings �̃�𝑐 = 𝑯 1
𝑐 ⊕ 𝑯 2

𝑐 ⊕ · · · ⊕ 𝑯𝐾
𝑐

17 Update parameters with the contextualized node
prediction task using the objective function in Eq. (4).

18 end

19 end

Given a context subgraph 𝑔𝑐 , the obtained contextual embedding
vectors {ℎ̃𝑖 }𝑖=1,2,..., |𝑉𝑐 | can be fed into the prediction tasks. In pre-
training step, a linear projection function is applied on the contex-
tual embeddings to predict the probability of masked nodes. For
fine-tuning step, we apply a single layer feed-forward network with
softmax activation function for binary link prediction.

3.4 Model Training Objectives

3.4.1 Self-supervised Contextual Node Prediction. Our model pre-
training is performed by training the self-supervised contextualized
node prediction task. More specifically, for each node in𝐺 , we gen-
erate the node context 𝑔𝑐 with diameter (defined as the largest
shortest pair between any pair of nodes) using the aforementioned
context generation methods and randomly mask a node for pre-
diction based on the context subgraph. The graph structure is left
unperturbed by the masking procedure. Therefore, the pre-training
is learnt by maximizing the probability of observing this masked
node 𝑣𝑚 based on the context 𝑔𝑐 in the following form.

𝜃 = argmax
𝜃

∏
𝑔𝑐 ∈𝐺𝐶

∏
𝑣𝑚 ∈𝑔𝑐

𝑝 (𝑣𝑚 |𝑔𝑐 , 𝜃 ) (4)

where 𝜃 represents the set of model parameters. The procedure for
pre-training is given in Algorithm 1. In this algorithm, lines 2-8 gen-
erate context subgraphs for nodes in the graph and further applies
a random masking strategy to process the data for pre-training.
Lines 9-10 learn the pre-trained global node features and initialize
them as the node embeddings in SLiCE. In lines 13-15, we apply the
contextual translation layers on the context subgraphs, aggregate
the output of different layers as the contextual node embeddings



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia P. Wang, et al.

Algorithm 2: Fine-tuning in SLiCE with link prediction.
1 Require: Graph 𝐺 with nodes set 𝑉 and edges set 𝐸, list of

edges 𝐸𝑙𝑝 for link prediction, global embeddings 𝑯 ,
pre-trained model parameters 𝜃 , context subgraph size𝑚,
No. of translation layers 𝐾 .

2 Fine-tuning dataset 𝐺 𝑓 𝑖𝑛𝑒𝑐 ← ∅
3 for each 𝑒 ∈ 𝐸𝑙𝑝 do

4 𝑔𝑒𝑐 =GetContext(𝐺 , 𝑒 ,𝑚) ▷ Generate context subgraph
5 𝑔𝑒𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑔𝑒𝑐 ) ▷ Encode context as a sequence
6 𝐺

𝑓 𝑖𝑛𝑒
𝑐 .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑔𝑒𝑐 )

7 end

8 Initialize node embeddings as 𝑯 0 = 𝑯 .
9 Set model parameters to pre-trained parameters 𝜃 in

Algorithm 1.
10 while not converged do

11 for 𝑔𝑒𝑐 to 𝐺
𝑓 𝑖𝑛𝑒
𝑐 do

12 for 𝑘 = 1 to 𝐾 do

13 𝑯𝑘+1𝑐 = 𝑓𝑁𝑁 (𝑾𝑠𝑯𝑘𝑐 𝐴𝑘 + 𝑯𝑘𝑐 ) with 𝐴 calculated
by Eq. (2)

14 end

15 Contextual embeddings �̃�𝑐 = 𝑯 1
𝑐 ⊕ 𝑯 2

𝑐 ⊕ · · · ⊕ 𝑯𝐾
𝑐

16 Update fine-tuning parameters using Eq. (5).
17 end

18 end

in line 16 and update the model parameters with contextual node
prediction task. In a departure from traditional skip-gram meth-
ods [21] that predicts a node from the path prefix that precedes it in
a random walk, our random masking strategy forces the model to
learn higher-order relationships between nodes that are arbitrarily
connected by variable length paths with diverse relational patterns.

