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People are looking for complementary contexts, such as team members of complementary skills for project
team building and/or reading materials of complementary knowledge for e"ective student learning, to make
their behaviorsmore likely to be successful. Complementarity has been revealed by behavioral sciences as one
of the most important factors in decision making. Existing computational models that learn low-dimensional
context representations from behavior data have poor scalability and recent network embedding methods
only focus on preserving the similarity between the contexts. In this work, we formulate a behavior entry
as a set of context items and propose a novel representation learning method, Multi-type Itemset Embedding,
to learn the context representations preserving the itemset structures. We propose a measurement of comple-
mentarity between context items in the embedding space. Experiments demonstrate both e"ectiveness and
e#ciency of the proposed method over the state-of-the-art methods on behavior prediction and context rec-
ommendation. We discover that the complementary contexts and similar contexts are signi$cantly di"erent
in human behaviors.
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1 INTRODUCTION
Contextual behaviors are de$ned as the products of interaction between multiple types of con-
texts [25]. The multi-type contexts often include operators, goals, resources, and spatiotemporal
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Fig. 1. The multi-type itemset embedding method learns item representations collectively from the set struc-
ture. When it is applied to paper-publishing behavior data, the embeddings preserve the composition of a
paper being successfully published instead of pairwise similarity between a paper and any item of it.

and social dimensions. Given the complexity of these components in human behaviors, it is di#-
cult to develop a successful plan and make right decisions. For example, who should be invited to
a project team to make it more successful (in terms of solving real problems and publishing at top
venues)? What knowledge and skills should the team have?With the increasingly available behav-
ior databases in $elds such as social media, education, and academic research, we now have an in-
valuable source of information to discover behavioral patterns and support decisionmaking. Again,
let us consider the multi-dimensional paper-publishing behavior as an example: it has authors, tar-
get conference/journal, datasets, problems, methods, references, and so on. Tensormethods decom-
posemulti-dimensional counts (e.g., numbers of co-occurrences among one author, one conference,
and one reference) into low-dimensional latent vectors [23]. However, real behaviors do not guar-
antee single context item per dimension [19]: a paper can have multiple authors and references.
Multi-contextual factor models learn latent factors of users and items through an expectation-
maximization process [16], but neither of these methods can scale for massive behavior data.
Recently, embedding methods have been proposed to learn low-dimensional features of nodes

on large-scale networks. Certainly, we can represent behaviors and contexts as nodes and obtain
a “behavior-to-context” bipartite graph (e.g., the “paper-author/venue” graph in Figure 1(a)). The
existing embedding methods preserve pairwise similarity between a behavior and any of its con-
text, such as connections, common neighbors, and random walk based measures [6, 10, 28, 35, 39].
However, as having been revealed in behavioral sciences, decision makers are looking for not sim-
ilar but complementary partners, resources, and conditions that provide extra power to make a
behavior more successful. For example, partners need complementary strengths to do successful
business [8, 14]; courses need complementary teachingmaterials to achieve e"ective student learn-
ing [13, 33]. Therefore, we argue that, in order to support e"ective decision making, the behavior
embeddings should preserve the complementarity rather than similarity.
In this work, we propose a measurement of complementarity between two context items con-

ditionally based on other contexts in the behavior: it is de$ned as the extent that two contexts
together being in the behavior increase the success rate of the behavior over only one of them
being included. Now we need to de$ne the success rate of a behavior. We represent a behavior as
a multi-type itemset, i.e., a set of context items of multiple types, instead of a multi-dimensional
count or an explicit node. For example, as shown in Figure 1(b), the paper is represented as an
itemset b = {a1,a2, c1,k1, r1} where a1 and a2 are authors, c1 is a conference, k1 is a keyword,
and r1 is a reference. The success rate of this behavior r (·) is de$ned as the probability of it being
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occurred/observed. For example, r (b) = 1 (100%) if the paper is published; otherwise, r (b) ∈ [0, 1).
This de$nition can be generalized as the outcome a behavior creates, for example, if a tweet-posting
behavior is represented as an itemset of user, hashtags, words, and emoticons, and its success rate
can be evaluated as its popularity level, i.e., the number of times it is retweeted.
Here are the novel and challenging tasks in the $eld of user behavior modeling we want to solve.
Task1 (Contextual behavior prediction). Given a behavior b and its set of context items, predict

the behavior b’s success rate r (b).
For example, given a set of authors, keywords, and a conference, predict the probability of a

paper of these items being published in the conference’s proceedings (see Figure 1(c)).
Task2 (Behavioral context recommendation). Given a behavior b and its set of context items,

recommend complementary context items that will maximize the success rate of this behavior.
For example, given a student author, a top-tier target conference, some keywords (e.g., “datamin-

ing”), recommend other authors, proper keywords, and references that will maximize the chance
of the student’s paper being accepted by the conference (see Figure 1(d)).
Note that these two tasks can be found in many applications such as target advertising, person-

alized consulting, and military mission planning. Generally, we are looking for complementary
operators/resources to maximize the chance of achieving the goal/success when being incorpo-
rated into existing operators, resources, and other contexts.
We propose a novel method that e#ciently learns representations of behavior’s context items

of multiple types by preserving the itemset structure, or say, the complementarity betweem items.
This is rather challenging. First, similarity between representations of any pair of items in the item-
set is no longer capable of measuring the success rate of the itemset. Secondly, the itemset structure
has heterogeneity: di"erent context types contribute to the success at di"erent extents. For exam-
ple, it is de$nitely more impactful for a paper to involve one more internationally known expert
than one more reference item. Thirdly, in most cases, we can only observe positive behaviors. For
example, it is easy to collect tons of published papers but hard to $nd rejected or non-$nished ones.
The embedding method has to be careful to generate negative instances for embedding learning.

To address the above challenges, our method, called “Multi-Type Itemset Embedding,” measures
the success rate of an itemset in the vector space by the hyperbolic tangent of the sum of vectors of
items in the itemset. First, it learns items’ feature vectors collectively on both similarity (angle) be-
tween any pair of vectors and norm of each vector itself by optimizing the co-occurrence of all the
items in the set. Secondly, our method assigns type weights to the context items when represent-
ing the itemset as a weighted sum of vectors, which has been demonstrated to be useful in experi-
ments. Thirdly, we introduce two kinds of negative behavior sampling strategies, size-constrained
and type distribution–constrained, to generate negative samples when they are unavailable. We
propose a novel framework, called “Complementarity in ItemSet Embedding” (CISE), that $rst
learns items’ low-dimensional representations using the itemset embedding, then measures the
complementarity between any pair of context items and feeds the itemset representations into a
logistic/linear regression model to predict success rate or recommend items for maximizing the
success rate.
Here, we summarize our contributions in this article.
— We propose to study two novel tasks in user behavior modeling: (1) contextual behavior

prediction and (2) behavioral context recommendation.
—We proposeMulti-Type Itemset Embeddingmethod to collectively learn items’ representations

preserving the itemset structure. It includes a novel measurement of success rate for learning
the itemset structure, considers item type’s weight for heterogeneity, and conducts negative
behavior sampling for representation learning if necessary.
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— Based on the embeddings, we propose a measure of complementarity between contexts in a
behavior. We theoretically and empirically prove it is signi$cantly di"erent from similarity.

— We develop the CISE framework to e"ectively solve these two tasks. Empirical results show
new discovery of complementarity in human behaviors, which provides insights for behav-
ioral scientists to understand behavioral mechanisms from big data.

The rest of this article is organized as follows: Section 2 reviews related work and Section 3
de$nes concepts and research problems. Our CISE framework is presented in Section 4. Section 5
shows experimental results and Section 6 concludes the paper.

2 RELATEDWORK
In this section, we review existing methods in three relevant $elds to our work, including contex-
tual behavior modeling, network embedding, and text embedding.

2.1 Contextual Behavior Modeling
There has been a wide line of research on learning latent representations of context items [18,
41, 46, 49, 50] in behavior data toward various applications [7, 20, 32, 42, 43, 48]. Agarwal et al.
proposed localized factor models combining multi-context information to improve predictive ac-
curacy in recommender systems [1]. Jamali et al. proposed context-dependent factor models to
learn latent factors of users and items for recommendation [16]. Besides factor models, tensor de-
compositions have been widely used for modeling multi-contextual data [31]. Jiang et al. proposed
a tensor-sequence decomposition approach for discovering multi-faceted behavioral patterns [17].
Ermiş et al. studied various alternative tensor models for link prediction in heterogeneous data [9].
Lian et al. proposed regularized tensor factorization for spatiotemporal recommendation [23].
Yang et al. developed a predictive task guided tensor decompositionmodel for representation learn-
ing from Electronic Health Records [45]. Perros et al. designed a scalable PARAFAC2 tensor model
for large and sparse datasets [29]. However, as pointed out in [19], tensor requires one value for
each context dimension, which cannot support full representation for multicontextual behavior
entries that may have non-value or multi-values in a dimension. Also, the computational cost of
factorizing a large matrix or tensor is highly expensive. None of the existing behavior modeling
methods can e#ciently learn item representations to optimize success rate on behavior data.

