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We study the problem of selling = heterogeneous items to a single buyer, whose values for di�erent items are
dependent. Under arbitrary dependence, Hart and Nisan [30] show that no simple mechanism can achieve a
non-negligible fraction of the optimal revenue even with only two items. We consider the setting where the
buyer’s type is drawn from a correlated distribution that can be captured by a Markov Random Field, one of
the most prominent frameworks for modeling high-dimensional distributions with structure.

If the buyer’s valuation is additive or unit-demand, we extend the result to all MRFs and show that
max{SR��, BR��} can achieve an ⌦

⇣
1

4$ (�)

⌘
-fraction of the optimal revenue, where � is a parameter of the

MRF that is determined by how much the value of an item can be in�uenced by the values of the other items.
We further show that the exponential dependence on � is unavoidable for our approach and a polynomial
dependence on � is unavoidable for any approach. When the buyer has a XOS valuation, we show that

max{SR��, BR��} achieves at least an ⌦

✓
1

4$ (�) + 1p
=W

◆
-fraction of the optimal revenue, where W is the spectral

gap of the Glauber dynamics of the MRF. Note that the values of � and 1
=W increase as the dependence

between items strengthens. In the special case of independently distributed items, � = 0 and 1
=W � 1, and

our results recover the known constant factor approximations for a XOS buyer [41]. We further extend 
our parametric approximation to several other well-studied dependency measures such as the Dobrushin 
coe�cient [27] and the inverse temperature. In particular, we show that if the MRF is in the high temperature
regime, max{SR��, BR��} is still a constant factor approximation to the optimal revenue even for a XOS buyer. 
Our results are based on the Duality-Framework by Cai et al. [14] and a new concentration inequality for XOS
functions over dependent random variables.
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rithmic mechanism design; • Computing methodologies → Learning in probabilistic graphical models.
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1 INTRODUCTION
The design of revenue-optimal auctions for selling multiple items is a central problem in Economics
and Computer Science. In the past decade, signi�cant progress has been made,� rst in e�cient
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computation of revenue-optimal auctions [1–3, 6, 10–13, 15, 18, 19, 24], and then in the identi�cation
of simple auctions that achieve constant factor approximations to the optimal revenue [4, 14, 17,
21, 41, 45] under the item-independence assumptions. 1 Despite being theoretically appealing,
item-independence is an unrealistic assumption in practice. In this paper, we go beyond the
item-independence assumption and study simple and approximately optimal auctions for selling
dependent items.

Unfortunately, strong negative results exist if we allow the items to be arbitrarily dependent [8, 30].
For example, Hart and Nisan [30] show that the revenue of the best deterministic mechanism is
unboundedly smaller than the revenue of the optimal randomized mechanism even when we are
only selling two correlated items to a single buyer. Since all simple mechanisms in the literature
are deterministic, the result also implies that no simple mechanism that has been considered so far
can provide any guarantee to the revenue for even two correlated items. Arguably, however, high-
dimensional distributions that arise in practice are rarely arbitrary, as arbitrary high-dimensional
distributions cannot be represented e�ciently, and are known to require exponentially many
samples to learn or even perform the most basic statistical tests on them; see e.g. [25] for a
discussion. To overcome the curse of dimensionality, a major focus of Statistics and Machine
Learning has been on identifying and exploiting the structural properties of high-dimensional
distributions for succinct representation, e�cient learning, and e�cient statistical inference. There
are several widely-studied frameworks to model the structure of dependence in high-dimensional
distributions. In this work, we propose capturing the dependence between item values using one of
the most prominent graphical models – Markov Random Fields (MRFs). Note that MRFs are fully
general and can be used to express arbitrary high-dimensional distributions. The main advantage
of MRFs is that there are several natural complexity parameters that allow the user to tune the
dependence structure in the distributions represented by MRFs from product measures all the
way up to arbitrary distributions. Our goal is to provide parametric approximation ratios of
simple mechanisms that degrade gracefully with respect to these natural parameters.

MRFs are formally de�ned in De�nition 2. Intuitively, a MRF can be thought of as a graph (or a
hypergraph) where each node represents a random variable (or item value in our case). There is a
potential function associated with each edge that captures the correlation between the two incident
random variables. How does it represent a joint distribution? The probability for a particular
realization or the random variables, or known as a con�guration of the random� eld, is proportional
to the exponential of the total potential of the con�guration. MRF is a� exible model. For example,
we can capture the degree of (positive or negative) correlations between two random variables by
controlling the corresponding potential function. Here we provide a stylistic example to illustrate
the suitability of MRFs for modeling buyers’ joint value distributions. Imagine that we manage a
car dealership. A potential buyer is hoping to purchase one car, i.e., has a unit-demand valuation.
The dealership carries various brands and types of vehicles, and will like to� nd the optimal way to
price each car. However, it would be naïve to assume the buyer’s value for each car is independently
distributed. The example in Figure 1 demonstrates how a MRF can better capture the customer’s
joint value distribution for di�erent cars.

1.1 Main Results and Techniques
We focus on the single buyer case and allow the buyer’s valuation to be as general as a XOS function
(a.k.a. a fractionally subadditive function). 2 We consider the two most extensively studied forms

1Intuitively, item-independence means that each bidder’s value for each item is independently distributed, and this de�nition
has been suitably generalized to set value functions such as submodular or subadditive functions [41].
2The class of XOS functions is a super-class of submodular functions, and is contained in the class of subadditive functions.
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Fig. 1. We draw a green edge (or a red edge) between two cars if their values are positively correlated (or
negative correlated). The car in the center is an electric coupe with a retro design. Its value is positively
correlated with the two electric cars on its le� and the two small coupes on its right, but is negatively
correlated with the pick-up truck.

of simple mechanisms: selling the items separately and selling the grand bundle. We use SR�� and
BR�� to denote the optimal revenue obtainable by these two types of mechanisms respectively.
In a sequence of papers, it was shown that max{SR��, BR��} is a constant factor approximation
to the optimal revenue for a single additive or unit-demand buyer under the item-independence
assumption [4, 14, 18]. 3 Our� rst main result extends the above approximation to any MRFs. The
approximation ratio degrades with the maximum weighted degree � that captures the degree of
dependence among the item values.

Parameter I: MaximumWeighted Degree �. The formal de�nition can be found in De�nition 4. As
we mentioned, a MRF can be thought of as a graph (or a hypergraph) where each node represents a
random variable. The weight of an edge is related to the maximum absolute value the corresponding
potential function can take and represents the “strength” of the dependence between two incident
random variables. The weighted degree of a random variable is simply the sum of weights from all
incident edges. If the maximum weighted degree � of a MRF is small, then no random variable can
depend strongly on many other random variables. Note that � = 0 when the random variables are
independent, and the instance constructed by Hart and Nisan [30] corresponds to aMRFwith � = 1.
Result I: For a single additive or unit-demand buyer whose type is generated by a MRF with

maximum weighted degree �, max{SR��, BR��} = ⌦
⇣

OPT
exp($ (�))

⌘
, where OPT is the

optimal revenue.
The formal statement of the result is in Theorem 1 and 2. We further show that the dependence

on � is necessary. For any su�ciently large number ⇠ , there exists a MRF with � = $ (⇠) such
that max{SR��, BR��} is no more than OPT

⇠1/7 (Theorem 3) using a modi�cation of the Hart-Nisan
construction [30]. Although there is still an exponential gap between our upper and lower bounds,
it shows that whenever Result I fails to provide a constant factor approximation (independent of
the number of items), no constant factor approximation is possible without further restrictions on
the dependency. We leave it as an open question to close the gap between our upper and lower
bounds. The main tool we use is a generalization of the prophet inequality to the case where the
rewards are sampled from a MRF (Lemma 3). The overall analysis is similar to the one used by
Cai et al. [14] for the item-independent case. We show that the exponential dependence on � is

3More speci�cally, SR�� denotes the optimal expected revenue achievable by any posted price mechanism. When the buyer
has a unit-demand valuation, [14, 18] show that SR�� is already a constant factor approximation of the optimal revenue.
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unavoidable for this type of analysis in Theorem 8. More speci�cally, a key step of the analysis
involves approximating the optimal revenue in a single-dimensional setting, known as the copies
setting, using SR��. Theorem 8 constructs an instance such that the optimal revenue in the copies
setting is at least exp(�) times larger than max{SR��, BR��}.

