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Abstract—The crossbar architecture with resistive random-
access memory (RRAM) devices presents many advantages in
realizing matrix-based computations and achieves success in
neural network implementation. However, the rapid growth of
network size demands even denser structures. In this paper,
we investigate the neuromorphic hardware design based on
the three-dimensional vertical RRAM (3D VRRAM) with an
even/odd word line (WL) structure. The increased intercon-
nects of VRRAM aggravate the chronic problems of the
crossbar structure like the sneak path currents. We address
this issue by attaining a balanced structure with high nonlinear
RRAM devices. Furthermore, the impact of complicated signal
routing and control due to the vertically stacked structure can
be alleviated through architectural level optimization. A three-
layer VRRAM structure is demonstrated for neuromorphic
design by showing that 8 × 8-pixel images were successfully
classified into three alphabet characters on this structure. The
example design also verifies that the 3D VRRAM with even/odd
WL structure is beneficial to acquire high area efficiency.

Keywords-3D RRAM; 3D neuromorphic system; vertical
resistive random access memory (VVRAM).

I. INTRODUCTION

In recent years, machine learning has accomplished
tremendous achievements, particularly at the algorithm and
application levels. The development of hardware systems,
however, falls far behind due to the lack of support in
real-time learning and high power consumption of the
conventional von Neumann architecture [1]. Neuromorphic
systems that mimic the high parallelism of neuro-biological
architectures have attracted much attention as a replacement
of the von Neumann design. The use of emerging non-
volatile memories (eNVM) as synaptic devices further ad-
vances the potential of the neuromorphic hardware design.
Among all the eNVM technologies, the resistive random-
access memory (RRAM) has been taken as one of the most
promising candidates for its advantages of good scalability,
fast switching speed, and inherent multilevel states [2], [3].
The simple two-terminal structure of RRAM naturally forms
the two-dimensional (2D) crossbar array that enables large-
scale parallel computations. In particular, the strength of per-
forming vector-matrix multiplication (VMM) has accelerated
the use of the 2D RRAM-based crossbar structure [4].

As neural networks have been rapidly evolving, even
denser structures are demanded to match the ever-growing
size of neural network models. As such, three-dimensional
(3D) crossbar arrays are emerging to substitute the use of 2D
arrays. Comparing the two common types of 3D structures
— horizontally stacked 3D RRAM (HRRAM) and 3D
vertical RRAM (VRRAM) [5], [6], VRRAM is considered
to be more promising for neural network deployment, mainly
because of its high bit-cost scalability [7], [8].

According to the shape of stacked word lines (WLs),
3D VRRAM is usually organized in two ways: the plane
WL structure and the even/odd WL structure. The former
adopts an entire metal plane as a WL and stacks multiple
WLs vertically. Due to its simple structure, the 3D VRRAM
with plane WL structure has been investigated for deploying
machine learning algorithms [8]–[10]. The even/odd WL
3D VRRAM uses the comb-shaped plane WLs, which can
be obtained by processing an additional etch step on the
plane WL structure. A previous study [11] showed that the
even/odd WL 3D VRRAM can contain doubled cell bits
than the WL plane structure, indicating a high potential
in neural network implementation. However, the split WLs
increase the interconnect lines, which necessitate a sophisti-
cated control mechanism to cell accesses and exacerbate the
sneak path issue. For this reason, the application of the 3D
VRRAM with even/odd WL structure is remarkably lacking.

In this work, we explore the neuromorphic design based
on the 3D VRRAM with the even/odd WL structure by
considering the structural features. The split even/odd WLs
are used to represent the synapses and connected to the
positive/negative lines of current-sense amplifiers, which
generate a corresponding result after computing. A balanced
structure to avoid elongating the sneak leakage path is
attained by arranging inputs/outputs in view of 3D archi-
tecture. Instead of including additional devices to alleviate
the sneak path issue, we leverage the high nonlinearity of
Ta2O5 RRAM. Furthermore, we define a weight adjustment
method to harmonize with the use of even/odd lines and
devise a sequential operation to ensure to program only
intended cells.