2.2 Network Embedding
Network representation learning methods learn node representations that preserve node proximi-
ties (e.g., one-hop or two-hop connections) in network data [3, 5, 11, 24, 44, 47]. LINE [35] provided
clear objectives for homogeneous network embedding that articulates what network properties are
preserved. DeepWalk [28] used randomwalks to expand the neighborhood of a node and expected
nodes with higher proximity yield similar representations. node2vec [10] presented biased random
walkers to diversify the neighborhood. We have spotted a series of heterogeneous network embed-
ding work [6, 12, 40] that capture heterogeneous structural properties in network data. Chen and
Sun proposed a model that enables two features, task-guided and path-augmented, in the network
embedding method to identify author names given an anonymized paper’s title [4]. If we explicitly
represent behavior entries as nodes and thus behavior datasets are represented as behavior-item
heterogeneous bipartite networks, existing network embedding methods can be applied to learn
the representations of both items and behaviors. However, these methods preserve node proximi-
ties so they can only $nd similar items for a behavior. Our proposedmethod learns the composition
of context items in a behavior, i.e., the itemset structure, and preserves a behavior’s success rate.
It looks for complementary items that will maximize the success of a target behavior. We compare
our method against the state-of-the-art network embedding algorithms.
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Table 1. Symbols in This Article and their Descriptions

Symbol Description
c , C Context item, and the set of all items
t , T Context (item’s) type, and the set of all types
b, B Behavior, and the set of all “positive” behaviors
r (b), r̂ (b) Estimated and observed success rate of behavior b
t(c) Context type of context item c

d Number of dimensions in a low-dimensional space
#c Low-dimensional vector of context item c
#b Low-dimensional vector of behavior b
wt Learning weight of context type t

2.3 Text Embedding
With the success of deep learning techniques, representation learning becomes popular starting
from practices on text data. Mikolov et al. proposed the word2vec framework to learn the dis-
tributed representations of words in natural language [26]. Pennington et al. proposed GloVe to
learn word vectors from nonzero elements in a word-word co-occurrence matrix [27]. Le and
Mikolov extended the embedded objects from words or phrases to paragraphs [22]. Our work fo-
cuses on representation learning from behavior data that is represented as multi-type itemsets.

3 PROBLEM DEFINITION
In this section, we de$ne the concepts used throughout this article, and then formally de$ne the
research problems we study. Table 1 presents symbols we use in this article and their descriptions.
De!nition 3.1 (Context type). A behavior includes multiple types of contexts such as individuals

who make the action, behavioral goals, and resources. A context type is the type of a context. For
example, a paper-publishing behavior has authors (as operators), a conference or journal (as be-
havioral goal), keywords, technical terms, datasets, and references (as resources). A tweet-posting
behavior has a social network user (as operators), a speci$c topic, a geolocation tag, words, hash-
tags, urls, and emoticons (as resources). Any type of these elements can be a context type such as
“author,” “conference,” “reference,” “word.” and “hashtag.”

De!nition 3.2 (Context item). A context item is a concrete item of a context type, such as an
author’s name, a conference’s name, or a concrete publication as a reference in a paper-publishing
behavior. A context item c must have a context type t(c).
De!nition 3.3 (Behavior and multi-type itemset). A behavior is a relationship among multiple

types of context items. It can be represented as a set of the context items. A behavior is equivalent
to amulti-type itemset.

For example, given a conference paper, the paper-publishing behavior is a set of author(s), confer-
ence, keyword(s), reference(s), and some other relevant items to this paper. The quantity and types
of items in an itemset may vary from behavior to behavior. A paper-publishing behavior contains
at least one author and keyword, exactly one conference, and multiple references. A tweet-posting
behavior contains exactly one user and at least one word. To avoid ambiguity with other $elds, we
always refer to “context” strictly as de$ned in De$nition 3.2 throughout this article.
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De!nition 3.4 (Success rate). The success rate of a behavior is the value (as a numeric label)
denoting the real-world success of that behavior given its particular set of context items. For each
set of context items constituting a behavior b, we use r̂ (b) to indicate its success. where r̂ (b) ≥ 0.

For a speci$c kind of behavior, in order to de$ne the success rate, we should $rst de$ne what
is success. For example, for each paper in a publication dataset, we say the set of context items
in this article makes a success of a paper-publishing behavior, and thus the success rate of this
behavior is a positive number—we use 1 as default and we call the behavior a “positive” behavior.
This presents a challenge, as most datasets do not include entries on unpublished works. We will
overcome this obstacle in the model by adopting the strategy of negative sampling. Essentially,
we assume that most of the non-existing multi-type itemsets indicate unsuccessful behaviors. We
denote them as “negative” behaviors and set their success rate as 0.

Given di"erent measurements of success, the success rate could be di"erent. For a tweet-posting
behavior, if the success is measured as the existence of its context itemsets in tweet data, we have
tons of positive behaviors but no real negative ones; we have to generate non-existing itemsets as
negative behaviors. If the success is measured as the behavior’s popularity level, the success rate
can be viewed as the number of views, likes, retweets, or shares [15]. In this case, positive behaviors
are popular posts and negative behaviors are unpopular but still real posts. No non-existing itemset
needs to be generated though the success rate may need to be normalized to reduce variance.
In summary, the success rate associated with each behavior may be explicit (e.g., a rating or

score that the behavior received), or it may be implicit in the behavior data (e.g., the number of
occurrences of the behavior). Now, we de$ne what is behavior data.

De!nition 3.5 (Behavior data). Behavior data is de$ned as D = (C,T ,B), where C is the set
of unique context items, each having a particular type in T , and B is the set of behaviors, each
representing a relationship among one or more context items. Each behavior b ∈ B is a set of
context items b ⊂ C, which is associated with a nonnegative, observed success rate r̂ (b).

If both |C| and |B| are big, we call the datasetmassive behavior data. Based on the above concepts,
we formally de$ne the research problem as below.

Problem 1 (Massive behavior data embedding) Given amassive behavior datasetD = (C,T ,B),
the problem of Massive Behavior Data Embedding aims to represent each context item c ∈ C
as a low-dimensional vector #c ∈ Rd , i.e., learning a function fD : C → Rd , where d & |C|. In the
space Rd , the contributions of each context item toward a behavior’s success are preserved.
As in De$nition 3.3, a behavior can be generalized to a multi-type itemset of the same structure.

Therefore, the problem of behavior data embedding is equivalent to multi-type itemset embedding.
Problem 2 (Multi-type itemset embedding) Given a large set of items C, their types T and

a large set of multi-type itemsets B, the problem of Multi-type Itemset Embedding aims to
represent each item c ∈ C as a low-dimensional vector #c ∈ Rd , i.e., learning a function fD : C →
Rd , where d & |C|. In the space Rd , each item’s contribution toward an itemset’s composition is
preserved.
Much like heterogeneous information network embedding, itemset embedding aims to repre-

sent context items of various types as vectors in a low-dimensional space. Unlike network em-
bedding, which preserves pairwise proximity between nodes, itemset embedding preserves the
itemset structures. The vectors of items within an itemset may not be close to each other in Rd ,
but the vectors should sum to a vector with a magnitude representative of the behavior’s success.
Unlike network embedding models such as LINE [35] , DeepWalk [28], and node2vec [10] that

preserve proximities and were evaluated on clustering tasks, our behavior data embedding model,
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also a multi-type itemset embedding model, preserves the property of success. We will evaluate it
on the two tasks of behavior modeling we have introduced in Section 1 and compete with existing
works in experiments. These two tasks are challenging and important in this era of witnessing
how arti$cial intelligence and data science signi$cantly change our decision-making process.

4 THE CISE FRAMEWORK
Our CISE framework has two modules for learning behavior success. The $rst module is a multi-
type itemset embedding model that learns item representations from behavior data, in which we
propose a novelmetric ofmeasuring the success rate of a behavior. The secondmodule is to feed the
itemset representations into a logistic/linear regression model to predict the probability of a future
behavior’s success. It can also recommend complementary items to maximize the probability.

