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Abstract

Optimizing the channel counts for different layers of a
CNN has shown great promise in improving the efficiency
of CNNs at test-time. However, these methods often in-
troduce large computational overhead (e.g., an additional
2⇥FLOPs of standard training). Minimizing this overhead
could therefore significantly speed up training. In this work,
we propose width transfer, a technique that harnesses the
assumptions that the optimized widths (or channel counts)
are regular across sizes and depths. We show that width
transfer works well across various width optimization al-
gorithms and networks. Specifically, we can achieve up
to 320⇥ reduction in width optimization overhead without
compromising the top-1 accuracy on ImageNet, making the
additional cost of width optimization negligible relative to
initial training. Our findings not only suggest an efficient
way to conduct width optimization, but also highlight that
the widths that lead to better accuracy are invariant to var-
ious aspects of network architectures and training data.

1. Introduction
Better designs for the number of channels for each layer

of a convolutional neural network (CNN) can lead to im-
proved test performance for image classification without re-
quiring additional floating-point operations (FLOPs) during
the forward pass at test time. Specifically, by optimizing the
channel widths, improvements of up to 2% top-1 accuracy
for image classification on ImageNet can be achieved with-
out additional FLOPs [10, 9, 30, 4, 17]. However, design-
ing the layer by layer width multipliers for efficient CNNs
is a non-trivial task that often requires intuition and domain
expertise together with trial-and-error to do well. To allevi-
ate the labor-intensive trial-and-error procedure, width op-
timization algorithms have been proposed [20, 13, 10, 8, 9]
to automatically determine the width of a convolutional
neural network. A width optimization algorithm takes as
input an initial network and a training dataset, and outputs

*This work is mostly done when Ting-Wu works as a research intern at
Facebook AI Research.

a set of optimized widths for each layer. When these op-
timized widths are applied to the initial network and the
network trained from scratch, one can achieve better valida-
tion accuracy compared to training a network of the original
widths without incurring additional test-time FLOPs. Such
algorithms can be seen as neural architecture search algo-
rithms that search for layer-wise channel counts to maxi-
mize validation accuracy subject to test-time FLOPs con-
straints. In contrast to channel pruning, which seeks to re-
duce FLOPs without reducing accuracy, width optimization
instead aims to improve the accuracy while maintaining the
same number of FLOPs.

However, these methods often add a large computational
overhead necessary for the width optimization procedure.
Concretely, even for efficient methods that use differen-
tiable parameterization [10], width optimization takes an
additional 2⇥ the training time. To contextualize this over-
head, using distributed training on 8 V100 GPUs, it takes
approximately 100 GPU hours to train a ResNet50 on the
ImageNet dataset [26]. Including the width optimization
overhead, it therefore takes 300 GPU hours for both width
optimization using differentiable methods [10] and training
the optimized ResNet50. Additionally, width optimization
algorithms are often parameterized by some target test-time
resource constraints, e.g., FLOPs. As a result, the com-
putational overhead scales linearly with the number of tar-
get constraint levels considered, which can be exceedingly
time-consuming for optimizing CNNs for embodied AI ap-
plications [3]. Reducing the overhead for width optimiza-
tion, therefore, would have material practical benefits.

Fundamentally, one of the key reasons why width op-
timization is so costly is due to its limited understanding
by the community. Without assuming or understanding
the structure of the problem, the best hope is to conduct
black-box optimization whenever training configurations,
datasets, or architectures are changed. In this work, we take
the first step to empirically understand the structure under-
lying the width optimization problem by changing network
architectures and the properties of training datasets, and ob-
serving how they affect width optimization.