Rubinstein andWeinberg [41] show that, under the item-independence assumption,max{SR��, BR��}
is still a constant factor approximation to the optimal revenue for a buyer whose valuation is a
subadditive function. Our second main result extends their result to any MRFs when the buyer’s
valuation is a XOS function. The approximation ratio depends on � and the spectral gap of the
Glauber Dynamics W .

Parameter II: Spectral Gap of the Glauber Dynamics W . A common way to generate a sample from
a high-dimensional distribution is via a Markov Chain Monte Carlo method known as the Glauber
dynamics (see De�nition 5). The spectral gap W of the Glauber dynamics is the di�erence between
the largest eigenvalue _1 = 1 and the second largest eigenvalue _2 of the transition matrix of the
Glauber dynamics. It is well-known that _2 is strictly less than 1 for any MRFs [36], so W is always
strictly positive.

Result II: For a single XOS buyer whose type is generated by a MRF, max{SR��, BR��} =

⌦

✓
OPT

exp($ (�))+ 1p
=W

◆
, where = is the number of items, W is the spectral gap of the Glauber

Dynamics, and � is the maximum weighted degree. a

aAlthough the approximation ratio depends on =, the ratio indeed improves if we increase = and�x W .

Some remarks are in order. First, our approximation ratio holds for any MRFs. Second, for any
=-dimensional random vector - = (G1, . . . , G=), the -8 ’s are considered weakly dependent if the
spectral gap W = ⌦( 1= ). For example, when the G8 ’s are independent, W � 1

= . Finally, the condition
W � ⌦( 1= ) is extensively studied in probability theory. The condition is satis�ed under the Dobrushin
uniqueness condition (see Section 6 for details), a well-known su�cient condition that ensures weak
dependency; it implies rapid mixing of the Glauber dynamics (i.e., they mix in time $ (= log=)); it
also guarantees that polynomial functions concentrate in Ising models [26, 29].
The formal statement of Result II can be found in Theorem 4. The analysis follows the same

general framework by Cai and Zhao [17]. The major new challenge is to prove that any XOS
function 6(- ) concentrates, when - is a drawn from a high-dimensional distribution ⇡ . Proving
concentration inequalities for non-linear functions over dependent random variables is a non-trivial
task that lies at the heart of many high-dimensional statistical problems. We prove a parametric
concentration inequality for XOS functions that depends on the spectral gap of the Glauber dynamics
for ⇡ (Lemma 13). The proof is based on a combination of the Poincaré inequality and a special
property of XOS functions – the self-boundingness. We believe this concentration inequality may
be of independent interest. An interesting question is whether the approximation ratio needs to
depend on both � and W . We show that the dependence on � is crucial, as no approximation can
be obtained with only restriction on the spectral gap even for a single additive or unit-demand
buyer (Theorem 7). 4 We do not know whether it is possible to obtain an approximation that only
depends on � for a XOS buyer and leave it as an open question. 5 We suspect such an improvement
requires proving a parametric concentration inequality for XOS functions that only depend on the
maximum weighted degree �, which we believe will have further applications.

4Indeed, we prove an even stronger result that shows no� nite approximation ratio is possible under only the Dobrushin
uniqueness condition, which implies that W = ⌦ ( 1= ) (Lemma 16).
5A naïve approach is to directly bound W using a function of �. However, this approach can at best provide an approximation
ratio that is exponential in =, as 1

W could be exponential in = even when � is upper bounded by some absolute constant [39].

 
Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

245



Our Results under Other Weak Dependence Conditions. There are several alternative ways to
parametrize the degree of dependency in a high-dimensional distribution. We focus on two promi-
nent ones – the Dobrushin coe�cient and the inverse temperature of a MRF, and discuss how our
approximation results change under these conditions. We� rst consider the Dobrushin coe�cient
and its relaxations. An important concept is the in�uence matrix.

In�uence Matrix and the Dobrushin Condition. For any =-dimensional random vector X =
(-1, . . . , -=), we de�ne the in�uence of variable 9 on variable 8 as

U8,9 := sup
G�8�9
G 9<G 09

3)+
⇣
�-8 |- 9=G 9 ,-�8�9=G�8�9 , �-8 |- 9=G 09 ,-�8�9=G�8�9

⌘
, 6

where �-8 |-�8=G�8 denotes the conditional distribution of -8 given -�8 = G�8 . Let U8,8 := 0 for each 8 .
We de�ne the in�uence matrix� :=

�
U8,9

�
8,9 2 [=] . When the-8 ’s are weakly dependent, the entries of

� should have small values. The Dobrushin Coe�cient, de�ned as | |�| |1 = max82 [=]
Õ

9 2 [=] U8,9 , was
originally introduced by Dobrushin [27] in the study of Gibbs measures. The Dobrushin coe�cient
less than 1 is known as the Dobrushin uniqueness condition, under which the Gibbs distribution has
a unique equilibrium, hence the name. The condition can be viewed as a su�cient condition that
guarantees weak dependence and has been extensively studied in statistical physics and probability
literature (see e.g. [28, 43]). As the spectral radius of any matrix is no more than its !1 norm, a
relaxation of the Dobrushin uniqueness condition is to restrict the spectral radius d of � to be
less than 1. We show that =W � 1 � d (Lemma 16), so we can replace the dependence on =W with
1 � d in Result II when the item values are weakly dependent (Theorem 5). We also show that the
dependence on � is necessary. Without any restriction on �, the gap between max{SR��, BR��}
and the optimal revenue could be unbounded even under the Dobrushin uniqueness condition
for an additive or unit-demand buyer (Theorem 7). Next, we consider how the approximation
guarantee degrades in terms of the inverse temperature of a MRF.

Inverse Temperature V of aMRF. The inverse temperature is related to both themaximumweighted
degree and the Dobrushin coe�cient. See De�nition 3 for the formal de�nition. Intuitively, as
the inverse temperature increases (or temperature drops), the dependence between the di�erent
random variables strengthens. When the inverse temperature is 0, the MRF represents a product
distribution. The high temperature regime is when the inverse temperature is less than 1. This
parameter often controls when phase transitions in the behavior of MRFs happen, and hence the
name. The Dobrushin coe�cient always upper bounds the inverse temperature. Recently, MRFs in
the high temperature regime have been applied to model weakly dependent random variables [22].

We show that if the MRF is in the high temperature regime, then its maximum weighted degree
� < 1 and the spectral gap W of the Glauber dynamics has value at least 1�V

= . As a corollary of
Result II, we have

Result III: For a single XOS buyer, max{SR��, BR��} = ⌦
⇣p

1 � V · OPT
⌘
, where V < 1 is the

inverse temperature.

The result states that as long as the inverse temperature is bounded away from 1 by any constant,
max{SR��, BR��} achieves a constant fraction of the optimal revenue. Theorem 6 contains the
formal statement of the result.
We summarize our results in Table 1 and the relationship between the parameters in Figure 2.

63)+ ( ·, ·) denotes the total variation distance between two distributions, hence U8,9 measures the maximum total variation
distance we can have between two conditional distributions of variable 8 that only di�er on the value of variable 9 .
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Maximum Weighted Degree �
Maximum Weighted Degree �

and
Spectral Gap W

Spectral Gap W
or

Dobrushin Coe�cient U < 1
Inverse Temperature V < 1

Additive
or

Unit-Demand

UB: ⌦
⇣

OPT
exp($ (�) )

⌘
(Theorem 2 and 1)

LB:$
⇣
OPT
�1/7

⌘
(Theorem 3)

UB: ⌦
⇣

OPT
exp($ (�) )

⌘
( )

LB:$
⇣
OPT
�1/7

⌘
( )

Unbounded (Theorem 7)
UB: ⌦

⇣p
1 � V · OPT

⌘
(#)

LB: open

XOS
UB: open

LB:$
⇣
OPT
�1/7

⌘
(")

UB: ⌦

 
OPT

exp($ (�) )+ 1p
=W

!
(Theorem 4)

LB:$
⇣
OPT
�1/7

⌘
( )

Unbounded (")
UB: ⌦

⇣p
1 � V · OPT

⌘
(Theorem 6)

LB: open

Table 1. The table contains our upper bounds and lower bounds of the approximation ratio of
max{SR��,BR��} in various se�ings. The results are listed based on (i) the valuation of the buyer and
(ii) the parameters the approximation ratio can depend on. In our table, an arrow means the result follows
from the result that the arrow points to.

