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On Simple Mechanisms for Dependent Items
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We study the problem of selling n heterogeneous items to a single buyer, whose values for different items are
dependent. Under arbitrary dependence, Hart and Nisan [30] show that no simple mechanism can achieve a
non-negligible fraction of the optimal revenue even with only two items. We consider the setting where the
buyer’s type is drawn from a correlated distribution that can be captured by a Markov Random Field, one of
the most prominent frameworks for modeling high-dimensional distributions with structure.

If the buyer’s valuation is additive or unit-demand, we extend the result to all MRFs and show that
max{SREv, BREV} can achieve an Q (eoﬁ)—fraction of the optimal revenue, where A is a parameter of the
MREF that is determined by how much the value of an item can be influenced by the values of the other items.
We further show that the exponential dependence on A is unavoidable for our approach and a polynomial
dependence on A is unavoidable for any approach. When the buyer has a XOS valuation, we show that

max{SREv, BREV} achieves at least an Q m -fraction of the optimal revenue, where y is the spectral
g

gap of the Glauber dynamics of the MRF. Note that the values of A and niy increase as the dependence

between items strengthens. In the special case of independently distributed items, A = 0 and nl > 1, and
our results recover the known constant factor approximations for a XOS buyer [41]. We further extend
our parametric approximation to several other well-studied dependency measures such as the Dobrushin
coefficient [27] and the inverse temperature. In particular, we show that if the MRF is in the high temperature

regime, max{SREV, BREV} is still a constant factor approximation to the optimal revenue even for a XOS buyer.
Our results are based on the Duality-Framework by Cai et al. [14] and a new concentration inequality for XOS

functions over dependent random variables.
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1 INTRODUCTION
The design of revenue-optimal auctions for selling multiple items is a central problem in Economics

and Computer Science. In the past decade, significant progress has been made,fi rst in efficient
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computation of revenue-optimal auctions [1-3, 6, 10-13, 15, 18, 19, 24], and then in the identification
of simple auctions that achieve constant factor approximations to the optimal revenue [4, 14, 17,
21, 41, 45] under the item-independence assumptions. ! Despite being theoretically appealing,
item-independence is an unrealistic assumption in practice. In this paper, we go beyond the
item-independence assumption and study simple and approximately optimal auctions for selling
dependent items.

Unfortunately, strong negative results exist if we allow the items to be arbitrarily dependent [8, 30].
For example, Hart and Nisan [30] show that the revenue of the best deterministic mechanism is
unboundedly smaller than the revenue of the optimal randomized mechanism even when we are
only selling two correlated items to a single buyer. Since all simple mechanisms in the literature
are deterministic, the result also implies that no simple mechanism that has been considered so far
can provide any guarantee to the revenue for even two correlated items. Arguably, however, high-
dimensional distributions that arise in practice are rarely arbitrary, as arbitrary high-dimensional
distributions cannot be represented efficiently, and are known to require exponentially many
samples to learn or even perform the most basic statistical tests on them; see e.g. [25] for a
discussion. To overcome the curse of dimensionality, a major focus of Statistics and Machine
Learning has been on identifying and exploiting the structural properties of high-dimensional
distributions for succinct representation, efficient learning, and efficient statistical inference. There
are several widely-studied frameworks to model the structure of dependence in high-dimensional
distributions. In this work, we propose capturing the dependence between item values using one of
the most prominent graphical models — Markov Random Fields (MRFs). Note that MRFs are fully
general and can be used to express arbitrary high-dimensional distributions. The main advantage
of MRFs is that there are several natural complexity parameters that allow the user to tune the
dependence structure in the distributions represented by MRFs from product measures all the
way up to arbitrary distributions. Our goal is to provide parametric approximation ratios of
simple mechanisms that degrade gracefully with respect to these natural parameters.

MRFs are formally defined in Definition 2. Intuitively, a MRF can be thought of as a graph (or a
hypergraph) where each node represents a random variable (or item value in our case). There is a
potential function associated with each edge that captures the correlation between the two incident
random variables. How does it represent a joint distribution? The probability for a particular
realization or the random variables, or known as a configuration of the randomfi eld, is proportional
to the exponential of the total potential of the configuration. MRF is afl exible model. For example,
we can capture the degree of (positive or negative) correlations between two random variables by
controlling the corresponding potential function. Here we provide a stylistic example to illustrate
the suitability of MRFs for modeling buyers’ joint value distributions. Imagine that we manage a
car dealership. A potential buyer is hoping to purchase one car, i.e., has a unit-demand valuation.
The dealership carries various brands and types of vehicles, and will like tofi nd the optimal way to
price each car. However, it would be naive to assume the buyer’s value for each car is independently
distributed. The example in Figure 1 demonstrates how a MRF can better capture the customer’s
joint value distribution for different cars.

1.1 Main Results and Techniques

We focus on the single buyer case and allow the buyer’s valuation to be as general as a XOS function
(ak.a. a fractionally subadditive function). > We consider the two most extensively studied forms

ntuitively, item-independence means that each bidder’s value for each item is independently distributed, and this definition
has been suitably generalized to set value functions such as submodular or subadditive functions [41].
2The class of XOS functions is a super-class of submodular functions, and is contained in the class of subadditive functions.
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Fig. 1. We draw a green edge (or a red edge) between two cars if their values are positively correlated (or
negative correlated). The car in the center is an electric coupe with a retro design. Its value is positively
correlated with the two electric cars on its left and the two small coupes on its right, but is negatively
correlated with the pick-up truck.

of simple mechanisms: selling the items separately and selling the grand bundle. We use SREv and
BREV to denote the optimal revenue obtainable by these two types of mechanisms respectively.
In a sequence of papers, it was shown that max{SREv, BREV} is a constant factor approximation
to the optimal revenue for a single additive or unit-demand buyer under the item-independence
assumption [4, 14, 18]. * Ourfi rst main result extends the above approximation to any MRFs. The
approximation ratio degrades with the maximum weighted degree A that captures the degree of
dependence among the item values.

Parameter I: Maximum Weighted Degree A. The formal definition can be found in Definition 4. As
we mentioned, a MRF can be thought of as a graph (or a hypergraph) where each node represents a
random variable. The weight of an edge is related to the maximum absolute value the corresponding
potential function can take and represents the “strength” of the dependence between two incident
random variables. The weighted degree of a random variable is simply the sum of weights from all
incident edges. If the maximum weighted degree A of a MRF is small, then no random variable can
depend strongly on many other random variables. Note that A = 0 when the random variables are
independent, and the instance constructed by Hart and Nisan [30] corresponds to a MRF with A = co.

Result I: For a single additive or unit-demand buyer whose type is generated by a MRF with
maximum weighted degree A, max{SREv, BREV} = Q (w&%), where OPT is the
optimal revenue.