If similar inputs to the width optimization algorithms re-
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Figure 1: The top row shows the conventional width optimization approach, which takes a training dataset and a seed network,
and outputs a network with optimized widths. The bottom row depicts our idea of width transfer, where width optimization
operates on the down-scaled dataset and seed network. We then use a simple function to extrapolate the optimized architecture
to match the original network. Compared to direct width optimization, our empirical findings suggest that width transfer has
similar performance, but has the benefit of drastically lower overhead.

sult in similar outputs, one can exploit this commonality to
reduce the width optimization overhead, especially if the
two input configurations have markedly different FLOPs
requirements. As a concrete example, if optimizing the
widths of a wide CNN (high FLOPS) and a narrow CNN
(low FLOPs) results in widths that differ only by a multi-
plier, one can reduce the computational overhead of width
optimization by computing widths for the low FLOPS, nar-
row CNN and adjusting them to accommodate the high
FLOPs, wide CNN. To study the aforementioned common-
ality, we propose width transfer, a novel paradigm for effi-
cient width optimization. In width transfer, one first projects
the network and the dataset to their smaller counterparts,
then one executes width optimization with the smaller net-
work and dataset, and finally one extrapolates the optimized
result back as shown schematically in Figure 1.

In other words, we would like to understand if the fol-
lowing invariances hold for optimized widths:

1. Sample size: The optimized widths are minimally af-
fected by the size of the dataset when the dataset’s
distribution is approximately identical (i.e., uniform
down-sampling in a class-balanced fashion).

2. Spatial resolution: The optimized widths are merely
affected by the image resolutions.

3. Channel magnitude: The ratios between the opti-
mized widths and the un-optimized ones are roughly
constant regardless of the absolute channel counts of
the un-optimized network.

4. Within-stage channel counts: The optimized widths
are similar when they belong to the same stage of a
network where stage is defined by grouping the blocks
with the same input resolution [11].

Based on a comprehensive empirical analysis, we pro-
vide the following contributions:

• We propose width transfer, a novel paradigm for ef-
ficient width optimization. Additionally, we propose
two novel layer-stacking methods to transfer width
across networks with different layer counts.

• We find that the optimized widths are highly trans-
ferable across network’s initial width and depth, and
across dataset’s sample size and resolution.

• We demonstrate a practical implication of the previ-
ous finding by showing that one can achieve 320⇥ re-
duction in width optimization overhead for a scaled-up
MobileNetV2 and ResNet18 on ImageNet with similar
accuracy improvements, effectively making the cost of
width optimization negligible relative to initial model
training.

• With controlled hyperparameters over multiple ran-
dom seeds on a large-scale image classification
dataset, we verify the effectiveness of width optimiza-
tion methods proposed in prior art. This is in contrast
with prior work which borrows numbers from other pa-
pers that might not have the same training hyperparam-
eters. However, we also find that, for a deeper ResNet
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on ImageNet, width optimization has limited benefits
(Fig. 4c).

2. Width optimization
The layer-by-layer widths of a deep CNN are often re-

garded as a hyperparameter optimized to improve clas-
sification accuracy. Specifically, the width multiplier
method [14] was introduced in MobileNet to arrive at mod-
els with different FLOPs and accuracy profiles and has been
widely adopted in many papers [12, 28, 2, 7].

Besides simply scaling the width uniformly for all the
layers to arrive at CNNs with different FLOPs, optimiz-
ing the width for each layer has received growing interest
recently as a means to improve the efficiency of deployed
deep CNNs. A width optimization algorithm, A, takes in
a training configuration, C = (D,N ), and outputs a set of
optimized widths,w⇤. C consists of initial network,N , and
training dataset, D. Concretely, the goal ofA is to solve the
following optimization problem:

w⇤ = argmax
w

Accval (✓(N ⇥w,D),N ⇥w)

s.t. FLOPs(N ) = FLOPs(N ⇥w),
(1)

where w is a width vector with L dimensions, where L
is the number of convolutional layers. N ⇥ w is applying
widthw to a networkN by scaling the number of channels
for layer i from Fi to wiFi. ✓() is the standard training pro-
cedure that takes in a CNN and a training dataset and out-
puts trained weights, e.g., stochastic gradient descent with
a fixed training epoch. Lastly, Accval is a function that eval-
uates the validation accuracy given the trained weights and
the CNN architecture.

Figure 2: The two width optimization strategies proposed
in prior art.