4.1 Multi-Type Itemset Embedding
A desirable embedding model for behavior data must satisfy several requirements: $rst, it must be
able to preserve the success property of multi-type itemsets; secondly, it must scale for massive
behavior data, say millions of context items and behaviors; thirdly, it must deal with behaviors
with arbitrary types and quantities of context items. In this section, we present a novel multi-type
itemset embedding model that satis$es all three of these requirements.

4.1.1 Model Description. We explain the embedding model to preserve success properties of
behaviors. The success of a behavior refers to the success achieved given a particular set of con-
text items. For each behavior b as a particular set of multi-type context items, we de$ne b’s low-
dimensional vector representation as follows:

#b =
∑
c ∈b

wt (c) · #c ∈ Rd , (1)

where #c ∈ Rd is the low-dimensional vector representation (e.g., one-hot embedding) of context
item c , and wt (c) is the type weight of c’s context type. Di"erent item types may have di"er-
ent levels of contributions to the behavior’s success. For example, one author or keyword often
contributes more to a paper’s acceptance than one reference item. Considering appropriate type
weights for di"erent context items in a behavior is essential for e"ectively capturing its success
property. Therefore, we assign type weights to the context types when we take the sum of the
items’ low-dimensional vectors to represent the behavior. We will discuss type-weight parame-
ter settings in the experiments section. For a behavior b, we de$ne b’s estimated success rate as
follows:

1r (b) = tanh ‖ #b‖2
2 = 2 · 1

1 + e−‖ #b ‖2
− 1, (2)

where ‖ #b‖2 ∈ [0,∞) is the Euclidean norm of #b in the d-dimensional space. The hyperbolic
tangent function tanh(x) is a rescaled version of the logistic sigmoid function д(x) = 1

1+e−x and
tanh(x) = 2д(2x)− 1. The output range of tanh(x) is [0, 1) instead of [ 12 , 1) because the norm ‖ #b‖2
is nonnegative. Equation (2) de$nes a distribution r (·) over the entire behavior space B, and its em-
pirical success rate can be observed as r̂ (b). To preserve the success properties, a straightforward
way is to minimize the following objective function:

O = d(r̂ (·), r (·)), (3)

where d(·, ·) is the distance between two distributions. We choose to minimize the KL-divergence
of two probability distributions of the itemset’s success rate. Replacing d(·, ·) with KL-divergence,
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we have
O = −

∑
b ∈B

r̂ (b) log r (b). (4)

Remark. Traditional embedding models optimize the similarity/proximity between vectors of a
pair of items, i.e., #ci · #c j . Our itemset embedding model optimizes the success rate based on the
norm of an itemset’s vector. If we expand the norm as below,

‖ #b‖2 =
"###
$
∑
c ∈b

wt (c)
2 · ‖#c ‖22 +

∑
ci ,c j ∈b
ci!c j

wt (ci )wt (c j ) · #ci · #cj
%&&&
'

1
2

, (5)

it is worthwhile of showing that our method learns the item vectors collectively of an itemset, and
it optimizes not only the vector similarity between every pair of items in the set but also the length
of norm of each item’s vector ‖#c ‖2.

4.1.2 Model Optimization. As explained inDe$nition 3.4, our proposedmodel should be trained
on behavior dataset B di"erently according to di"erent measurement of success. For example, in
order to optimize the objective function in Equation (4), if the success of a tweet-posting behavior
is measured as the behavior’s popularity level, e.g., the retweet count,B has both positive (popular
tweets w/high retweet counts) and negative behaviors (unpopular tweets/w low retweet counts).
If a behavior’s success is a binary measurement of its existence given its complete set of context
items, B has only positive behaviors, and we have to generate non-existing itemsets as negative
behaviors. We introduce our optimization approaches to deal with these two scenarios as follows.
When B has both positive and negative behaviors. Suppose the distribution of observed suc-
cess rate r̂ (.) (e.g., the number of times a tweet being retweeted) follows the Power Law, which is
often applicable in the real world. We have a reasonable number of negative behaviors in B, and
the objective function for each behavior b can be speci$ed as follows:

r̂ (b) log tanh ‖ #b‖2
2 = r̂ (b) log tanh

‖∑
c ∈b wt (c) · #c‖2

2 . (6)

We adopt the asynchronous stochastic gradient algorithm (ASGD) [30] for optimizing
Equation (6). In each step, the ASGD algorithm samples one observed behavior (can be either
positive or negative) and updates the model parameters. If a behavior b is sampled, the gradient
w.r.t. the embedding vector #c of a context item c in b will be calculated as

∂O

∂#c =
r̂ (b)

sinh ‖ #b‖2
· ∂‖

#b‖2
∂#c =

r̂ (b)
sinh ‖ #b‖2

· ∂‖
#b‖2
∂#b

· ∂
#b
∂#c =

wt (c)r̂ (b)
‖ #b‖2 sinh ‖ #b‖2

· #b . (7)

When B has only positive behaviors. In this case, we need to sample non-existing multi-type
itemsets and use them as “negative behaviors.” We approximate the optimization by sampling a
mini-batch of behaviors that includes one positive sample and several negative samples. Inspired
by the negative sampling technique proposed in [26], we propose the technique of negative behav-
ior sampling on behavior data (see Figure 2).
Negative behavior sampling. Given the set of context items for each context type, how do we
generate a non-existing multi-type itemset b ′ when we sample a positive itemset b from B? We
propose two di"erent sampling strategies. The $rst strategy is to apply a simple size constraint
on the entire itemset (say, the size of itemset b ′ is the same as the size of itemset b) without con-
straining the number of items for any type. We generate n(t), which is the number of items of
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Fig. 2. Negative behavior sampling: Given a sampled “positive” behavior (e.g., an observable paper), we pro-
pose two strategies to generate negative samples: size-constrained and type distribution–constrained. Dif-
ferences between two negative sampling strategies are highlighted in red.

type t ∈ T , so that the sum of n(·) is |b |, and then for type t , we randomly select n(t) items from
Ct , which is the set of items of type t in C, and put them into b ′. We denote the size-constrained
negative behavior sampling as b ′∼Pn(b) and have the following objective:

r̂ (b) log tanh ‖ #b‖2
2 +

K∑
k=1
Eb′∼Pn (b) log tanh

‖ #b ′‖2
−1

2 , (8)

whose gradient is derived as follows:

∂O

∂#c = wt (c) ·
(
Ic ∈b · r̂ (b)

‖ #b ‖2 sinh ‖ #b ‖2
· #b − Ic ∈b′ · 1

‖ #b′ ‖2
3
sinh 1

‖ #b′‖2

· #b ′
)
, (9)

where Ix is an indicator function that returns 1 if x is true and 0 if x is false. Note that here r̂ (b) is
above zero. Speci$cally, we set r̂ (b) = 1 for paper-publishing behaviors.K is the number of negative
behavior samples. We will later investigate the sensitivity of K in the experiments section.

The second strategy considers the context type distribution in a sampled positive itemset b. For
each type t , we randomly select n(t) context items from Ct , where n(t) is the number of context
items of the type t in the behavior b. We denote the type-distribution-constrained negative behavior
sampling as b ′ ∼ Pt (b), and we are able to simply replace Pn with Pt in the objective of Equation (8)
as well as in the derivative of Equation (9). We denote our method that uses size-constrained sam-
pling asCISE-Pn, denote our method that uses type-distribution-constrained sampling asCISE-Pt,
and compete against the state-of-the-art embedding methods in the experiments.
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4.1.3 Complexity Analysis. Sampling an itemset from behavior data takes constant time, O(1);
and, optimization with negative sampling takes O(d(K + 1)) time, where d is the number of di-
mensions and K is the number of negative samples. The number of steps is proportional to the
number of behaviors/itemsets O(|B|). Therefore, the theoretic overall time complexity bound of
the itemset embedding model is O(dK |B|), which is linear to the number of context items |C|.