3.4.2 Fine-tuning with Supervised Link Prediction. The SLiCEmodel
is further fine-tuned on the contextualized link prediction task by
generating multiple fine-grained contexts for each specific node-pair
that is under consideration for link prediction. Based on the pre-
dicted scores, this stage is trained by maximizing the probability
of observing a positive edge (𝑒𝑝 ) given context (𝑔𝑐𝑝 ), while also
learning to assign low probability to negatively sampled edges (𝑒𝑛)
and their associated contexts (𝑔𝑐𝑛). The overall objective is obtained
by summing over the training data subsets with positive edges (𝐷𝑝 )
and negative edges (𝐷𝑛). Algorithm 2 shows the process of fine-
tuning step. In this algorithm, lines 2-7 generate context subgraphs
of the node-pairs for link prediction task and process the data for
fine-tuning in the same manner described in pre-training. Lines
8-18 perform the fine-tuning with link prediction task.

L =
∑

(𝑒𝑝 ,𝑔𝑐𝑝 )∈𝐷𝑝

log(𝑃 (𝑒𝑝 |𝑔𝑐𝑝 , 𝜃 ))+
∑

(𝑒𝑛,𝑔𝑐𝑛) ∈𝐷𝑛

log(1−𝑃 (𝑒𝑛 |𝑔𝑐𝑛, 𝜃 ))

(5)
We compute the probability of the edge between two nodes 𝑒 =

(𝑣𝑖 , 𝑣 𝑗 ) as the similarity score 𝑆 (𝑣𝑖 , 𝑣 𝑗 ) = 𝜎 (ℎ̃𝑇𝑖 · ℎ̃ 𝑗 ) [1], where ℎ̃𝑖
and ℎ̃ 𝑗 are contextual embeddings of 𝑣𝑖 and 𝑣 𝑗 learnt based on a
context subgraph, respectively. 𝜎 (·) represents sigmoid function.

3.5 Complexity Analysis

We assume that 𝑁𝑐𝑝𝑛 denotes the number of context subgraphs
generated for each node, 𝑁𝑚𝑐 represents the maximum number
of nodes in any context subgraph, and |𝑉 | represents the number
of nodes in the input graph 𝐺 . Then, the total number of context
subgraphs considered in pre-training stage can be estimated as
|𝑉 | ∗𝑁𝑐𝑝𝑛 and the cost of iterating over all these subgraphs through
multiple epochs will be 𝑂 ( |𝑉 | ∗ 𝑁𝑐𝑝𝑛). Since the generated context
subgraphs need to provide us with a good approximation of the
total number of edges in the entire graph, we approximate the total
cost as𝑂 ( |𝑉 | ∗𝑁𝑐𝑝𝑛) ≈ 𝑂 (𝑁𝐸 ), where 𝑁𝐸 is the number of edges in
the training dataset. It can also be represented as𝑁𝐸 = 𝛼𝑇 |𝐸 |, where
|𝐸 | is the total number of edges in graph 𝐺 and 𝛼𝑇 represents the
ratio of training split. The cost for each contextual translation layer
in SLiCE model is 𝑂 (𝑁 2

𝑚𝑐 ) since the dot product for calculating
node similarity is the dominant computation and is quadratic to
the number of nodes in the context subgraph. In this case, the total
training complexity will be 𝑂 ( |𝐸 |𝑁 2

𝑚𝑐 ). The maximum number
of nodes 𝑁𝑚𝑐 in context subgraphs is relatively small and it can
be considered as a constant that does not depend on the size of
the input graph. Therefore, the training complexity of SLiCE is
approximately linear to the number of edges in the input graph.

3.6 Implementation Details

The proposed SLiCE model is implemented using PyTorch 1.3 [22].
The dimension of contextual node embeddings is set to 128 in
SLiCE. We used a skip-gram based randomwalk approach to encode
context subgraphs with global node features. Both pre-training and
fine-tuning steps in SLiCE are trained for 10 epochswith a batch size
of 128 using the cross-entropy loss function. The model parameters
are trained with ADAM optimizer [17] with a learning rate of 0.0001
and 0.001 for pre-training and fine-tuning steps, respectively. The
best model parameters were selected based on the development set.
Both the number of contextual translation layers and number of
self-attention heads are set to 4. We generate context subgraphs
by performing random walks between node pairs by setting the
maximum number of nodes in context subgraphs and the number
of contexts generated for each node to be {6, 12} and {1, 5, 10},
respectively and report the best performance. In the fine-tuning
stage, the subgraph with the largest prediction score are selected as
the best context subgraph for each node-pair. The implementation
of the SLiCE model is made publicly available at this website1.

