2007.11752v4 [cs.LG] 30 Jun 2021

arxiv

Joslim: Joint Widths and Weights Optimization
for Slimmable Neural Networks

Ting-Wu Chin'®) | Ari S. Morcos?, and Diana Marculescu'-?

! Department of ECE, Carnegie Mellon University, Pittsburgh PA, USA
2 Facebook AI Research, Menlo Park CA, USA
3 Department of ECE, The University of Texas at Austin, Austin TX, USA
& tingwuc@alumni.cmu.edu

Abstract. Slimmable neural networks provide a flexible trade-off front
between prediction error and computational requirement (such as the
number of floating-point operations or FLOPs) with the same storage
requirement as a single model. They are useful for reducing maintenance
overhead for deploying models to devices with different memory con-
straints and are useful for optimizing the efficiency of a system with
many CNNs. However, existing slimmable network approaches either
do not optimize layer-wise widths or optimize the shared-weights and
layer-wise widths independently, thereby leaving significant room for
improvement by joint width and weight optimization. In this work, we
propose a general framework to enable joint optimization for both width
configurations and weights of slimmable networks. Our framework sub-
sumes conventional and NAS-based slimmable methods as special cases
and provides flexibility to improve over existing methods. From a practi-
cal standpoint, we propose Joslim, an algorithm that jointly optimizes
both the widths and weights for slimmable nets, which outperforms
existing methods for optimizing slimmable networks across various net-
works, datasets, and objectives. Quantitatively, improvements up to 1.7%
and 8% in top-1 accuracy on the ImageNet dataset can be attained for
MobileNetV2 considering FLOPs and memory footprint, respectively.
Our results highlight the potential of optimizing the channel counts for
different layers jointly with the weights for slimmable networks. Code
available at https://github.com/cmu-enyac/Joslim.

Keywords: Model Compression - Slimmable Neural Networks - Channel
Optimization - Efficient Deep Learning

1 Introduction

Slimmable neural networks have been proposed with the promise of enabling
multiple neural networks with different trade-offs between prediction error and
the number of floating-point operations (FLOPs), all at the storage requirement
of only a single neural network [42]. This is in stark contrast to channel pruning
methods [4,39,14] that aim for a small standalone model. Slimmable neural

https://github.com/cmu-enyac/Joslim

2 T.-W. Chin et al.

networks are useful for applications running on mobile and other resource-
constrained devices. As an example, the ability to deploy multiple versions
of the same neural network alleviates the maintenance overhead for applications
which support a number of different mobile devices with different memory and
storage constraints, as only one model needs to be maintained. On the other
hand, slimmable networks can bee critical for designing an efficient system that
runs multiple CNNs. Specifically, an autonomous robot may execute multiple
CNNs for various tasks at the same time. When optimizing the robot’s efficiency
(overall performance vs. computational costs), it is unclear which CNNs should be
trimmed by how much to achieve an overall best efficiency. As a result, methods
based on trial-and-error are necessary for optimizing such a system. However,
if trimming the computational requirement of any CNN requires re-training or
fine-tuning, this entire process will be impractically expensive. In this particular
case, if we replace each of the CNNs with their respective slimmable versions,
optimizing a system of CNNs becomes practically feasible as slimmable networks
can be slimmed without the need of re-training or fine-tuning.

A slimmable neural network is trained by simultaneously considering networks
with different widths (or filter counts) using a single set of shared weights. The
width of a child network is specified by a real number between 0 and 1, which is
known as the “width-multiplier” [17]. Such a parameter specifies how many filters
per layer to use proportional to the full network. For example, a width-multiplier
of 0.35x represents a network with 35% of the channel counts of the full network
for all the layers. While specifying child networks using a single width-multiplier
for all the layers has shown empirical success [40,42], such a specification neglects
that different layers affect the network’s output differently [43] and have different
FLOPs and memory footprint requirements [13], which may lead to sub-optimal
results. As an alternative, neural architecture search (NAS) methods such as
BigNAS [41] optimizes the layer-wise widths for slimmable networks, however, a
sequential greedy procedure is adopted to optimize the widths and weights. As a
result, the optimization of weights is not adapted to the optimization of widths,
thereby leaving rooms for improvement by joint width and weight optimization.

In this work, we propose a framework for optimizing slimmable nets by
formalizing it as minimizing the area under the trade-off curve between pre-
diction error and some metric of interest, e.g., memory footprint or FLOPs,
with alternating minimization. Our framework subsumes both the universally
slimmable networks [40] and BigNAS [41] as special cases. The framework is
general and provides us with insights to improve upon existing alternatives and
justifies our new algorithm Joslim, the first approach that jointly optimizes both
shared-weights and widths for slimmable nets. To this end, we demonstrate
empirically the superiority of the proposed algorithm over existing methods
using various datasets, networks, and objectives. We visualize the algorithmic
differences between the proposed method and existing alternatives in Fig. 1.

The contributions of this work are as follows:

Title Suppressed Due to Excessive Length 3

Universally) .
Channel Pruning Slimmable Training BigNAS Joslim (Ours)
))

Weight Training

i
ol

Weight Training

Sample) (~ Sample
s

Weight Training

Pruning and training

z

One model for one target
sparsity

‘Width Searching

Fixed weights, optimize for ¢

Shared weights, widths specified by random

Shared weights, widths specifiedby a , widt jed!
layer-wise width multipliers

single global width multiplier

Shared weights, widths learned by
joint optimization

Width Searching

Fixed weights, optimize arch

Multiple networks with
weight sharing v v v
Width optimization v v v
Joint shared-weights and v

width optimization

Fig. 1: Schematic overview comparing our proposed method with existing alter-
natives and channel pruning. Channel pruning has a fundamentally different goal
compared to ours, i.e., training slimmable nets. Joslim jointly optimizes both
the widths and the shared weights.

— We propose a general framework that enables the joint optimization of
the widths and their corresponding shared weights of a slimmable net. The
framework is general and subsumes existing algorithms as special cases.

— We propose Joslim, an algorithm that jointly optimizes the widths and
weights of slimmable nets. We show empirically that Joslim outperforms
existing methods on various networks, datasets, and objectives. Quantitatively,
improvements up to 1.7% and 8% in top-1 accuracy on ImageNet are attained
for MobileNetV2 considering FLOPs and memory footprint, respectively.