Fig. 2. The relationship between the parameters: inverse temperature, Dobrushin coe�icient, maximum
weighted degree, and spectral gap of the Glauber dynamics.

1.2 Related Work
Simple vs. Optimal Auctions. There has been a large body of work on multi-item auction design

focusing on either approximation results under item-independence [1, 4, 14, 15, 17–19, 21, 37, 41, 45]
or impossibility to approximate under arbitrary dependence [8, 30]. Two types of models have been
studied for items with limited dependence. The� rst model considers a speci�c type of dependence
where each item’s value is a linear combination of “independent features” [5, 20]. Unlike MRFs,
this model cannot express arbitrary structure of dependence. Indeed, the values of any two items
can only be positively correlated under this model. The second model considers the smoothed
complexity of the problem [38]. Their result applies to arbitrary dependence structure between the
item values, but only achieves an approximation ratio that is exponential in the number of items. Our
paper is the� rst to consider a model general enough to capture arbitrary structure of dependence
and obtain parametric approximation ratios that are independent of the number of items.

MRFs andWeakly Dependent Random Variables. There has been growing interest in understanding
the behavior of weakly dependent random variables that can be captured by a MRF in the high
temperature regime or under the Dobrushin uniqueness condition [22, 26, 29]. In mechanism design,
Brustle et al. [9] is the� rst to propose modeling dependent item values using MRFs in multi-item
auctions, but they focus on the sample complexity of learning nearly optimal auctions.

2 PRELIMINARIES
Basic Notation. We consider an auction where a seller is selling = heterogeneous items to a single

buyer. We denote the buyer’s type t as hC8i=8=1, where C8 is the buyer’s private information about item
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8 . We use ⇡ to denote the distribution of t , ⇡8 to denote the marginal distribution of C8 , and ⇡8 |2�8
to denote the distribution of C8 conditioned on C�8 = 2�8 . We use S���(F ) to denote the support of
distribution F , and)8 = S���(⇡8 ) and) = S���(⇡). Moreover, we use 5 (2) to denote Prt⇠⇡ [t = 2].
For any item 8 and any 28 2 )8 and 2�8 2 )�8 , we use 58 (28 ) to denote PrC8⇠⇡8 [C8 = 28 ], 58 (28 | 2�8 ) to
denote Prt⇠⇡ [C=(28 ,2�8 ) ]

Prt⇠⇡ [C�8=2�8 ] , 5�8 (2�8 ) to denote Prt⇠⇡ [C�8 = 2�8 ], and 5�8 (2�8 | 28 ) to denote Prt⇠⇡ [C=(28 ,2�8 ) ]
Prt⇠⇡ [C8=28 ] .

We also de�ne �8 (28 ) = PrC8⇠⇡8 [C8  28 ] and �8 (28 | 2�8 ) = PrC8⇠⇡8 |2�8
[C8  28 ]. Finally, when the

buyer’s type is t , her valuation for a set of items ( is denoted by E (t, ().
We investigate the performance of simple mechanisms for several well-studied valuation classes.

D��������� 1 (V��������C������). We de�ne several classes of valuations formally.
• Constrained Additive: interpret C8 as the value of item 8 , and E (t, () = max'✓(,'2I

Õ
82' C8 ,

where I ✓ 2[<] is a downward closed set system over the items specifying the feasible bundles.
When I = 2[<] , the valuation is called Additive. When I contains all the singletons and the
empty set, the valuation is called unit-demand.

• XOS/Fractionally Subadditive: interpret C8 as {C (:)8 }:2 [ ] that encodes all the possible values
associated with item 8 , and E (C,( ) = max:2 [ ]

Õ
82( C

(:)
8 .

It is well known that the class of XOS valuations contains all constrained additive valuations.

Mechanism. A mechanism " is speci�ed by an allocation rule and a payment rule. We use c
to denote the allocation rule, and c8 (t) is the probability that the buyer receives item 8 when she
reports type t . We also use ? (t) to denote the buyer’s payment when she reports type t . We assume
the buyer has quasi-linear utility. We say a mechanism " is Incentive Compatible (IC) if the buyer
cannot increase their expected utility by misreporting their type, and Individual Rational (IR) if the
buyer has non-negative expected utility when they report their type truthfully to the mechanism.
Given ⇡ , valuation function E (·, ·), we use R��(", E,⇡ ) to denote the expected revenue of an

IC and IR mechanism" . We slightly abuse notation to use R��(⇡) to denote the optimal revenue
achievable by any IC and IR mechanism under distribution ⇡ .
Throughout the paper, we use the following notations for the simple mechanisms we consider.

- SR��(E,⇡ ) denotes the optimal expected revenue achievable by any posted price mechanism,
and we use SR�� for short if there is no ambiguity. - BR��(E,⇡ ) denotes the optimal expected
revenue achievable by selling a grand bundle and we use BR�� for short if there is no ambiguity.

2.1 Markov Random Fields
D��������� 2 (M�����R �����F�����). A Markov Random Field (MRF) is de�ned by a hyper-

graph ⌧ = (+ ,⇢). Associated with every vertex E 2 + is a random variable -E taking values in some
alphabet ⌃E , as well as a potential functionkE : ⌃E ! R. Associated with every hyperedge 4 ✓ + is a
potential functionk4 : ⌃4 ! R. In terms of these potentials, we de�ne a probability distribution c associ-
ating to each vector c 2 >

E2+ ⌃E probability c (c) satisfying: c (c) /
Œ

E2+ 4kE (2E ) Œ
42⇢ 4

k4 (c4 ) ,where
⌃4 denotes ⇥E24⌃E and c4 denotes {2E}E24 .
We refer the interested readers to [32, 35] and the references therein for more details about MRFs.

Throughout the paper, when we say the type distribution ⇡ is a MRF over a hypergraph ⌧ = (+ ,⇢), if
+ = [=], C8 = G8 ,)8 = ⌃8 , and there exists a collection of potential functions {k8 (·)}82 [=] and {k4 (·)}42⇢
so that the corresponding distribution ? (·) equals to ⇡ . If there are only pairwise potentials, then ⌧ is
a graph. We say that a random variable t is generated by a MRF, if t is sampled from a distribution
that is represented by the MRF.

Next, we de�ne two ways to measure the degree of dependence in a MRF.
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D���������3. Let random variable t be generated by aMarkov Random Field over a hypergraph⌧ =

( [=], ⇢), we de�ne theMarkov influence between item 8 and 9 to be: V8,9 (t) := maxx2⇥✓2 [=])✓

����Õ42⇢:
8,9 24

k4 (x4 )
����.

We further de�ne the inverse temperature of the MRF as V (t) := max82 [=]
Õ

9<8 V8,9 (t). We say ran-
dom variable/type t is in the high temperature regime if V (t) < 1.

D���������4. Given a random variable/type t generated by a Markov Random Field over a hyper-
graph⌧ = ( [=], ⇢), we de�ne theweighted degree of item 8 as:38 (t) := maxx2⇥82 [=])8 |

Õ
42⇢:824 k4 (x4 ) |,

and themaximum weighted degree as �(t) := max82 [=] 38 (t).
R�����1. Both V (t) and �(t) capture the degree of dependence between the items. Note that

�(t)  V (t) for any MRF t , and it is possible that V (t) = ⌦(3 · �(t)), where 3 is the size of the
largest hyperedge in⌧ . When t is drawn from a product measure, both V (t) and �(t) are 0. In general,
restricting V (t) and �(t) to be small ensures that the item values are only weakly dependent.

To achieve our results, we need another important concept – the Glauber dynamics. In Section 5,
we relate the approximation ratio achievable by simple mechanisms to the spectral gap of the
Glauber dynamics of the MRF.