4.2 Prediction and Recommendation Models
Once the representations of context items have been learned by the multi-type itemset embedding
model preserving the behavior success property, we can use those low-dimensional feature vectors
to solve the two behavior modeling tasks we have introduced in Section 1.
4.2.1 Contextual Behavior Prediction. Given a behavior/itemset b and its set of context items,

we train a logistic/linear regression model with the itemset’s representation #b and label r̂ (b) and
apply the model to predict the success probability of test instances.
4.2.2 Behavioral Context Recommendation. The above two models can both be applied for rec-

ommending complementary items for a potential behavior/itemset. The goal is to maximize the
predicted probability of being successful/observed. It is time-consuming (exponential time) to enu-
merate through all itemset candidates and compute their probability scores. So, in the experiments,
we will hide only one item for each testing itemset. We leave the task of recommending the best
combination of multiple items as future work.

4.3 The Measurement of Context Complementarity
After we have the latent representations of context items preserving the success property, we
investigate the complementarity between two context items given other contexts in the behavior.

De!nition 4.1 (Context complementarity). The conditional context complementarity between
two context items based on a given behavior is a measure of the surplus marginal value of success
rate brought to this behavior only if both of them appear in the particular behavior.

The “complementarity” could generally refer to the capability of bringing in additional bene$ts
by incorporating the target context items. In this work, we focus on context complementarity
de$ned as the extent that these two context items together being in the behavior increase the
behavior’s success rate over either one of them being included. It is carefully disigned to capture
the synergistic e"ect created by two context items inside a behavior in terms of the success rate.
Given two context items ci , c j , and a behavior itemset b, assuming ci , c j ∈ b and |b | ≥ 3, the

conditional context complementarity between ci and c j conditioned on b is de$ned as
cpl(ci , c j | b) = r (b) −max {r (b \ {ci }), r (b \ {c j })}, (10)

whereb\{ci }, orb\{c j }, means context item ci , or c j , is excluded from the itemsetb, respectively. A
trivial case of b = {ci , c j } can be derived as cpl(ci , c j | b) = r (b)−max {r (ci ), r (c j )}. Note that a com-
posite relation cpl(ci |b)where b = {ci , c j1 , . . . , c jN } can be derived as cpl(ci |b) =

∑N
n=1 cpl(ci , c jn |b).

By substituting the behavior’s estimated success rate given by Equation (2) inside, we can expand
it into

cpl(ci , c j | b) = tanh ‖ #b‖2
2 −max{tanh ‖ #b− #ci ‖2

2 , tanh ‖ #b− #c j ‖2
2 }. (11)

Then, the context complementarity between ci , c j can be taken as the average over the entire
behavior dataset:

cpl(ci , c j ) =
1

| B {ci ,c j } |
∑

b ∈B{ci ,cj }

cpl(ci , c j | b), (12)
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where B{ci ,c j } = {b ∈ B | ci , c j ∈ b} is the subset of behaviors in B containing both ci and c j . We
focus on evaluating complementarity between context items of the same type in this work.

4.3.1 Properties of the Complementarity Measure.

Property 1 (Range): cpl(ci , c j ) ∈ (−1, 1).
Proof. For ∀b, we have r (b) ∈ [0, 1), r (b \ {ci }) ∈ [0, 1) and r (b \ {c j }) ∈ [0, 1).
Thus, −max {r (b \ {ci }), r (b \ {c j })} ∈ (−1, 0]. From Equation (10), we know cpl(ci , c j ) ∈ (−1, 1).
Property 2 (Zero leads to non-positive): cpl(ci , c0) ≤ 0, #c0 = #0.
Proof. For ∀b, from Equation (11), we have

cpl(ci , c0 | b) = tanh ‖ #b‖2
2 −max{tanh ‖ #b− #ci ‖2

2 , tanh ‖ #b ‖2
2 }

= min{tanh ‖ #b ‖2
2 − tanh ‖ #b− #ci ‖2

2 , 0} ≤ 0. (13)

So, we know cpl(ci , c0) ≤ 0.
An explanation to this property is that if a context item has no “skills” (for all zero features), it

may have a negative e"ect in terms of the complementarity with existing contexts in the behavior.
Property 3 (Symmetry): cpl(ci , c j ) = cpl(c j , ci ).
Proof. For ∀b, based on Equation (10), it is evident that we have cpl(ci , c j | b) = cpl(c j , ci | b) because
max {r (b \ {ci }), r (b \ {c j })} = max {r (b \ {c j }), r (b \ {ci })}. Therefore, from Eq. (12), we know
cpl(ci , c j ) = cpl(c j , ci ).
Note this property may not hold between cpl(ci | b \ {ci }) and cpl(c j | b \ {c j }) when ci , c j ∈ b.

4.3.2 Special Cases of the Complementarity Measure. We study three cases to compare com-
plementarity with similarity, dissimilarity, and orthogonality. We point out the uniqueness of the
complementarity and its meaningfulness when being applied to behavior modeling. For all three
cases, suppose the behavior has three items b = {v, ci , c j } and each item is represented by two
features. Suppose #v = (2, 2), and #ci , #c j are unit vectors (‖ #ci ‖ = ‖ #c j ‖ = 1).
Special case 1: complementarity vs. similarity (if #ci and #c j are identical). In this case, the (cosine)
similarity between ci and c j is a constant of 1.We vary #ci by changing α ∈ [0◦, 360◦), which denotes
the counterclockwise angle between #ci and #v (see Figure 3(a)). For every α value, we calculate
the conditional complementarity cpl(ci , c j | b) and plot the curve in Figure 3(d). We observe that
the complementarity remains positive when α ∈ [0◦, 120◦) (due to the scale of #v), and becomes
negative when #ci goes against #b. This tells us that the complementarity is not consistently $xing
at 1 but is conditioned on the other item in the behavior.
Special case 2: complementarity vs. dissimilarity (if #ci and #c j are opposite). Here, we set #ci = −#c j ,
so the (cosine) similarity between ci and c j is a constant of −1. In Figure 3(e), we observe that
cpl(ci , c j | b) is at the peak when α is 90◦ or 270◦, and hits the bottom when α is 0◦ or 180◦. We can
also see that the complementarity remains always below 0. This matches our intuition that we do
not want to include two completely dissimilar items as they are likely to create con2icts.
Special case 3: complementarity vs. orthogonality (if #ci and #c j are orthogonal). Here, the (cosine)
similarity between ci and c j is 0. The complementarity cpl(ci , c j | b) is at the peak when α = 315◦.
That is, when #ci + #c j lies exactly like the orientation as #b does. In other words, when ci and c j are
irrelevant, cpl(ci , c j | b) is maximized if the overall contribution brought by ci and c j aligns with b.
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Fig. 3. Comparing complementarity with similarity, dissimilarity, and orthogonality. Top figures visualize
when ci and c j are identical, opposite, and, orthogonal. α denotes the counterclockwise angle between #v and
#ci , α ∈ [0◦, 360◦). Bo!om figures plot cpl(ci , c j |b) against α .

5 EXPERIMENTS
In this section, we $rst introduce the two real behavior datasets we use. For each behavior mod-
eling task, we present validation settings, quantitative/qualitative analysis. Then, we provide case
studies to highlight the key di"erences between context complementarity and similarity. Lastly,
we analyze the sensitivity and the e#ciency of the proposed method.

5.1 Datasets Description
We use two real behavior datasets to demonstrate the e"ectiveness of our proposed methods:

(1) We collected papers from theMicrosoft Academic project to study the behavior of publishing
a paper at a conference in the $eld of computer science. The context items of each paper
includes one conference, at least one author, at least one keyword and at least one reference.
We $ltered out papers in which none of the authors has at least two publications in our
dataset. This gave us 692,725 papers. Overall, we have 832,969 context items: 195,152 authors,
1,265 conferences, 39,756 keywords, and 596,796 references. On average, each paper has 2.31
authors, 1 conference, 6.61 keywords, and 8.79 references (18.71 context items in total).

(2) We collected tweets from the publicly available FIFAWorld Cup 2018 Tweets dataset to study
the behavior of posting feeds on social media. After removing stop words and $ltering out
tweets without a valid geolocation, we had 317,549 tweets. Each tweet includes one location,
at least one word, at least one hashtag, and is associated with a nonnegative retweet count.
Overall, we have 114,718 context items: 25,000 words, 11,071 hashtags, and 78,647 locations.
On average, each tweet has 6.95 words, 1.98 hashtags, and 1 location (9.93 items in total).

5.2 Baselines and Parameter Se!ings
We compare our method against the following baselines:
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(1) metapath2vec [6]: The state-of-the-art method of node representation learning for hetero-
geneous networks. It samples heterogeneous networks based on meta-path-based random
walks and uses a heterogeneous Skip-gram model to perform node embeddings. We use
the advanced version metapath2vec++ here, which also conducts heterogeneous negative
sampling to fully leverage the heterogeneity information in network.