The formal statement of the result is in Theorem 1 and 2. We further show that the dependence
on A is necessary. For any sufficiently large number C, there exists a MRF with A = O(C) such
that max{SREv, BREV} is no more than % (Theorem 3) using a modification of the Hart-Nisan
construction [30]. Although there is still an exponential gap between our upper and lower bounds,
it shows that whenever Result I fails to provide a constant factor approximation (independent of
the number of items), no constant factor approximation is possible without further restrictions on
the dependency. We leave it as an open question to close the gap between our upper and lower
bounds. The main tool we use is a generalization of the prophet inequality to the case where the
rewards are sampled from a MRF (Lemma 3). The overall analysis is similar to the one used by
Cai et al. [14] for the item-independent case. We show that the exponential dependence on A is

3More specifically, SREv denotes the optimal expected revenue achievable by any posted price mechanism. When the buyer
has a unit-demand valuation, [14, 18] show that SREV is already a constant factor approximation of the optimal revenue.
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unavoidable for this type of analysis in Theorem 8. More specifically, a key step of the analysis
involves approximating the optimal revenue in a single-dimensional setting, known as the copies
setting, using SREv. Theorem 8 constructs an instance such that the optimal revenue in the copies
setting is at least exp(A) times larger than max{SRev, BREV}.

Rubinstein and Weinberg [41] show that, under the item-independence assumption, max{SREv, BREv}
is still a constant factor approximation to the optimal revenue for a buyer whose valuation is a
subadditive function. Our second main result extends their result to any MRFs when the buyer’s
valuation is a XOS function. The approximation ratio depends on A and the spectral gap of the
Glauber Dynamics y.

Parameter II: Spectral Gap of the Glauber Dynamics y. A common way to generate a sample from
a high-dimensional distribution is via a Markov Chain Monte Carlo method known as the Glauber
dynamics (see Definition 5). The spectral gap y of the Glauber dynamics is the difference between
the largest eigenvalue A; = 1 and the second largest eigenvalue A, of the transition matrix of the
Glauber dynamics. It is well-known that A, is strictly less than 1 for any MRFs [36], so y is always
strictly positive.

Result II: For a single XOS buyer whose type is generated by a MRF, max{SREev, BREv} =
Q[ —=LL__ | where n is the number of items, y is the spectral gap of the Glauber
exp(O(A)+ 7
Dynamics, and A is the maximum weighted degree. ¢

¢Although the approximation ratio depends on n, the ratio indeed improves if we increase n andfix y .

Some remarks are in order. First, our approximation ratio holds for any MRFs. Second, for any
n-dimensional random vector X = (x1,..., x,), the X;’s are considered weakly dependent if the
spectral gap y = Q(%). For example, when the x;’s are independent, y > % Finally, the condition
Y = Q( %) is extensively studied in probability theory. The condition is satisfied under the Dobrushin
uniqueness condition (see Section 6 for details), a well-known sufficient condition that ensures weak
dependency; it implies rapid mixing of the Glauber dynamics (i.e., they mix in time O(nlogn)); it
also guarantees that polynomial functions concentrate in Ising models [26, 29].

The formal statement of Result II can be found in Theorem 4. The analysis follows the same
general framework by Cai and Zhao [17]. The major new challenge is to prove that any XOS
function ¢g(X) concentrates, when X is a drawn from a high-dimensional distribution D. Proving
concentration inequalities for non-linear functions over dependent random variables is a non-trivial
task that lies at the heart of many high-dimensional statistical problems. We prove a parametric
concentration inequality for XOS functions that depends on the spectral gap of the Glauber dynamics
for D (Lemma 13). The proof is based on a combination of the Poincaré inequality and a special
property of XOS functions - the self-boundingness. We believe this concentration inequality may
be of independent interest. An interesting question is whether the approximation ratio needs to
depend on both A and y. We show that the dependence on A is crucial, as no approximation can
be obtained with only restriction on the spectral gap even for a single additive or unit-demand
buyer (Theorem 7). * We do not know whether it is possible to obtain an approximation that only
depends on A for a XOS buyer and leave it as an open question. > We suspect such an improvement
requires proving a parametric concentration inequality for XOS functions that only depend on the
maximum weighted degree A, which we believe will have further applications.

“Indeed, we prove an even stronger result that shows nofi nite approximation ratio is possible under only the Dobrushin
uniqueness condition, which implies that y = Q(%) (Lemma 16).

5 A naive approach is to directly bound y using a function of A. However, this approach can at best provide an approximation
ratio that is exponential in n, as % could be exponential in n even when A is upper bounded by some absolute constant [39].
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Our Results under Other Weak Dependence Conditions. There are several alternative ways to
parametrize the degree of dependency in a high-dimensional distribution. We focus on two promi-
nent ones — the Dobrushin coefficient and the inverse temperature of a MRF, and discuss how our
approximation results change under these conditions. Wefi rst consider the Dobrushin coefficient
and its relaxations. An important concept is the influence matrix.

Influence Matrix and the Dobrushin Condition. For any n-dimensional random vector X =
(X1,. .., Xy,), we define the influence of variable j on variable i as

%ij = sup dry (Fx,- X =35, X = £ |Xj:x;.,x_,-_j:x_,-_j) .6
x j_;t;cj}

where Fy,|x_,=x_, denotes the conditional distribution of X; given X_; = x_;. Let a; ; := 0 for each i.
We define the influence matrix A = (a;, j)i,j c[n]- When the X;’s are weakly dependent, the entries of
A should have small values. The Dobrushin Coefficient, defined as ||Al| = MmaX;e[n] 2 je[n] %ij> Was
originally introduced by Dobrushin [27] in the study of Gibbs measures. The Dobrushin coefficient
less than 1 is known as the Dobrushin uniqueness condition, under which the Gibbs distribution has
a unique equilibrium, hence the name. The condition can be viewed as a sufficient condition that
guarantees weak dependence and has been extensively studied in statistical physics and probability
literature (see e.g. [28, 43]). As the spectral radius of any matrix is no more than its L., norm, a
relaxation of the Dobrushin uniqueness condition is to restrict the spectral radius p of A to be
less than 1. We show that ny > 1 — p (Lemma 16), so we can replace the dependence on ny with
1 — p in Result II when the item values are weakly dependent (Theorem 5). We also show that the
dependence on A is necessary. Without any restriction on A, the gap between max{SRev, BREv}
and the optimal revenue could be unbounded even under the Dobrushin uniqueness condition
for an additive or unit-demand buyer (Theorem 7). Next, we consider how the approximation
guarantee degrades in terms of the inverse temperature of a MRF.

Inverse Temperature  of a MRF. The inverse temperature is related to both the maximum weighted
degree and the Dobrushin coefficient. See Definition 3 for the formal definition. Intuitively, as
the inverse temperature increases (or temperature drops), the dependence between the different
random variables strengthens. When the inverse temperature is 0, the MRF represents a product
distribution. The high temperature regime is when the inverse temperature is less than 1. This
parameter often controls when phase transitions in the behavior of MRFs happen, and hence the
name. The Dobrushin coefficient always upper bounds the inverse temperature. Recently, MRFs in
the high temperature regime have been applied to model weakly dependent random variables [22].

We show that if the MRF is in the high temperature regime, then its maximum weighted degree
5
.

A < 1 and the spectral gap y of the Glauber dynamics has value at least
Result II, we have

As a corollary of

Result ITI: For a single XOS buyer, max{SREv, BREV} = Q ( 1-4- OPT), where f < 1is the
inverse temperature.
The result states that as long as the inverse temperature is bounded away from 1 by any constant,
max{SREv, BREV} achieves a constant fraction of the optimal revenue. Theorem 6 contains the

formal statement of the result.
We summarize our results in Table 1 and the relationship between the parameters in Figure 2.

