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Abstract

Fine-tuning through knowledge transfer from a pre-
trained model on a large-scale dataset is a widely
spread approach to effectively build models on small-scale
datasets. In this work, we show that a recent adversarial
attack designed for transfer learning via re-training the last
linear layer can successfully deceive models trained with
transfer learning via end-to-end fine-tuning. This raises se-
curity concerns for many industrial applications. In con-
trast, models trained with random initialization without
transfer are much more robust to such attacks, although
these models often exhibit much lower accuracy. To this
end, we propose noisy feature distillation, a new transfer
learning method that trains a network from random initial-
ization while achieving clean-data performance competitive
with fine-tuning.

1. Introduction

Transfer learning is an important approach that enables

training deep neural networks faster and with relatively less

data than training from scratch without any prior knowl-

edge. Specifically, we consider the setting where we want

to maximize the performance on a target task assuming

the availability of a pre-trained model trained on a source

task. This setting has various applications and has led to

state-of-the-art performance in several image classification

tasks [4]. Moreover, this setting is also considered in indus-

try in the form of machine-as-a-service, such as Google’s

Cloud AutoML [10] and Microsoft’s Custom Vision ser-

vice [19] where users can upload custom data to fine-tune a

pre-trained model. We refer to this setting as transfer learn-

ing throughout this paper.

Transfer learning for ConvNets has received great at-

tention due to its effectiveness in achieving high accuracy.

It has been shown [30] that the pre-trained model trained

on a large-scale dataset (such as ImageNet) acts as an ef-

fective feature extractor that supersedes hand-crafted fea-

ture extractors. Subsequent work [41, 6] has found that in-

heriting the pre-trained weights and starting learning from

there (often referred to as “fine-tuning”) can result in even

larger performance improvements. Fine-tuning has then

been adopted in various tasks to achieve state-of-the-art re-

sults. Besides fine-tuning, several prior methods have relied

on fine-tuning with an explicit regularization loss to fur-

ther enhance the performance of transfer learning [39, 18].

While prior art has demonstrated that fine-tuning might not

necessarily outperform training from random initialization

for some tasks, such as classifying medical images [25] and

object detection and semantic segmentation with sufficient

training data [11], it is important to note that fine-tuning

is the state-of-the-art method for small and visually similar

datasets such as the Caltech-UCSD Bird 200 datasets [37].

Very recently it has been demonstrated [27] that mod-

els transferred by re-learning the last linear layer are vul-

nerable to adversarial examples crafted solely based on the

pre-trained model. In other words, an adversary can at-

tack a pre-trained model available on open repositories, e.g.,
TorchVision, and use the adversarial image to deceive the

transferred models. In this paper, we show that such an at-

tack can also deceive models transferred with end-to-end

fine-tuning. This finding raises security concerns for the

widely-adopted fine-tuning mechanism, which is also used

in industrial applications such as Google’s AutoML [10]

and Microsoft’s Custom Vision [19]. In this work, we take

a first step toward alleviating this problem. Intuitively, the

vulnerability to such an attack stems from the similarity be-

tween the pre-trained and the transferred models. However,

we find that models transferred with existing fine-tuning

methods are similar to the pre-trained ones, which in turn

makes them vulnerable to the attack developed by Rezaei

et al. [27]. In contrast, models trained with random ini-

tialization are much more robust to such attacks, with the

caveat that these models often exhibit much lower accuracy

compared to fine-tuning. As an alternative to prior meth-

ods, we propose re-training with noisy feature distillation

(or Renofeation for short), which achieves clean-data per-

formance similar to fine-tuning and the robustness of train-

3237

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

978-1-6654-4899-4/21/$31.00 ©2021 IEEE
DOI 10.1109/CVPRW53098.2021.00362

20
21

 IE
EE

/C
V

F 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r V
is

io
n 

an
d 

Pa
tte

rn
 R

ec
og

ni
tio

n 
W

or
ks

ho
ps

 (C
V

PR
W

) |
 9

78
-1

-6
65

4-
48

99
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
V

PR
W

53
09

8.
20

21
.0

03
62



ing with random initialization. Overall, our contributions

are as follows:

• We show that the attack proposed in prior work is suit-

able not only for transfer learning by re-training the

last linear layer, but also for transfer learning with end-

to-end fine-tuning, which raises security concerns for

the widely-adopted fine-tuning paradigm.