2 Related work

2.1 Slimmable neural networks

Slimmable neural networks [42] enable multiple sub-networks with different
compression ratios to be generated from a single network with one set of weights.
This allows the network FLOPs to be dynamically configurable at run-time
without increasing the storage requirement of the model weights. Based on
this concept, better training methodologies have been proposed to enhance the
performance of slimmable networks [40]. One can view a slimmable network as a
dynamic computation graph where the graph can be constructed dynamically
with different accuracy and FLOPs profiles. With this perspective, one can go
beyond changing just the width of the network. For example, one can alter the
network’s sub-graphs [31], network’s depth [5,18,21,19], and network’s kernel sizes
and input resolutions [6,41,35,36]. Complementing prior work primarily focusing
on generalizing slimmable networks to additional architectural paradigms, our

4 T.-W. Chin et al.

work provides the first principled formulation for jointly optimizing the weights
and widths of slimmable networks. While our analysis focuses on the network
widths, our proposed framework can be easily extended to other architectural
parameters.

2.2 Neural architecture search

A slimmable neural network can be viewed as an instantiation of weight-sharing.
In the literature for neural architecture search (NAS), weight-sharing is com-
monly adopted to reduce the search overhead [22,33,15,2,4,39]. Specifically, NAS
methods use weight-sharing as a proxy for evaluating the performance of the
sub-networks to reduce the computational requirement of iterative training
and evaluation. However, the goal of NAS is the resulting architecture as op-
posed to both shared-weights and architecture. Exceptions are BigNAS [41]
and Once-for-all (OFA) networks [6]; however, in neither case the architecture
and shared-weights are jointly optimized. Specifically, both BigNAS and OFA
employ a two-stage paradigm where the shared-weights are optimized before
the architectures are optimized. This makes the trained weights oblivious to the
optimized architectures.

While slimmable networks are inherently multi-objective, multi-objective
optimization has also been adopted in NAS literature [11,7,26,12,37]. However,
a crucial difference of the present work compared to these papers is that we
are interested in learning a single set of weights from which multiple FLOP
configurations can be used (as in slimmable networks) rather than finding archi-
tectures independently for each FLOP configuration that can be trained from
scratch freely. Put another way, in our setting, both shared-weights and the
searched architecture are optimized jointly, whereas in prior work, only searched
architectures were optimized.

When it comes to joint neural architecture search and weight training,
ENAS [29] and TuNAS [3] can both be seen as joint optimization. However,
in stark contrast to our work, their search is dedicated to a single network of a
single computational requirement (e.g., FLOPs) while our method is designed
to obtain the weights that work for various architectures across a wide range of
computational requirements.

2.3 Channel pruning

Reducing the channel or filter counts for a pre-trained model is also known as
channel pruning. In channel pruning, the goal is to find a single small model that
maximizes the accuracy while satisfying some resource constraints by optimizing
the layer-wise channel counts [20,16,24,38,24,25,39,4,27.8,23,9]. While channel
pruning also optimizes for non-uniform widths, the goal of channel pruning
is crucially different from ours. The key difference is that channel pruning is
concerned with a single pruned model while slimmable neural networks require
a set of models to be trained using weight sharing. Nonetheless, we compare
our work with pruning methods that conduct greedy channel pruning since

Title Suppressed Due to Excessive Length 5

they naturally produce in a sequence of models that have different FLOPs.
In particular, we compare our work with AutoSlim [39] in Appendix E.1 and
demonstrate the effectiveness of our proposed Joslim.

3 Methodology

In this work, we are interested in jointly optimizing the network widths and
network weights. Ultimately, when evaluating the performance of a slimmable
neural network, we care about the trade-off curve between multiple objectives,
e.g., theoretical speedup and accuracy. This trade-off curve is formed by evaluating
the two objectives at multiple width configurations using the same shared-weights.
Viewed from this perspective, both the widths and shared-weights should be
optimized in such a way that the resulting networks have a better trade-off curve
(i.e., larger area under curve). This section formalizes this idea and provides an
algorithm to solve it in an approximate fashion.

3.1 Problem formulation

Our goal is to find both the weights and the width configurations that optimize the
area under the trade-off curve between two competing objectives, e.g., accuracy
and inference speed. Without loss of generality, we use cross entropy loss as
the accuracy objective and FLOPs as the inference speed objective throughout
the text for clearer context. Note that FLOPs can also be replaced by other
metrics of interest such as memory footprint. Since in this case both objectives
are better when lower, the objective for the optimizing slimmable nets becomes
to minimize the area under curve. To quantify the area under curve, one can
use a Riemann integral. Let w(c) be a width configuration of ¢ FLOPs, one
can quantify the Riemann integral by evaluating the cross entropy loss Ls on
the training set S using the shared weights 0 for the architectures that spread
uniformly on the FLOPs-axis between a lower bound [and an upper bound u
of FLOPs: {ala = w(c),c € [l,u]}. More formally, the area under curve A is
characterized as

A0,) /l " Ls (6, w(e)) de (1)
N

~ Z Ls (0,w(ci)) 6, (2)
=0

where equation 2 approximates the Riemann integral with the Riemann sum
using N architectures that are spread uniformly on the FLOPs-axis with a step
size §. With a quantifiable area under curve, our goal for optimizing slimmable
neural networks becomes finding both the shared-weights 6@ and the architecture

6 T.-W. Chin et al.

function w to minimize their induced area under curve:

N

arg min A(6, w) ~ arg rggI;Ls (6, w(c:)) 6 (3)
L&

= argrgglN;Ls (6, w(c:)) (4)

~ arg rélglECNU(l,u)LS (0,w(c)), (5)

where U(l,u) denotes a uniform distribution over a lower bound ! and an upper
bound u. Note that the solution to equation 5 is the shared-weight vector and
a set of architectures, which is drastically different from the solution to the
formulation used in the NAS literature [22,34], which is an architecture.

3.2 Proposed approach: Joslim

Since both the shared-weights @ and the architecture function w are optimization
variables of two natural groups, we start by using alternating minimization:

w1 = arg min Eevv,u)Ls (H(t), w(c)) (6)

Ptt+) — argmginIECNU(lyu)Lg (0,w<t+1)(0)) . (7)

In equation 6, we maintain the shared-weights 6 fixed and for each FLOPs between
[and u, we search for a corresponding architecture that minimizes the cross
entropy loss. This step can be seen as a multi-objective neural architecture search
given a fixed set of pre-trained weights, and can be approximated using smart
algorithms such as multi-objective Bayesian optimization [28] or evolutionary
algorithms [10]. However, even with smart algorithms, such a procedure can be
impractical for every iteration of the alternating minimization.