(2) VERSE [39]: This versatile homogeneous network embedding method is able to preserve
the distributions of a selected vertex-to-vertex similarity measure in a network. We use the
recommended Personalized PageRank (PPR) for the similarity measure, which has been
shown to produce good performance in nearly all tasks and networks in the paper.

(3) node2vec [10]: This method can learn continuous feature representations for nodes in ho-
mogeneous networks by maximizing the likelihood of preserving node neighborhoods in
low-dimensional feature space. The homophily and structural equivalence properties of the
network are captured by conducting biased random walks on the network with interleaving
breadth-$rst and depth-$rst sampling strategies.

(4) DeepWalk [28]: It uses local information obtained from truncated uniform randomwalks to
learn latent representations of vertices in a network. This is one of the $rst studies to treat
walks as the equivalence of sentences and to map node neighborhood into word context in
order to leverage the Skip-gram model in language modeling.

(5) LINE [35]: This homogeneous network embedding method preserves both the local and
global network structures by optimizing a carefully designed objective function. Di"erent
from metapath2vec [6], node2vec [10], and DeepWalk [28], it conducts edge sampling
instead of random walks on the network. We use the advanced version LINE(1st+2st) in ex-
periments, which concatenates node vector representations for both $rst- and second-order
proximity.

In addition, we also investigated a few popular graph embedding methods such as spectral clus-
tering [36] and graph factorization [2]; however, they have been shown to be signi$cantly out-
performed by LINE [35] and DeepWalk [28] in both previous studies and in our study. Therefore,
we exclude the experimental results of them due to limited space. Similarly, we report the per-
formance of metapath2vec [6] as a representative model for heterogeneous network embedding
because of its proved superior performance compared with other models [12]. We also tried classi-
cal dimensionality reduction techniques like PCA [38], MDS [21], and IsoMap [37]. Unfortunately,
their high complexities do not allow them to handle our behavior datasets of such a large scale.
In the $rst dataset of academic papers, we have only published papers as positive behaviors.

We evaluate two variants of CISE, i.e., CISE-Pn and CISE-Pt , to compare the e"ectiveness of dif-
ferent negative sampling strategies. The weights of context types are {3 (author), 1 (conference),
1 (keyword), 1 (reference)} as default. In the second dataset of tweets, we treat retweet count as
the tweet-posting behavior’s success rate. So, we have popular tweets of high retweet count as
positive behaviors, as well as a reasonable number of tweets with low retweet count as negative
behaviors. We evaluate CISE (with no negative sampling) by setting weights of context types {3
(word), 1 (hashtag), 1 (location)} as default. We also systematically examine the weights of context
types using a grid search strategy. We enumerate through all combinations of type weight values
in {1, 2, 3} and report the best performance with respect to each particular type.

For fair comparison, we set the total sampling budget s to be the same for all methods. Speci$-
cally, for randomwalk basedmethods, i.e., node2vec [10], DeepWalk [28], andmetapath2vec [6],
the total sampling budget can be computed as s = r · l · |V | where r is repetition of walks per node,
l is random walks length, andV is the set of vertices (context items and behaviors); in VERSE [39],
s equals to the total number of nodes sampled from the positive distribution; in LINE [35], s equals
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Table 2. CISE Outperforms Baseline Methods on Paper-Publishing Behavior Prediction

Method Weights wt MAE RMSE Acc. Avg. Pre. AUC F1 Spearman’s ρ Kendall’s τ
LINE [35] 0.1318 0.2573 0.9102 0.9736 0.9735 0.9082 0.9350 0.8222
DeepWalk [28] 0.1215 0.2463 0.9175 0.9776 0.9776 0.9160 0.9461 0.8366
VERSE [39] 0.1210 0.2455 0.9182 0.9778 0.9779 0.9164 0.9468 0.8382
node2vec [10] 0.1206 0.2454 0.9180 0.9779 0.9779 0.9166 0.9469 0.8375
metapath2vec [6] 0.1181 0.2440 0.9196 0.9781 0.9781 0.9181 0.9470 0.8405
CISE-Pn {1,1,1,1} 0.0717 0.1864 0.9537 0.9911 0.9911 0.9581 0.9819 0.9086
(Size-constrained (−39.3%) (−23.6%) (+3.7%) (+1.3%) (+1.3%) (+4.4%) (+3.7%) (+8.1%)
negative behavior {1,1,1,3} 0.1000 0.2169 0.9353 0.9861 0.9861 0.9394 0.9726 0.8723
sampling) {1,1,3,1} 0.0684 0.1858 0.9542 0.9914 0.9914 0.9577 0.9821 0.9095

{1,3,1,1} 0.0690 0.1861 0.9542 0.9914 0.9914 0.9577 0.9820 0.9095
{3,1,1,1} 0.0679 0.1850 0.9546 0.9916 0.9916 0.9582 0.9825 0.9103

CISE-Pt {1,1,1,1} 0.0584 0.1676 0.9627 0.9935 0.9935 0.9655 0.9872 0.9261
(Type-distribution {1,1,1,3} 0.0837 0.1994 0.9447 0.9897 0.9896 0.9491 0.9804 0.8903
-constrained {1,1,3,1} 0.0589 0.1682 0.9625 0.9934 0.9934 0.9654 0.9870 0.9257
negative behavior {1,3,1,1} 0.0588 0.1680 0.9625 0.9935 0.9934 0.9653 0.9871 0.9257
sampling) {3,1,1,1} 0.0523 0.1619 0.9653 0.9945 0.9945 0.9681 0.9890 0.9311

(−55.7%) (−33.6%) (+5.0%) (+1.7%) (+1.7%) (+5.4%) (+4.4%) (+10.8%)
Types in wt are {author, conf., keyword, ref.}. Improvements (%) made by CISE over the best baseline method
metapath2vec are shown in parentheses. Except for MAE and RMSE, higher scores indicate better performance.

to the total numbers of edge sampling; and, for CISE, s = ∑
b ∈R |b | where R is the collection of

all sampled training behaviors and s represents the total number of sampled context items. The
best return and in-out hyperparameters of node2vec [10] are selected using a grid search over
p,q ∈ {0.25, 0.50, 1, 2, 4} as suggested by the authors. For metapath2vec [6], we use the meta-
path scheme “Keyword-Author-Paper-Conference-Paper-Author-Keyword” and “Word-Hashtag-
Location-Hashtag-Word” to guide random walks on two datasets, respectively. For all baselines,
we generate the behavior embedding using embeddings of context item nodes according to Equa-
tion (1). The default number of dimensions d is 128; the default size of negative samples is 10. All
other hyperparameters are set to typical values used in previous studies unless speci$ed otherwise.

5.3 Contextual Behavior Prediction
We introduce validation settings of evaluating embeddingmethods on predicting the probability of
a paper-publishing behavior’s success in the publication dataset. Both quantitative and qualitative
analyses are provided to demonstrate the e"ectiveness of CISE.

5.3.1 Validation Se!ings. We use 10-fold cross-validation to evaluate all methods. First, we ran-
domly sample out 10% of behaviors (papers) for testing and use the remaining 90% for training. The
whole training set is used to learn itemset embeddings. And, the same embedding initialization is
shared by di"erent methods within each fold to rule out random noise. Then, 10% of the training
set (as positive instances), along with the same amount of itemsets generated by type-distribution-
constrained negative behavior sampling (as negative instances), are selected out. For each method,
we train a logistic regression model with the latent representations and corresponding labels of
these instances. Lastly, we generate negative instances of the same size of the testing set. For each
test instance b, the regression model returns a probability score r (b).
Multiple evaluation metrics are used which fall into three categories. For error-based measures,

we use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to evaluate the
embedding quality. Smaller error-based measure value indicates better method performance.
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Fig. 4. Precision-recall curves of the baseline methods and itemset embedding methods (with di"erent set-
tings of item type weights) on contextual behavior prediction.

Since each behavior (paper) is associated with a binary label, we can also use standard infor-
mation retrieval metrics such as Accuracy (Acc.), Average Precision (Avg. Pre.), Area Under
the Curve (AUC), and F1 score. A method that has a higher score in these metrics is better. In
addition, Spearman’s ρ and Kendall’s τ are two ranking-based correlation coe#cients computed
from the ranking of prediction scores. Higher value indicates better model performance.