4 EXPERIMENTS

In this section, we address following research questions (RQs)
through experimental analysis:
(1) RQ1: Does subgraph-based contextual learning improve the

performance of downstream tasks such as link prediction?
(2) RQ2: Can we interpret SLiCE’s performance using semantic

features of context subgraphs?
(3) RQ3: Where does contextualization help in graphs? How do

we quantify the effect of the embedding shift from static to
subgraph-based contextual learning?

1https://github.com/pnnl/SLICE
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Table 2: The basic statistics of the datasets used in this paper.

Dataset Amazon DBLP Freebase Twitter Healthcare

# Nodes 10,099 37,791 14,541 9,990 4,683
# Edges 129,811 170,794 248,611 294,330 205,428
# Relations 2 3 237 4 4
# Training (positive) 126,535 119,554 272,115 282,115 164,816
# Development 14,756 51,242 35,070 32,926 40,612
# Testing 29,492 51,238 40,932 65,838 40,612

(4) RQ4: What is the impact of different parameters and compo-
nents (including pre-trained global features and fine-tuning
procedure) on the performance of SLiCE?

(5) RQ5: Can we empirically verify SLiCE’s scalability?

4.1 Experimental Settings

4.1.1 Datasets used. We use four public benchmark datasets cov-
ering multiple applications: e-commerce (Amazon), academic graph
(DBLP), knowledge graphs (Freebase), and social networks (Twitter).
We use the same data split for training, development, and testing
as described in previous works [1, 5, 29]. In addition, we also intro-
duce a new knowledge graph from the publicly available real-world
Medical Information Mart for Intensive Care (MIMIC) III dataset2
in the healthcare domain. We generated equal number of positive
and negative edges for the link prediction task. Table 2 provides the
basic statistics of all datasets. The details of each dataset is provided
below.
• Amazon

3
: includes the co-viewing and co-purchasing links be-

tween products. The edge types, also_bought and also_viewed,
represent that products are co-bought or co-viewed by the same
user, respectively.
• DBLP

4
: includes the relationships between papers, authors, venues,

and terms. The edge types include paper_has_term, published_at
and has_author.
• Freebase

5
: is a pruned version of FB15K with inverse relations

removed. It includes links between people and their nationality,
gender, profession, institution, place of birth/death, and other
demographic features.
• Twitter

3: includes links between tweets users. The edge types
included in the network are re-tweet, reply, mention, and friend-
ship/follower.
• Healthcare: includes relations between patients and their diag-
nosed medical conditions during each hospital admission along
with relations to procedures and medications received. To ensure
data quality, we use a 5-core setting, i.e., retaining nodes with at
least five neighbors in the knowledge graph. The codes for gen-
erating this healthcare knowledge graph from MIMIC III dataset
are also available at6.

4.1.2 Comparison Methods. We compare our model against the
following state-of-the-art network embedding learning methods.
The first four methods learn static embeddings and the remaining
methods learn contextual embeddings.

2https://mimic.physionet.org/
3https://github.com/THUDM/GATNE/tree/master/data
4https://github.com/Jhy1993/HAN/tree/master/data
5https://github.com/malllabiisc/CompGCN/tree/master/data_compressed
6https://github.com/pnnl/SLICE

• TransE [3] treats the relations between nodes as the translation
operations in a low-dimensional embedding space.
• RefE [6] incorporates hyperbolic space and attention-based geo-
metric transformations to learn the logical patterns of networks.
• node2vec [12] is a random-walk based method that was devel-
oped for homogeneous networks.
• metapath2vec [10] is an extension of node2vec that constrains
random walks to specified metapaths in heterogeneous network.
• GAN (Graph Attention Networks) [1] is a graph attention network
for learning node embeddings based on the attention distribution
over the graph walk context.
• GATNE-T (General Attributed Multiplex HeTerogeneous Network
Embedding) [5] is a metapath-constrained random-walk based
method that learns relation-specific embeddings.
• RGCN (Relational Graph Convolutional Networks) [26] learns
multi-relational data characteristics by assigning a differentweight
for each relation.
• CompGCN (Composition-based Graph Convolutional Networks)
[29] jointly learns the embedding of nodes and relations for
heterogeneous graph and updates a node representation with
multiple composition functions.
• HGT (Heterogeneous Graph Transformer) [16] models the hetero-
geneity of graph by analyzing heterogeneous attention over each
edge and learning dedicated embeddings for different types of
edges and nodes. We adapt the released implementation of node
classification task to perform link prediction task.
• asp2vec (Multi-aspect network embedding) [21] captures the in-
teractions of the pre-defined multiple aspects with aspect regu-
larization and dynamically assigns a single aspect for each node
based on the specific local context.