Sdrv (-, -) denotes the total variation distance between two distributions, hence a;, j measures the maximum total variation
distance we can have between two conditional distributions of variable i that only differ on the value of variable j.
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Maximum Weighted Degree A Spectral Gap y
Maximum Weighted Degree A and or Inverse Temperature f§ < 1
Spectral Gap y Dobrushin Coefficient & < 1
. OPT p . OPT
Additive UB: Q (exp(o(/\)) ) (Theorem 2 and 1) UB: Q (exp(O(/\])) (<) UB: Q ( -5 OP’I‘) 0
or Unbounded (Theorem 7)
Unit-Demand LB: O (‘A){—/T) (Theorem 3) LB: O (%) () LB: open
UB: open UB: Q 7“;,(0(0;1#) (Theorem 4) UB: Q ( =B OPT) (Theorem 6)
X0S ( ) v Unbounded ()
LB: O (2T ) (1) LB:
77 : open
A 18: 0 (L) ()

Table 1. The table contains our upper bounds and lower bounds of the approximation ratio of
max{SREv, BREV} in various settings. The results are listed based on (i) the valuation of the buyer and
(ii) the parameters the approximation ratio can depend on. In our table, an arrow means the result follows
from the result that the arrow points to.

Spectral Gapy = Q (%)

Maximum Weighted
Degree A< 1

Dobrushin uniqueng
condition

> Product measures

Fig. 2. The relationship between the parameters: inverse temperature, Dobrushin coefficient, maximum
weighted degree, and spectral gap of the Glauber dynamics.

1.2 Related Work

Simple vs. Optimal Auctions. There has been a large body of work on multi-item auction design
focusing on either approximation results under item-independence [1, 4, 14, 15, 17-19, 21, 37, 41, 45]
or impossibility to approximate under arbitrary dependence [8, 30]. Two types of models have been
studied for items with limited dependence. Thefi rst model considers a specific type of dependence
where each item’s value is a linear combination of “independent features” [5, 20]. Unlike MRFs,
this model cannot express arbitrary structure of dependence. Indeed, the values of any two items
can only be positively correlated under this model. The second model considers the smoothed
complexity of the problem [38]. Their result applies to arbitrary dependence structure between the
item values, but only achieves an approximation ratio that is exponential in the number of items. Our
paper is thefi rst to consider a model general enough to capture arbitrary structure of dependence
and obtain parametric approximation ratios that are independent of the number of items.

MRFs and Weakly Dependent Random Variables. There has been growing interest in understanding
the behavior of weakly dependent random variables that can be captured by a MRF in the high
temperature regime or under the Dobrushin uniqueness condition [22, 26, 29]. In mechanism design,
Brustle et al. [9] is thefi rst to propose modeling dependent item values using MRFs in multi-item
auctions, but they focus on the sample complexity of learning nearly optimal auctions.

2 PRELIMINARIES
Basic Notation. We consider an auction where a seller is selling n heterogeneous items to a single

buyer. We denote the buyer’s type ¢ as (t;)],, where ¢; is the buyer’s private information about item
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i. We use D to denote the distribution of ¢, D; to denote the marginal distribution of ¢;, and D,
to denote the distribution of #; conditioned on t_; = c_;. We use Surp(¥) to denote the support of
distribution ¥, and T; = Supp(D;) and T = Supp(D). Moreover, we use f(c) to denote Prs.p[t = c].
For any item i and any ¢; € T; and c_; € T_;, we use f;(c;) to denote Pr;,.p, [t; = ¢;], fi(ci | c=;) to
denote %,ﬂi(cﬂ) to denote Pr;.p[t_; = c_;],and f;(c_; | ¢;) to denote %.
We also define Fi(c;) = Pry~p, [ti < ¢;] and Fi(c; | c—;) = Pry,-p,._, [t; < ¢;]. Finally, when the
buyer’s type is t, her valuation for a set of items S is denoted by v(t, S).

We investigate the performance of simple mechanisms for several well-studied valuation classes.

DEFINITION 1 (VALUATIONCLASSES). We define several classes of valuations formally.

o Constrained Additive: interpret t; as the value of item i, and v(t,S) = maxrcs.res Dier bis
where I C 2I™l is a downward closed set system over the items specifying the feasible bundles.
When I = 2™ the valuation is called Additive. When I contains all the singletons and the
empty set, the valuation is called unit-demand.

e XOS/Fractionally Subadditive: interpret t; as {ti(k) }ke[k] that encodes all the possible values
associated with item i, and v(t,S) = maXge[K] Dics tl.(k),

It is well known that the class of XOS valuations contains all constrained additive valuations.

Mechanism. A mechanism M is specified by an allocation rule and a payment rule. We use =«
to denote the allocation rule, and ; (t) is the probability that the buyer receives item i when she
reports type ¢. We also use p(t) to denote the buyer’s payment when she reports type . We assume
the buyer has quasi-linear utility. We say a mechanism M is Incentive Compatible (IC) if the buyer
cannot increase their expected utility by misreporting their type, and Individual Rational (IR) if the
buyer has non-negative expected utility when they report their type truthfully to the mechanism.

Given D, valuation function v(-, ), we use REV(M, v,D) to denote the expected revenue of an
IC and IR mechanism M. We slightly abuse notation to use REV(D) to denote the optimal revenue
achievable by any IC and IR mechanism under distribution D.

Throughout the paper, we use the following notations for the simple mechanisms we consider.
- SREV(v,D) denotes the optimal expected revenue achievable by any posted price mechanism,
and we use SREvV for short if there is no ambiguity. - BREV(v,D ) denotes the optimal expected
revenue achievable by selling a grand bundle and we use BREV for short if there is no ambiguity.

2.1 Markov Random Fields

DEFINITION 2 (MARKOVR ANDOMFIELDS). A Markov Random Field (MRF) is defined by a hyper-
graph G = (V,E). Associated with every vertexv € V is a random variable X, taking values in some
alphabet 3, as well as a potential function i, : £, — R. Associated with every hyperedgee C V is a
potential function, : 3, — R. In terms of these potentials, we define a probability distribution & associ-
ating to each vectorc € X,y =, probability (c) satisfying: m(c) o [Tyey €% [1,cx € (%) where
Y denotes Xyece2y, and ¢, denotes {cy}yce.

We refer the interested readers to [32, 35] and the references therein for more details about MRFs.
Throughout the paper, when we say the type distribution D is a MRF over a hypergraph G = (V,E), if
V = [n], ti = x;, T; = X, and there exists a collection of potential functions {{/;(-) }ie[n] and {e(-) }eck
so that the corresponding distribution p(-) equals to D. If there are only pairwise potentials, then G is
a graph. We say that a random variable t is generated by a MRF, if t is sampled from a distribution
that is represented by the MRF.

Next, we define two ways to measure the degree of dependence in a MRF.
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DEFINITIONS. Let random variablet be generated by a Markov Random Field over a hypergraph G =

([n], E), we define the Markov influence between itemi and j to be: B; j (t) := maXyex (T, |2 eck: Ye(Xe)
i,j€e

We further define the inverse temperature of the MRF as f(t) := maXe[n] X j; Bij (). We say ran-
dom variable/type t is in the high temperature regime if f(t) < 1.

DEerFINITION4. Given a random variable/type t generated by a Markov Random Field over a hyper-
graphG = ([n], E), we define the weighted degree of item i as: d;(t) := MaXxex, (T, | Leerice Ve (Xe)l,
and the maximum weighted degree as A(t) := maX;c[,] d;(t).