5.3.2 "antitative Analysis. Table 2 presents the performance of all the baseline methods and
all the variants of CISE. Figure 4 presents the precision-recall curves of these methods.
Overall performance. The best baseline method is the heterogeneous network embedding
method metapath2vec [6], which gives an RMSE of 0.2440, an F1 of 0.9181, and a Kendall’s τ
of 0.8405. Its performance is much better than any random guessing model can achieve and tells
that pairwise similarity still plays an indispensable role in predicting behaviors. For example, co-
authors often work in very similar research $elds. The vanilla version of our itemset embedding
method is CISE-Pn with uniform typeweights. Despite its simplicity, this model can score an RMSE
of 0.1864 (−23.6% relatively), an F1 of 0.9581 (+4.4% relatively), and a Kendall’s τ of 0.9086 (+8.1%
relatively) when compared to the best baseline metapath2vec [6]. All improvements in paren-
theses are tested being statistically signi$cant with a p-value of less than 0.05. The best variant
of our itemset embedding method CISE holds (1) type-distribution-constrained negative behavior
sampling strategy and (2) type weights as {3,1,1,1} (authors tend to have higher weights). It scores
an RMSE of 0.1619 (−33.6% relatively), an F1 of 0.9681 (+5.4% relatively), and a Kendall’s τ of
0.9311 (+10.8% relatively). Network embedding methods show pretty high AUC scores because
the pairwise similarities between the items (e.g., authors and keywords) do have an impact on the
chance of collaboration. Instead, by preserving itemset structures, our itemset embedding method
CISE is able to yield near-perfect AUC (0.9945; +1.7% relatively). Figure 4(a) also shows the high
e"ectiveness of CISE: the red curve CISE-Pt is closest to the upper right corner.
Comparing network embedding methods. First, DeepWalk [28] and node2vec [10] perform
better than LINE [35] in this task. This indicates that preserving random-walk-based local net-
work information, or node neighborhoods, is more e"ective than preserving connections and
common neighbors on predicting a collaboration. VERSE [39] has almost the same performance
as node2vec [10], indicating that the similarity metric of Personalized PageRank is also pretty
helpful in this task. metapath2vec [6] learns the low-dimensional representations of nodes from
richer meta-path-based features. In other words, it can model the heterogeneity of the network.
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Fig. 5. Papers that have higher estimated success rates tend to be cited more (w.r.t. Google Scholar Feb.’18).

Thus, it performs the best among the baseline methods in this task. This con$rms the necessity of
taking multiple types of context items into consideration in the paper-publishing behaviors.
Comparing negative behavior sampling strategies. Here, we compare our CISE-Pt (type-
distribution-constrained) with CISE-Pn (size-constrained) by $xing the same type weights. The
CISE-Pn with uniform type weights ({1,1,1,1}) can generate an RMSE of 0.1864, an F1 of 0.9581,
and a Kendall’s τ of 0.9086 (−23.6%, +4.4%, and +8.1% relatively over metapath2vec). It shows
the power and e"ectiveness of itemset embedding on behavior prediction. We further observe
that CISE-Pt , which uses the same uniform type weights, can decrease the errors to an RMSE of
0.1676 (−10.1% relatively over CISE-Pn ), and increase the F1 score to 0.9655, Kendall’s τ to 0.9261
(+0.8% and +1.9% relatively, over CISE-Pn ). This demonstrates the advantage of type-distribution-
constrained sampling—it considers the context types when generating negative samples, so the
composition of the positive itemset is carefully modeled into the negative itemset. The best vari-
ant of CISE-Pt with type weights {3,1,1,1} generates −12.5% relative to RMSE, +1.0% relative to F1,
and +2.3% relative to Kendall’s τ compared to CISE-Pn with the same type weights.
Comparing di!erent settings on context type weights. We adopt a grid search strategy to
evaluate through the parameter space of type weight combinations in {1, 2, 3}. The best perfor-
mance for each type is found and reported by setting a larger weight value (e.g., {3 (author), 1
(conference), 1 (keyword), 1 (reference)} produces the best performance of the type of author). For
CISE-Pt , we further examine four settings when changing the weight of one type into 3 and keep-
ing others $xed at 1. This puts an emphasis on one type while preserving the itemset structure.
First, we note that when we set the weight of reference to 3, CISE gives us lower performance than
any other type weight settings. Besides, setting conference or keyword type weight to 3 does not
provide any improvements. Their curves almost overlap the curve of uniform type weights setting
in Figure 4(b). Both Table 2 and Figure 4(b) demonstrate that only the type weights {3 (author),1
(conference),1 (keyword),1 (reference)} can outperform all other type weight settings. The RMSE
drops from 0.1676 to 0.1619 (−3.4% relatively to uniform type weights); the F1 and Kendall’s τ
increase from 0.9655 to 0.9681 and from 0.9261 to 0.9311 (+0.3% and +0.6% relatively to uniform
type weights). This matches our intuition: authors should play decisive roles in making the collab-
oration successful.

5.3.3 "alitative Analysis. We answer three questions here:
Q1: Are papers of high estimated success rates not only successful but also impactful?
Yes. We collect two groups of papers in the testing set that have the highest/lowest estimated suc-
cess rates given by CISE. Then, we use Google Scholar to manually collect the number of citations
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of them. Figure 5 presents the average number of citations of these papers published in 15 years
ranging from 2001 to 2015. By comparing these two groups of papers, we observe that papers of
the highest success rate consistently have more citations than those of the lowest success rate. All
these papers have been successful (with estimated success rates above 0.6), but a higher estimated
success rate clearly indicates they are more likely to be impactful in the real world.
One good example is the paper “Inferring Social Ties across Heterogeneous Networks” [34] pub-

lished in WSDM 2012. The leading author Dr. Jie Tang (Tsinghua University) is a data mining
expert on a subset of the keywords such as “factor graph,” “heterogeneous network,” and “predic-
tive model,” and the co-author Dr. Jon Kleinberg (Cornell University) has a world-level reputation
in computational social science of keywords like “social theory,” “social in2uence,” and “social ties.”
The collaboration between them successfully integrated their complementary expertise. As a re-
sult, they proposed an e"ective factor graph based predictive model of inferring social ties across
heterogeneous networks. This article has the highest estimated success rate among other papers
in the same conference proceedings. It has been cited more than 220 times and is ranked within
the top 3 of all testing papers!
Q2:What if a negative sample, i.e., a pseudo-paper, has a good success rate? Is it possibly a good paper?
Maybe. Most of the pseudo-papers have a low success rate (0.052 on avg.), but we did $nd some
of them have a good success rate. The example below has a rate of 0.549.

Example 5.1. Authors: Richard Sproat, Weiying Ma, Jiawei Han, Xiaoli Li; Conference: SIGIR;
Keywords: text mining, Gaussian process, biological network, scalability.
In this example, Dr. Richard Sproat studies computational linguistics; Dr. Weiying Ma is an NLP
and Information Retrieval scientist; Dr. Jiawei Han is famous for data mining and heterogeneous
network mining; Dr. Xiao Li works on bioinformatics and bio network mining. All four keywords
are quite relevant to their expertise areas. A plausible paper topic could be reduced as a scalable
learning framework for biological text and network mining. However, it is still very di#cult to
become a real paper. CISE does not model the cost of incorporating new items into an existing
itemset, which can be highly expensive as in this example. We leave this issue as a future work.
Q3: Does it mean negative samples of extremely low success rate are likely to be impossible to publish?
Yes, very likely. Among the pseudo-papers having very low success rate (below 0.001), we observe a
few cases: (1) the authors have little chance to build ties between each other; (2) the authors are not
experts in the$eld of the conference, e.g., {Yan Liu, SIGGRAPH}; and, (3) the keywords are not likely
to induce a plausible research topic. For instance, keywords {“heterogeneity,” “degree of freedom,”
“biomedical”}, or keywords {“citation analysis,” “chi squared statistic,” “customer retention”}. It is
highly unlikely for any one of these pseudo-papers to publish if no other complementary items
are added into the itemset to improve its estimated success rate.