To optimize the width of a CNN, there are in general
two approaches proposed in prior art: Prune-then-Grow and

Grow-then-Prune. Prune-then-Grow uses channel pruning
methods to arrive at a down-sized CNN with non-trivial
layer-wise channel counts followed by re-growing the CNN
to its original FLOPs using the width multiplier method [9].
On the other hand, Grow-then-Prune first uses the width
multiplier method to enlarge the CNN followed by channel
pruning methods to trim down channels to match its pre-
grown FLOPs [30, 10]. The aim of both of these methods
is to improve accuracy of the network while maintaining
a given FLOPs count. The schematic view of the two ap-
proaches is visualized in Figure 2.

While there are many papers on channel pruning [15,
23], they mostly focus their analysis on decreasing the
inference-time FLOPs of pre-trained models whereas we
focus on improving the classification accuracy of a net-
work by optimizing its width while holding inference-time
FLOPs constant. While one can use either the Prune-then-
Grow or Grow-then-Prune strategies to arrive at a CNN of
equivalent FLOPs, it is not clear if such strategies generally
improve performance over the un-optimized baseline as it
is not verified in most channel pruning papers. As a result,
in this paper, we focus on analyzing algorithms that have
demonstrated the effectiveness over the baseline (uniform)
width configurations in either Prune-then-Grow or Grow-
then-Prune settings.

3. Approach
3.1. Width optimization methods

Theoretically, we only care about algorithms A that
“solve” the width optimization problem (equation 1). How-
ever, the problem is inherently combinatorially hard. As a
result, we use state-of-the-art width optimization algorithms
as probes to understand the width optimization problem.
More specifically, we consider methods that have reported
improved accuracy compared to the un-optimized network
given the same test-time FLOPs, and have publicly avail-
able code to ensure correctness of implementation. With
these criteria, we consider MorphNet [9], AutoSlim [30],
and DMCP [10]. Note that we use these algorithms to
find the “network architecture” which will be trained from
scratch using the normal training configurations with ran-
domly initialized weights.

3.2. Projection and extrapolation
Projection In projection, there are two aspects: network
projection and dataset projection. For network projection,
we propose to use the width multiplier to uniformly shrink
the channel counts for all the layers to arrive at a narrower
model. Additionally, we also propose to use the depth mul-
tiplier to uniformly shrink the block counts per each stage of
a neural network to arrive at a shallower model. For dataset
projection, on the one hand, we propose to sub-sample the
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Figure 3: An example for extrapolation. The projected network has fewer layers and channel counts per layer compared to
the original network. After width optimization on the projected network, we propose two methods, i.e., stack-last-block and
stack-average-block, to match the layer counts to the original network. Finally, we match the FLOPs to the original network
with a width multiplier.

training sample in a dataset in a class-balanced way. On the
other hand, we propose to sub-sample the spatial dimen-
sion of the training images to arrive at images with lower
resolutions. When keeping the width optimization algo-
rithm fixed, i.e., training the input network with a certain
batch size and training epochs using the input dataset, all
the aforementioned projections immediately result in width
optimization overhead reduction.

Extrapolation We consider two aspects for extrapola-
tion: dimension-matching and FLOPs-matching, which are
schematically shown in Figure 3. First, we want the extrap-
olated network to have the same number of layers as the
original network. This is particularly crucial when the orig-
inal network is projected in the depth dimension, in which
case we propose two layer stacking strategies:

• Stack-last-block: Stack the width multipliers of the
last block of each stage until the desired depth is met.
A stage includes convolutional blocks with the same
output resolution in the original network. A convo-
lutional block consists of several convolutional layers
such as the bottleneck block in ResNet [11] and the
inverted residual block in MobileNetV2 [27].

• Stack-average-block: To avoid mismatches among
residual connection, we exclude the first block of each
stage and compute the average of the width multipliers
across all the rest blocks in a stage, then stack the av-
erage width multipliers until the desired depth is met.

Note that since existing network designs share the same
channel widths for all the blocks in each stage, the above
two layer stacking strategies will have the same results
when applied to networks with un-optimized widths.