ReEMARK1. Both f(t) and A(t) capture the degree of dependence between the items. Note that
A(t) < p(t) for any MRF t, and it is possible that f(t) = Q(d - A(t)), where d is the size of the
largest hyperedge in G. When t is drawn from a product measure, both f(t) and A(t) are 0. In general,
restricting f(t) and A(t) to be small ensures that the item values are only weakly dependent.

To achieve our results, we need another important concept — the Glauber dynamics. In Section 5,
we relate the approximation ratio achievable by simple mechanisms to the spectral gap of the
Glauber dynamics of the MRF.

DEFINITION 5 (GLAUBERDYNAMICS). Let Xy, ..., X, be an n-dimensional random vector drawn
from distribution 7. Let Q be the support of =. The Glauber dynamics for r is a reversible Markov
chain with state space Q. The Glauber chain moves from state x € Q as follows: an index i is chosen
uniformly at random from [n], and a new state y is chosen so that (i) y; = x; for all j # i; (ii) draw y;
from the conditional distribution 7 | X_; = x_;. It is not hard to verify that the Glauber dynamics is a
reversible Markov chain with stationary distribution .

REMARK2. When 7 is the distribution that can be represented by a MRF G = (V,E), the Glauber
dynamics has state space X ,cy Zy. The Glauber chain moves from state x € X ey 2y as follows: a

vertex v is chosen uniformly at random from V, and a new state y is chosen so that (i) y,, = x, for all

e _ exp(o(€)) Mewwee exp (Ve (€.Xe (o} ))
u # v; (ii) for any ¢ € 2y, y, = ¢ w.p. S s P (Yo @D omee 0P (Ve (¢uy 1))

according to the distribution conditioned on y_, = x_,. Note that for a MRF, the Glauber dynamics
is an irreiducible Markov chain, so 7 is its only stationary distribution. The Glauber dyanamics is a
standard method for generating samples from a MRF, as it does not require computing the partition
function, which is often a computationally intractable task.

in other words, sample y,

3 MARKOYV RANDOM FIELDS: BASIC PROPERTIES AND TOOLS

Wefi rst present some basic properties of a MRF. Roughly speaking, we show that the condi-
tional distribution can be approximated by the corresponding marginal distribution of D, and the
approximation quality only depends A(#). We postpone all proofs in this section to Appendix B.

LEMMAL. Let random variable t be generated by a MRF. Then for anyt; € T;,t_; € T_;:

exp(¢;(t;)) exp(¥i(t:))

Sijen exp (1) ) E S e P

exp(~2A(1)< filt; | L

and
fi(ti) - exp(=4A(t))< fi(ti | t=i) < fi(ti) - exp(4A(t)).

LEmMA2. Let random variable t be generated by a MRF. For any i and any set & C T; and set
& CT:
PI’tND [ti e&EA I_; € 8/]

—4A(1))<
exp(—4A(t))< Pr, p [t: € E]Pr, p [t; €&

< exp(4A(t)).
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Prophet Inequality for MRF. Equipped with Lemma 2, we provide a generalization of the Prophet
inequality when the rewards in different stages are dependent and generated by a MRF. We can
think of the prophet inequality problem, asfi nding a good policy for a gambler in a multi-round
game. At the i-th round, the gambler is given the choice to accept a reward or to continue to the
next round. The goal of the gambler is tofi nd a policy that obtains high expected reward, given
the distributions of the rewards at each round. Prophet inequalities have been obtained when the
rewards between stages are independent [33, 34, 42] or can be expressed a a linear combination of
some independent random variables [31].

LEMMA3. Lett = (ty,...,t,) be an n-dimensional random vector generated by a MRF. There are
totally n rounds, and the reward of round i is g;(t;), where g; is an arbitrary function. The total reward
of the prophet is E; [maxie[n] gi(ti)]. We denote by REWARD; [{gi}ie[n], r] the expected of reward of
the following policy — accept any reward that is at least . The following inequality holds if we choose
7" = MEDIAN; (maX;e(n) 9i(1:)) (i.e, Prlmax;e[n) 9i(t;) > %] = 1/2),

exp(~4A (1))

¢ [_maxgi(ti)] < Rewarp [{gi}icin) 7] -
2 i€[n]

4 SIMPLE MECHANISMS FOR A UNIT-DEMAND OR ADDITIVE BUYER UNDER MRF

In this section, wefi rst use the duality framework from [14, 17] to construct an upper bound of
RevV(D). Next, we prove that if the buyer has either unit-demand or additive valuation across the
items, max{SREv, BREV} is a O(exp(12A(t)))-approximation or a O(exp(4A(t)))-approximation
of REv(D), respectively.

4.1 Benchmark of the Optimal Revenue for Constrained Additive Valuations

In this section, we use the duality framework from [14, 17] to construct an upper bound of REv(D).
We describe a benchmark of the optimal revenue for all constrained additive valuations. Deriving a
benchmark for XOS valuations requires some extra care, and we provide details of the derivation
in Section 5.1 when we study XOS valuations. Wefi rst remind the readers the partition of type
space used in [14, 17].

DEFINITION 6 (PARTITION OF THET YPES PACE FORC ONSTRAINEDA DDITIVE VALUATIONS|[ 14, 17]).
We partition the type spaceT inton regions, where R; = {t € T : i is the smallest index in argmax; ¢, t}-
Ift € R;, we call item i the favorite item of typet.

To handle the dependence across the items, we introduce some new notations to specify the
benchmark.

DEFINITION 7 (IRONED VIRTUAL VALUE). Let D be the type distribution. For any t € R;, we use
¢i(t;) to denote the ironed Myerson’s virtual value for distribution D;, ¢;(t; | t—;) to denote the
ironed Myerson’s virtual value when we ironed D;;_, over interval [max j4; tj, max SUupP(D;),_,)].

If Dy, , is a regular distribution and t] = argmin{i € Supp(D;,,) : T > ;},

(ti, — ti) . PI‘;ND [fl >t A f_i = l'_,'] (ti, - ti) . (1 - Fi(tj | t_i))

(t: |t =t — =t —
¢l( l | l) L f(t) 1 ﬁ(tl | t_l)
Moreover, $;(t; | t_;) always satisfies the following property:

max p-(1=F(plt))= > filti|t)-di(ti | )",

pmax;z; L
ti: (ti,t-i) €R;

where x* = max{x, 0}.
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Lemma 4 contains the benchmark we use. See Appendix A for more details about Lemma 4.

LEMMA 4 (BENCHMARK OFO PTIMALR EVENUE FORC ONSTRAINEDA DDITIVE VALUATIONS). Given
a distribution D over the type space T, and a mechanism M = (m,p), if the buyer’s valuation v is
constrained additive, then we have the following benchmark:

REV(M,0,D) < Z Z F) - mi(t) - ¢i(ti | t) L[t € R]  (SINGLE)

teT ie[n]
+ Z Z f(t) - mi(t) - t; - L[t & R;] (NON-FAVORITE)
teT ie[n]
< tz; .Z[:] @) m(t) - ¢i(t; | t—;) - L[t € R;] (SINGLE)

+ZZf(t)t Pr[¢/¢Ri [t/ =t] (Tan)

i€[n] ti>r

+ 3 filt) -t (Corn),

i€[n] ti<r

wherer = SREV(v,D).