In equation 7, one can use stochastic gradient descent by sampling from a
set of architectures that spread uniformly across FLOPs obtained from solving
equation 6. However, training such a weight-sharing network is practically 4x the
training time of the largest standalone subnetwork [40] (it takes 6.5 GPU-days
to train a slimmable ResNet18), which prevents it from being adopted in the
alternating minimization framework.

To cope with these challenges, we propose targeted sampling, local approxi-
mation, and temporal sharing to approximate both equations.

Targeted sampling We propose to sample a set of FLOPs to approximate
the expectation in equations 6 and 7 with empirical estimates. Moreover, the
sampled FLOPs are shared across both steps in the alternating minimization so
that one does not have to solve for the architecture function w (needed for the
second step), but only solve for a set of architectures that have the corresponding

Title Suppressed Due to Excessive Length 7

FLOPs. Specifically, we approximate the expectation in both equations 6 and 7
with the sample mean:

cgt)NU(l,u) Vi=1,...,.M (8)
| M

w™) x arg Hgn 7 ;Ls (9(t),w(cit))) (9)
| M

0¢+D) ~ arg mein i ;LS (O,w(“rl)(cit))) . (10)

From equation 9 and 10, we can observe that at any timestamp ¢, we only query the
architecture function w® and w1 at a fixed set of locations ¢; Vi =1,..., M.
As a result, instead of solving for the architecture function w, we solve for a fixed
set of architectures W*1 at each timestamp as follows:

WED = LD (), L w®HD () (11)
where
wt Y (¢;) = arg min Ls (9(t)a a)
s.t. FLOPs(a) = ¢;.

(12)

With these approximations, for each iteration in the alternating minimization,
we solve for M architectures with targeted FLOPs as opposed to solving for the
entire approximate trade-off curve.

Local approximation To reduce the overhead for solving equation 10, we
propose to approximate it with a few steps of gradient descent. Specifically,
instead of training a slimmable neural network with sampled architectures until
convergence in each iteration of alternating minimization (equation 10), we
propose to perform K steps of gradient descent:

m()d:efo(t)
def 1 (t+1)
(k+1)4Ct (k) _ ,, ~ (k) (t+1 13
x x nM ;Vm(k)LS (a: W) (13)
ot+1) w(K),

where 7 is the learning rate. Larger K indicates better approximation with higher
training overhead.

Temporal sharing Since we use local approximation, 8¢+ and 8® would
not be drastically different. As a result, instead of performing constrained neural
architecture search from scratch (i.e., solving for equation 12) in every iteration of

8 T.-W. Chin et al.

the alternating minimization, we propose to share information across the search
procedures in different iterations of the alternation.

To this end, we propose to perform temporal sharing for multi-objective
Bayesian optimization with random scalarization (MOBO-RS) [28] to solve
equation 12. MOBO-RS itself is a sequential model-based optimization algorithm,
where one takes a set of architectures H, builds models (typically Gaussian
Processes [30]) to learn a mapping from architectures to cross entropy loss gcg
and FLOPs grr,ops, scalarizes both models into a single objective with a random
weighting A (A controls the preference for cross entropy and FLOPs), and finally
optimizes the scalarized model to obtain a new architecture and stores the
architecture back to the set H. This entire procedure repeats for T iterations for
one MOBO-RS.

To exploit temporal similarity, we propose MOBO-TS2, which stands for
multi-objective Bayesian optimization with targeted scalarization and temporal
sharing. Specifically, we propose to let 7' = 1 and share H across alternating
minimization. Additionally, we modify the random scalarization with targeted
scalarization where we use binary search to search for the A that results in the
desired FLOPs. As such, H grows linearly with the number of alternations. In
such an approximation, for each MOBO in the alternating optimization, we
reevaluate the cross-entropy loss for each a € H to build faithful GPs. We
further provide theoretical analysis for approximation via temporal similarity for
Bayesian optimization in Appendix D.

Joslim Based on this preamble, we present our algorithm, Joslim, in Algorithm 1.
In short, Joslim has three steps: (1) build surrogate functions (i.e., GPs) and
acquisition functions (i.e., UCBs) using historical data H and their function
responses, (2) sample M target FLOPs and solve for the corresponding widths
(i.e., a) via binary search with the scalarized acquisition function and store them
back to H, and (3) perform K gradient descent steps using the solved widths. The
first two steps solve equation 12 with targeted sampling and temporal sharing,
and the final step solves equation 10 approximately with local approximation. In
the end, to obtain the best widths, we use non-dominated sorting based on the
training loss and FLOPs for a € H.

3.3 Relation to existing approaches

For direct comparison with our work we consider the universally slimmable neural
networks [40], which uses a single width multiplier to specify the widths of a
slimmable network and NAS-based approaches such as OFA [6] and BigNAS [41],
which have decoupled widths and weights optimization. To demonstrate the
generality of the proposed framework, we show how these previously published
works are special cases of our framework.

Slim Universally slimmable networks [40], or Slim for short, is a special case of
our framework where the widths are not optimized but pre-specified by a single

Title Suppressed Due to Excessive Length

Algorithm 1: Joslim

Input :Model parameters 6, lower bound for width-multipliers wq € [0, 1],
number of full iterations F', number of gradient descent updates K,
number of A samples M

Output : Trained parameter 6, approximate Pareto front N

1 H=A{} (Historical minimizers a)
2 for i = 1...F do
3 x,y = sample_datal()
4 UCE, UFLOPs = LCE(H; 0, a:,y), FLOPS(H)
5 gck, grrops = GP_UCB(H, uce, urLops)
6 widths =]
7 for m = 1...M do
8 a = MOBO_TS2(gcg, grrops, H) (Algorithm 2)
9 widths.append(a)
10 end
11 H =H U widths (update historical data)
12 widths.append(wo)
13 for j = 1...K do
14 SlimmableTraining(8, widths)
15 (line 8-16 of Algorithm 1 in [40])
16 end
17 N=nonDominatedSort(H, uce, urLops)
18 end