Second, we want to extrapolate the optimized projected
network to a larger one such that it has the FLOPs of the
original network. To do so, we propose to use the width
multiplier to widen the optimized width. This procedure ba-
sically assumes that what determines the optimized widths
is the ratio among layers and we show that this assumption
is largely correct in Section 4 as the optimized widths are
largely transferable across network’s initial widths.

4. Experiments

In this section, we empirically investigate the transfer-
ability of the optimized widths across different projection
and extrapolation strategies. Specifically, we study projec-
tion across architectures by evaluating different widths and
depths as well as across dataset properties by dataset sub-
sampling and resolution sub-sampling. In addition to an-
alyzing each of these four settings independently, we also
investigate a compound projection that involves all four
jointly. To measure the transferability, we plot the ImageNet
top-1 accuracy of network obtained by direct optimization
and width transfer across different projection scales that
have different width optimization overhead. Width opti-
mization overhead refers to the FLOPs needed to carry
out width optimization. If transferable, we should observe
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a horizontal line across different width optimization over-
heads, suggesting that performance is not compromised by
deriving the optimized widths from a smaller FLOP config-
uration. Moreover, we also plot the ImageNet top-1 accu-
racy for the un-optimized baseline to characterize whether
width optimization or width transfer is even useful for some
configurations.

4.1. Experimental Setup
We used the ImageNet dataset [6] throughout the exper-

iments. Unless stated otherwise, we use 224 input reso-
lution. For CNNs, we considered the meta-architecture of
ResNet18 [11] and MobileNetV2 [27]. Note that we ad-
justed the depth and width of ResNet-18 and MobileNetV2
to arrive at a wide variety of models for our width trans-
fer study. Models were each trained on a single machine
with 8 V100 GPUs for all the experiments. The width mul-
tiplier method applies to all the layers in the CNNs while
the depth-multiplier excludes the first and the last stage of
MobileNetV2 as there is only one block for each of them.
After we obtained the optimized architecture, we trained the
corresponding network from scratch with random initializa-
tion using the same hyperparameters to analyze their perfor-
mance. We repeated each experiment three times with dif-
ferent random seeds and reported the mean and standard de-
viation. Other hyperparameters are detailed in Appendix A.

4.2. Projection: width
Here, we focus on answering the following question:

“Do optimized widths obey the channel magnitude invari-
ance?” The answer to this question is unclear from existing
literature as the current practice is to re-run the optimiza-
tion across different networks [10, 9, 20]. If the optimized
widths are similar across different initial widths, this sug-
gests that the quality of the vector of channel counts are
scale-invariant given the current practice of training deep
CNNs and the dataset. Additionally, it also has practical
benefits where one can use width transfer to reduce the over-
head incurred in width optimization. On the other hand, if
the optimized widths are dissimilar, this suggests that not
only the direction of the vector of channel counts is impor-
tant, but also its magnitude. That is, for different magni-
tudes, we may need different orientations. In other words,
this suggests that existing practice, though costly, is empir-
ically proved to be necessary.

To empirically study the aforementioned question, we
considered the source width multipliers of {0.312, 0.5,
0.707, 1, 1.414, 1.732} and the target width multiplier of
1.732, and we analyzed if the source optimized architec-
ture transfers to the target architecture. The set of initial
width multipliers is chosen based on square roots of width
optimization overhead. We analyzed the transferability in
the accuracy space. In Figure 4a and 4b, we plot the Ima-

(a) Res18, width (b) MBv2, width

(c) Res18, depth (d) MBv2, depth

Figure 4: Experiments for width transfer under network
projection. We plot the ImageNet top-1 accuracy for uni-
form baseline, width transfer, and direct optimization (the
leftmost points). On the x-axis, we plot the width optimiza-
tion overhead saved by using width transfer.

geNet top-1 accuracy for the baseline (a 1.732⇥ wide net-
work) and networks obtained by direct optimization and
width transfer. For ResNet18, the width optimization over-
head can be saved by up to 96% for all three algorithms
without compromising the accuracy improvements gained
by the width optimization.