D��������� 5 (G������D�������). Let -1, . . . , -= be an =-dimensional random vector drawn
from distribution c . Let ⌦ be the support of c . The Glauber dynamics for c is a reversible Markov
chain with state space ⌦. The Glauber chain moves from state G 2 ⌦ as follows: an index 8 is chosen
uniformly at random from [=], and a new state ~ is chosen so that (i) ~ 9 = G 9 for all 9 < 8 ; (ii) draw ~8
from the conditional distribution c | -�8 = G�8 . It is not hard to verify that the Glauber dynamics is a
reversible Markov chain with stationary distribution c .

R�����2. When c is the distribution that can be represented by a MRF ⌧ = (+ ,⇢), the Glauber
dynamics has state space

>

E2+ ⌃E . The Glauber chain moves from state G 2 >

E2+ ⌃E as follows: a
vertex E is chosen uniformly at random from + , and a new state ~ is chosen so that (i) ~D = GD for all
D < E ; (ii) for any 2 2 ⌃E , ~E = 2 w.p. exp(kE (2))⇧4 :E24 exp(k4 (2,G4/{E}))Õ

202⌃E exp(kE (20))⇧4 :E24 exp(k4 (20,G4/{E})) , in other words, sample ~E
according to the distribution conditioned on ~�E = G�E . Note that for a MRF, the Glauber dynamics
is an irreiducible Markov chain, so c is its only stationary distribution. The Glauber dyanamics is a
standard method for generating samples from a MRF, as it does not require computing the partition
function, which is often a computationally intractable task.

3 MARKOV RANDOM FIELDS: BASIC PROPERTIES AND TOOLS
We� rst present some basic properties of a MRF. Roughly speaking, we show that the condi-
tional distribution can be approximated by the corresponding marginal distribution of ⇡ , and the
approximation quality only depends �(t). We postpone all proofs in this section to Appendix B.

L����1. Let random variable t be generated by a MRF. Then for any C8 2 )8 , C�8 2 )�8 :

exp(k8 (C8 ))Õ
C 08 2)8 exp(k8 (C 08 ))

exp(�2�(t)) 58 (C8 | C�8 ) 
exp(k8 (C8 ))Õ

C 08 2)8 exp(k8 (C 08 ))
exp(2�(t))

and
58 (C8 ) · exp(�4�(t)) 58 (C8 | C�8 )  58 (C8 ) · exp(4�(t)).

L����2. Let random variable t be generated by a MRF. For any 8 and any set E ✓ )8 and set
E 0 ✓ )�8 :

exp(�4�(t)) Prt⇠⇡ [C8 2 E ^ C�8 2 E 0]
PrC8⇠⇡8 [C8 2 E] PrC�8⇠⇡�8 [C�8 2 E 0]  exp(4�(t)).
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Prophet Inequality for MRF. Equipped with Lemma 2, we provide a generalization of the Prophet
inequality when the rewards in di�erent stages are dependent and generated by a MRF. We can
think of the prophet inequality problem, as� nding a good policy for a gambler in a multi-round
game. At the 8-th round, the gambler is given the choice to accept a reward or to continue to the
next round. The goal of the gambler is to� nd a policy that obtains high expected reward, given
the distributions of the rewards at each round. Prophet inequalities have been obtained when the
rewards between stages are independent [33, 34, 42] or can be expressed a a linear combination of
some independent random variables [31].

L����3. Let t = (C1, . . . , C=) be an =-dimensional random vector generated by a MRF. There are
totally = rounds, and the reward of round 8 is 68 (C8 ), where 68 is an arbitrary function. The total reward
of the prophet is Et

⇥
max82 [=] 68 (C8 )

⇤
. We denote by R�����t

⇥
{68 }82 [=], g

⇤
the expected of reward of

the following policy – accept any reward that is at least g . The following inequality holds if we choose
g⇤ = M�����t

�
max82 [=] 68 (C8 )

�
(i.e., Pr[max82 [=] 68 (C8 ) � g⇤] = 1/2),

exp(�4�(t))
2

Et


max
82 [=]

68 (C8 )
�
 R�����t

⇥
{68 }82 [=], g⇤

⇤
.

4 SIMPLE MECHANISMS FOR A UNIT-DEMAND OR ADDITIVE BUYER UNDER MRF
In this section, we� rst use the duality framework from [14, 17] to construct an upper bound of
R��(⇡). Next, we prove that if the buyer has either unit-demand or additive valuation across the
items, max{SR��, BR��} is a $ (exp(12�(t)))-approximation or a $ (exp(4�(t)))-approximation
of R��(⇡), respectively.

4.1 Benchmark of the Optimal Revenue for Constrained Additive Valuations
In this section, we use the duality framework from [14, 17] to construct an upper bound of R��(⇡).
We describe a benchmark of the optimal revenue for all constrained additive valuations. Deriving a
benchmark for XOS valuations requires some extra care, and we provide details of the derivation
in Section 5.1 when we study XOS valuations. We� rst remind the readers the partition of type
space used in [14, 17].

D��������� 6 (P�������� �� ���T ���S ���� ���C ����������A ������� V���������[ 14, 17]).
Wepartition the type space) into= regions, where'8 = {t 2 ) : 8 is the smallest index in argmax80 2 [=] C80}.
If t 2 '8 , we call item 8 the favorite item of type t .

To handle the dependence across the items, we introduce some new notations to specify the
benchmark.

D��������� 7 (I����� V������ V����). Let ⇡ be the type distribution. For any t 2 '8 , we use
q8 (C8 ) to denote the ironed Myerson’s virtual value for distribution ⇡8 , q8 (C8 | C�8 ) to denote the
ironed Myerson’s virtual value when we ironed ⇡8 |C�8 over interval [max9<8 C 9 ,max S���(⇡8 |C�8 )].

If ⇡8 |C�8 is a regular distribution and C 08 = argmin{Ĉ 2 S���(⇡8 |C�8 ) : Ĉ > C8 },

q8 (C8 | C�8 ) = C8 �
�
C 08 � C8

�
· Prt̂⇠⇡

⇥
Ĉ8 > C8 ^ Ĉ�8 = C�8

⇤
5 (t) = C8 �

�
C 08 � C8

�
· (1 � �8 (C8 | C�8 ))
58 (C8 | C�8 )

.

Moreover, q8 (C8 | C�8 ) always satis�es the following property:

max
?�max9<8 C 9

? · (1 � �8 (? | C�8 )) =
’

C8 : (C8 ,C�8 )2'8
58 (C8 | C�8 ) · q8 (C8 | C�8 )+,

where G+ = max{G, 0}.
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Lemma 4 contains the benchmark we use. See Appendix A for more details about Lemma 4.

L���� 4 (B�������� ��O ������R ������ ���C ����������A ������� V���������). Given
a distribution ⇡ over the type space ) , and a mechanism " = (c,? ), if the buyer’s valuation E is
constrained additive, then we have the following benchmark:

R��(", E,⇡ ) 
’
t 2)

’
82 [=]

5 (t) · c8 (t) · q8 (C8 | C�8 ) · 1 [t 2 '8 ] (S�����)

+
’
t 2)

’
82 [=]

5 (t) · c8 (t) · C8 · 1 [t 8 '8 ] (N���F�������)


’
t 2)

’
82 [=]

5 (t) · c8 (t) · q8 (C8 | C�8 ) · 1 [t 2 '8 ] (S�����)

+
’
82 [=]

’
C8>A

58 (C8 ) · C8 · Pr
t 0⇠⇡

⇥
t 0 8 '8 | C 08 = C8

⇤
(T���)

+
’
82 [=]

’
C8 A

58 (C8 ) · C8 (C���),

where A = SR��(E,⇡ ).

Single-Dimensional Copies Setting: In the analysis of unit-demand bidders with independent
items [14, 19], the optimal revenue is upper bounded by the optimal revenue in the single-
dimensional copies setting de�ned in [19]. We make use of the same technique in our analysis.
There is a single item for sale, and we construct = agents, where agent 8 has value C8 for winning the
item. Notice that this is a single-dimensional setting, as each agent’s type is speci�ed by a single
number.