• We propose Renofeation, a new transfer learning

method that results in competitive clean-data perfor-

mance compared to fine-tuning with significant better

robustness. Compared to previous transfer learning
methods, ours is the first that argues for “reinitial-
izing the weights”.

• We conduct extensive experiments on four networks

and five datasets with hyper-parameter tuning and ab-

lation studies to empirically demonstrate the effective-

ness of the proposed method.

2. Background
2.1. Transfer learning

It is known that deep neural networks trained on large-

scale datasets such as ImageNet learn surprisingly transfer-

able features [30]. That is, one can re-purpose a pre-trained

network to other classification tasks by simply learning a

linear classifier on top of the features from the penultimate

layer. Later, researchers have found that when the entire

pre-trained model is optimized with a small learning rate,

performance can be even better [17, 6, 26, 11, 41], and this

scheme is also known as “fine-tuning”. With the desire of

not forgetting the useful features learned from the large-

scale dataset, explicit regularization was proposed to further

improve fine-tuning. Specifically, L2SP [39, 16] imposes

regularization to avoid weights deviating from the pre-

trained weights in a �2 sense. Similarly, DELTA [18, 14, 34]

imposes regularization to avoid representations deviating

from the pre-trained representations. Besides these trans-

fer learning methods, training from random initialization

is often considered as the baseline for transfer learning,

which does not leverage the information learned from the

pre-trained model.

Transfer learning using extra information or architec-

tural changes have also been investigated in the literature.

Ge et al. [7] developed a method to improve fine-tuning

by leveraging additional training data obtained from large-

scale datasets. Cui et al. [4] used Earth Mover’s Distance

to measure domain similarity between datasets and showed

that pre-training on similar domains results in better trans-

fer. Wang et al. [36] discovered that increasing the model

capacity (wider or deeper) improves the effectiveness of

fine-tuning.

2.2. Adversarial examples

Adversarial examples [32] for deep learning models have

received growing attention due to their potential impact on

machine learning systems. According to different threat

models, there are various types of attacks. In a white-box

threat model, where the adversary knows all the information

regarding a model, fast gradient sign method (FGSM) [9],

projected gradient descent, and CW [1] have been shown

to be strong attacks. Counteracting these attacks, adversar-

ial training [21] is the dominant approach for robusifying

deep networks. On the other hand, there are also meth-

ods targeting a black-box threat model where the adversary

can only query the model and obtain the probability vec-

tor [20, 23, 2].

In this work, our threat model assumes that the adver-

sary has access to the model weights and model architec-
ture for the pre-trained model. The adversary does not have

access to the task-specific transferred model. This threat

model aligns with practical usage of deep learning models

where researchers use pre-trained models on large datasets

(like ImageNet) and fine-tune them for other tasks. Based

on this threat model, prior art [27] has proposed an attack

that successfully compromises the task-specific transferred

models, which raises security concerns for transfer learning.

In this work, we find that such an attack not only success-

fully deceives transfer learning by re-training the last linear

layer, but also works for end-to-end fine-tuning. We fur-

ther propose an algorithm to improve the robustness of the

transferred model under this particular threat model. On a

different threat model, Shafahi et al. [29] have proposed to

improve the adversarial robustness of the transferred model

in a white-box setting by transferring to the target model the

robust features obtained through adversarial training. While

in this work we use feature distillation to improve clean data

performance, knowledge distillation has been explored to

improve the robustness of the student model by distilling

from a robust teacher [8].