On MobileNetV2, AutoSlim and MorphNet can trans-
fer well and save up to 80% width optimization overhead.
While DMCP for MobileNetV2 results in 0.4% top-1 accu-
racy loss when using width transfer, the transferred width
can still outperform the uniform baseline, which is encour-
aging for applications that allow such accuracy degrada-
tion in exchange for 83% width optimization overhead sav-
ings. More specifically, that would reduce compute time
from 160 GPU-hours all the way to 30 GPU-hours for Mo-
bileNetV2 measured using a batch size of 1024, a major
saving. Our results suggest that a good orientation for the
optimized channel vector continues to be suitable across a
wide range of magnitudes.

Since the optimized widths are highly transferable, we
are interested in the resulting widths for both CNNs. We
find that the later layers tend to increase a lot compared to
the un-optimized ones. Concretely, in un-optimized net-
works, ResNet18 has 512 channels in the last layer and
MobileNetV2 has 1280 channels in the last layer. In con-
trast, the average optimized width has 1300 channels for
ResNet18 and 3785 channels for MobileNetV2. We visu-
alize the average widths for ResNet18 and MobileNetV2
(average across optimized widths) in Figure 5.
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(a) ResNet18

(b) MobileNetV2

Figure 5: The average optimized width for ResNet18 and
MobileNetV2. They are averaged across the optimized
widths. We plot the mean in solid line with shaded area
representing standard deviation.

4.3. Projection: depth

Next, we asked whether networks with different initial
depths share common structure in their optimized widths.
Specifically, “Do the optimized widths obey the within-stage
channel counts invariance?” Because making a network
deeper will add new layers with no corresponding opti-
mized width, we will need a mechanism to map the vec-
tor optimized widths to a vector with far more elements.
Here, we first compared the two layer-stacking methods
proposed in Section 3.2 using DMCP for ResNet18 andMo-
bileNetV2. As shown in Figure 6, both stack-last-block and
stack-average-block layer stacking strategies perform simi-
larly. As a result, we use stack-average-block for all other
experiments. We considered {1, 2, 3, 4} as the source depth
multipliers and use 4 as the target depth multiplier. Similar
to the analysis done in Section 4.2, we analyzed the similar-
ity in the accuracy space.

As shown in Figure 4c and 4d, we find that the optimized
widths stay competitive via simple layer stacking methods
and up to 75% width optimization overhead can be saved
if we were to optimize the width using width transfer for
all three algorithms and two networks. This finding also
suggests that the relative values of optimized widths share
common structure across networks that differ in depth. In
other words, the pattern of width multipliers across depth
is scale-invariant. Interestingly, we find that width transfer
improves direct optimization in terms of accuracy when it
comes to AutoSlim andMorphNet as we see a positive slope

(a) ResNet18 (b) MobileNetV2

Figure 6: We compare the two layer-stacking strategies us-
ing DMCP for both ResNet18 and MobileNetV2. We can
observe that both stack-average-block and stack-last-block
perform similarly.

for these two methods on both networks. We conjecture
that this is due to both AutoSlim and MorphNet are affected
more by the dimensionality1 of the problem (the number
of widths to be learned), and that the within-stage channel
invariance largely holds.

4.4. Projection: resolution
The input resolution and the channel counts of a CNN

are known to be related when it comes to the test accuracy
of a CNN. As an example, it is known empirically that a
wider CNN can benefit from inputs with a higher resolution
than a narrower net can [28]. As a result, it is not clear if
the optimized widths obey the spatial resolution invariance.
If the optimized widths indeed obey the spatial resolution
invariance, this suggests that although wider networks ben-
efit more from a higher resolution inputs, the non-uniform
widths that result in better performance are similar. On the
other hand, if the optimized widths are different, it suggests
that, when it comes to the test accuracy, the relationship be-
tween channel counts and input resolution is more involved
than the level of over-parameterization.