4.1.3 Experimental Settings. All evaluations were performed using
NVIDIA Tesla P100 GPUs. The results of SLiCE are evaluated under
the parameter settings described in Section 3.6. The results of all
baselines are obtained with their original implementations. Note
that for all baseline methods, the parameters not specially specified
here are under the default settings. We use the implementation
provided in KGEmb7 for both TransE and RefE. node2vec8 is
implemented by sampling 10 random walks with a length of 80. The
original implementation of metapath2vec

9 is used by generating
10 walks for each node as well. We set the learning rate to be {0.1,
0.01, 0.001} and reported the best performance forGAN10.GATNE-
T is implemented by generating 20 walks with a length of 10 for
each node. The results of CompGCN

11 are obtained using the
multiplicative composition of node and relation embeddings. We
adapt the Deep Graph Library (DGL) based implementation12 of
HGT and RGCN to perform the link prediction task. We use the
original implementation of asp2vec13 for the evaluation. For all
baselines, the dimension of embedding is set to 128.

7https://github.com/HazyResearch/KGEmb
8https://github.com/aditya-grover/node2vec
90https://ericdongyx.github.io/metapath2vec/m2v.html
10https://github.com/google-research/google-research/tree/master/

graph_embedding/watch_your_step
11https://github.com/malllabiisc/CompGCN
12https://github.com/dmlc/dgl/tree/master/examples/pytorch/hgt
13https://github.com/pcy1302/asp2vec
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Table 3: Performance comparison of different models on link prediction task using micro-F1 score and AUCROC. The symbol

“OOM” indicates out of memory. Here, SLiCE𝑤/𝑜 𝐺𝐹 and SLiCE𝑤/𝑜 𝐹𝑇 represent two variants of the proposed SLiCE method

by removing the Global Feature (GF) initialization and without fine-tuning (FT), respectively. The symbol * indicates that the

improvement is statistically significant over the best baseline based on two-sided 𝑡-test with 𝑝-value 10−10.

Type Methods

micro-F1 Score AUCROC

Amazon DBLP Freebase Twitter Healthcare Amazon DBLP Freebase Twitter Healthcare

S
t
a
t
i
c

TransE 50.28 49.60 47.78 50.60 48.42 50.53 49.05 48.18 50.26 49.80
RefE 51.86 49.60 50.25 48.55 47.96 51.74 48.50 50.41 49.28 50.73
node2vec 88.06 86.71 83.69 72.72 71.92 94.48 93.87 89.77 80.48 79.42
metapath2vec 88.86 44.58 77.18 66.73 62.64 95.42 38.41 84.33 72.16 69.11

C
o
n
t
e
x
t
u
a
l

GAN 85.47 OOM OOM 85.01 81.94 92.86 OOM OOM 92.39 89.72
GATNE-T 89.06 57.04 OOM 68.16 58.02 94.74 58.44 OOM 72.07 73.40
RGCN 65.03 28.84 OOM 63.46 56.73 74.77 50.35 OOM 64.35 46.15
CompGCN 83.42 40.10 65.39 40.75 39.84 90.14 34.04 72.01 39.86 38.03
HGT 65.77 53.32 OOM 53.13 76.54 68.66 50.85 OOM 59.32 82.36
asp2vec 94.89 78.82 90.02 88.29 85.46 98.51 92.51 96.61 95.00 92.97
SLiCE𝑤/𝑜 𝐺𝐹 67.01 66.02 66.31 67.07 60.88 62.87 57.52 55.31 66.69 63.11
SLiCE𝑤/𝑜 𝐹𝑇 94.99 89.34 90.01 82.19 81.58 98.66 96.07 96.33 90.38 89.51
SLiCE (Ours) 96.00* 90.70* 90.26 89.30* 91.64* 99.02* 96.69* 96.41 95.73* 94.94*

4.2 Evaluation on Link Prediction (RQ1)

We evaluate the impact of contextual embeddings using the bi-
nary link prediction task, which has been widely used to study the
structure-preserving properties of node embeddings [7, 37].