To craft an adversarial example under our threat model,

we adopt an attack from Rezaei et al. [27], which optimizes

the following objective:

argmin
δ

‖fK(x+ δ, θ0)− t‖22
s.t. ‖δ‖∞ ≤ B,

(1)

where fK is the output of the penultimate layer, t is a target

vector that is set to a scalar m multiplied by a one-hot vec-

tor. m is chosen to be large and B denotes the perturbation

budget. The pixel intensity in this formulation is normal-

ized and constrained to [0, 1]. We optimize equation 1 via

projected gradient descent (PGD). Intuitively, the objective

is trying to find a small-norm perturbation such that the re-

sponse of the penultimate layer of the pre-trained model is

polarized. Once the perturbation δ for a specific input im-
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age x is found, the perturbed image x + δ is used to attack

a transferred model θ.

3. Motivation
We start with the following research question: “Can the

attack proposed by Rezaei et al. [27] compromise transfer
learning that fine-tunes the entire model?” This is unclear

as such an attack was originally proposed to deceive a spe-

cific transfer learning method, i.e., re-learning the last lin-

ear layer. Since end-to-end fine-tuning provides much bet-

ter performance compared to only learning the last linear

layer [18], fine-tuning is a widely adopted method for trans-

fer learning. As a result, it would be less concerning if such

an attack only works for re-learning the last linear layer but

not end-to-end fine-tuning.

To answer this question, we consider five training meth-

ods with five transfer learning datasets. For training meth-

ods, we consider Linear classifier that only re-learn the

last linear layer, Fine-tuning that trains all the parameters,

L2SP [39] that trains all the parameters with weight regu-

larization, DELTA that trains all the parameters with rep-

resentation regularization, and a baseline Re-training that

trains from random initialization using the target dataset

without any transfer learning. We summarize the meth-

ods used in Table 1. As for datasets, we consider Stan-

ford Dog [15], Caltech-UCSD Bird [37], Stanford Ac-

tions [40], MIT Indoor Scenes [24], and Flower [22]. We

proceed by crafting adversarial examples by solving equa-

tion (1) using PGD. Then, we evaluate the attack success
rate (ASR), which is calculated by the conditional proba-

bility P (wrong with adversarial-data | correct with clean-

data), for each method and dataset combination. To provide

context, we also evaluate the top-1 image classification ac-

curacy on clean images for each method and dataset combi-

nation.

As shown in Table 2, we find that the attack proposed

by Rezaei et al. [27] can deceive models trained with

end-to-end fine-tuning with high attack success rate. This

raises security concerns for the widely-adopted fine-tuning

paradigm. Besides confirming that DELTA is the best trans-

fer learning method among the considered ones, we observe

that although the clean data performance for re-training is

less than ideal compared to transfer learning, it has low at-

tack success rate. This observation leads us to the following

question: “Why are models trained with end-to-end fine-
tuning vulnerable to such an attack while re-training are
robust?”

We conjecture that it is because the re-trained model has

low similarity compared to the model under attack, i.e., the

pre-trained model, while the fine-tuned models are initial-

ized with the pre-trained weights that lead to potential sim-

ilarity. To verify our conjecture, we measure the correlation

between the attack success rate and the �2 distance between

the pre-trained and the transferred models. As for the dis-

tance measure, we look into two metrics. One is on the

weight space, which measure the �2 distance between the

pre-trained weights and the transferred weights. The other

metric is on the feature space, where we compute the �2 fea-

ture distance averaged across different layers and training

data (also known as the feature distillation loss). As shown

in Figure 1, the distance between the transferred and the pre-

trained models negatively correlates with attack success rate

for both distance measures, which matches our conjecture.

Figure 1: Robustness vs. distance between transferred and

pre-trained models for the five baseline methods on five

datasets discussed in Table 2

4. Methodology

Figure 2: Schematic overview of Renofeation

To craft a defense mechanism based on our observation,

the goal is to reduce model similarity without harming the

benefits of transfer learning. To this end, we propose re-

training with noisy feature distillation, or Renofeation for

short. As shown in Fig. 2, Renofeation consists of two in-

gredients: (1) re-initialize the model with random initializa-

tion as opposed to inheriting the pre-trained weights and (2)

train the model on the target dataset using noisy feature dis-

tillation. The first step removes the similarity with the pre-

trained model that is embedded in the pre-trained weights.