Algorithm 2: MOBO-TS2

Input :Acquisition functions gcg, grrops, historical data H, search precision
€
Output : channel configurations a
¢ = Uniform(I, u) (Sample a target FLOPs)
AFLOPs, Amin, Amax = 0.5, 0, 1
while |%§;Z;}DS| > e do // binary search
c=argmin. Scalarize(ArLoPs, gCE, gFLOPs)
if FLOPs(a) > c then
‘ Amin = AFLOPs
ArLoprs = (AFLOPs + Amax)/2
else

© O g0 Tk W N

>\max - >\FLOPs

ArLops = (AFLOPs + Amin)/2
11 end

12 end

o
(=]

10 T.-W. Chin et al.

global width multiplier. This corresponds to solving equation 5 with w given as
a function that returns the width that satisfies some FLOPs by controlling a
single global width multiplier. Our framework is more general as it introduces
the freedom for optimizing the widths of slimmable nets.

OFA and BigINAS OFA and BigNAS use the same approach when it comes to
the channel search space®. They are also a special case of our framework where
the optimization of the widths and the shared-weights are carried out greedily.
Specifically, BigNAS first trains the shared-weights by random layer-wise width
multipliers. After convergence, BigNAS performs evolutionary search to optimize
the layer-wise width multipliers considering both error and FLOPs. This greedy
algorithm can be seen as performing one iteration of alternating minimization by
solving equation 7 followed by solving equation 6. From this perspective, one can
observe that the shared-weights @ are not jointly optimized with the widths. Our
framework is more general and enables joint optimization for both widths and
weights.

As we demonstrate in Section 4.2, our comprehensive empirical analysis
reveals that Joslim is superior to either approach when compared across multiple
networks, datasets, and objectives.

4 Experiments

4.1 Experimental setup

For all the Joslim experiments in this sub-section, we set K such that Joslim only
visits 1000 width configurations throughout the entire training (|#| = 1000). Also,
we set M to be 2, which follows the conventional slimmable training method [40]
that samples two width configurations in between the largest and the smallest
widths. As for binary search, we conduct at most 10 binary searches with e set
to 0.02, which means that the binary search terminates if the FLOPs difference
is within a two percent margin relative to the full model FLOPs. On average,
the procedure terminates by using 3.4 binary searches for results on ImageNet.
The dimension of a is network-dependent and is specified in Appendix A and
the training hyperparameters are detailed in Appendix B. To arrive at the final
set of architectures for Joslim, we use non-dominated sort based on the training
loss and FLOPs for a € H.

4.2 Performance gains introduced by Joslim

We consider three datasets: CIFAR-10, CIFAR-100, and ImageNet. To provide
informative comparisons, we verify our implementation for the conventional
slimmable training with the reported numbers in [40] using MobileNetV2 on

4 Since we only search for channel counts, the progressive shrinking strategy proposed
in OFA does not apply. As a result, both OFA and BigNAS have the same approach.

=

9 o slim
<10 <~ Joslim
g BigNAS
Yoo
g
=
Fs
a
e 7
20 40 60 80 100
FLOPs (%)
(a) ResNet20 C10
$38 1
=
g36 %,
fin} N <
=34 ~ .
D —— Slim ®So— Pmg
’ N)
— 32 —= Joslim
& o~ BigNAS
Q30

40 60 80 100
FLOPs (%)

—

e) ResNet20 C100

w
R

)
(9

N
@

Top-1 Test Error (%)
w
g

N
o

80 100

40 60
FLOPs (%)

Title Suppressed Due to Excessive Length 11

~o- slim
& Joslim
—=— BigNAS

Top-1 Test Error (%)

6
20

4 60 80 100
FLOPs (%)

(b) ResNet32 C10

30 T

Top-1 Test Error (%)

0 60 80 100
FLOPs (%)

(f) ResNet32 C100

I
& —&— Slim
'9' 30 —&— Joslim
= A
10 58 BigNAS
”
3
= 26
by
§24
20 40 60 80 100
FLOPs (%)

~o- Slm
o Joslim
—=— BigNAS

Top-1 Test Error (%)
~ ® ©

o

20

4 60 80 100
FLOPs (%)

(c) ResNet44 C10

~o- slim
& Joslim
—=— BigNAS

w
i

w
&

w
8

Top-1 Test Error (%

N
@

N

S

80 100

40 60
FLOPs (%)

—~~

g) ResNet44 C100

w
S

—&— Slim
—&— Joslim
BigNAS

N
@

Top-1 Test Error (%)
~
S

20

40 60 80 100
FLOPs (%)

©

@

~

Top-1 Test Error (%)
£

20

40 60 80 100
FLOPs (%)

(d) ResNet56 C10

—&— Slim
o Joslim
—=— BigNAS

Top-1 Test Error (%)
W ow ow
g 8 ¥

N
@

20

40 60 80
FLOPs (%)

(h) ResNet56 C100

} —&— Slim
—&— Joslim
BigNAS

Top-1 Test Error (%)

20 80 100

40 60
FLOPs (%)

(i) 2xResNet20 C100 (j) 3xResNet20 C100 (k) 4xResNet20 C100 (1) 5xResNet20 C100

Fig.2: Comparisons among Slim, BigNAS, and Joslim. C10 and C100 denote
CIFAR-10/100. We perform three trials for each method and plot the mean and

standard deviation. nxResNet20 represents a n times

9 38 & Joslim
g —o- Slim
g 36 =~ BigNAS
] Numbers from Yu & Huang (2019b)
—
e 34
)
w32
©
3
230
@
Ex
50 100 150 200
MFLOPs

(a) MobileNetV2

ImageNet Top-1 Error (%)
w
g

300 50 75 100 125 150 175 200 225
MFLOPs

> Joslim
—o- Slim
> BigNAS

ImageNet Top-1 Error (%)
w
2

(b) MobileNetV3

wider ResNet20.

>~ Joslim
—o~ Slim
> BigNAS

750 1000 1250
MFLOPs

1500

(c) ResNet18

Fig. 3: Comparisons among Slim, BigNAS, and Joslim on ImageNet.

ImageNet. Our results follow closely to the reported numbers as shown in Fig. 3a,

which makes our comparisons on other datasets convincing.