Table 3 provides the link prediction results of different methods
on five datasets using micro-F1 score and AUCROC. The prediction
scores for SLiCE are reported from the context subgraph generation
strategy (shortest path or random) that produces the best score for
each dataset on the validation set. Compared to the state-of-the-art
methods, we observe that SLiCE significantly outperforms both
static and contextual embedding learning methods by 11.95% and
25.57% on average in F1-score, respectively.We attribute static meth-
ods superior performance, compared to relation based contextual
learning methods (such as GATNE-T, RGCN, and CompGCN), to the
ability of capturing global network connectivity patterns. Relation
based contextual learning methods limit node contextualization
by emphasizing the impact of relations on nodes. We outperform
all methods on F1-score, including asp2vec, a cluster-aspect based
contextualization method. Asp2vec achieves a marginally better
AUCROC score on Freebase, but SLiCE achieves a better F1-score.

SLiCE outperforms asp2vec on all other datasets (in F1-score
and AUCROC measure), improving F1-score for DBLP by 13% ow-
ing to its ability to learn important metapaths without explicit
specification. These results indicate that subgraph based contextu-
alization is highly effective and is a strong candidate for advancing
the state-of-the-art for link prediction in a graph network.

4.3 SLiCEModel Interpretation (RQ2)

Here we study the impact of using different subgraph contexts on
link prediction performance and demonstrate SLiCE’s ability to
learn important higher-order relations in the graph. Our analysis
shows SLiCE’ results are highly interpretable, and provide a way
to perform explainable link prediction by learning the relevance of
different context subgraphs connecting the query node pair.

4.3.1 Case Study for Model Interpretation. Figure 3 shows an
example subgraph from DBLP dataset between “Jiawei Han” and

Figure 3: An example fromDBLP. Relations inDBLP include

paper-author, paper-topic and paper-conference. To predict

the paper-author relationship between 𝑃28406 and 𝐴6999, five
context subgraphs are generated with a beam-search strat-

egy. The 4𝑡ℎ context subgraph (along with context subgraph

1, 2 and 3) contain closely related nodes and get high scores,

while path 5 containing a generic conference node achieves

lowest score.

“𝑃28406”, a paper on frequent itemset mining. Paths 1 to 5 (shown
in different legend) show different contexts subgraphs present be-
tween the two nodes. We observe that the link prediction score
between Jiawei Han and paper 𝑃28406 varies, depending on the
context subgraph provided to the model.

We also observe that SLiCE assigns high link prediction scores
for all context subgraphs (paths 1-4) where all the nodes on the path
share strong semantic association with other nodes in the context
subgraph. The lowest score is achieved for path-5 which contains
a conference node 𝐶19054 (SIAM Data Mining). As a conference
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 4: Visualization of the semantic association matrix (after normalization) learnt from different layers on a DBLP sub-

graph for link prediction between paper N0 and author N1. An intense color indicates a higher association. Initially (layer 1),

nodes N0 and N1 have low association. In layer 4, SLiCE learns higher semantic association from N1 to N0.

publishes papers in multiple topics, we hypothesize that this breaks
the semantic association across nodes, and consequently lowers
the probability of the link compared to other context subgraphs
where all nodes are closely related.

It is important to note, that a node can share a semantic associa-
tion with another node separated by multiple hops on the path, and
thus would be associated via a higher-order relation. We explore
this concept further in the following subsections.

4.3.2 Interpretation of SemanticAssociationMatrix. Wepro-
vide the visualization of the semantic association matrix 𝐴𝑘

𝑖 𝑗
as

defined in Eq. (1) to investigate how the node dependencies evolve
through different layers in SLiCE. Given a node pair (𝑣𝑖 , 𝑣 𝑗 ) in the
context subgraph 𝑔𝑐 , a high value of 𝐴0

𝑖 𝑗
, indicates a strong global

dependency of node 𝑣𝑖 on 𝑣 𝑗 . While a high value of 𝐴𝑘
𝑖 𝑗
(𝑘 ≥ 1)

(the association after applying more translation layers) indicates a
prominent high-order relation in the subgraph context.