The second step uses feature distillation to encourage repre-

3239



Table 1: Summary of different transfer learning methods. θ and θ0 denote the weights for the transferred and pre-trained

neural network, respectively. fl(·, ·) denotes the output (feature) of the lth layer.

RE-TRAINING LINEAR CLASSIFIER FINE-TUNING L2SP [39] DELTA [18] RENOFEATION (OURS)

RANDOM INIT. (LAYER) ALL LAST LAST LAST LAST ALL

VARIABLE (LAYER) ALL LAST ALL ALL ALL ALL

REGULARIZATION

∑L
l=1 ‖fl(x,θ)− fl(x,θ0)‖22

‖θ‖22 ‖θ‖22 ‖θ‖22 ‖θ − θ0‖22
∑L

l=1 ‖fl(x,θ)− fl(x,θ0)‖22 DROPOUT

STOCHASTIC WEIGHT AVERAGING

TRANSFER MECHANISM N/A WEIGHTS WEIGHTS WEIGHTS WEIGHTS AND FEATURES FEATURES

DEFENSE MECHANISM RANDOM INIT. N/A N/A N/A N/A
RANDOM INIT.

FEATURE REGULARIZATION

Table 2: Robustness evaluation for the baseline transfer

learning methods for ResNet18. ASR denotes attack suc-

cess rate, which is computed as P (wrong with adversarial-

data | correct with clean-data) (the lower the more robust).

Clean denotes the Top-1 accuracy for clean-data.

DOG BIRD ACTION INDOOR FLOWER

LINEAR CLASSIFIER
CLEAN 84.22 67.02 73.64 72.54 88.52

ASR 96.06 96.47 92.49 88.95 86.40

FINE-TUNING
CLEAN 81.84 77.67 77.19 75.37 95.71

ASR 89.36 50.33 73.75 54.75 14.07

L2SP
CLEAN 83.82 77.51 77.22 75.15 95.63

ASR 94.08 50.08 92.16 66.73 16.75

DELTA
CLEAN 84.39 78.75 77.69 78.36 95.90
ASR 95.65 58.83 93.51 79.71 43.65

RE-TRAINING
CLEAN 70.77 69.76 51.90 59.93 87.38

ASR 5.99 6.14 5.82 6.73 3.00

sentation similarity to the pre-trained model for improving

clean data performance while using a noisy process to dis-

courage over-fitting to the pre-trained representation. As

for the implementation for “noisy” feature distillation, we

adopt two regularization methods: spatial dropout [33] dur-

ing training and stochastic weight averaging [13].

Dropout Dropout was proposed to avoid co-adaptation

among neurons by randomly dropping out features during

training [12]. In this work, we consider spatial-dropout [33]

for convolutional layers. Dropout has been used as a suc-

cessful defense during evaluation time [35] which suggests

that the adversarial features are highly co-adapted. As a re-

sult, instead of plain feature distillation that tries to mimic

all the features of the pre-trained network, we propose to

match the randomly dropped features to reduce the possi-

bility of learning vulnerable features. We note that we do

not randomly drop features during the evaluation time.

Stochastic Weight Averaging (SWA) SWA has shown

great promise in improving the generalization performance

for deep neural networks [13]. The core idea is to aver-

age numerous local optima to form the final solution. It has

been demonstrated empirically that SWA improves gener-

alization while increasing the training loss. The rationale

behind adopting SWA is that SWA is shown to be a suc-

cessful technique that trades training loss for testing loss,

which is exactly our goal: increasing the feature distillation

loss without hurting the prediction performance.

5. Experiments

5.1. Datasets and implementation detail

In this work, we consider five datasets to transfer to and

models trained on ImageNet as pre-trained models. The

datasets under consideration are shown in Table 3.

For training, we use a batch size of 64 and stochastic gra-

dient descent with momentum following prior art [18, 39].