Single-Dimensional Copies Setting: In the analysis of unit-demand bidders with independent
items [14, 19], the optimal revenue is upper bounded by the optimal revenue in the single-
dimensional copies setting defined in [19]. We make use of the same technique in our analysis.
There is a single item for sale, and we construct n agents, where agent i has value t; for winning the
item. Notice that this is a single-dimensional setting, as each agent’s type is specified by a single
number.

4.2 A Unit-Demand Buyer

In this section, we show that a simple posted price mechanism can extract O(exp(12A(t))) fraction
of the optimal revenue when the type distribution D is a MRF. Wefi rst use the revenue of the Ronen’s
lookahead auction [40] to upper bound the benchmark from Lemma 4. 7 Ronen’s auctionfirst
identifies the highest bidder, and offers a take it or leave it price to the highest bidder to maximize
the revenue conditioned on the other bidders’ types. The proof follows from the definition of
Ronen’s lookahead auction and basic properties of MRF presented in Lemma 1 and 2. We postpone
the proof to Appendix C.

LEMMAS. Let the type distribution D be represented by a MRF, M be any IC and IR mechanism for
a unit-demand buyer, and RONEN“°"* be revenue of the Ronen’s lookahead auction [40] in the COPIES
settings with respect to D. The following inequalities hold:

max{SINGLE, NON-FAVORITE} < RONENC"ES

RONENCO"™ < exp(8A(t)) Ey [m{a)ﬁ ¢i(ti)+] )
1€ln

Equipped with Lemma 5, we can apply the prophet inequality for MRF to show that a posted-
). We delay the proof to

RONENCOP!ES

price mechanism can obtain expected revenue that is at least Q (m

Appendix C.

"Ronen’s lookahead auction considers the setting where the seller is selling a single item to a set of buyers, whose values
for the item are correlated.
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THEOREM1. Let the type distribution D be represented by a MRF. If the buyer’s valuation is unit-

demand, then there exists a posted-price mechanism M with prices {p;}ic[n] that obtains expected
Rev(D)

revenue at least Fep(12A(D) -

Is it possible to improve the dependence on A? In Theorem 8, we show that if we use the optimal
revenue in the COPIES setting as a benchmark of the optimal revenue in the original setting, then
the exponential dependence on A(t) is unavoidable.

4.3 An Additive Buyer

In this section, we show that max{SREv, BREV} is a O(exp(4A(#))) approximation of the optimal
revenue when the type distribution D is a MRF. We denote by r; the revenue of Myerson’s auction
for selling item i only. We use r = };c[,) i to denote SREv, as the revenue collected from item i
only depends on the marginal distribution D;. Wefi rst upper bound the terms SINGLE and TAIL by
exp(4A(t)) - SREv. The proof follows from a combination of the standard analysis of the terms
SINGLE and TAIL from [14, 17] with properties of MRFs (Lemma 2). We postpone the proof to
Appendix D.

LEMMAG. Let the type distribution D be a MRF and M be any IC and IR mechanism for an additive
buyer. The following inequalities holds: SINGLE < exp(4A(t)) - SREV and TAIL < exp(4A(t)) - SREV.

Finally, we analyze the CORE. We define new random variables C; = t;- 1[t; < r].LetC = 3, C;.
Note that E[C] = Core. Wefi rst provide an upper bound on VAR[C], and show that if we sell
the grand bundle at an appropriate price, its revenue is close to the CoRre. Note that under the
item-independence assumption, it is not hard to show that VAR[C] is upper bounded by 2r? [4, 14].
However, this analysis does not extend to the case where the buyer type is generated by a MRF.
Wefi rst obtain a new upper bound of VAR[C]. As C = 3| C;, we have VAR[C] = 3;c(,,) VAR[C;] +
2izj Cov[C;, C;]. We further bound 3’;c(,) VAR[C;] by 2r? using the standard analysis in [4, 14]
and each covariance Cov[C;, C;] using properties of MRF (Lemma 2). The proof is postponed to
Appendix D.

LEMMA7. Let the type distribution D be represented by a MRF. For any i,j € [n], Cov[C;,C;] <
(exp(4A(t))— 1) E[Ci] E[C;]. Moreover, VAR[C] < 2r* + (exp(4A(t))— 1) E[C]?.

In the item-independence case, the standard analysis [4, 14] applies Chebyshev’s inequality to
show that the seller can sell the grand bundle at price E[C] — 2r with probability at least 1/2, which
implies that Core is O(BREV + SREV). As our upper bound on VAR[C] is a lot larger, Chebyshev’s
inequality only gives a vacuous bound on the sell probability. # To show that selling the grand
bundling is a good approximation of the CORrE, we set the price of the grand bundle differently and
use the Paley-Zygmund inequality to prove that either the sell probability is high or the Core is
within a constant factor of r. The proof of Theorem 2 can be found in Appendix D.

THEOREM2. Let the type distribution D be represented by a MRF. If the buyer’s valuation is additive,
then

(z exp(4A(t)) + \/5) - SREV+ 8 (exp(4A(1)) + 1) - BREV > Re(D).

81n particular, if we set the price to be a - E[C] — « - r for any constant a € [0, 1] and x, Chebyshev’s inequality tells us
Vagr[C]

((1-a) E[Cl+x-r)%"

of VAR[C] will be larger than ((1 — a) E[C] + k - r)?, if exp(4A(t)) > 2 and E[C] is much larger than r. In this case,

% is larger than 1 making the bound useless.

that the probability that the buyer cannot afford the grand bundle is at most However, our upper bound
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In the following theorem, we show that the approximation ratio must have polynomial depen-
dence on A(t). Our proof is based on a modification of the hard instance by Hart and Nisan [30].
They construct a joint distribution over two items with support size m and show that the optimal
revenue is at least m'/7 - max{BREv, SREv}. Unfortunately, their construction requires A to be
infinite. We show how to modify their construction so that the new distribution has maximum
weighted degree A = O(m), and the gap between the optimal revenue and max{BREv, SREV}
remains to be m'/7. The key is to show that under the new distribution, no type shows up too
rarely, and the optimal revenue, SREv, and BREV remain roughly the same. The proof is postponed
to Appendix G.

THEOREM3. For any sufficiently large m € N, there exists a type distribution over two items
represented by a MRF D such that (i) the maximum weighted degree A is at most C - m, where C is an
absolute constant; (ii) for an additive buyer whose type is sampled from D, there exists an absolute
constant C' > 0 such that REv(D) > C’'m'/7 - max{BREev(D), SREV(D)}.

5 SIMPLE MECHANISMS FOR A XOS BUYER

5.1 Duality Framework for XOS Valuations

The benchmark is obtained using essentially the same approach as in [17]. Suppose the buyer has
a XOS valuation function v(¢, S). We denote by V;(t) = v(t, {i}). We abuse this notation and we
also define for t; € T;, V;(t;) = 0((0, ..., ,...,0),{i}), where 0 is the all 0 vector. We summarize
the benchmark for a XOS buyer in the following Lemma. More details can be found in Appendix F.