The proposed design enables a modified reinforcement
learning algorithm to be directly executed on the 3D hard-
ware system. In the paper, we present a design example of
classifying 8×8-pixel images into three alphabet characters
on the structure. Compared to implementation based on the
2D crossbar array, our design achieves 6× improvement
in area density. To evaluate the design approaches, the
impact of the sneak path currents is analyzed. The analysis
verifies the effectiveness of the even/odd WL structure for
neuromorphic system implementation.

II. RRAM & 3D VRRAM

Shortly after nano-scale thin-film structures were dis-
covered as memristors that had been missed for long,
researchers noticed its analogy to the biological synapse
[12]. Since then, there have been extensive studies on
developing memristor devices (a.k.a. resistive memory or
RRAM) toward electric synapses [13], [14]. For example,
early exploration by M. Hu et al. [4] showed that the synaptic
weighting function, which is abstracted as VMM in neural
network models, can be naturally realized through RRAM
crossbar arrays based on Kirchhoff’s Law.

Practical designs, however, need to deal with many non-
ideal properties, such as nonlinearity of device characteris-
tics, signal degradation induced by IR drops, limited data
precision, etc. In particular, using multiple binary RRAM
devices to represent one synaptic weight has been adopted
in many designs [8], [10]. Such an approach promises
the high data precision while dramatically degrading the
design efficiency. The situation could become even more
severe with the ever-growing size of neural networks and
associated increasing computation requirements. On the one
hand, researchers attempt to reduce the model size through
algorithm level techniques like sparsification [15]. On the
other hand, continuous efforts have been taken for improving
array density and innovating circuit and architecture designs.
One of the important approaches is developing 3D RRAM
structures to boost area efficiency of neuromorphic systems.

A straightforward way of building 3D RRAM is to stack
multiple 2D arrays vertically, i.e., HRRAM. However, it
is hard to fabricate such a structure when considering the
alignment across layers. Another concern is the cost of the
lithographic process, which is proportional to the number
of layers. In contrast, the fabrication of multilayer in 3D
VRRAM can apply a single critical lithography and etch
step regardless of the number of layers by punching through
the layers at once [7], [16].

In practice, there are two commonly reported 3D VRRAM
structures: 3D VRRAM with plane WL structure and 3D VR-
RAM with even/odd WL structure. As depicted in Figure 1,
unlike the 3D VRRAM with plane WL structure that uses an
entire metal plane for a WL, the even/odd WL design divides
a WL plane into two comb-shaped WL branches, even and
odd, respectively illustrated in orange and blue horizontal

lines in Figure 1(b). Memory cells denoted by the small
orange or blue portion of vertical pillars are sandwiched
between WLs and vertical pillar electrodes (in yellow color).
Connecting the vertical pillars to bit lines (BLs), transistors
controlled by select lines (SLs) are used to switch-on/-off the
pillar electrodes. BLs organized in an orthogonal direction
to SLs are used to feed inputs to the vertical pillars. The
interplay between BLs, SLs, and WLs enables the random
accesses to all the memory cells.

Comparing to the plane WL, the even/odd WL struc-
ture requires an additional etch step, but it can integrate
twice the number of cells under the same performance
constraint [11]. Thus the latter design is more preferable for
the neuromorphic designs. Compared with the 2D crossbar,
the complicated interconnection of 3D VRRAM makes the
design more challenging, mainly due to the following two
issues: (1) when programming target cells, non-target cells
that share the same lines with the target cells are more
vulnerable to be affected; and (2) the sneak leakage path per
area increases. As such, 3D VRRAM requires more carefully
designed operations.

III. THE PROPOSED DESIGN METHOD

Despite outstanding area efficiency of the 3D VRRAM
with even/odd WL structure, its use for neuromorphic
systems is notably lacking. This is because a misplanned
control interface could cause unintentionally programming
non-target cells and the aggravated sneak path in 3D could
degrade learning accuracy. In this study, we propose a
hardware design to minimize the side effects induced by the
increase of interconnects through a more balanced structure
along the three orthogonal directions (WL, BL, and SL),
high nonlinear devices with an optimized voltage applying
method, and an operation sequence for in situ training.