5.3.4 Visualization. Figure 6 visualizes two itemsets, i.e., papers, in a three-dimensional em-
bedding space. The left sub$gure represents the WSDM 2012 paper [34] we mentioned, and the
right sub$gure represents a pseudo-paper that was generated by negative behavior sampling. We
visualize an itemset as the combination of the vectors of its items. The item vectors are colored by
their context types. The paper’s vector starts from the origin and consists of the authors’ vectors,
conference’s vector, keywords’ vectors, and references’ vectors.
For the real paper, the vectors of authors Dr. Jie Tang and Dr. Jon Kleinberg, and the keyword

“social networks” contribute the most to the magnitude of the real paper’s vector. Interestingly, all
of them have high scores on the second dimension, which indicates items of di"erent types are
well mixed in the low-dimensional embedding space. They collectively elongate the paper’s vector
signi$cantly toward that dimension. On the contrary, the vectors of items in the pseudo-paper are
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Fig. 6. Visualization of a real paper [34] (le#) and a pseudo-paper (right) in three-dimensional embed-
ding space. The item vectors are colored by their context types and learned by itemset embedding method
CISE-Pt .

not always short in the space, but they are not complementary with each other. So, the itemset’s
vector goes back and forth in the space and $nally generates a limited distance from the origin.

5.4 Behavioral Context Recommendation
We introduce validation settings and provide quantitative analysis to demonstrate the e"ectiveness
of CISE on recommending complementary items for behaviors in the publication dataset.

5.4.1 Validation Se!ings. We also adopt the 10-fold cross-validation strategy. For each time of
10 folds in evaluating the behavior prediction performance, we keep the embeddings learned from
the training set, and use the testing set to evaluate models’ recommendation performance. So,
given a particular item type, e.g., author, and a test itemset, i.e., paper, we hide one of the items
of that type in the itemset. Then, we enumerate through every other item of the same type in
our dataset and use the trained logistic regression model to generate the predicted success rate
of incorporating this new item into the itemset. Thus, we have a complete list of predictions on
that type and we rank the type items by the their correponding success rates. We assume the real
hidden context item c∗ of type t should be ranked at a higher position if the method makes a better
recommendation.
We use rank(c,b) to denote the recommendation rank of context item c on itemset b after hiding

c∗, and use theHarmonicMean ofRanks (HMR) on all test itemsets to evaluate the performance
for each item type:

HMR(t) = |T (+) |∑
b ∈T(+)

1
rank(c∼C(t ),b)

, (14)

where C(t ) is the set of items of type t and T (+) is the testing set of all positive instances. A better
method should have a smaller HMR value.
5.4.2 "antitative Analysis. Table 3 presents the results of all methods on recommending an

item for a given itemset of paper-publishing behavior. Overall, CISE consistently generates lower
HMRs on all context types (with few exceptions on the conference type) than baseline meth-
ods. With respect to the negative behavior sampling strategies, CISE-Pt outperforms CISE-Pn ,
showing that type-distribution-constrained negative sampling is more e"ective in learning low-
dimensional representations of itemsets for context recommendation.
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Table 3. Harmonic Mean of Ranks (HMR) of CISE and Baseline Methods on Recommending Context
Item for Given Itemset

Method Weights HMR (author) HMR (conference) HMR (keyword) HMR (reference)
LINE [35] 7,023.2 25.2 80.0 6,776.2
DeepWalk [28] 6,428.1 27.3 103.2 5,043.1
VERSE [39] 5,769.2 25.8 76.3 4,492.6
node2vec [10] 5,820.7 29.2 139.7 4,057.5
metapath2vec [6] 5,489.9 24.8 162.3 4,076.1
CISE-Pn {1,1,1,1} 5,066.7 25.6 62.6 3,730.8
(Size-constrained {1,1,1,3} 5,332.0 26.8 76.4 3,678.2
negative behavior {1,1,3,1} 5,109.2 26.2 58.9 3,713.0
sampling) {1,3,1,1} 5,092.2 24.2 66.9 3,911.9

{3,1,1,1} 4,879.7 24.4 60.2 3,829.3
CISE-Pt {1,1,1,1} 4,303.3 25.0 55.7 3,683.8
(Type-distribution {1,1,1,3} 4,812.2 26.7 64.0 3,592.1
-constrained {1,1,3,1} 4,467.4 25.5 49.3 3,743.9
negative behavior {1,3,1,1} 4,442.9 23.2 53.9 3,812.0
sampling) {3,1,1,1} 4,165.8 24.9 49.0 3,553.9

A smaller HMR indicates a better method recommendation performance. The total number of authors, conferences,
keywords, and references are 195,152, 1,265, 39,756, and 596,796, respectively.

Recommending a co-author. Among all 195,152 authors in the dataset, given a paper’s conference,
keywords, references, and all other authors, the real author is at the HMR of 4,165.8 on the list of
authors that our CISE ranks according to the success rate of incorporating him/her into the paper.
This is an extremely challenging task. The best baseline method metapath2vec [6] ranks the real
author at theHMRof 5,489.9. This con$rms that CISE is capable of $ndingmore complementary co-
authors to make the paper more likely to be published, based on preserving the success structures
in the training itemsets.
Recommending a conference or a keyword. All the baselines and our methods can rank the real
conference at the HMR around 25 among all 1,265 conferences. CISE can score an HMR of 49.0 on
recommending a keyword among all 39,756 keywords while other baseline methods rank the real
keyword of at least 76.3 of HMR.
Recommending a reference.This is also a challenging task comparable to recommending a co-author.
Among all 596,796 references, CISE ranks the real reference at the HMR of 3,553.9. The best base-
line node2vec ranks it at the HMR of 4,057.5. Given authors, keywords, and the conference, our
method is more likely to recommend complementary or valuable papers to read and cite.

5.5 Social Media Behavior Data
We further validate the e"ectiveness of CISE in the domain of social media. In parallel to Section 5.3
and Section 5.4, we test CISE and all baseline methods on the tasks of (a) predicting the success,
i.e., the popularity level, of a tweet-posting behavior and (b) recommending complementary items
such as words or hashtags to any new tweet to maximize its predicting success. The validation
settings are similar to previous experiments with a few key di"erences: (1) during the training
process, CISE did not conduct any negative behavior sampling since we have observed negative
behaviors of tweets with low retweet count asmentioned in Section 5.2; (2) for all baselinemethods,
the networks of context items and behaviors are connected by success rate (log-scale to reduce
variance) weighted edges instead of unweighted edges; and (3) we train a linear regression model
(w/l1 regularization) on top of context latent representations to generate prediction score r (b).
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Table 4. CISE Outperforms Baseline Methods on Tweet-Posting Behavior Prediction

Method Weights wt MAE RMSE Spearman’s ρ Kendall’s τ
LINE [35] 0.8798 1.0723 0.4809 0.3431
DeepWalk [28] 0.8784 1.0647 0.4894 0.3501
metapath2vec [6] 0.8669 1.0520 0.4942 0.3588
VERSE [39] 0.8508 1.0382 0.5163 0.3770
node2vec [10] 0.8419 1.0301 0.5290 0.3808
CISE {1,1,1} 0.8117 0.9982 0.5834 0.4243
(No negative {1,1,3} 0.8316 1.0216 0.5492 0.3962
behaviors {1,3,1} 0.8253 1.0164 0.5516 0.4079
sampling) {3,1,1} 0.8069 0.9916 0.6007 0.4389

(−4.2%) (−3.7%) (+13.6%) (+15.3%)
Types in wt are {word, hashtag, location}. Improvements (%) made by CISE over node2vec are shown in
parentheses. Smaller MAE or RMSE value and higher scores of Spearman’s ρ or Kendall’s τ indicate
better performance.

Table 5. Harmonic Mean of Ranks (HMR) of CISE and Baseline
Methods on Recommending Words and Hashtags for Given

Tweet-Posting Behavior

Method Weights HMR (word) HMR (hashtag)
LINE [35] 332.6 298.2
DeepWalk [28] 286.8 469.3
metapath2vec [6] 306.5 176.5
VERSE [39] 287.3 363.8
node2vec [10] 250.3 582.1
CISE {1,1,1} 144.0 104.2
(No negative {1,1,3} 212.6 128.3
behaviors {1,3,1} 193.4 62.5
sampling) {3,1,1} 132.7 95.6

The total number of words and hashtags are 25,000 and 11,071.