We compare to the following baselines:

— Slim: the conventional slimmable training method (the universally slimmable
networks by [40]). We select 40 architectures uniformly distributed across
FLOPs and run a non-dominated sort using training loss and FLOPs.

— BigNNAS: disjoint optimization that first trains the shared-weights, then uses
search methods to find architectures that work well given the trained weights
(similar to OFA [6]). To compare fairly with Joslim, we use MOBO-RS for the

12 T.-W. Chin et al.

MobileNetV2 MobileNetV3 ResNet18
MFLOPs|Slim |BigNAS|Joslim || MFLOPs|Slim|BigNAS |Joslim || MFLOPs|Slim|BigN AS|Joslim
59 61.4| 61.3 | 61.5 43 65.8| 66.3 | 65.9 339 61.5| 61.5 | 61.8
84 63.0] 63.1 64.6 74 68.1] 68.1 68.8 513 63.4| 64.2 | 64.5
102 64.7| 65.5 | 65.5 85 69.1| 70.0 | 70.0 650 64.7| 65.6 | 66.5
136 67.1| 67.5 | 68.2 118 71.0| 71.4 | 714 718 65.1| 66.1 67.5
149 67.6] 68.2 | 69.1 135 71.5| T1.5 72.1 939 66.5| 67.3 | 68.5
169 68.2| 68.8 | 69.9 169 72.7| 72.0 | 72.8 1231 |68.0| 68.4 | 69.4
212 69.7| 69.6 | 70.6 184 73.0| 72.5 73.2 1659 [69.3| 69.3 | 69.9
300 71.8| T1.5 72.1 217 73.5| 73.1 73.7 1814 |69.6| 69.7 | 70.0
Table 1: Comparing the top-1 accuracy among Slim, BigNAS, and Joslim on

ImageNet. Bold represents the highest accuracy of a given FLOPs.

P

Joslim
o slim
BigNAS

8

MobileNetV2 ImageNet ResNet-18 ImageNet
Joslim 3

> slim
BigNAS

28
&
2 8 8
¥ o8 8
3

N

Se,
g

S
Se.

ImageNet Top-1 Error (%)
Now o w
8

3

ImageNet Top-1 Error (%)
388

ImageNet Top-1 Error (%)
8

0.0127 0.0170 0.0213 0.0256 0.0299 25 30 35 40 45 50 5.5” 2 a 6 8
GPU latency (128 images) Inference memory footprint (MBytes) Inference memory footprint (MBytes)
Fig. 5: Prediction error vs. inference memory foot-
Fig.4: A latency-vs.- print for MobileNetV2 and ResNetl8 on Ima-
error view of Fig. 3a. geNet.

search. After optimization, we run a non-dominated sort for all the visited
architectures H using training loss and FLOPs.

The main results for the CIFAR dataset are summarized in Fig. 2 with
results on ImageNet summarized in Figure 3 and Table 1. Compared to Slim, the
proposed Joslim has demonstrated much better results across various networks
and datasets. This suggests that channel optimization can indeed improve the
efficiency of slimmable networks. Compared to BigNAS, Joslim is better or
comparable across networks and datasets. This suggests that joint widths and
weights optimization leads to better overall performance for slimmable nets.
From the perspective of training overhead, Joslim introduced minor overhead
compared to Slim due to the temporal similarity approximation. More specifically,
on ImageNet, Joslim incurs approximately 20% extra overhead compared to Slim.

Note that the performance among these three methods are similar for the
CIFAR-10 dataset. This is plausible since when a network is more over-parameterized,
there are many solutions to the optimization problem and it is easier to find
solutions with the constraints imposed by weight sharing. In contrast, when the
network is relatively less over-parameterized, compromises have to be made due to
the constraints imposed by weight sharing. In such scenarios, Joslim outperforms
Slim significantly, as it can be seen in CIFAR-100 and ImageNet experiments.
We conjecture that this is because Joslim introduces a new optimization variable
(width-multipliers), which allows better compromises to be attained. Similarly,
from the experiments with ResNets on CIFAR-100 (Fig. 2e to Fig. 2h), we

Title Suppressed Due to Excessive Length 13

= CIFAR, Batch size 128
=== ImageNet, Batch size 1024

50 wes
00

250

g 200

150

100

s0

Additional Training FLOPS (%)

02

04 06
FLOPs (%)

20

80 100 0 4 SO 60 70 8 9 100

rome (b) Histogram of rome (d) Additional over-
(a) Impact of binary FLOPs for H w/ (c) Performance for head over Slim for
search (BS). and w/o BS. different K. different K.

Fig. 6: Ablation study for the introduced binary search and the number of gradient
descent updates per full iteration using ResNet20 and CIFAR-100. Experiments
are conducted three times and we plot the mean and standard deviation.

find that shallower models tend to benefit more from joint channel and weight
optimization than their deeper counterparts.

As FLOPs may not necessarily reflect latency improvements since FLOP does
not capture memory accesses, we in addition plot latency-wvs.-error for the data
in Fig. 3a in Fig. 4. The latency is measured on a single V100 GPU using a batch
size of 128. When visualized in latency, Joslim still performs favorably compared
to Slim and BigNAS for MobileNetV2 on ImageNet.

Lastly, we consider another objective that is critical for on-device machine
learning, i.e., inference memory footprint [42]. Inference memory footprint decides
whether a model is executable or not on memory-constrained devices. We detailed
the memory footprint calculation in Appendix E. Since Joslim is general, we can
replace the FLOPs calculation with memory footprint calculation to optimize
for memory-wvs.-error. As shown in Fig. 5, Joslim significantly outperform other
alternatives. Notably, Joslim outperforms Slim by up to 8% top-1 accuracy for
MobileNetV2. Such a drastic improvement comes from the fact that memory
footprint depends mostly on the largest layers. As a result, slimming all the layers
equally to arrive at networks with smaller memory footprint (as done in Slim) is
less than ideal since only one layer contributes to the reduced memory. In addition,
when comparing Joslim with BigNAS, we can observe significant improvements
as well, i.e., around 2% top-1 accuracy improvements for MobileNetV2, which
demonstrates the effectiveness of joint width and weights optimization.

4.3 Ablation studies

In this subsection, we ablate the hyperparameters that are specific to Joslim to
understand their impact. We use ResNet20 and CIFAR-100 for the ablation with
the results summarized in Fig. 6.