4.2 A Unit-Demand Buyer
In this section, we show that a simple posted price mechanism can extract$ (exp(12�(t))) fraction
of the optimal revenuewhen the type distribution⇡ is aMRF.We� rst use the revenue of the Ronen’s
lookahead auction [40] to upper bound the benchmark from Lemma 4. 7 Ronen’s auction�rst
identi�es the highest bidder, and o�ers a take it or leave it price to the highest bidder to maximize
the revenue conditioned on the other bidders’ types. The proof follows from the de�nition of
Ronen’s lookahead auction and basic properties of MRF presented in Lemma 1 and 2. We postpone
the proof to Appendix C.

L����5. Let the type distribution ⇡ be represented by a MRF," be any IC and IR mechanism for
a unit-demand buyer, and R����C����� be revenue of the Ronen’s lookahead auction [40] in the C�����
settings with respect to ⇡ . The following inequalities hold:

max{S�����,N���F�������}  R����C�����

R����C�����  exp(8�(t)) Et


max
82 [=]

q8 (C8 )+
�
.

Equipped with Lemma 5, we can apply the prophet inequality for MRF to show that a posted-
price mechanism can obtain expected revenue that is at least ⌦

⇣
R����C�����

exp(12�(t))

⌘
. We delay the proof to

Appendix C.

7Ronen’s lookahead auction considers the setting where the seller is selling a single item to a set of buyers, whose values
for the item are correlated.
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T������1. Let the type distribution ⇡ be represented by a MRF. If the buyer’s valuation is unit-
demand, then there exists a posted-price mechanism " with prices {?8 }82 [=] that obtains expected
revenue at least R��(⇡)

8 exp(12�(t )) .

Is it possible to improve the dependence on �? In Theorem 8, we show that if we use the optimal
revenue in the COPIES setting as a benchmark of the optimal revenue in the original setting, then
the exponential dependence on �(t) is unavoidable.

4.3 An Additive Buyer
In this section, we show that max{SR��, BR��} is a $ (exp(4�(t))) approximation of the optimal
revenue when the type distribution ⇡ is a MRF. We denote by A8 the revenue of Myerson’s auction
for selling item 8 only. We use A =

Õ
82 [=] A8 to denote SR��, as the revenue collected from item 8

only depends on the marginal distribution ⇡8 . We� rst upper bound the terms S����� and T��� by
exp(4�(C)) · SR��. The proof follows from a combination of the standard analysis of the terms
S����� and T��� from [14, 17] with properties of MRFs (Lemma 2). We postpone the proof to
Appendix D.

L����6. Let the type distribution ⇡ be a MRF and" be any IC and IR mechanism for an additive
buyer. The following inequalities holds: S�����  exp(4�(t)) · SR�� and T���  exp(4�(t)) · SR��.

Finally, we analyze the C���. We de�ne new random variables⇠8 = C8 ·1[C8  A ]. Let⇠ =
Õ=

8=1⇠8 .
Note that E[⇠] = C���. We� rst provide an upper bound on V��[⇠], and show that if we sell
the grand bundle at an appropriate price, its revenue is close to the C���. Note that under the
item-independence assumption, it is not hard to show that V��[⇠] is upper bounded by 2A 2 [4, 14].
However, this analysis does not extend to the case where the buyer type is generated by a MRF.
We� rst obtain a new upper bound of V��[⇠]. As⇠ =

Õ=
8=1⇠8 , we have V��[⇠] =

Õ
82 [=] V��[⇠8 ] +Õ

8<9 C��[⇠8 ,⇠ 9 ]. We further bound
Õ

82 [=] V��[⇠8 ] by 2A 2 using the standard analysis in [4, 14]
and each covariance C��[⇠8 ,⇠ 9 ] using properties of MRF (Lemma 2). The proof is postponed to
Appendix D.

L����7. Let the type distribution ⇡ be represented by a MRF. For any 8,9 2 [=], C��[⇠8 ,⇠ 9 ] 
(exp(4�(t))� 1) E[⇠8 ] E[⇠ 9 ]. Moreover, V��[⇠]  2A 2 + (exp(4�(t))� 1) E[⇠]2.

In the item-independence case, the standard analysis [4, 14] applies Chebyshev’s inequality to
show that the seller can sell the grand bundle at price E[⇠] � 2A with probability at least 1/2, which
implies that C��� is $ (BR�� + SR��). As our upper bound on V��[⇠] is a lot larger, Chebyshev’s
inequality only gives a vacuous bound on the sell probability. 8 To show that selling the grand
bundling is a good approximation of the C���, we set the price of the grand bundle di�erently and
use the Paley-Zygmund inequality to prove that either the sell probability is high or the C��� is
within a constant factor of A . The proof of Theorem 2 can be found in Appendix D.

T������2. Let the type distribution ⇡ be represented by a MRF. If the buyer’s valuation is additive,
then ⇣

2 exp(4�(t)) +
p
2
⌘
· SR�� + 8 (exp(4�(C)) + 1) · BR�� � R��(⇡).

8In particular, if we set the price to be 0 · E[⇠ ] � ^ · A for any constant 0 2 [0, 1] and ^ , Chebyshev’s inequality tells us
that the probability that the buyer cannot a�ord the grand bundle is at most V��[⇠ ]

( (1�0) E[⇠ ]+^ ·A )2 . However, our upper bound
of V��[⇠ ] will be larger than ( (1 � 0) E[⇠ ] + ^ · A )2, if exp(4�(t)) > 2 and E[⇠ ] is much larger than A . In this case,

V��[⇠ ]
( (1�0) E[⇠ ]+^ ·A )2 is larger than 1 making the bound useless.
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In the following theorem, we show that the approximation ratio must have polynomial depen-
dence on �(t). Our proof is based on a modi�cation of the hard instance by Hart and Nisan [30].
They construct a joint distribution over two items with support size< and show that the optimal
revenue is at least <1/7 · max{BR��, SR��}. Unfortunately, their construction requires � to be
in�nite. We show how to modify their construction so that the new distribution has maximum
weighted degree � = $ (<), and the gap between the optimal revenue and max{BR��, SR��}
remains to be<1/7. The key is to show that under the new distribution, no type shows up too
rarely, and the optimal revenue, SR��, and BR�� remain roughly the same. The proof is postponed
to Appendix G.

T������3. For any su�ciently large < 2 N, there exists a type distribution over two items
represented by a MRF ⇡ such that (i) the maximum weighted degree � is at most ⇠ ·<, where ⇠ is an
absolute constant; (ii) for an additive buyer whose type is sampled from ⇡ , there exists an absolute
constant ⇠ 0 > 0 such that R��(⇡) � ⇠ 0<1/7 ·max{BR��(⇡), SR��(⇡)}.

5 SIMPLE MECHANISMS FOR A XOS BUYER
5.1 Duality Framework for XOS Valuations
The benchmark is obtained using essentially the same approach as in [17]. Suppose the buyer has
a XOS valuation function E (t, (). We denote by +8 (t) = E (t, {8}). We abuse this notation and we
also de�ne for C8 2 )8 , +8 (C8 ) = E ((0, . . . , C8 , . . . , 0), {8}), where 0 is the all 0 vector. We summarize
the benchmark for a XOS buyer in the following Lemma. More details can be found in Appendix F.

L����8. Partition the type space ) into = regions, where
'8 := {t 2 ) : 5 (t) > 0 and 8 is the smallest index that belongs in argmax82 [=] +8 (t) }

Let A = SR�� be the revenue of the optimal posted price mechanism that allows the buyer to purchase
at most one item. Let ⇠ (t) := {8 : +8 (t) < 2A }. For any IC and IR Mechanism " , we can bound its
revenue by:

R��(", E,⇡ ) 2
’
t 2)

5 (t)
’
82 [=]

c8 (t)q (+8 (C8 ) | t�8 )1[C 2 '8 ] (S�����)

+ 4
’
82 [=]

’
C8 2)8

+8 (C8 )�2A

5 (C8 ) ·+8 (C8 ) Pr
t 0⇠⇡

⇥
t 0 8 '8 | C 08 = C8

⇤
(T���)

+ 4
’
t 2)

5 (t)E (t,⇠ (t)) (C���)

5.2 Approximating the Benchmark of a XOS Buyer
In this section, we show how to approximate the optimal revenue of a buyer with a XOS valuation.
We� rst upper bound the term S����� and T��� . The analysis of both terms follows from the
combination of the analysis in [17] and Lemma 2.