Figure 4 shows weights of semantic association matrix for the
context generated for node pair (N0: Summarizing itemset patterns:
a profile-based approach (Paper), N1: Jiawei Han (Author)). Nodes
in the context consist of N2: Approach (Topic), N3: Knowledge-base
reduction (Paper), N4: Redundancy (Topic) and N5: Handling Redun-
dancy in the Processing of Recursive Database Queries (Paper). We
observe that at layer 1 (Figure 4a), the association between source
node N0 and target node N1 is relatively low. Instead, they both
assign high weights on N4. However, the dependencies between
nodes are dynamically updated when applying more learning lay-
ers, consequently enabling us to identify higher-order relations. For
example, the dependency of N1 on N0 becomes higher from layer
3 (Figure 4c) and N0 primarily depends on itself without highly
influenced by other nodes in layer 4 (Figure 4d). This visualization
of semantic association helps to understand how the global em-
bedding is translated into the localized embedding for contextual
learning.

4.3.3 Symbolic Interpretation of Semantic Associations via
Metapaths. Metapaths provide a symbolic interpretation of the
higher-order relations in a heterogeneous graph. We analyze the
ability of SLiCE to learn relevant metapaths that characterize posi-
tive semantic associations in the graph. We observe from Table 4
that SLiCE is able to match existing metapaths and also identify
new metapath patterns for prediction of each relation type. For
example, to predict the paper-author relationship, SLiCE learns
three shortest metapaths, including “TPA" (authors publish with

Table 4: Comparisons of metapaths learned by SLiCE with

both predefined andmodel learned onDBLPdataset for each

relation type. Here, P, A, C, and T represent Paper, Author,

Conference, and Topic, respectively.

Learning Methods Paper-Author Paper-Conference Paper-Topic

Predefined [35] APCPA, APA - -
SLiCE + Shortest Path TPA, APA, CPA TPC, APC, TPTPC TPT, CPT, APT
SLiCE + Random APA, APAPA TPTPC, TPAPC TPTPT, APTPT

the same topic), “APA" (co-authors) and “CPA"(authors published
in the same conference).

Interestingly, our learning suggests that longermetapath “APCPA",
which is commonly used to sample academic graphs for co-author
relationship, is not as highly predictive of a positive relationship, i.e.,
“all authors who publish in the same conference do not necessarily
publish together". Overall, the metapaths reported in Table 4 are
consistent with the top ranked paths in Figure 3. These metapaths
demonstrate SLiCE’s ability to discover higher order semantic asso-
ciations and perform interpretable link prediction in heterogeneous
networks.

4.4 Effectiveness of Contextual Translation for

Link Prediction (RQ3)

In this section, we study the impact of contextual translation on
node embeddings. First, we evaluate the impact of contextualization
in terms of the similarity (or distance) between the query nodes. Sec-
ond, we analyze the effectiveness of contextualization as a function
of the query node pair properties. The latter is especially relevant
for understanding the performance boundaries of the contextual
methods.

4.4.1 Impact ofContextual Translation onEmbedding-based
Similarity. Figure 5 provides the distribution of similarity scores
for both positive and negative edges obtained by SLiCE. We com-
pare against embeddings produced by node2vec [12] which is one
of the best performing static embedding methods (see Table 3)
and CompGCN [29] a relation based contextualization method.
We observe that for node2vec and CompGCN, the distribution
of similarity scores across positive and negative edges overlaps
significantly for all datasets. This indicates that the embeddings
learnt from global methods or relation specific contextualization
cannot efficiently differentiate the positive and negative edges in
link prediction task.

On the contrary, SLiCE increases the margin between the distri-
butions of positive and negative edges significantly. It brings node
embeddings in positive edges closer and shifts nodes in negative
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(a) node2vec: Amazon (b) node2vec: DBLP (c) node2vec: Freebase (d) node2vec: Twitter (e) node2vec: Healthcare

(f) CompGCN: Amazon (g) CompGCN: DBLP (h) CompGCN: Freebase (i) CompGCN: Twitter (j) CompGCN: Healthcare

(k) SLiCE: Amazon (l) SLiCE: DBLP (m) SLiCE: Freebase (n) SLiCE: Twitter (o) SLiCE: Healthcare

Figure 5: Distributions of similarity scores of both positive and negative node-pairs obtained by node2vec, CompGCN, and

SLiCE over five datasets.