Binary search Without binary search, one can also consider sampling the
scalarization weighting A uniformly from [0, 1], which does not require any binary
search and is easy to implement. However, the issue with this sampling strategy
is that uniform sampling A does not necessarily imply uniform sampling in the

14 T.-W. Chin et al.

objective space, e.g., FLOPs. As shown in Fig. 6a and Fig. 6b, sampling directly
in the A space results in non-uniform FLOPs and worse performance compared
to binary search.

Number of gradient descent steps In the approximation, the number of
architectures (|H|) is affected by the number of gradient descent updates K. In
previous experiments for CIFAR, we have K = 313, which results in |#| = 1000.
Here, we ablate K to 156,626, 1252, 3128 such that || = 2000, 500, 250, 100,
respectively. Given a fixed training epoch and batch size, Joslim produces a
better approximation for equation 10 but a worse approximation for equation 9
with larger K. The former is because of the local approximation while the latter
is because there are overall fewer iterations put into Bayesian optimization due
to temporal sharing. As shown in Fig. 6¢, we observe worse results with higher
K. On the other hand, the improvement introduced by lower K saturates quickly.
The overhead of Joslim as a function of K compared to Slim is shown in Fig. 6d
where the dots are the employed K.

5 Conclusion

In this work, we are interested in optimizing both the architectural components
and shared-weights of slimmable neural networks. To achieve this goal, we propose
a general framework that optimizes slimmable nets by minimizing the area under
the trade-off curve between cross entropy and FLOPs (or memory footprint) with
alternating minimization. We further show that the proposed framework subsumes
existing methods as special cases and provides flexibility for devising better
algorithms. To this end, we propose Joslim, an algorithm that jointly optimizes
the weights and widths of slimmable nets, which empirically outperforms existing
alternatives that either neglect width optimization or conduct widths and weights
optimization independently. We extensively verify the effectiveness of Joslim over
existing techniques on three datasets (i.e., CIFAR10, CIFAR100, and ImageNet)
with two families of network architectures (i.e., ResNets and MobileNets) using
two types of objectives (i.e., FLOPs and memory footprint). Our results highlight
the importance and superiority in results of jointly optimizing the channel counts
for different layers and the weights for slimmable networks.

Acknowledgement

This research was supported in part by NSF CCF Grant No. 1815899, NSF
CSR Grant No. 1815780, and NSF ACI Grant No. 1445606 at the Pittsburgh
Supercomputing Center (PSC).

References

1. Balandat, M., Karrer, B., Jiang, D.R., Daulton, S., Letham, B., Wilson, A.G.,
Bakshy, E.: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization.
In: NeurIPS (2020)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Title Suppressed Due to Excessive Length 15

. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and

simplifying one-shot architecture search. In: ICML. pp. 550-559 (2018)

Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.J., Le, Q.V.:
Can weight sharing outperform random architecture search? an investigation with
tunas. In: CVPR. pp. 14323-14332 (2020)

Berman, M., Pishchulin, L., Xu, N., Medioni, G., et al.: Aows: Adaptive and optimal
network width search with latency constraints. CVPR (2020)

Bolukbasi, T., Wang, J., Dekel, O., Saligrama, V.: Adaptive neural networks for
efficient inference. In: ICML (2017)

Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. In: ICLR (2020)

Cheng, A.C., Dong, J.D., Hsu, C.H., Chang, S.H., Sun, M., Chang, S.C., Pan, J.Y.,
Chen, Y.T., Wei, W., Juan, D.C.: Searching toward pareto-optimal device-aware
neural architectures. In: ICCAD. pp. 1-7 (2018)

Chin, T.W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model compres-
sion via learned global ranking. In: CVPR (2020)

Chin, T.W., Marculescu, D., Morcos, A.S.: Width transfer: on the (in) variance of
width optimization. In: CVPR, Workshops. pp. 2990-2999 (2021)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6(2),
182-197 (2002)

Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In: ECCV (2018)
Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081 (2018)

Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T.J., Choi, E.:
Morphnet: Fast & simple resource-constrained structure learning of deep networks.
In: CVPR. pp. 1586-1595 (2018)

Guo, S., Wang, Y., Li, Q., Yan, J.: Dmcp: Differentiable markov channel pruning
for neural networks. In: CVPR. pp. 1539-1547 (2020)

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path
one-shot neural architecture search with uniform sampling. ECCV (2020)

He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: CVPR. pp. 4340-4349 (2019)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.:
Multi-scale dense networks for resource efficient image classification. ICLR (2018)
Kaya, Y., Hong, S., Dumitras, T.: Shallow-Deep Networks: Understanding and
mitigating network overthinking. In: ICML. Long Beach, CA (Jun 2019)

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training
adaptive deep networks. In: ICCV. pp. 1891-1900 (2019)

Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. In: ICCV (2019)
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: ICCV. pp. 2736-2744 (2017)

16

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

T.-W. Chin et al.

Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
1.0 regularization. arXiv preprint arXiv:1712.01312 (2017)

Lu, Z., Whalen, 1., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.:
Nsga-net: neural architecture search using multi-objective genetic algorithm. In:
GECCO. pp. 419-427 (2019)

Ma, X., Triki, A.R., Berman, M., Sagonas, C., Cali, J., Blaschko, M.B.: A bayesian
optimization framework for neural network compression. In: ICCV (2019)

Paria, B., Kandasamy, K., Péczos, B.: A flexible framework for multi-objective
bayesian optimization using random scalarizations. In: Globerson, A., Silva, R.
(eds.) UAI (2019)

Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search
via parameters sharing. In: ICML. pp. 4095-4104. PMLR (2018)

Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer School on
Machine Learning. pp. 63-71. Springer (2003)

Ruiz, A., Verbeek, J.: Adaptative inference cost with convolutional neural mixture
models. In: ICCV. pp. 1872-1881 (2019)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L..C.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: CVPR. pp. 4510-4520 (2018)

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J.,
Marculescu, D.: Single-path nas: Designing hardware-efficient convnets in less than
4 hours. In: ECML-PKDD (2019)

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: CVPR. pp.
28202828 (2019)

Wang, D., Gong, C., Li, M., Liu, Q., Chandra, V.: Alphanet: Improved training of
supernet with alpha-divergence. In: ICML (2021)