Figure 1: The illustration of three-layer 3D VRRAMs: (a)
the plane WL structure; (b) the even/odd WL structure.



Figure 2: A layer of 3D VRRAM with even/odd WL
structure.

A. Hardware Architecture

A 2D crossbar array conducts the matrix computation
by applying an input vector to rows and collecting the
output from columns. A great number of input parameters
with developed neural networks drastically augment the
number of the rows, in contrast with the bounded number
of columns. Such an unbalanced structure aggravates the
extension of the sneak leakage path in 2D crossbar-based
designs [9]. Here, we propose to feed input data through the
vertical pillar electrodes and detect the output at the WLs.
The approach leads to a more balanced array configuration
on layers, i.e., similar row and column lengths, which helps
reduce the elongated sneak path.

We use each layer of the 3D structure to denote one class
of information. As a physical ReRAM device can express
only a positive value, two memory cells on a layer are paired
to represent one synaptic weight that could be positive or
negative, as illustrated in Figure 2. Accordingly, a set of the
even and odd WLs is respectively fed to the positive and
negative inputs of a sense amplifier to generate an output.
When a current sense amplifier of the layer generates a
spiking voltage by a certain input, the input is labeled as
the class of the layer.

In previous 2D crossbar-based designs, the one-transistor-
one-RRAM (1T1R) or one-selector-one-RRAM (1S1R)
structure has been widely adopted in memory cells to allevi-
ate the sneak path issue. These structures are not suitable for
3D VRRAM due to the high complexity of 1T1R and the
possibility of the short-circuit connection in vertical pillars
induced by 1S1R [17]. Alternatively, ReRAM devices with
a highly nonlinear I-V (current-voltage) characteristic are
employed to reduce the impact of sneak path current. In
the following study, the Ta2O5 device is adopted, while the
proposed design method can apply to other ReRAM devices
with high nonlinearity.

B. RRAM Device with High Nonlinearity

We adopt the generalized RRAM modeling method and
code the I-V characteristic of the Ta2O5 device in Verilog-
A for the HSPICE simulation. According to [18], the root
mean square error is set below 7% when modeling the
characterization data of device structures. The mathematical
function set of our modeling is summarized in Equations
(1∼6) and the related parameters are shown in Table I.

In our modeling, the current through the device at time t,
I(t), is a hyperbolic sine function of its excitation voltage
V (t), to implement the threshold effect. The variable b is
used to control nonlinearity, which shall be sufficiently large
for devices of interest. I(t) is also related to the state variable
x(t), which directly affects the conductance and can be
taken as an index of the weight state. As such, I(t) can
be calculated by

I(t) =

{
a1x(t) sinh(bV (t)), V (t) ≥ 0

a2x(t) sinh(bV (t)), V (t) < 0

}
. (1)

The change of the state variable over time depends on
two functions, g(V (t)) and f(x(t)), such as

dx

dt
= g(V (t)) · f(x(t)), (2)

where g(V (t)) denotes the threshold effect. The positive
and negative threshold values are set by Vp and −Vn,
respectively. Only when V (t) exceeds the threshold, the
device can be programmed and its conductance is affected:

g(V (t)) =


Ap(e

V (t) − eVp), V (t) > Vp

−An(e−V (t) − eVn), V (t) < −Vn
0, otherwise

 . (3)

f(x(t)) is a function to oppress the change of x, when it
is approaching the boundaries, defined by xp and xn. The
function limits x between 0 and 1. When V (t) > 0, f(x(t))
is calculated by (4); otherwise, it is described by (5).

f(x(t)) =

{
e−αp(x−xp)wp(x,xp), x ≥ xp

1, x < xp

}
and (4)

f(x(t)) =

{
eαn(x+xn−1)wn(x,xn), x ≤ 1− xn

1, x > 1− xn

}
, (5)

where

wp(x, xp) =
xp − x

1− xp
+1 and wn(x, xn) =

x

1− xn
. (6)

Figure 3 shows that the I-V curve produced by our model
fits well with experimental measurement data of the Ta2O5