LEMMAS. Partition the type space T inton relgions, where
Ri={t € T: f(t) > 0 and i is the smallest index that belongs in argmax;., Vi(t) }

1

Let r = SREV be the revenue of the optimal posted price mechanism that allows the buyer to purchase
at most one item. Let C(t) := {i : V;(t) < 2r}. For any IC and IR Mechanism M, we can bound its
revenue by:

Rev(M,0,D) <2 3" (1) > m($(Vi(t) | )1t € Ri]  (SNoLE)

teT i€[n]
+4 Z Z ft)-Vi(w) Pr [t' ¢ R |t = t;] (Tamw)
ie[n] ti€T;
Vi(t;) z2r
+4 " f(H)o(t,C(t) (Corr)
teT

5.2 Approximating the Benchmark of a XOS Buyer

In this section, we show how to approximate the optimal revenue of a buyer with a XOS valuation.
Wefi rst upper bound the term SINGLE and TAIL . The analysis of both terms follows from the
combination of the analysis in [17] and Lemma 2.

LEMMAY. Let the type distribution D be represented by a MRF. If M is an IC and IR mechanism for
a buyer with a XOS valuation, then the following inequalities hold
SINGLE < 4exp(12A(t)) - SREV

and
Tarm < exp(8A(t)) - SREv,

where SREV is the revenue of the optimal posted price auction, in which the buyer is allowed to purchase
at most one item.
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5.2.1 Bounding the CorE using the Poincaré Inequality. In this section, we show how to bound the
Cogre for a XOS buyer. The Core is the expectation of the random variable v(#, C(t)). To show that
bundling can achieve a good approximation of the Core, we need to upper bound the variance
of u(t,C(t)). This is the main task of this section. As v(, -) is not additive across the items, our
method for the additive valuation (see Lemma 7) no longer applies. We provide a new approach
that is based on the Poincaré Inequality and the self-boundingness of XOS functions. Wefi rst state
the Poincaré Inequality.

LEMMA 10 (THE POINCAEI NEQUALITY( ADAPTED FROML EMMA 13.12 OF[ 36]). Let P be a reversible
transition matrix on state space Q with stationary distribution x. For any function g : Q — R, let

£@ =3 3 1900 - g)IPa(0P(xy).

x,yeQ

If VAR, [g(x)] > 0, then

&E(9)
VAR~ [g(x)]

= >

where y is the spectral gap of P.° Moreover, there exists a function g* : Q — R, such that

el _ v
VAR:.x[g*(x)]
Next, we apply Lemma 10 to the Glauber dynamics of the MRF that generates the buyer’s type.

LEmMAll.  Let D be the joint distribution of random variablest = (t1,...,t,) and P be the
transition matrix of the Glauber dynamics for D. For any functiong : T — R, we have

ny - Var-plg()]< ) Eep

i€[n]

(90t t-0 = Bipon,, Lo u—)])z] ,

where y is the spectral gap of P. Moreover, there exists a function g* : T — R, such that the inequality
is tight.

REMARK3. Lemma 11 is a generalization of the well-known Efron-Stein inequality to dependent
random variables. Indeed, when D is a product measure, y is at least 1/n and we recover the Efron-Stein
inequality. As we demonstrate in Section 6, y is at least Q(1/n) under many well-studied conditions of
weak dependence, such as the Dobrushin uniqueness condition.

Proof of Lemma 11: According to the definition of the Glauber dynamics, P is a reversible transition
matrix on state space T with stationary distribution D. Lemma 10 states that

y-Vareolg@ls 5 Y 190 - g - £ P61, 1

t,t'eT

Tt is well-known that the largest eigenvalue of P is 1, and the spectral gap of P is the difference between P’s largest and
second largest eigenvalues.
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By the definition of the Glauber dynamics, the RHS of Inequality (1) is equivalent to

1 1 ’
B |~ Z Ev-py,, [9(8) = g(t]. )]’

=— Z EL ~D_; [Etz ”Dl\f

% (g(tit_s) — g(1], t—i))2”

1€ [n]
l€ [n]
== Z] Etp [(g(ti’ ti) - Ef}NDi\Li g (e, t_i)])z] .

The second equality is because t; and ¢/ are two i.i.d. samples from Dj;_,.

Hence,
ny - VARs.p [g(t) Z E¢-p (g(tl,t_l) Ey i~Dilt_; [g(tl,t_l)]) ]
i€[n]
Note that if we choose g(-) to be the function ¢g*(-) in Lemma 10, Inequality (1) becomes an
equality.
O

Recall that to bound the Core, we need to upper bound the variance of the random variable
o(t,C(t)). By choosing g(t) to be v(¢, C(t)) and applying Lemma 11, we can instead upper bound
the RHS of the inequality in Lemma 11. A priori, it is not clear that the RHS would be easier to
bound. In the following sequence of Lemmas, we show that the RHS is indeed more amenable to
analysis. Wefi rst argue that the function o(¢, C(t)) has a key property known as self-boundingness,
using which we then upper bound the RHS by O(SREv - Corg) and show that SREv and BREV can
approximate the CORE.

DEFINITION 8 (SELF-BOUNDINGF UNCTIONS[ 7]). Let S be an arbitrary set and A be a subset of S™.
We say that a function g(t) : A — R is C-self-bounding with some constant C € R, if there exists a
collection of functions g; : A_; — R foreachi € [n] with A_; .= {t_; : 3t;, (t;,t_;) € A}, such that
foreacht € A the followings hold:

e 0<g(t)—gi(t_;) <C foralli € [n].
® Yicin) (9(t) —gi(t-y)) < g(2).

We next argue that for a self-bounding function, the RHS of the inequality in Lemma 11 is upper

bounded by its mean.

LEMMA12. Let D be the joint distribution of random variablest = (t1,. .., t,). If g(-) is a C-self-
bounding function, then

Z E¢-p [(g(t) —Ey-p,,., [9(t], t—i)])z] < CE¢p [9(1)].
i€[n]

Proor. Recall the following property of the variance: For any real-value random variable X,
VAR[X] = mingcg E[(X — a)?]. In other words, VAR[X] < E[(X — a)?] for any a. Therefore, for any
t_j,

EszDiIt,i [(g(t) - Etl{NDi\Li [g(ti,’ t—i)])z} = VAR[g(t) | t—i] < EtzwDiIt,i [(g(t) - gi(t—i))z] .
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Using this relaxation, we proceed to prove the claim.

Z E¢-p [(g(t) —Ey-p,,, l9(t], ti)])z]
i€[n]

< D Ben [(90) — gi(t-0)’]

i€[n]

<C Z E¢-p [(g(t) — gi(t-))]

i€(n]
<CE¢-p [9(1)]

Thefi rst inequality follows from the relaxation. The second and last inequality follow from the
first and second property of a self-bounding function respectively. O

Combining Lemma 11 and 12, we have the following Lemma.

LEmMA13. Let D be the joint distribution of random variablest = (ty, ..., t,) and P be the transition
matrix of the Glauber dynamics for D. For any C-self-bounding functiong : T — R, we have
n
T Var-plg(t)]< Eep 9],
where y is the spectral gap of P.

Definition 8 may seem obscure atfi rst, but many natural functions are indeed self-bounding. For
example, if A is [0,1]" and ¢(-) is the additive function, then g(-) is 1-self-bounding. We show that
the function ¢g(t) := v(t, C(t)) is 2SREV-self-bounding and its variance is no more than W.
Here, wefi rst specialize our analysis to MRFs. The main difference is that the Glauber dynamics
for a MRF is irreducible, so the spectral gap is strictly positive (Lemma 12.1 of [36]). The proof is

postponed to Appendix E.