Yang, T., Zhu, S., Chen, C., Yan, S., Zhang, M., Willis, A.: Mutualnet: Adaptive
convnet via mutual learning from network width and resolution. In: ECCV. pp.
299-315. Springer (2020)

Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: Cars:
Continuous evolution for efficient neural architecture search. In: CVPR (June 2020)
Ye, J., Lu, X., Lin, Z., Wang, J.Z.: Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In: ICLR (2018)

Yu, J., Huang, T.: Autoslim: Towards one-shot architecture search for channel
numbers. arXiv preprint arXiv:1903.11728 8 (2019)

Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: ICCV. pp. 1803-1811 (2019)

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.J., Tan, M., Huang, T., Song, X.,
Pang, R., Le, Q.: Bignas: Scaling up neural architecture search with big single-stage
models. In: ECCV (2020)

Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In:
ICLRa (2019)

Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? arXiv preprint
arXiv:1902.01996 (2019)

Title Suppressed Due to Excessive Length 17

A Width parameterization

For ResNets with CIFAR, a has six dimensions and is denoted by a1.¢ € [0.316, 1],
i.e., one parameter for each stage and one for each residual connected layers in
three stages. More specifically, the network is divided into three stages according
to the output resolution, and as a result, there are three stages for all the ResNets
designed for CIFAR. For example, in ResNet20, there are 7, 6, and 6 layers for
each of the stages, respectively. Also, the layers that are added together via
residual connection have to share the same width-multiplier, which results in
one width-multiplier per stage for the layers that are connected via residual
connections.

For MobileNetV2, ai.05 € [0.42,1], and therefore there is one dimension
for each independent convolutional layer. Note that while there are in total 52
convolutional layers in MobileNetV2, not all of them can be altered independently.
More specifically, for layers that are added together via residual connection, their
widths should be identical. Similarly, the depth-wise convolutional layer should
have the same width as its preceding point-wise convolutional layers. The same
logic applies to MobileNetV3, which has 47 convolutional layers (excluding
squeeze-and-excitation layers) and aq.00 € [0.42,1]. In MobileNetV3, there are
squeeze-and-excitation (SE) layers and we do not alter the width for the expansion
layer in the SE layer. The output width of the SE layer is set to be the same as
that of the convolutional layer where the SE layer is applied to. Note that there
is no concept of expansion ratio for the inverted residual block in MobileNets in
our width optimization. More specifically, the convolutional layer that acts upon
expansion ratio is in itself just a convolutional layer with tunable width. Also,
we do not quantize the width to be multiples of 8 as adopted in the previous
work [32,40]. Due to these reasons, our 0.42x MobileNetV2 has 59 MFLOPs,
which has the same FLOPs as the 0.35x MobileNetV2 in [40,32].

B Training hyperparameters

We use PyTorch as our deep learning framework and we build MOBO-TS on
BoTorch [1], which works seamlessly with PyTorch. More specifically, for the
covariance function of Gaussian Processes, we use the commonly adopted Matérn
Kernel without changing the default hyperparameters provided in BoTorch.
Similarly, we use beta = 0.1 for the Upper Confidence Bound acquisition function.
To perform the optimization of line 6 in Algorithm 2, we make use of the API
“optimize_acqf” provided in BoTorch. As a reference, with a single 1080Ti GPU,
one can train a Joslim-ResNet20 on CIFAR-100 with around 3 hours. On the other
hand, with 8 V100 GPUs on a single machine, one can train a Joslim-ResNet18
on ImageNet with 19 hours.

CIFAR The training hyperparameters for the independent models are 0.1 initial
learning rate, 200 training epochs, 0.0005 weight decay, 128 batch size, SGD
with nesterov momentum, and cosine learning rate decay. The accuracy on the

18 T.-W. Chin et al.

validation set is reported using the model at the final epoch. For slimmable
training, we keep the same exact hyperparameters but train 2x longer compared
to independent models, i.e., 400 epochs.

ImageNet Our training hyperparameters follow that of [40]. Specifically, we
use initial learning rate of 0.5 with 5 epochs linear warmup (from 0 to 0.5),
linear learning rate decay (from 0.5 to 0), 250 epochs, 4¢~5 weight decay, 0.1
label smoothing, and we use SGD with 0.9 nesterov momentum. We use a batch
size of 1024. For data augmentation, we use the “RandomResizedCrop” and
“RandomHorizontalFlip” APIs in PyTorch. For MobileNetV2 we follow [40] and
use random scale between 0.25 to 1. For MobileNetV3, we use the default scale
parameters, i.e., from 0.08 to 1. The input resolution we use is 224. Besides
scaling and horizontal flip, we follow [40] and use color and lighting jitters data
augmentataion with parameter of 0.4 for brightness, contrast, and saturation;
and 0.1 for lighting. These augmentations can be found in the official repository
of [40]°. The hyperparamters for training ResNet18 is identical to MobileNetV2
except that we train it for 100 epochs only. The training for ImageNet is done
using 8 NVIDIA V100 GPUs.

C Width differences

In Fig. 7, we visualize the widths learned by Joslim and contrast them with
Slim for MobileNetV2 and MobileNetV3. Note that both Joslim and Slim are
slimmable networks with shared weights and from the top row to the bottom
row represent three points on the trade-off curve for Fig. 3a and Fig. 3b.

D Theoretical analysis for temporal approximation

The intuition behind the proposed approximation in Section 3.2 is the similarity
for @ across alternating minimization. In an extreme case, if we hold 6 constant
throughout the training procedure, the approximation is equivalent to the original
multi-objective BO. With that said, 8 changes gradually throughout training.
To proceed with further theoretical understanding, we assume the loss Ls(0) is
L-Lipschitz. More formally,

Ls(6") — Ls(6"*') < L||§" — 6"+]|1, V6", 6", (14)

Now, consider using stochastic gradient descent to update the weights 8, i.e.,
0+ = 0* — n'g’ where g' is the gradient of loss with respect to the weights and
n' is the learning rate at iteration ¢. Since Lg is L-Lipschitz, we have ||g||; < L.
Assuming using an exponential decaying learning rate with a factor v < 1, we

® https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43

https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43

Title Suppressed Due to Excessive Length 19

AAcc.: 0.5, AMFLOPs: -1.7 (Acc.: 67.7, MFLOPs: 59.0)