RRAM device from [19]. We use this type of RRAM for an
analog synaptic device and apply short and repeated voltage
pulses to adjust weights. Because pulses are not calculated
complicatedly to adjust the exact amount of the weights,

Table I: Ta2O5 RRAM modeling parameters in this work.
Variable Value Variable Value
a1 1× 10−5 An 1× 107

a2 1× 10−5 xp 0.2
b 2.1 xn 0.25
Vp 1 [V] αp 7
Vn 1 [V] αn 6
Ap 3× 106 xo 0.3



Figure 3: I-V characteristic of Ta2O5 RRAM device.

Figure 4: The resistance change when injecting (a) positive
and (b) negative pulses.

such a voltage applying approach is conducive to simply
using the nonlinear curve.

In the following simulations, we set ±1V as threshold
voltages to change the resistance state and use ±1.5V as
write voltages Vw in programming operations. Our simula-
tion result in Figure 4 shows that according to the number
of pulses, the device resistance gradually changes when a
full range of voltage Vw = ±1.5V was applied. Under
this condition, the effective voltage amplitude across the
device in our system was approximately 1.4V . Lowering the
voltage amplitude to 1.4V makes the change of resistance
at a slightly slower but almost similar rate. A voltage that is
lower than the threshold, e.g, ±0.75V , does not affect the
resistance value as shown in Figure 4.

C. In Situ Training Operation

The weight intensification and weakening can be accom-
plished by adjusting the relative conductance of the two
cells, as shown in Figure 5. When the conductance of the
RRAM device connected to the even (positive) line increases
and that of the cell to the odd (negative) line decreases,
it is regarded as the weight intensification. The opposite
conductance change indicates weight weakening. We apply
1.5V and 0V to the p and n terminals of RRAM to increase
the conductance or the reverse voltages are applied to the
opposite terminals to decrease the conductance.

Table II: The guide training method.
i-th input W(i, positive) W(i, negative)

Target 1 Increased Decreased
0 Unchanged Unchanged

Non-Target 1 Decreased Increased
0 Unchanged Unchanged

Figure 5: Cases of weight change when data 1 is given.

As a learning algorithm, we apply the guide training
algorithm, which is a modified reinforcement algorithm for
training [20]. The algorithm employs the feature of Heb-
bian learning, where the weight adjustment is determined
based on a correlation between an input and output pair.
The training induces a spike of the predefined neuron in
accordance with an input by intensifying the target neuron
weights and weakening the non-target neurons repeatedly.
Such a repetitive weight change method accords with our
voltage applying approach of the analog devices and thus
is suitable for the hardware implementation with analog
synaptic devices.

An input is composed of a vector of binary data, in
which the black and white pixels are denoted by 1 and
0, respectively. As shown in Table II, the training process
increases or decreases the conductance of black pixels. The
weights associated with white pixels are not affected by
the weight change. Additionally, the conductance of the
even line in the target layer can be further adjusted up to
strengthen its weight value.

Figure 6 illustrates our voltage applying sequence exam-
ple when training Layer 1, the top layer in the structure.
As a part of intensifying Layer 1 and weakening other
layers, the even line conductance of Layer 1 and the odd
line conductance of other layers need to increase. At step
1, these conductance increases are concurrently executed
by applying 0V to the pillar electrode and 1.5V to the
even line of Layer 1 and the odd lines of the non-target
layers. Likewise, adjusting the conductance downward is
also carried out concurrently (Step 3). As aforementioned,
Step 2 can be included to further strengthen the target layer.

Figure 6: The voltage applying method to adjust the conduc-
tance of devices at the cell level. This illustration assumes
that the first WL is the target layer.



Figure 7: Sequential operation in even/odd 3D VRRAM.

The training steps are sequentially operated by SLs to
avoid affecting non-target cells when programming target
cells. When an input image is a T-shape image, for instance,
the first step is turning on only the first SL, as illustrated
in Figure 7. Consequently, only the first column data, i.e.,
110000 in this case, are supplied to the BLs. Meanwhile,
voltages are applied to the first WL to spike the layer for
T, and the opposite voltages are simultaneously applied to
other WLs. After completing the writing of the first column,
the operation moves to the rest columns.