To study the aforementioned question, we considered the
input resolution for the source to be {64, 160, 224, 320}
and choose a target of 320. As shown in Figure 7a and 7b,
we find that except for MorphNet targeting ResNet18, all
other algorithm and network combinations can achieve up
to 96% width optimization overhead savings with the op-
timized widths that are still better than the uniform base-
line. By saving 75% width optimization overhead, we can
stay close to the performance obtained via direct optimiza-
tion. Interestingly, we find that MorphNet had a very dif-
ferent optimized widths when transferred from resolution
64 for ResNet18, which leads to the worse performance for
ResNet18 compared to direct optimization. The similarity
among the optimized widths are detailed in Figure 10 in
Appendix.

1Width depth projection, we effectively reduce the dimensionality of
the search problem.
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(a) Res18, resolution (b) MBv2, resolution

(c) Res18, dataset size (d) MBv2, dataset size

Figure 7: Experiments for width transfer under dataset pro-
jection. We plot the ImageNet top-1 accuracy for uniform
baseline, width transfer, and direct optimization (the left-
most points). On the x-axis, we plot the width optimization
overhead saved by using width transfer.

4.5. Projection: dataset size
The dataset size is often critical for understanding

the generalization performance of a learning algorithm.
Here, we would like to understand if the optimized widths
obey the sample size invariance. We considered sub-
sampling the ImageNet dataset to result in a source of
{5%, 10%, 20%, 50%, 100%} of the original training data.
Similar to previous analysis, we tried to transfer the opti-
mized widths obtained using the smaller configurations to
the largest configuration, i.e., 100% of the original train-
ing data. As shown in Figure 7c and 7d, widths optimized
for smaller dataset sizes transfer well to large dataset sizes.
That is, 95% width optimization overhead can be saved and
still outperforms the uniform baseline for both networks.
On the other hand, 90% width optimization overhead can
be saved and can still match the performance of direct opti-
mization for DMCP. This suggests that the amount of train-
ing data barely affects width optimization, especially for
DMCP, which is surprising.

4.6. Compound projection
From previous analyses, we find that the optimized

widths are largely transferable across various projection
methods independently. Here, we further empirically an-
alyzed if the optimized width can be transferable across
compound projection. To do so, we considered linearly in-
terpolating all four projection methods and analyzed if the
width optimized using cost-efficient settings can transfer
to the most costly setting. Specifically, let a tuple (width,

(a) ResNet18 (b) MobileNetV2

Figure 8: Width transfer with compound projection.

depth, resolution, dataset size) denote a training configu-
ration. We considered the source to be {(0.312,1,64,5%),
(0.707,1,160,10%), (1,1,224,50%), (1.414,2,320,100%)}
and the target to be (1.414,2,320,100%). As shown in Fig-
ure 8, the optimized width is transferable across compound
projection. Specifically, we can achieve up to 320⇥ width
optimization overhead reduction with width transfer for the
best performing algorithm, DMCP. Additionally, it also sug-
gests that the four projection dimensions are not tightly cou-
pled for width optimization.

Applications to other target CNNs We considered using
compound width transfer for ResNet50, ResNet101, and Ef-
ficientNetB3. For projection, we consider the width, depth,
resolution and dataset size to be 0.707, 0.5, 160, and 20%,
respectively. As shown in Table 1, up to 30⇥ wall-clock
time reduction is achieved with less than 0.2% top-1 accu-
racy degradation. Considering a scenario where one wants
to optimize the width of a network and train such a net-
work for deployment. Width optimization reduce the over-
all training cost from 3⇥ to 1.06⇥. Such a huge optimiza-
tion cost reduction can enable fast exploration for the ben-
efits of width optimization for large models without paying
the considerable costs.