(a) Amazon (b) Healthcare

Figure 6: Error analysis of contextual translation based link

prediction method as a function of degree-based connectiv-

ity of query nodes.

edges farther away in the low-dimensional space. This indicates
that the generated subgraphs provide informative contexts during
link prediction and enhance embeddings such that it improves the
discriminative capability of both positive and negative node-pairs.

4.4.2 Error Analysis of Contextual Methods as a function of
Node Properties. We investigate the performance of SLiCE and
the closest performing contextual learning method, asp2vec [21],
as a function of query node pair properties. Given each method, we
select all query node pairs drawn from both positive and negative
samples that are associated with an incorrect prediction. Next, we
compute the average degree of the nodes in each such pair. We
opt for degree and ignore any type constraint for it’s simplicity
and ease of interpretation. Fig. 6 shows the distribution of these
incorrect predictions as a function of average degree of query node
pair. It can be seen that, for Amazon and Healthcare datasets, most
of the incorrect predictions are concentrated around the query pairs

with low and medium values of average degree. However, SLiCE
has fewer errors than asp2vec for such node pairs. This can be
attributed to the aspect-oriented nature of asp2vec, which maps
each node to a fixed number of aspects. Since nodes in a graph
may demonstrate varying degree of aspect-diversity, mapping a
node with low diversity to more aspects (than it belongs to) reduces
asp2vec’s performance. SLiCE adopts a complementary approach,
where it considers the subgraph context that connects the query
nodes, leading to better contextual representations.

4.5 Study of SLiCE (RQ4)

4.5.1 Parameter Sensitivity. In Figure 7, we provide the link
prediction performance with micro-F1 score on four datasets by
varying four parameters used in SLiCE model, including number
of heads, number of contextual translation layers, number of nodes
in contexts (i.e., walk length), and the number of (context) walks
generated for each node in pre-training. The performance shown in
these plots are the averaged performance by fixing one parameter
and varying other three parameters.

On the other hand, when varying the parameter number of lay-
ers, we observe that applying four layers of contextual translation
provides the best performance on all the datasets; the performance
dropped significantly when stacking more layers. This indicates
that four contextual translation layers are sufficient to capture the
complex higher-order relations over various knowledge graphs.
Based on these analysis, we set the default values for both number
of heads and the number of layers to be 4, and generate one walk
for each node with a length of 6 in the pre-training step.

4.5.2 Effect of Pre-trained Global Features (GF). To explore
the impact of pre-trained global node features on the performance



Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
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Figure 7: Micro-F1 scores for link prediction with different parameters in SLiCE on four datasets.

(a) (b)

Figure 8: Analysis of the time complexity of SLiCE on Free-

base dataset by varying (a) number of translation layers and

(b) number of context subgraphs considered for each node.

of SLiCE, we performed an ablation study by analyzing a variant
of SLiCE with four contextual translation layers. More specifically,
the pre-trained global embeddings are disabled in SLiCE, termed
SLiCE𝑤/𝑜 𝐺𝐹 . The results are provided in Table 3. We observe that
without initialization using the pre-trained global embeddings, the
model performance of SLiCE decreased on all five datasets in both
metrics. The reason being that, compared to the random initializa-
tion, the global node features are able to represent the role of each
node in the global structure of the knowledge graph. By further
applying the proposed contextual translation layers, they can collab-
oratively and efficiently provide contextualized node embeddings
for downstream tasks like link prediction.

4.5.3 Effect of Fine-tuning (FT). To investigate the effect of
fine-tuning stage on learning the contextual node embeddings, we
disable the fine tuning layer for supervised link prediction task,
termed SLiCE𝑤/𝑜 𝐹𝑇 and show the results in Table 3. Compared to
the baseline methods, it still achieves competitive performance. We
attribute this to the effectiveness of capturing higher-order rela-
tions through the contextual translation layers. While compared
to the full SLiCE model, the performance of SLiCE𝑤/𝑜 𝐹𝑇 degrades
slightly on Amazon, DBLP, and Freebase datasets, but significantly
decreases on both Twitter and MIMIC datasets. This can be attrib-
uted to the fact that supervised training with the link prediction
task is able to learn the fine-grained contextual node embedding
for link prediction task.