L����9. Let the type distribution ⇡ be represented by a MRF. If" is an IC and IR mechanism for
a buyer with a XOS valuation, then the following inequalities hold

S�����  4 exp(12�(t)) · SR��
and

T���  exp(8�(t)) · SR��,
where SR�� is the revenue of the optimal posted price auction, in which the buyer is allowed to purchase
at most one item.
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5.2.1 Bounding the C��� using the Poincaré Inequality. In this section, we show how to bound the
C��� for a XOS buyer. The C��� is the expectation of the random variable E (t,⇠ (t)). To show that
bundling can achieve a good approximation of the C���, we need to upper bound the variance
of E (t,⇠ (t)). This is the main task of this section. As E (t, ·) is not additive across the items, our
method for the additive valuation (see Lemma 7) no longer applies. We provide a new approach
that is based on the Poincaré Inequality and the self-boundingness of XOS functions. We� rst state
the Poincaré Inequality.

L���� 10 (T�� P������I ��������( ������� ����L ���� 13.12 ��[ 36]). Let % be a reversible
transition matrix on state space ⌦ with stationary distribution c . For any function 6 : ⌦ ! R, let

E(6) := 1
2

’
G,~2⌦

[6(G) � 6(~)]2c (G)% (G,~ ).

If V��G⇠c [6(G)] > 0, then

E(6)
V��G⇠c [6(G)]

� W,

where W is the spectral gap of % . 9 Moreover, there exists a function 6⇤ : ⌦ ! R, such that

E(6⇤)
V��G⇠c [6⇤ (G)]

= W .

Next, we apply Lemma 10 to the Glauber dynamics of the MRF that generates the buyer’s type.
L����11. Let ⇡ be the joint distribution of random variables t = (C1, . . . , C=) and % be the

transition matrix of the Glauber dynamics for ⇡ . For any function 6 : ) ! R, we have

=W · V��t⇠⇡ [6(t)]
’
82 [=]

Et⇠⇡

⇣
6(C8 , t�8 ) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�

,

where W is the spectral gap of % . Moreover, there exists a function 6⇤ : ) ! R, such that the inequality
is tight.

R�����3. Lemma 11 is a generalization of the well-known Efron-Stein inequality to dependent
random variables. Indeed, when ⇡ is a product measure, W is at least 1/= and we recover the Efron-Stein
inequality. As we demonstrate in Section 6, W is at least ⌦(1/=) under many well-studied conditions of
weak dependence, such as the Dobrushin uniqueness condition.

Proof of Lemma 11: According to the de�nition of the Glauber dynamics, % is a reversible transition
matrix on state space ) with stationary distribution ⇡ . Lemma 10 states that

W · V��t⇠⇡ [6(G)]
1
2

’
t,t 0 2)

[6(t) � 6(t 0)]2 · 5 (t) · % (t, t 0). (1)

9It is well-known that the largest eigenvalue of % is 1, and the spectral gap of % is the di�erence between % ’s largest and
second largest eigenvalues.
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By the de�nition of the Glauber dynamics, the RHS of Inequality (1) is equivalent to

1
2
Et⇠⇡

266664
1
=

’
82 [=]

EC 08⇠⇡8 |t�8

⇥
6(t) � 6(C 08 , t�8 )

⇤2377775
=
1
=

’
82 [=]

Et�8⇠⇡�8


EC8 ,C 08⇠⇡8 |t�8


1
2

�
6(C8 , t�8 ) � 6(C 08 , t�8 )

�2� �

=
1
=

’
82 [=]

Et�8⇠⇡�8


EC8⇠⇡8 |t�8

⇣
6(C8 , t�8 ) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2� �

=
1
=

’
82 [=]

Et⇠⇡

⇣
6(C8 , t�8 ) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�

.

The second equality is because C8 and C 08 are two i.i.d. samples from ⇡8 |t�8 .
Hence,

=W · V��t⇠⇡ [6(t)]
’
82 [=]

Et⇠⇡

⇣
6(C8 , t�8 ) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�

.

Note that if we choose 6(·) to be the function 6⇤ (·) in Lemma 10, Inequality (1) becomes an
equality.
2

Recall that to bound the C���, we need to upper bound the variance of the random variable
E (t,⇠ (t)). By choosing 6(t) to be E (t,⇠ (t)) and applying Lemma 11, we can instead upper bound
the RHS of the inequality in Lemma 11. A priori, it is not clear that the RHS would be easier to
bound. In the following sequence of Lemmas, we show that the RHS is indeed more amenable to
analysis. We� rst argue that the function E (t,⇠ (t)) has a key property known as self-boundingness,
using which we then upper bound the RHS by $ (SR�� · C���) and show that SR�� and BR�� can
approximate the C���.

D��������� 8 (S����B�������F ��������[ 7]). Let S be an arbitrary set and � be a subset of S= .
We say that a function 6(t) : � ! R is ⇠-self-bounding with some constant ⇠ 2 R+ if there exists a
collection of functions 68 : ��8 ! R for each 8 2 [=] with ��8 := {t�8 : 9C8 , (C8 , t�8 ) 2 �}, such that
for each t 2 � the followings hold:

• 0  6(t) � 68 (t�8 )  ⇠ for all 8 2 [=].
• Õ

82 [=] (6(t) � 68 (t�8 ))  6(t).
We next argue that for a self-bounding function, the RHS of the inequality in Lemma 11 is upper

bounded by its mean.

L����12. Let ⇡ be the joint distribution of random variables t = (C1, . . . , C=). If 6(·) is a ⇠-self-
bounding function, then’

82 [=]
Et⇠⇡

⇣
6(t) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�

 ⇠ Et⇠⇡ [6(t)] .

P����. Recall the following property of the variance: For any real-value random variable - ,
V��[- ] = min02' E[(- �0)2]. In other words, V��[- ]  E[(- �0)2] for any 0. Therefore, for any
t�8 ,

EC8⇠⇡8 |t�8

⇣
6(t) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�

= V��[6(t) | t�8 ]  EC8⇠⇡8 |t�8

⇥
(6(t) � 68 (t�8 ))2

⇤
.
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Using this relaxation, we proceed to prove the claim.’
82 [=]

Et⇠⇡

⇣
6(t) � EC 08⇠⇡8 |t�8

[6(C 08 , t�8 )]
⌘2�


’
82 [=]

Et⇠⇡
⇥
(6(t) � 68 (t�8 ))2

⇤

⇠
’
82 [=]

Et⇠⇡ [(6(t) � 68 (t�8 ))]

⇠ Et⇠⇡ [6(t)]
The� rst inequality follows from the relaxation. The second and last inequality follow from the
�rst and second property of a self-bounding function respectively. ⇤

Combining Lemma 11 and 12, we have the following Lemma.

L����13. Let⇡ be the joint distribution of random variables t = (C1, . . . , C=) and % be the transition
matrix of the Glauber dynamics for ⇡ . For any ⇠-self-bounding function 6 : ) ! R, we have

=W

⇠
· V��t⇠⇡ [6(t)] Et⇠⇡ [6(t)] ,

where W is the spectral gap of % .

De�nition 8 may seem obscure at� rst, but many natural functions are indeed self-bounding. For
example, if � is [0, 1]= and 6(·) is the additive function, then 6(·) is 1-self-bounding. We show that
the function 6(t) := E (t,⇠ (t)) is 2SR��-self-bounding and its variance is no more than 2SR��·C���

=W .
Here, we� rst specialize our analysis to MRFs. The main di�erence is that the Glauber dynamics
for a MRF is irreducible, so the spectral gap is strictly positive (Lemma 12.1 of [36]). The proof is
postponed to Appendix E.

L����14. Let⇠ (t) := { 9 : +9 (t) < 2SR��}. The function 6(t) := E (t,⇠ (t)) is 2SR��-self-bounding
and V��t⇠⇡ [6(t)] 2SR��·C���

=W , where W > 0 is the spectral gap of the transition matrix of the Glauber
dynamics of the MRF that generates the buyer’s type.