For the experiments using fine-tuning, i.e., those that start

with pre-trained weights, we use 30,000 iterations to make

sure the loss converges. Additionally, we tune the learn-

ing rate, weight decay, and momentum for fine-tuning each

dataset according to prior art [17]. Specifically, we tune

learning rate ∈ {0.01, 0.005}, momentum ∈ {0, 0.9},

and weight decay ∈ {0, 10−4} using grid search. For re-

training, the hyper-parameters are set throughout the exper-

iments across datasets without tuning. We use 90,000 itera-

tions, learning rate 0.01, momentum 0.9, and weight decay

0.005. Also, weight decay for the last linear layer is set to

0.01 across all the experiments following [18, 39]. We use

cosine learning rate decay for all the experiments. For fine-

tuning methods that come with hyper-parameters such as

L2SP and DELTA, we tune λ to obtain the best transferred

results according to prior art [39, 18].

We apply SWA by training with half of the learning rate,

i.e., 0.005, as suggested in prior art [13]. SWA training

considered has constant learning rate with 30,000 iterations.

We average the models every 500 iterations. We insert the

dropout layer after those that are used for the feature dis-

tillation loss and we use a dropout rate of 10%. Regarding

3240



Table 3: The characteristics of the datasets for transfer learning we considered in this work. We includes the number of

training samples per class, the number of testing samples per class, and the number of classes.

DATASET TASK CATEGORY # TRAINING SAMPLES # TESTING SAMPLES # CLASSES ABBREVIATION

STANFORD DOGS [15] FINE-GRAINED CLASSIFICATION 100 ≈72 120 DOG

CALTECH-UCSD BIRDS [37] FINE-GRAINED CLASSIFICATION ≈30 ≈ 29 200 BIRD

STANFORD 40 ACTIONS [40] ACTION CLASSIFICATION 100 ≈ 138 40 ACTION

MIT INDOOR SCENES [24] INDOOR SCENE CLASSIFICATION 80 20 67 INDOOR

102 CATEGORY FLOWER [22] FINE-GRAINED CLASSIFICATION 20 ≈60 102 FLOWER

the parameters for crafting the adversarial examples, we set

the perturbation budget B to 0.4, the number of iterations

of PGD to be 40, m to be 1000 (following [27]), and the

learning rate to be 0.01. We set the target t to be one-hot

that always have one in the first neuron and zero for other

neurons. We use AdverTorch [5] for generating adversarial

examples using the above specified objective and parame-

ters.

5.2. Ablating the proposed components

In this subsection, we are interested in understanding

the importance of the different components in the proposed

Renofeation. Specifically, we would like to understand

the impact of random initialization, dropout, and stochas-

tic weight averaging. To do so, we have three baselines: (1)

DELTA, which is the best transfer learning method in clean

performance as shown in Table 2, (2) Re-training without

transfer, which is the most robust method in Table 2, and

(3) DELTA-R, which is DELTA with random (as opposed

to pre-trained weights) initialization. For each of these

baselines, we add dropout (DO), stochastic weight average

(SWA), and both of them to see how these techniques affect

the clean data performance and attack success rate. We con-

duct all the experiments in this subsection using ResNet-18.

Importance of random initialization From Table 2, we

can observe that DELTA has the best clean data perfor-

mance while re-training has the best robustness. Since

DELTA achieves transfer via pre-trained weights and fea-

ture distillation, an interesting question arises: Do pre-
trained weights help clean data performance and hurt ro-
bustness equally? To answer this question, we compare

DELTA and DELTA with random initialization (DELTA-R)

in both clean data performance and ASR. As shown in Fig-

ure 3, we find that the pre-trained weights merely help clean

data performance at the presence of feature distillation but

hurts robustness significantly. This suggests that random

initialization effectively makes the function less similar to

the function induced by the pre-trained weights even in the

presence of feature distillation. This is plausible because

feature distillation is enforcing the two functions to be sim-

ilar only at the training data points, which are scarce for

transfer learning.

The effect of regularization In Renofeation, both

dropout (DO) and stochastic weight averaging (SWA) are

proposed to be incorporated into the transfer learning pro-

cess. It would be of interest to understand their respective

impact on both robustness and clean data performance for

all three baselines. Let us first focus on DELTA, as shown

in Fig. 3, we can observe that SWA does not work well in

improving the robustness for DELTA, which might be due

to the local optimality of the pre-trained weights that leads

to less diverse model weights throughout the fine-tuning

process. On the other hand, DO improves the robustness

for DELTA, but the robustness still falls short when com-

pared to re-training. Both techniques marginally improve

the clean data performance for DELTA except for the Dog

dataset, where we see a slight accuracy drop.