Lemmal4. LetC(t) := {j: V;(t) < 2SREV}. The function g(t) := v(t, C(t)) is 2SREV-self-bounding
and VAR.p[g(t)]< zsmr‘:—%am’ wherey > 0 is the spectral gap of the transition matrix of the Glauber
dynamics of the MRF that generates the buyer’s type.

Now, we show how to approximate Core using SREv and BREv.

LEMMA15. Let the buyer’s type distribution D be represented by a MRF, P be the transition matrix
of the Glauber dynamics of the MRF, and y > 0 be the spectral gap of P. We have

CorE < (4SREV (7+ 4 )BR )
RE < maxX | —, —_— EV].
iy NGOG

Proor. According to Lemma 14, 0(¢, C(t)) is a 2SREv-self-bounding function and VAr[v (¢, C(¢)]<

2SREV-CORE 4SREV 4SREV
= If CORE2 < T therzl the statement holds. If CORe > N then Var[o(t,C(t))]<
(Core)” _ E[v(zt’\/cni;)) I By Paley-Zygmund inequality we have that:

2SREV-CORE <
ny 24/ny

Pr|o(t,C(t))> > g

CORE] 4 1 1

> -
3 9 Var[o(£,C(t))] L-
1+ Enacao 1 o

Therefore we have that: Pr [v(t, C(t))=> %] . % < BREv, which implies that the statement.
O

Finally, we combine our analysis of SINGLE, TAIL and CoRE to obtain the approximation guarantee
for a XOS buyer.
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THEOREM4. Let the buyer have a XOS valuation and her type distribution D be represented by a
MRF. We use y to denote the spectral gap of matrix P — the transition matrix of the Glauber dynamics

of the MRE. Then Rev(D) < 12 exp(12A(t)) - SREV+ (28 + \}767) max{SRev, BREV}.

Proof of Theorem 4: The statement follows from the combination of Lemma 8, 9, and 15. O

6 CONNECTION TO OTHER WEAK DEPENDENCE CONDITIONS

A common way to measure the degree of dependence of a high-dimensional distribution is by
considering its Dobrushin Interdependence Matrix. In this section, we show that for several natural
sufficient conditions that guarantee weak dependence in the distribution, the spectral gap y of the
Glauber dynamics transition matrix is Q(1/n). We begin by defining the Dobrushin interdependence
matrix.

DEFINITION 9 (d-DOBRUSHINI NTERDEPENDENCEM ATRIX[ 44]). Let (E, d) be a metrical, complete
and separable space. For two distributions i and v supported on E, their L'-Wasserstein distance is
defined as: Wy 4(p,v) = inf zen f fExE d(x,y)n(dx, dy), wherell is the set of valid coupling such that
its marginal distributions are i and v.

Let X = (x1,...,x,) be a n-dimensional random vector supported on E® and p;(- | x_;) be the
conditional distribution of x; knowing x_;. Define the d-Dobrushin Interdependence Matrix A =
(@ij)ijern) by

Wia (pi (- | x=i), pi (- [ y=i))
Xoimj=Y-i-j d(x;j, y;)

foralli # j,

and a;; = 0 for alli € [n].

REMARK4. «;; captures how strong the value of x; affects the conditional distribution of x; when
all other coordinates arefi xed. Higher «; j value implies stronger dependence between x; and x;. When
all the coordinates of X are independent, A is the all zero matrix.

Dobrushin uniqueness condition: If we choose d(x,y) to be the trivial metric 1,,, then
Wia(+, ) is exactly the total variation distance. The influence matrix mentioned in Section 1 is
exactly the Dobrushin interdependence matrix with respect to the trivial metric. To remind the
audience, the Dobrushin Coefficient is defined as a(t) := [|Al|w = max;e[n] X jz; @i; When A is
the influence matrix. If a(¥) < 1, we say t satisfies the Dobrushin uniqueness condition. As
[|A]|e is at least as large as A’s spectral radius py(t), 1° a weaker condition than the Dobrushin
uniqueness condition is that the spectral radius py(t) is strictly less than 1.

We argue that even the weaker condition that py(#) < 1 implies that the spectral gap of the
transition matrix of the Glauber dynamics y = Q(1/n). We postpone the proof to Appendix H.

LEmMmAL16. Letd(-,-) be any metric, for any n-dimensional random vectort, ny > 1 — p,(t), where
y is the spectral gap of the transition matrix of the Glauber dynamics fort.

Combining Lemma 16 with Theorem 4, we immediately have the following Theorem. !!
THEOREMS. Let the buyer have a XOS valuation, her type distribution D be represented by a MREF,

and py(t) be the spectral radius of the d-Dobrushin interdependence matrix of t under some metric

d(-,-). If pa(t) < 1, then REV(D) < 12 exp(12A(t)) - SREV + (28 + ﬁ) max{SREV, BREV}.

Proof of Theorem 5: The statement follows from the combination of Lemma 16 and Theorem 4. O

1054 () is the dominant eigenvalue of A by the Perron-Frobenius Theorem.
1 A major benefit of using pg or the Dobrushin coefficient rather than y is that these parameters are easier to estimate than
y given the joint distribution.
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High Temperature MRFs. Using Theorem 5, we show that when the MRF is in the high temperature
regime, i.e., f(t) < 1 (see Definition 3), max{SREv, BREV} is a constant factor approximation to the
optimal revenue. By the definition of (#), it clear that A(#) < S(t). Next, we show that S(#) is also
an upper bound of p,4(t) for the trivial metric d(x,y) = 1.4,. Due to limited space, the proof is
delayed to Appendix H.

LEmMMAL7. Letd(-,-) be the trivial metric d(x,y) = Lysy. For any MRFt, pa(t) < a(t) < B(t).
Moreover, a;; < i j(t) foralli,j € [n].

THEOREMG. Let the buyer’s type distribution D be represented by a MRF. If the buyer’s a XOS
valuation and her type t is in the high temperature regime, i.e., f(t) < 1,

ReV(D) < 12exp(12f(t)) - SREV + (28 +

SREV, BR
) max{SREv. BREV) = O (u) |

16
V1=p() V1=p()

Proof of Theorem 6: The statement follows from Theorem 5 and Lemma 17. O

7 IMPOSSIBILITY RESULTS

In this section we present some of our impossibility results. In Section 7.1, we show that the
Dobrushin Uniqueness condition alone is insufficient to guarantee any multiplicative approximation
of the optimal revenue using SREv and BREv. In Section 7.2 we construct a MRF such that the
optimal revenue in the COPIES setting is exp(A) times larger than max{SREv, BREv}.

7.1 Inapproximability under Only the Dobrushin Uniqueness Condition

Readers may wonder whether it is possible to prove an approximation ratio that only relies on either
the spectral radius pg(t), the Dobrushin coefficient (), or the spectral gap of the Glauber dynamics
¥, but independent of the maximum weighted degree A(#). We show that this is impossible. Indeed,
we prove that for any @ < 1, and any ratio N, there exists a MRF with py(t) < a(t) < a such that
the ratio between the optimal revenue and max{BREv (D), SREV(D)} is at least & - N. Our result is
based on a modification of the Hart-Nisan construction [30].