10
== slim

AAcc.: 1.5, AMFLOPs: -1.3 (Acc.: 64.6, MFLOPs: 83.3)
= joslim
: ||| ||||||||||||||||“||||“lll"llll
) 10 2 30 40

== sim
= joslim
) 50 0o 0

Layer index Layer index

AAcc.: 1.0, AMFLOPs: 0.5 (Acc.: 70.0, MFLOPs: 85.4)

== sim
= joslim
o 10 20 3

0 40

10

°
53
°
&

°
&
°
&

°
S
Width-multipliers

Width-multipliers

g
°
g

10

DAcc.: 1.7, AMFLOPs: -2.5 (Acc.: 69.9, MFLOPs: 167.0)
== siim
= joslim

T

Layer index Layer index

AAcc.: 0.3, AMFLOPs: -0.9 (Acc.: 73.2, MFLOPs: 183.0)

10 -
== sim - -~ g
= joslim
| “ l“ “
o 10 20 30)

00

°
&

°
>
°
&

°
S

°
S
Width-multipliers

Width-multipliers

°
°
S

00

DAcc.: 0.9, AMFLOPs: 0.8 (Acc.: 70.6, MFLOPs: 213.1)
—= sim

10
I ‘““w’" “N I l||
00, 10 20 30 40 50

Layer index Layer index

(a) MobileNetV2 ImageNet (b) MobileNetV3 ImageNet

°
3
°

°
@
°
&

°
S

°
S
Width-multipliers

Width-multipliers

°
°
S

Fig. 7: Comparing the width-multipliers between Joslim and Slim. The title for
each plot denotes the relative differences (Joslim - Slim) and the numbers in the
parenthesis are for Joslim.

can further upper bound the functional differences across K iterations of gradient
descents as follows:

t+ K
Ls(0") — Ls(6") < > " n'llg'|| < Kn'L. (15)

i=t

Aligning with our intuition, the analysis reveals that larger K implies poorer
approximation for Bayesian optimization to share history. In multi-objective
Bayesian optimization [28], the hyperparameter is searched over stationary ob-
jectives. In our case, due to temporal approximation, our cross entropy changes
over time and the change is upper-bounded by Kn'L. As a result, we can plug
such an upper bound in the regret bound analysis of Bayesian optimization [28]
to understand how K, n, and v affect the optimality of Bayesian optimization.
Specifically, we upper bound Ls(6*) with Ls(0'75)+ Kn'L and use it in Lemma
2 and Lemma 3 from [28] in Appendix B.1. With such a technique, a regret
bound will have the following overhead in addition to the original regret bound

20 T.-W. Chin et al.

in equation (14) of [28]:

2770
L=~

KLE[L\K', (16)

where we have utilized the geometric progression of the exponential learning
rate decay and L, E[L,], and K’ are the notations used by [28]. In other words,
without a decaying learning rate, the overhead can be unbounded. This analysis
reveals that larger initial learning rate 7 and K results in a worse regret bound.

E Inference memory footprint calculation

To demonstrate the generality of proposed Joslim, we in addition consider opti-
mizing for the trade-off curve between prediction error and inference memory
footprint. The inference memory footprint is a critical factor when it comes to
deploying deep CNNs onto resource-constrained devices such as mobile phones or
micro-controllers as motivated in the original slimmable neural network paper [42].
We use a single image per batch to calculate the memory footprint. Specifically
the inference memory footprint is characterized as follows:

I _ l l l
FM;, =W, x H, xC;,

l _ l l l
FM ut Wout X Hout X Cout

Weights' = K, x K}, x Cl,, x CL,/G" (17)

sl l l l
Sklp = Wout X Hout X Cskip

wm

MEM = max (FM? + FM!,, + Weights' + Skipl> ,
where FM! and FM],, denote the input and output feature map sizes of layer
[, Weights® denotes the size of the weights in layer [, and Skip! denotes the
memory requirement of storing the feature maps from skip connections. W and
H represent the width and height of the feature map. K,, and K} denote the
kernel size. Lastly, Cy,, Cour and G denote the input channel, output channel,
and the number of groups for convolutional layer .

E.1 Comparisons with AutoSlim

AutoSlim [39] is a NAS method proposed to do channel search for standalone
models. While it also provides non-uniform widths for different layers, it is not
a method derived to solve for equation 5. Specifically, AutoSlim first perform
weight-sharing training (equation 7) for a short amount of period, i.e., 10% to
20% of the full training epochs. Then, AutoSlim conducts greedy pruning to
greedily remove a fixed amount of channels from the layer that affects the loss
the least. Such a greedy procedure naturally results in a sequence of models of
different computational requirements. Crucially, this greedy pruning procedure is
not solving equation 12 since the computational requirement (FLOPs or memory

Title Suppressed Due to Excessive Length 21

footprint) does not affect the ranking among filters to be pruned. Nonetheless,
we can adopt AutoSlim to obtain a sequence of models and train them via
weight-sharing to form a slimmable network. We compared with AutoSlim using
ResNet18 on ImageNet with both FLOPs and memory footprint. As shown in
Fig. 8, Joslim performs similarly with AutoSlim when it comes to FLOPs, and this
is because ResNet18 has balanced FLOPs for all the layers. On the other hand,
when it comes to memory footprint, AutoSlim performs much worse compared

to Joslim. In hindsight, this result is not surprising as Joslim is designed to solve
equation 5 while AutoSlim is not.

W
©

—&— Joslim

§ : g 38 >~ Joslim !
g AutoSlim et ~ AutoSlim
o \ o K
SN .\
w ® w 36 \
b] I
a & a
© 34 & o34 AN
B 8

S 32 D 32

Vg
o e
g \'\{1 g
=30 S9-e6—e0 E3 8

500 750 1000 1250 1500 1750 2 4 6 8 10
MFLOPs

Inference memory footprint (MBytes)

(a) Error vs. FLOPs (b) Error vs. Memory

Fig.8: Comparing Joslim and AutoSlim on ResNet18. Since ResNet18 has sim-
ilar FLOPs across different layers, greedy pruning used by AutoSlim perform
comparably to Joslim. However, Joslim outperforms AutoSlim when it comes to

optimizing for memory consumption since the greedy pruning procedure adopted
by AutoSlim is not multi-objective.

	Joslim: Joint Widths and Weights Optimization for Slimmable Neural Networks