Considering SWA and DO for re-training, we find that

both techniques significantly improve the clean data per-

formance for re-training and this is expected based on the

results from the DO and SWA papers. Nonetheless, the

clean data performance of Re-train with both techniques

still underperforms DELTA by a significant margin in most

datasets.

Lastly, we consider SWA and DO for DELTA-R. We

find that SWA works much better for improving robustness

when compared to applying SWA to DELTA. This suggests

that the weight initialization greatly affects the training tra-

jectory. When considering the clean data performance, both

techniques again marginally improve the clean data perfor-

mance for DELTA-R except for the Dog dataset. Overall,

Renofeation, which consists of DELTA-R, DO, and SWA,

achieves the best of both worlds, with clean data perfor-

mance comparable to DELTA and the robustness compara-

ble to re-training.

5.3. More networks

So far, we have conducted our experiments and anal-

yses based on ResNet-18. We are interested to see if

Renofeation is still more preferable compared to re-training
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Figure 3: Ablation study of the effect of dropout (DO) and SWA on (Left) clean-data performance and (Right) attack success

rate for the two baselines including DELTA and re-training.

Table 4: Comparing DELTA, Renofeation, and re-training for different ConvNets. Renofeation has the clean data perfor-

mance comparable to DELTA and robustness comparable to re-training for different ConvNets we study.

DOG BIRD ACTION INDOOR FLOWER AVERAGE

RESNET-18

DELTA
CLEAN 84.39 78.75 77.69 78.36 95.90 -

ASR 95.65 58.83 93.51 79.71 43.65 74.27

RENOFEATION
CLEAN 78.11 79.03 79.07 76.79 95.59 -

ASR 9.83 3.41 7.16 11.08 2.86 6.87

RE-TRAINING
CLEAN 70.77 69.76 51.90 59.93 87.38 -

ASR 5.99 6.14 5.82 6.73 3.00 5.54

RESNET-50

DELTA
CLEAN 90.13 81.95 81.87 79.93 96.63 -

ASR 94.69 32.29 91.94 84.69 24.84 65.69

RENOFEATION
CLEAN 83.57 79.27 84.04 80.67 96.75 -

ASR 5.08 3.96 3.33 7.12 2.39 4.38

RE-TRAINING
CLEAN 72.55 70.47 53.53 59.11 85.93 -

ASR 6.30 7.45 6.11 6.06 2.20 5.62

RESNET-101

DELTA
CLEAN 91.92 82.07 82.61 80.00 96.37 -

ASR 88.03 42.60 87.53 89.27 44.04 70.29

RENOFEATION
CLEAN 83.88 80.98 84.67 80.97 96.33 -

ASR 4.38 3.54 3.69 9.95 3.09 4.93

RE-TRAINING
CLEAN 73.42 71.80 52.78 61.12 85.59 -

ASR 6.64 7.21 6.64 5.13 2.00 5.52

MOBILENETV2

DELTA
CLEAN 84.86 78.51 78.94 76.12 96.68 -

ASR 82.89 40.30 57.00 52.45 21.08 50.75

RENOFEATION
CLEAN 76.42 75.70 77.78 76.49 96.32 -

ASR 11.62 6.79 5.92 7.12 2.84 6.86

RE-TRAINING
CLEAN 67.95 69.50 52.86 61.49 88.73 -

ASR 8.56 8.54 8.35 7.65 2.71 7.16

and DELTA for other networks. Specifically, we further

consider deeper networks, i.e., ResNet-50, and ResNet-

101. Additionally, due to recent interests in reducing the

computational overhead of ConvNets for deployment pur-

pose [34, 31, 28, 3, 38], we also consider a compact net-

work, i.e., MobileNetV2 [28]. Due to computational con-

siderations, for DELTA with other networks, we inherit the

learning rate, weight decay, and momentum from ResNet-

18 for each of the dataset.