Now, we show how to approximate C��� using SR�� and BR��.

L����15. Let the buyer’s type distribution ⇡ be represented by a MRF, % be the transition matrix
of the Glauber dynamics of the MRF, and W > 0 be the spectral gap of % . We have

C���  max
✓
4SR��
p
=W

,

✓
7 + 4

p
=W

◆
BR��

◆
.

P����. According to Lemma 14, E (t,⇠ (t)) is a 2SR��-self-bounding function andV��[E (t,⇠ (t)]
2SR��·C���

=W . If C���  4SR��p
=W , then the statement holds. If C��� > 4SR��p

=W , then V��[E (t,⇠ (t))]
2SR��·C���

=W < (C���)2
2p=W = E[E (t,⇠ (t)) ]2

2p=W . By Paley-Zygmund inequality we have that:

Pr

E (t,⇠ (t))� C���

3

�
� 4

9
1

1 + V��[E (t,⇠ (t )) ]
E[E (t,⇠ (t)) ]2

� 4
9

1
1 + 1

2p=W
.

Therefore we have that: Pr
⇥
E (t,⇠ (t))� C���

3
⇤
· C���

3  BR��, which implies that the statement.
⇤

Finally, we combine our analysis of S�����, T���, and C��� to obtain the approximation guarantee
for a XOS buyer.
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T������4. Let the buyer have a XOS valuation and her type distribution ⇡ be represented by a
MRF. We use W to denote the spectral gap of matrix % – the transition matrix of the Glauber dynamics
of the MRF. Then R��(⇡)  12 exp(12�(t)) · SR�� +

⇣
28 + 16p

=W

⌘
max{SR��, BR��}.

Proof of Theorem 4: The statement follows from the combination of Lemma 8 , 9, and 15. 2

6 CONNECTION TO OTHERWEAK DEPENDENCE CONDITIONS
A common way to measure the degree of dependence of a high-dimensional distribution is by
considering its Dobrushin Interdependence Matrix. In this section, we show that for several natural
su�cient conditions that guarantee weak dependence in the distribution, the spectral gap W of the
Glauber dynamics transition matrix is ⌦(1/=). We begin by de�ning the Dobrushin interdependence
matrix.

D��������� 9 (3�D��������I ��������������M �����[ 44]). Let (E,3) be a metrical, complete
and separable space. For two distributions ` and a supported on E, their !1-Wasserstein distance is
de�ned as:,1,3 (`,a ) = infc 2⇧

Ø Ø
E⇥E

3 (G,~ )c (3G,3~), where ⇧ is the set of valid coupling such that
its marginal distributions are ` and a .
Let - = (G1, . . . , G=) be a =-dimensional random vector supported on E= and `8 (· | G�8 ) be the

conditional distribution of G8 knowing G�8 . De�ne the 3-Dobrushin Interdependence Matrix � =
(U8,9 )8,9 2 [=] by

U8,9 := sup
G�8�9=~�8�9

G 9<~ 9

,1,3 (`8 (· | G�8 ), `8 (· | ~�8 ))
3 (G 9 ,~ 9 )

for all 8 < 9,

and U8,8 = 0 for all 8 2 [=].
R�����4. U8,9 captures how strong the value of G 9 a�ects the conditional distribution of G8 when

all other coordinates are� xed. Higher U8,9 value implies stronger dependence between G8 and G 9 . When
all the coordinates of - are independent, � is the all zero matrix.

Dobrushin uniqueness condition: If we choose 3 (G,~ ) to be the trivial metric 1G<~ , then
,1,3 (·, ·) is exactly the total variation distance. The in�uence matrix mentioned in Section 1 is
exactly the Dobrushin interdependence matrix with respect to the trivial metric. To remind the
audience, the Dobrushin Coe�cient is de�ned as U (t) := | |�| |1 = max82 [=]

Õ
9<8 U8,9 when � is

the in�uence matrix. If U (t) < 1, we say t satis�es the Dobrushin uniqueness condition. As
| |�| |1 is at least as large as �’s spectral radius d3 (t), 10 a weaker condition than the Dobrushin
uniqueness condition is that the spectral radius d3 (t) is strictly less than 1.
We argue that even the weaker condition that d3 (t) < 1 implies that the spectral gap of the

transition matrix of the Glauber dynamics W = ⌦(1/=). We postpone the proof to Appendix H.

L����16. Let 3 (·, ·) be any metric, for any =-dimensional random vector t , =W � 1 � d3 (t), where
W is the spectral gap of the transition matrix of the Glauber dynamics for t .

Combining Lemma 16 with Theorem 4, we immediately have the following Theorem. 11

T������5. Let the buyer have a XOS valuation, her type distribution ⇡ be represented by a MRF,
and d3 (t) be the spectral radius of the 3-Dobrushin interdependence matrix of t under some metric

3 (·, ·). If d3 (t) < 1, then R��(⇡)  12 exp(12�(t)) · SR�� +
✓
28 + 16p

1�d3 (t)

◆
max{SR��, BR��}.

Proof of Theorem 5: The statement follows from the combination of Lemma 16 and Theorem 4. 2
10d3 (t) is the dominant eigenvalue of � by the Perron-Frobenius Theorem.
11A major bene�t of using d3 or the Dobrushin coe�cient rather than W is that these parameters are easier to estimate than
W given the joint distribution.
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High Temperature MRFs. Using Theorem 5, we show that when the MRF is in the high temperature
regime, i.e., V (t) < 1 (see De�nition 3), max{SR��, BR��} is a constant factor approximation to the
optimal revenue. By the de�nition of V (t), it clear that �(t)  V (t). Next, we show that V (t) is also
an upper bound of d3 (t) for the trivial metric 3 (G,~ ) = 1G<~ . Due to limited space, the proof is
delayed to Appendix H.

L����17. Let 3 (·, ·) be the trivial metric 3 (G,~ ) = 1G<~ . For any MRF t , d3 (t)  U (t)  V (t).
Moreover, U8,9  V8,9 (t) for all 8,9 2 [=].
T������6. Let the buyer’s type distribution ⇡ be represented by a MRF. If the buyer’s a XOS

valuation and her type t is in the high temperature regime, i.e., V (t) < 1,

R��(⇡)  12 exp(12V (t)) · SR�� +
 
28 + 16p

1 � V (t)

!
max{SR��, BR��} = $

 
max{SR��, BR��}p

1 � V (t)

!
.

Proof of Theorem 6: The statement follows from Theorem 5 and Lemma 17. 2

7 IMPOSSIBILITY RESULTS
In this section we present some of our impossibility results. In Section 7.1, we show that the
Dobrushin Uniqueness condition alone is insu�cient to guarantee any multiplicative approximation
of the optimal revenue using SR�� and BR��. In Section 7.2 we construct a MRF such that the
optimal revenue in the COPIES setting is exp(�) times larger than max{SR��, BR��}.

7.1 Inapproximability under Only the Dobrushin Uniqueness Condition
Readers may wonder whether it is possible to prove an approximation ratio that only relies on either
the spectral radius d3 (t), the Dobrushin coe�cient U (t), or the spectral gap of the Glauber dynamics
W , but independent of the maximum weighted degree �(t). We show that this is impossible. Indeed,
we prove that for any U < 1, and any ratio # , there exists a MRF with d3 (t)  U (t)  U such that
the ratio between the optimal revenue and max{BR��(⇡), SR��(⇡)} is at least U

2 · # . Our result is
based on a modi�cation of the Hart-Nisan construction [30].

T������7. For any positive real number # and any choice of 0 < U < 1, there exists a type
distribution ⇡ over 2 items generated by a MRF with Dobrushin coe�cient U (t) = U and� nite inverse
temperature, such that for an additive buyer whose type is sampled from⇡ , R��(⇡)

max{BR��(⇡),SR��(⇡) } > U
2 ·# .

First we present themain building block of our construction. The proof is postponed to Appendix I.