The computing operation is executed similarly as the
writing operation, except for that the applying voltage for
data 1 is 1V and for data 0 is 0V .

IV. RESULT AND DISCUSSION

Case study setup. This study takes an example of classi-
fying 8×8-pixel black/white images into three characters (T,
X, and V) in the even/odd 3D VRRAM. We used HSPICE
for the circuit simulation, and implemented devices and
voltage controllers by Verilog-A. The original image data
set consisted of the original images of three characters.
Training was conducted with 300 sets of original images,
then testing was executed five times with defective images.
Five testing image sets were consisting of 1-, 2-, 4-, 8-,
and 16-pixel flipped image sets as shown in Figure 8. We
randomly inverted pixels and each testing image set has 200
images that possibly contain duplicated images.

Independent programming. To examine whether weights
of memory cells are adjusted independently during the

Figure 8: (a) Training and (b) testing images.

Figure 9: The weight change of Layer 1 over time during
training.

training, we plot the weight changes of all the cells. Figure
9 presents those in Layer 1 as an example; red lines stand
for device weights in the even branch, while blue lines show
device weights in the odd branch. The figure shows that as
the training process proceeds, the weights tend to saturate
toward an appropriate value determined by the learning
process. Similar trends of the weight changes are observed
in other layers too.

Testing accuracy. Figure 10 shows accuracy according to
the number of flipped pixels. Although the image with more
pixels flipped shows lower accuracy, accuracy is 100% until
four pixels of 64 pixels are inverted. When the error was
25% of input images, the test result was 98.46%. This result
verified that the performance of our design is reliable.

Area comparison. The required area of the even/odd WL
structure is much smaller than that of the 2D crossbar array.
In [21], processing 3×3 images demands a 9×6 2D crossbar
structure. For 8 × 8 images, 2D architecture with 1T1R or
1S1R needs a 64×6 array and one cell requires at least 4F 2,
where F denotes the feature size. Thus, the overall design
area could be 1536F 2. In contrast, 3D VRRAM requires a
8 × 16 × 3 structure to process 8 × 8 images. When using
the 3D VRRAM with plane WL structure, whose cell also
requires 4F 2, the plane area may occupy 512F 2 [10]. The
3D VRRAM with even/odd structure occupies only 256F 2

because of its twice density than that of the 3D VRRAM
with plane WL structure [11], [17]. The 3D VRRAM with
even/odd WL structure shows high area efficiency with the
6× smaller areas than that of 2D crossbar array.

Impact of sneak path current. To figure out the impact
of the sneak path, we built a subarray of the even/odd 3D
VRRAM and set the same condition up on the subarray as
the control group. Because the testing (computing) was also

Figure 10: Accuracy according to the number of flipped
pixels of images.



executed SL by SL like the training procedure, the subarray
size was 8×2. We then measured and compared the currents
from the subarray and the corresponding SL of the original
system. The results showed only a slight difference: the
current of the original system is about 2µA less than the
current of the subarray only, as the latter one is not affected
by the other parts of the array. This small difference indicates
that the entire system is immune to the sneak path, thanks to
the use of the device nonlinearity and the structural features.

V. CONCLUSION

In this study, the 3D VRRAM with even/odd WL struc-
ture was explored for the neuromorphic hardware system.
Although the 3D VRRAM with even/odd WL structure is
advantageous to improve area efficiency, exploration of the
structure is remarkably lacking, due to the comparatively
complicated inner organization. We devised an operation
scheme to deploy high area efficiency of the even/odd
structure, exploring ways to avoid the two largest problems,
the sneak path current and writing unintentionally. This work
demonstrates the even/odd structure improves the area effi-
ciency. Furthermore, the high accuracy proves that using the
3D even/odd structure for the neural network is reliable. As
a result, this study shows the capability of the 3D VRRAM
with even/odd WL structure for neuromorphic systems and
expands the area of the 3D neuromorphic hardware system.
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