As shown in Table 4, Renofeation achieves clean-data

performance comparable to that of DELTA and has robust-

ness similar to re-training across all ConvNets we have in-
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vestigated. We note that while Renofeation in general has

clean data performance comparable to DELTA, it is not the

case for the Dog dataset, where DELTA consistently has

higher accuracy compared to Renofeation. We hypothe-

size that the accuracy loss in this case may be due to the

Dog dataset being a strict subset of the ImageNet dataset

and therefore matching features alone on the scarce target

dataset may not be sufficient to recover the features for good

generalization. This can be inferred from the fact that the

linear classifier alone has clean data performance matching

DELTA for the Dog dataset as shown in Table 2. While it

is less likely to conduct transfer learning to a target dataset

that is a strict subset of the source dataset, this phenomenon

also suggests that there is room for improvement for future

research to tackle the studied threat model.

5.4. Data amount ablation

From previous results, we show that feature distillation

using the target dataset is able to achieve competitive clean

data performance compared to fine-tuning. Intuitively, if the

amount of training data is large, feature distillation should

be able recover the knowledge encoded in the pre-trained

weights. However, in the transfer learning case, target

datasets usually have much less training data compared to

large-scale datasets such as ImageNet. In this section, we

ablate the number of training samples to understand how it

affects the effectiveness of Renofeation so as to further pro-

vide a guideline for when to use it. Specifically, we consider

cases where the training data for each dataset is reduced

to 33% and 66%. For each class in the dataset, we ran-

domly sub-sample 33% and 66% of the training images. As

a result, the overall training dataset is still balanced across

classes.

As shown in Table 5, we find that as the training data

size decreases, the clean data performance gap between

Renofeation and DELTA increases. This is expected as fea-

ture distillation with fewer samples makes it an underde-

termined problem to match the function of the pre-trained

model. However, Renofeation still greatly improves over

DELTA in robustness and greatly improves over re-training

in clean data performance.

5.5. Adversarial training

While we showed that our proposed Renofeation ap-

proach, when compared to DELTA, achieves better robust-

ness with comparable clean-data performance under our

threat model, adversarial training can also be considered as

a defense under our threat model. As a result, in this sec-

tion, we compare our method with adversarial training to

further demonstrate its effectiveness. To conduct adversar-

ial training in our considered threat model, we train DELTA

with 2× more iterations and, we craft adversarial exam-

ples with three iterations of projected gradient descent. As

Table 5: Ablating the number of training samples for each

dataset to 33% and 66% and compare the performances

among methods. As the training data gets smaller in size,

Renofeation provides more improvement in clean data per-

formance compared to re-training while having robustness

much better than DELTA.

DOG BIRD ACTION INDOOR FLOWER

33%

DELTA
CLEAN 81.80 63.41 70.72 70.97 90.11
ASR 95.77 74.12 93.94 85.38 46.60

RENOFEATION
CLEAN 74.13 61.75 69.22 70.22 88.32

ASR 10.88 5.56 9.40 15.73 4.94

RE-TRAINING
CLEAN 44.98 26.10 24.51 37.54 62.73

ASR 9.67 14.68 9.22 8.35 2.85

66%

DELTA
CLEAN 83.58 73.04 75.52 75.30 94.23
ASR 95.36 64.58 93.80 80.77 56.39

RENOFEATION
CLEAN 77.25 74.46 76.09 74.48 93.56

ASR 9.85 3.55 7.53 12.22 4.73

RE-TRAINING
CLEAN 64.03 56.47 40.73 52.61 80.60

ASR 7.72 10.79 5.86 7.23 3.23

Table 6: Comparison among DELTA, DELTA with

PGD-3 adversarial training, and proposed Renofeation.

Renofeation has the best robustness with comparable clean

data performance with other DELTA variants.