The prediction results are provided in Table 4. We can see the results are inconsistent with
previous experiments: CISE with uniform weigths can score an RMSE of 0.9982 (−3.1% relatively)
and a Kendall’s τ of 0.4243 (+10.3% relatively) when compared to the best baseline node2vec [10];
and, by setting the type weights to {3 (word),1 (hashtag),1 (location)}, CISE can further decrease
the RMSE to 0.9916 (−3.7% relatively) and increases the Kendall’s τ to 0.4389 (+15.3% relatively)
compared with node2vec [10]. We note that CISE’s type weights emphasizing the hashtags or the
location of tweets produce suboptimal performance. This is due to the high coherence of hashtags
within the general topic of FIFA 2018, and the location information of tweet is not greatly helpful
in this task. Also, we note that metapath2vec [6] is not the best baseline method in this task
and can only generate comparable results as DeepWalk [28]. This can be explained by the fact
that, in di"erent domains, it is not always obvious to design reasonable meta-paths for guiding
heterogeneous random walks and capturing the semantic information among them.
The recommendation results are given in Table 5. It is evident that CISE outperforms baseline

methods and scores an HMR of 132.7 for recommending a word when setting the type weights
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Table 6. Top Similar and Complementary Authors with Dr. Jure Leskovec

Rank Similarity Complementarity
Author Score Author Score

1 Caroline Lo 0.895 Eric Horvitz 0.192
2 Jaewon Yang 0.860 Jon Kleinberg 0.188
3 Seth Myers 0.858 Christos Faloutsos 0.177
4 Justin Cheng 0.856 Susan Dumais 0.176
5 Ashton Anderson 0.853 Héctor García-Molina 0.173
6 Mary Mcglohon 0.843 Samuel Madden 0.170
7 Gregory Kossinets 0.832 Daniel Jurafsky 0.142
8 Mohammad Mahdian 0.831 Carlos Guestrin 0.134
9 Siddharth Suri 0.828 Daniel P. Huttenlocher 0.128
10 Robert West 0.824 Natasa Milic-Frayling 0.127

Similarity is measured by cosine similarity. Complementarity is speci$ed in Equation (12).

emphasizing the word type. Interestingly, when setting the type weights to emphasize the hashtag,
CISE is able to produce an even smaller HMR of 62.5 for recommending a hashtag. The best baseline
method node2vec [10] for recommending a word can only score an HMR of 250.3, and the best
baseline method metapath2vec [6] for recommending a hashtag can only score an HMR of 176.5.
This demonstrates CISE is capable of recommending more valuable words and hashtags to be
included in a tweet to make it potentially more popular.

5.6 Context Complementarity vs. Similarity
We present case studies of comparing complementarity against similarity. We take Dr. Jure
Leskovec, a famous researcher in the $eld of data mining (an Associate Professor from Stanford
University with 45,000+ citations) as an example. In Table 6, we list Dr. Leskovec’s 10 most similar
authors based on the representations learned by metapath2vec [6] and the 10 most complemen-
tary authors based on the representations learned by our CISE.
Top authors ranked by similarity. All 10 top similar authors have high similarity scores of
greater than 0.82, while the mean similarity score for all other authors in our dataset is below
0.43. This indicates the existence of the community structure. These authors work on very similar
research topics as Dr. Leskovec does. Speci$cally, the top $ve authors, as well as the 10th author,
are graduated Ph.D. students advised by Dr. Leskovec; the 6th author, Dr. Mary Mcglohon, has the
same advisor, Dr. Christos Faloutsos, as Dr. Leskovec has, when they were both graduate students
at Carnegie Mellon University; and, the 7th, 8th, and 9th authors worked closely with Dr. Leskovec
when he was a postdoctoral researcher at Cornell University working with Dr. Jon Kleinberg. On
average, each one of them have 2.7 papers co-authored with Dr. Leskovec.
Top authors ranked by complementarity. Di"erent from the most similar authors, the top
10 complementary authors presented in Table 6 have a much wider range of research interests
and more diverse backgrounds: Dr. Susan Dumais studies information retrieval at Microsoft Re-
search; Dr. Samuel Madden studies databases and distributed computing at MIT; and, Dr. Carlos
Guestrin works on machine learning at the University ofWashington. All of them are very in2uen-
tial researchers. Their collaboration with Dr. Leskovec can increase the success rate of more than
0.127 by contributing their complementary skills into the paper-publishing plan. However, being
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Fig. 7. Sensitivity and e"iciency of CISE: (a) CISE is insensitive to two parameters of embedding size d and
negative sample size n; (b) CISE demonstrates linearity in running time with increasing itemset size; and (c)
CISE provides good speedup with increasing threads number.

complementary does not equal to being dissimilar. The top 10 complementary authors actually
have an average rank of 119.7 on the similarity ranking among 195,152 authors in our dataset.
Certainly, they are still similar with Dr. Leskovec to some aspect and extent. On the other hand,
the top 10 similar authors have an average rank of 44.1 on the complementarity ranking of all 55
co-authors of Dr. Leskovec. This shows that being highly similar is not equal to being complemen-
tary.
The little overlap between the top 10 similar authors and the top 10 complementary authors con-

$rms that complementarity is signi$cantly di"erent from similarity. In addition, we also examine
complementarity using the FIFA World Cup 2018 Tweets dataset. We generated the top 10 most
similar and complementary hashtags for a set of 20 manually selected hashtags. We found they are
signi$cantly di"erent from each other with little overlap (average Jaccard socre of 0.23). Context
complementarity aims to capture the synergistic e"ect created by two context items inside a be-
havior; while, similarity measure is based on the item’s community structure in the behavior-item
network.

5.7 Sensitivity Analysis
There are three parameters for CISE: the number of training samples |R |, embedding dimensions
d , and number of negative samples per positive itemset sample n. We examine CISE’s sensitivity
of performance on the contextual behavior prediction task in Section 5.3 over di"erent combina-
tions of embedding dimensions d and number of negative samples n. Speci$cally, we vary d in
{23, 24, 25, 26, 27, 28, 29} and vary n in {1, 2, 5, 8, 10, 15, 20}. Results are presented in Figure 7(a).
By $xing the embedding dimensions d , it is evident that RMSE initially drops with larger neg-

ative samples n, but the marginal improvements are slower until reaching a certain elbow point
(n ≥ 10) and remain 2at afterward. This indicates CISE can learn behavior representations preserv-
ing the success structure with a small number of negative samples. By $xing the negative samples
n, we can see CISE is pretty stable across most dimensions except extreme ones like 23 and 29.
This is because too small d value leads to loss of information and too large d includes more noise.
We use the default value d = 128 in Section 5.3 and Section 5.4 when comparing with baseline
methods as it is the typical value used in previous studies. Our experiments show we are safe to
choose a much smaller value, e.g., d = 32, for CISE without signi$cantly a"ecting performance.

5.8 E"iciency Test
We test the e#ciency of CISE from two aspects: (1) its scalability over increasing sizes of in-
put behavior datasets and (2) the speedup it can provide by parallelizing to more threads. All
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experiments are conducted on a single Dell PowerEdge R920 server with Quad 16 cores, 2.3 GHz
Intel Xeon CPUs, E7-4850 v4 using our publicly available performance implementation of CISE.
For scalability, we run CISE on $ve di"erent scales of behavior datasets, which are built from

the papers we collected from the Microsoft Academic project before $ltering, with itemset num-
ber ranging from 100 to 1,000,000 (context item numbers ranging from 4,023 to 2,849,201). We can
see the running time generally grows linearly with the increasing itemset size as shown in Fig-
ure 7(b). Also, CISE-Pt takes slightlymore time to train than CISE-Pn because the type-distribution-
constrained negative sampling strategy has $ner control over the random sampling process than
the size-constrained negative sampling strategy. For parallelizability, we run CISE with di"erent
number of threads on the same dataset used in Section 5 and present their speedups in Figure 7(c).
The diagonal line represents the ideal speedup, which rarely occurs due to overheads. Both CISE-
Pn and CISE-Pt are able to provide pretty good linear speedup when running with more threads.
Speci$cally, they can achieve a speedup of 34 when running with 48 threads. We conducted the
same suite of e#ciency experiments on the FIFAWorld Cup 2018 Tweets dataset and observed con-
sistent trends of both linear scalability and good parallelizability. This presents CISE a practical
tool on real large-scale behavior datasets.

6 CONCLUSIONS
In this article, we considered behavior as a set of context items and targeted two novel behavior
modeling tasks: (1) predicting the success rate of any set of items and (2) $nding complementary
items which maximize the probability of success when incorporated into an itemset. We proposed
a novel scalable method, Multi-Type Itemset Embedding, to learn context item presentations from
massive behavior data preserving the success structures. It included a novel measurement of suc-
cess rate for itemset; considered type weights for heterogeneity; and conducted negative behavior
sampling for representation learning. Furthermore, we proposed a measurement of context com-
plementarity. We provided theoretical analysis showing its uniqueness when compared to similar-
ity, dissimilarity, and orthogonality. Extensive experiments demonstrated the proposed method’s
superiority. Case studies showed the di"erence between complementarity and similarity.
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