4.7. Comparing to cheap pruning methods
While adopting state-of-the-art channel optimization di-

rectly can be costly, one may consider using cheap prun-
ing methods and adopt a Prune-then-Grow strategy to carry
out width optimization. We compare to magnitude-based
channel pruning: network slimming (NS) [19] that prunes
channels based on the magnitude of � of the batch nor-
malization layer. NS-xw-ye follows a three-step procedure:
train an x⇥ wider network for y epochs, prune the network
with global � ranking, and re-train the pruned network us-
ing full training schedule. The induced overhead for width
optimization lies in the first step. The comparisons with
NS for ResNet18 on ImageNet is shown in Fig. 9. Using
DMCP directly is indeed the most expensive one, but it has
the best performance. Our width transfer achieves similar
performance compared to DMCP with overhead lower than
magnitude-based pruning.
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Network Baseline DMCP Width transfer Overhead (direct!width transfer)
ResNet50 77.97± 0.09 78.23± 0.11 78.07± 0.12 37.4 ! 1.3
ResNet101 79.43± 0.07 79.70± 0.05 79.54± 0.07 66.7 ! 2.7

EfficientNetB3 80.02± 0.09 80.24± 0.02 80.19± 0.10 80 ! 3

Table 1: Compound width transfer for other CNNs. Width optimization overhead measured with 8 NVIDIA V100 GPUS on
a single machine.

Figure 9: Comparing the proposed using DMCP with width
transfer, DMCP, and network slimming.

5. Related work
Neural architecture search Our work is tightly con-
nected to understanding the transferability of the searched
results from neural architecture search (NAS) algorithms
where the search space is determined by the layer-wise
channel counts of a seed network. The transferability of
NAS has been recently explored in several papers consid-
ering different search spaces and perspectives. Zoph et
al.[32] have proposed to search the best cell on a small
dataset and use the searched cell on a large dataset. Panda
et al.[24] have analyzed the transferability of the solu-
tions of various NAS algorithms in the DARTS search
space [18] and have concluded that the design of the proxy
datasets for the search has a great impact on the trans-
ferability of the searched result. Critically however, prior
work has neglected to include the channel width multipli-
ers in the search space, instead only focusing on proxy
datasets [24, 32]. Consequentially, the relationship be-
tween optimized widths across different architectures has
not been examined previously. Others [29, 1, 22] have ana-
lyzed the transferability of the search processes as opposed
to the searched solutions. The key difference among the
two is that the transfer of the search processes is algorithm-
dependent while the transfer of the searched solutions is
not. Given width optimization is a fast-developing field, we
study the transferability in the solution space to have a more
general result.

EcoNAS [31] is closely related to our work as it also
systematically investigated several proxy training configu-
rations for neural architecture search. However, the crucial
difference between EcoNAS and ours is that, in our study,

the number of channels is not only a projection dimension,
but also the optimization variable. As a result, the extrapo-
lation step is necessary for our study but not for EcoNAS.
Consequentially, the proposed width transfer has a dimen-
sionality reduction effect for hyperparameter optimization
(as noted in Section 4.3) while EcoNAS does not. Lastly,
the search space for EcoNAS is the cell-based search space
while our channel search space is orthogonal to theirs and
can be applied to any network for architectural fine-tuning.

Channel pruning Channel pruning is an active research
topic for efficient network design. More specifically, chan-
nel pruning determines how we can prune an existing net-
work in the channel dimension so as to retain the most ac-
curacy [3, 12, 13, 15, 23, 16]. A channel pruning proce-
dure often has the weights and the optimized channel counts
coupled together. Inspired by Liu et al. [21], who had em-
pirically shown the importance of the optimized channel
counts, we take a step further by understanding the transfer-
ability of the searched channel counts across different input
network and dataset transformations.

6. Conclusion
In this paper, we take a first step in understanding

the transferability of the optimized widths across different
width optimization algorithms and invariance dimensions.
Our empirical analysis sheds light on the structure of the
width optimization problem, which can be used to design
better optimization methods. More specifically, by exploit-
ing the channel magnitude and within-stage channel counts
invariances, we not only can reduce the computational cost
needed to width optimization, but also reduce the dimen-
sion of the optimization variables2. Per our analysis, we
can achieve up to 320⇥ reduction in width optimization
overhead without compromising the top-1 accuracy on Im-
ageNet.
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