4.6 SLiCEModel Complexity (RQ5)

Contextual learning methods are known to have high computa-
tional complexity. In section 3.5 we observed that the cost of train-
ing SLiCE is approximately linear to the number of edges. In this

Table 5: Estimation of the number of context subgraphs for

each node in the knowledge graph.

Dataset Amazon DBLP Freebase Twitter Healthcare

# Nodes (|𝑉 |) 10,099 37,791 14,541 9,990 4,683
# Edges (|𝐸 |) 129,811 170,794 248,611 294,330 205,428
# Contexts (𝑁𝑐𝑝𝑛) 7.74 2.71 10.26 17.67 26.32

section, we provide an empirical evaluation of the model scalability
in view of the prior analysis.

4.6.1 Time Complexity Analysis. In this subsection, we mainly
investigate the impact of the following three parameters on the
overall time complexity of the SLiCE model: (1) number of contex-
tual translation layers, (2) number of context subgraphs, and (3)
length of context subgraph.
• We study the scalability of the SLiCE model when the number
of context translation layers are varied and the corresponding
plots are provided in Figure 8(a). The 𝑥-axis and 𝑦-axis represent
the number of layers and running time in seconds, respectively.
The plots indicate that increasing the number of layers does not
significantly increase the training time of the SLiCE model.
• In Figure 8(b), we demonstrate the impact of the number of
context subgraphs on the time complexity. Increasing the number
of context subgraphs generated for each node in pre-training
and each node-pair for fine-tuning raises the number of training
edges which further increases the training time of the model.

These two plots empirically verify the analysis about the model
complexity, discussed in Section 3.5, that the proposed SLiCEmodel
is approximately linear to the number of edges in the graph and does
not depend on other parameters such as the number of contextual
translation layers and the number of nodes in the graph. In addition,
we also vary the length (number of nodes) of the context subgraph in
both plots. The plot shows that even doubling the context lengthwill
not significantly increase the running time. This time complexity
analysis, combined with the performance results in Table 3 and the
parameter sensitivity analysis in Figure 7 can jointly provide the
guidelines for parameter selection.

4.6.2 Context Subgraph Sampling Analysis. In the complex-
ity analysis discussed in Section 3.5, we approximated the total
number of training edges in the entire graph as 𝑁𝐸 ≈ |𝑉 | ∗ 𝑁𝑐𝑝𝑛 ,
where |𝑉 | represents the number of nodes in graph 𝐺 and 𝑁𝑐𝑝𝑛
denotes the number of context subgraphs generated for each node.
This estimation also provides us guidelines for determining the
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number of context subgraphs for each node 𝑁𝑐𝑝𝑛 . By incorporat-
ing 𝑁𝐸 = 𝛼𝑇 |𝐸 | into the approximation (where |𝐸 | is the total
number of edges in graph 𝐺 and 𝛼𝑇 is the ratio of training split),
we can estimate the number of context subgraphs per node as
𝑁𝑐𝑝𝑛 = 𝛼𝑇 |𝐸 |/|𝑉 |. Table 5 shows the estimated numbers (with
𝛼𝑇 = 0.6) for the five datasets used in this work. These estimations
provide us an approximate range for the value of 𝑁𝑐𝑝𝑛 during the
context generation step. Based on this analysis, in our experiments,
we generally consider 1, 5, and 10 for the value of 𝑁𝑐𝑝𝑛 on all the
five datasets in both pre-training and fine-tuning stages.

5 CONCLUSIONS

We introduce SLiCE framework for learning contextual subgraph
representations. Our model brings together knowledge of structural
information from the entire graph and then learns deep represen-
tations of higher-order relations in arbitrary context subgraphs.
SLiCE learns the composition of different metapaths that character-
ize the context for a specific task in a drastically different manner
compared to existing methods which primarily aggregate infor-
mation from either direct neighbors or semantic neighbors con-
nected via certain pre-defined metapaths. SLiCE significantly out-
performs several competitive baseline methods on various bench-
mark datasets for the link prediction task. In addition to demonstrat-
ing SLiCE’s interpretability and scalability, we provide a thorough
analysis on the effect of contextual translation for node representa-
tions. In summary, we show SLiCE’s subgraph-based contextualiza-
tion approach is effective and distinctive over competing methods.
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