L����18. Let ⇡ 0 be a correlated valuation distribution over 2 items with Dobrushin coe�cient U .
Let⇡ be a product distribution that has the same marginal distributions as⇡ 0. Then for any 0  U 0  1,
we consider the distribution⇡ 00 := U 0 ·⇡ 0+(1�U 0) ·⇡ , that is, if we want to sample from⇡ 00, we can take
a sample from ⇡ 0 with probability U 0 and take a sample from ⇡ with probability 1 � U 0. Distribution
⇡ 00 can be modeled as a MRF with� nite inverse temperature such that � = V (t)  | log((1 � U)?2) |,
where ? = inf t 2S���(⇡0) Prt 0⇠⇡0 [t 0 = t]and ⇡ 00 has Dobrushin coe�cient U 0 · U . Furthermore, ⇡ 00 has
the same marginal distribution as ⇡ and R��(⇡ 00) � U 0R��(⇡ 0).

We also need the following important result from [30].

L���� 19 (T������ A ����[ 30]). For any positive number # , there exists a two item correlated
distribution⇡ , such that for an additive buyer whose type is sampled from⇡ , R��(⇡)

max{BR��(⇡),SR��(⇡) } > # .

Equipped with Lemma 18 and 19, we are ready to prove Theorem 7.
Proof of Theorem 7: Let⇡ 0 be the distribution over two items that is guaranteed to exist by Lemma 19.
Since ⇡ 0 is a two dimensional distribution, its Dobrushin coe�cient is at most 1.
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Apply Lemma 18 to⇡ 0with parameter U 0 = U to create another distribution⇡ which has the same
marginals as ⇡ 0 but with a Dobrushin coe�cient at most U . Moreover, ⇡ can be expressed as a MRF
with� nite inverse temperature. Clearly, R��(⇡) � U · R��(⇡ 0), as one can simply achieve the RHS
under distribution ⇡ using the optimal mechanism designed for ⇡ 0. Also, SR��(⇡ 0) = SR��(⇡)
as the two distributions have the same marginals. Finally, BR��(⇡ 0)  2SR��(⇡ 0). Suppose 1
is the optimal price for the bundle, then we can set the two items separately each at price 1/2.
Clearly, whenever the bundle is sold, at least one item is sold. To conclude, R��(⇡)

max{BR��(⇡),SR��(⇡) } �
R��(⇡)
2SR��(⇡) � U ·R��(⇡0)

2SR��(⇡0) > U
2 · # .

2

7.2 Lower Bound for the Copies Se�ing
In this section, we show that if the analysis uses the optimal revenue in the COPIES setting as part
of the benchmark for the optimal revenue in the original setting (as in our analysis), the exponential
dependence on the maximum weighted degree � in the approximation ratio is unavoidable. Note
that we also showed that the approximation ratio must have polynomial dependence on � no
matter what approach is used (Theorem 3).

T������8. For any value of = 2 N and V 2 R+ there exists a type distribution ⇡ over = + 1 items,
such that ⇡ can be represented by a MRF with only pairwise potentials and maximum weighted degree
�  V ·=. Moreover, for an additive or unit-demand buyer, the expected optimal revenue in the COPIES
settings w.r.t. ⇡ can be arbitrarily close to 1

2 exp(2V=), while max{BR��, SR��} < 2.

Proof of Theorem 8: We construct the MRF in the following way. The� rst item has support )1 =
{20, 21, 22, . . . , 2:=�1}, where : 2 N is going to be de�ned later. Let Y1, . . . , Y: be some tiny non-
negative values, and the support of the other items’ distributions is ' = {Y8 }82 [: ] . We consider the
following node potential for the� rst item:

k1 (28 ) =
(
ln( 1

28+1 ) if 0  8  := � 2
ln( 1

28 ) if 8 = := � 1

The node potentials for the other items is: k8 (0) = ln
⇣

1
exp(V)+(:�1) exp(�V)

⌘
for all 8 2 [2,= + 1]

and 0 2 '.
Note that |)1 | = := and |'= | = := , therefore for each C1 2 )1, we can map it to a unique C�1 2 '= .

Formally, we consider a bijective function 2 : )1 ! '= .
We de�ne pair-wise potentials between the� rst item and the 9-th item:

k1, 9 (28 , Y✓ ) =
(
V if Y✓ = 2 (28 )9
�V if Y✓ < 2 (28 )9

It is easy to verify that �  V · = for the constructed MRF.
Let / be the normalizing constant so that the MRF with potentials {k8 }82 [=+1], {k1,8 }28=+1 is

a valid distribution. That is / =
Õ

C 2S���(⇡)
Œ

82 [=+1] exp(k8 (C8 ))
Œ

28=+1 exp(k1,8 (C1, C8 )). For any
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C1 2 )1 we have that: PrC 0⇠⇡
⇥
C 01 = C1 ^ C 0�1 = 2 (C1)

⇤
= 1

/ exp(k1 (C1)) exp (=V)
(exp(V)+(:�1) exp(�V))= .

Pr
C 0⇠⇡

⇥
C 01 = C1 ^ C 0�1 < 2 (C1)

⇤

=
1
/
exp(k1 (C1))

1
(exp(V) + (: � 1) exp(�V))=

’
C�12)�1:
C�1<2 (C1)

÷
82 [2,=+1]

exp
�
k1,8 (C1, {C�1}8 )

�

=
1
/
exp(k1 (C1))

1
(exp(V) + (: � 1) exp(�V))=

’
82 [1,=]

✓
=

8

◆
(: � 1)8 (exp(�V))8 (exp(V))=�8

=
1
/
exp(k1 (C1))

(exp(V) + (: � 1) exp(�V))= � exp(=V)
(exp(V) + (: � 1) exp(�V))=

Thus for any C1 2 )1, themarginal probability: 51 (C1) = 1
/ exp(k1 (C1)). Note that/ =

Õ
C12)1 exp(k1 (C1)) =Õ:=�2

8=0
1

28+1 +
1

2:=�1 = 1 and 51 (C1) = exp(k1 (C1)). Therefore the marginal distribution of the� rst item
is an Equal Revenue Distribution, which means that the revenue of any posted price mechanism
for the� rst item, cannot be more than 1. Moreover, if we choose Y1, . . . , Y: to be su�ciently small
so that maxG 2'  1

2= , then any posted price mechanisms for the rest = items has revenue less or
equal than 1

2 . Thus SR�� < 2.
Now we consider the following Mechanism in the copies settings. We� rst collect the values for

all buyers except the� rst one C�1, then let the� rst buyer decide whether she wants to purchase the
item at price 2�1 (C�1). This is essentially Ronen’s lookahead auction [40]. A lower bound on the
revenue of this mechanism in the COPIES settings is:

’
C12)1

C1 Pr
C 0⇠⇡

⇥
2�1 (C 0�1) = C1 ^ C 01 = C1

⇤
=

’
C12)1

C1 exp(k1 (C1))
exp (=V)

(exp(V) + (: � 1) exp(�V))=

=
✓

1
1 + (: � 1) exp(�2V)

◆= ’
C12)1

C1 exp(k1 (C1))

�
✓

1
1 + (: � 1) exp(�2V)

◆= ’
C12)1

1
2

=
1
2

✓
1

1 + (: � 1) exp(�2V)

◆=
|)1 |

=
1
2

✓
:

1 + (: � 1) exp(�2V)

◆=

Where the last inequality follows from the de�nition ofk1 (C1).
Note that if we�x V and =, and let : ! 1, then lim:!1

⇣
:

1+(:�1) exp(�2V)

⌘=
= exp(2V=).

Therefore as : ! 1, the lower bound of the revenue of the proposed mechanisms becomes
exp(2V=)

2 . Since we assumed that the value of the agent for each item except the� rst is less or equal
than 1

2= , then the value of the agent for all but the� rst item is less or equal than 1
2 . This implies

that if the agent buys the whole bundle at price ? , then she also buys the� rst item at price ? � 1
2 .

Let R��1 be the revenue of the posted price mechanism on the� rst item. Since the marginal of the
�st item is the Equal Revenue Distribution, then R��1  1. Moreover by the argument described
above, we have that BR��  R��1 + 1

2 < 2. Thus max{SR��, BR��} < 2. 2
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