DOG BIRD ACTION INDOOR FLOWER

DELTA
CLEAN 84.39 78.75 77.69 78.36 95.90

ASR 95.65 58.83 93.51 79.71 43.65

DELTA ADV. TRAINED
CLEAN 82.83 77.10 75.69 77.84 95.12

ASR 85.86 16.77 85.19 61.84 23.85

DELTA ADV. TRAINED + SWA + DO
CLEAN 81.42 80.20 79.12 78.28 96.81
ASR 53.03 8.93 63.72 36.60 4.92

RENOFEATION
CLEAN 78.11 79.03 79.07 76.79 95.59

ASR 9.83 3.41 7.16 11.08 2.86

shown in Table 6, adversarial training indeed achieves bet-

ter robustness compared to the baselines but worse com-

pared to Renofeation. This is because, as a defense method,

Renofeation has used the prior that the attack is generated

using the pre-trained model and defends accordingly using

random initialization while adversarial training has not har-

nessed this prior.

5.6. Regularization and feature distillation

We have shown in previous sections that both dropout

(DO) and stochastic weight averaging (SWA) are helpful in

reducing the attack success rate. It is not clear if this hap-

pens due to the reasons we expected: “reduce overfitting in

terms of the feature distillation loss.” As a result, we ana-

lyze the impact on feature distillation loss when DELTA-R

is augmented with DO and SWA. As shown in Table 7, we

observe that these regularization techniques indeed increase

the feature distillation loss, which in turn improves the ro-

bustness of DELTA-R. Additionally, we find empirically

that both dropout and SWA can work together to achieve
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better regularization.

Table 7: The effect of dropout and SWA on feature dis-

tillation loss, clean-data performance, and robustness for

DELTA-R and ResNet-18.

DOG BIRD ACTION INDOOR FLOWER

DELTA-R

CLEAN 82.49 77.58 76.79 77.39 94.49

ASR 37.93 7.28 60.83 38.48 14.30

FEATURE LOSS 0.70 1.48 0.72 0.68 0.56

DELTA-R + DROPOUT

CLEAN 81.21 77.72 78.00 77.31 95.35

ASR 17.91 4.24 18.98 22.30 7.44

FEATURE LOSS 0.86 1.57 1.03 0.89 0.68

DELTA-R + SWA

CLEAN 80.32 78.92 78.07 77.69 94.81

ASR 12.87 3.65 23.62 16.72 2.95

FEATURE LOSS 0.86 1.63 0.87 0.82 0.73

RENOFEATION

CLEAN 78.11 79.03 79.07 76.79 95.59
ASR 9.83 3.41 7.16 11.08 2.86

FEATURE LOSS 1.00 1.68 1.06 1.02 0.81

5.7. Tuning hyperparameters for DELTA

A natural idea to reduce the impact of feature distillation

is to tune its corresponding weight (λfeat) on the training

loss. As shown in Figure 4, even the best λfeat still incurs

high ASR for datasets such as Indoor, Dog, and Action. The

performance gained obtained by Renofeation cannot be ob-

tained by simply tuning the weight for the feature distilla-

tion loss.

Figure 4: The effect of tuning λfeat on the trade-off be-

tween clean-data performance and the attack success rate

for ResNet-18. Star marks the λfeat we use.

6. Conclusion
In this work, we first show that the attack proposed

by Rezaei et al. [27] works not only for transfer learn-

ing by re-training the last linear layer, but also for end-

to-end fine-tuning. This is concerning due to the widely

adopted fine-tuning paradigm. We show that the attack suc-

cess rate correlates well with the similarity between the pre-

trained and the fine-tuned model. Based on this observation,

we propose Renofeation, a transfer learning method that

is significantly more robust to adversarial attacks crafted

based on the pre-trained model when compared to state-

of-the-art transfer learning methods based on fine-tuning.

Renofeation has two key ingredients: (1) random initial-

ization and (2) noisy feature distillation. We have exten-

sively analyzed the proposed Renofeation empirically with

ablation to demonstrate its effectiveness. While the threat

model under consideration is relatively new [27], it is cru-

cial to improve robustness under this threat model due to

the practical popularity of fine-tuning. This work takes a

first step towards improving the robustness under this threat

model and sheds light on this topic for future study.
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