THEOREM7. For any positive real number N and any choice of 0 < a < 1, there exists a type
distribution D over 2 items generated by a MRF with Dobrushin coefficient a(t) = a andfi nite inverse

temperature, such that for an additive buyer whose type is sampled from D, — T BRJf\f(‘I/)(;)_;REV( o7 > S-N.

First we present the main building block of our construction. The proofis postponed to Appendix L

LEMMA18. Let D’ be a correlated valuation distribution over 2 items with Dobrushin coefficient a.
Let D be a product distribution that has the same marginal distributions as D’. Then forany0 < o’ < 1,
we consider the distribution D"’ := o’-D’+(1—a’)-D, that is, if we want to sample from D", we can take
a sample from D’ with probability a’ and take a sample from D with probability 1 — a’. Distribution
D" can be modeled as a MRF withfi nite inverse temperature such that A = f(t) < |log((1 — a)p?)|,
where p = inf ¢ esupp(p'y Pro~pr [t = t]and D" has Dobrushin coefficient o’ - ar. Furthermore, D" has
the same marginal distribution as D and Rev(D"’) > o’ Rev(D’).

We also need the following important result from [30].
LEMMA 19 (THEOREM A FROM[ 30]). For any positive number N, there exists a two item correlated

Rev(D)
> max{BRev(D),SREv(D) } > N.

distribution D, such that for an additive buyer whose type is sampled from D

Equipped with Lemma 18 and 19, we are ready to prove Theorem 7.
Proof of Theorem 7:Let D’ be the distribution over two items that is guaranteed to exist by Lemma 19.
Since D’ is a two dimensional distribution, its Dobrushin coefficient is at most 1.

258



Technical Program Presentation - EC '21, July 18-23, 2021, Budapest, Hungary

Apply Lemma 18 to D’ with parameter &’ = « to create another distribution D which has the same
marginals as D’ but with a Dobrushin coefficient at most . Moreover, D can be expressed as a MRF
withfi nite inverse temperature. Clearly, REv(D) > « - REV(D’), as one can simply achieve the RHS
under distribution D using the optimal mechanism designed for D’. Also, SREV(D’) = SREvV(D)
as the two distributions have the same marginals. Finally, BREV(D’) < 2SRev(D’). Suppose b

is the optimal price for the bundle, then we can set the two items separately each at price b/2.
Rev(D)
> max{BREv(D),SREV(D) } z

Clearly, whenever the bundle is sold, at least one item is sold. To conclude

Rev(D) a-Rev(D') a
2SREvV(D) = 2SREvV(D’) > 2 N.
O

7.2 Lower Bound for the Copies Setting

In this section, we show that if the analysis uses the optimal revenue in the COPIES setting as part
of the benchmark for the optimal revenue in the original setting (as in our analysis), the exponential
dependence on the maximum weighted degree A in the approximation ratio is unavoidable. Note
that we also showed that the approximation ratio must have polynomial dependence on A no
matter what approach is used (Theorem 3).

THEOREMS8. For any value of n € N and f € R, there exists a type distribution D over n + 1 items,
such that D can be represented by a MRF with only pairwise potentials and maximum weighted degree
A < B - n. Moreover, for an additive or unit-demand buyer, the expected optimal revenue in the COPIES
settings w.r.t. D can be arbitrarily close to % exp(2fn), while max{BREV, SREV} < 2.

Proof of Theorem 8: We construct the MRF in the following way. Thefi rst item has support T; =
{2°,21,2%,...,2K" "1}, where k € N is going to be defined later. Let ¢y, ..., & be some tiny non-
negative values, and the support of the other items’ distributions is R = {¢;};c[x]. We consider the
following node potential for thefi rst item:

In(z) f0<i<k®-2

(2 = {m(%) ifi=kn—1

The node potentials for the other items is: {/;(a) = In (

anda € R.

Note that |T;| = k" and |R"| = k", therefore for each t; € Tj, we can map it to a unique t_; € R".
Formally, we consider a bijective function ¢ : Ty — R".

We define pair-wise potentials between thefi rst item and the j-th item:

1 .
m)foraﬂz €[2n+1]

B ife =c(2Y);

hi(2e0) = {—/3 if & # c(2');

It is easy to verify that A < f8 - n for the constructed MRF.
Let Z be the normalizing constant so that the MRF with potentials {1/;}ic[n+1], {¥1,i f2<i<ns1 1S

a valid distribution. That is Z = Y csupp(p) [lie[n+1] €xp(¥i(t) [12<i<ner exp(Yri(ty, ti)). For any
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t; € Ty we have that: Pry..p [tl’ =t At = c(tl)] = %exp(lﬁl(tl)) (exp(ﬁ):();f—(l';ﬁez(p(—ﬁ))"'

t’IirD [ti=tintly #c(t)]

1 1
=7 ) ey, 2 L] e )

t_1#c(ty)

1 1 n . . .
—— ex (1 k= 1) (exp(=8)) (ex n—i
7P ) o T, (1) 6= 10 xpp (expi)
(exp(p) + (k — 1) exp(=$))" — exp(nf)

(exp(f) + (k — 1) exp(=f))"

Thus for any t; € T, the marginal probability: f;(t;) = % exp(y1(t1)). Notethat Z = 3, 1, exp(¥1(t1)) =
fzn(; 2 21% + zk+4 =1and fi (1) = exp(¥1(#1)). Therefore the marginal distribution of thefi rst item
is an Equal Revenue Distribution, which means that the revenue of any posted price mechanism
for thefi rst item, cannot be more than 1. Moreover, if we choose ¢, . . ., & to be sufficiently small
so that max,ep < ﬁ, then any posted price mechanisms for the rest n items has revenue less or
equal than % Thus SREv < 2.
Now we consider the following Mechanism in the copies settings. Wefi rst collect the values for
all buyers except thefi rst one t_;, then let thefi rst buyer decide whether she wants to purchase the
item at price ¢c71(¢_;). This is essentially Ronen’s lookahead auction [40]. A lower bound on the

revenue of this mechanism in the COPIES settings is:

=2 exp(i (1)

) = l=t]= ex exp (nff)
tg;l h R [Nty =t nt] =t tlze;l t1 exp(Y1(t1)) (exp(B) + (k — 1) exp(=p))"
1 n
) (1 +(k-1) exp(—zﬂ)) tg% t exp(Y1(t1))
1 n 1
> (1 +(k—1) exp(—zﬁ)) h;l 2

1 1 " T
"2 (1+(k—1)exp(—2ﬁ)) I

1 k g
2 (1 +(k—1) exp(—Zﬂ))
Where the last inequality follows from the definition of ¥/, ().
Note that if wefix f and n, and let k — oo, then limy_, (m)n = exp(2fn).
Therefore as k — oo, the lower bound of the revenue of the proposed mechanisms becomes
M. Since we assumed that the value of the agent for each item except thefi rst is less or equal
than ==, then the value of the agent for all but thefi rst item is less or equal than % This implies

2n’

that if the agent buys the whole bundle at price p, then she also buys thefi rst item at price p — %
Let REv; be the revenue of the posted price mechanism on thefi rst item. Since the marginal of the
fist item is the Equal Revenue Distribution, then REv; < 1. Moreover by the argument described
above, we have that BREV < Rev; + % < 2. Thus max{SRev, BREV} < 2. O
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