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Abstract—MU-MIMO and OFDMA are two key techniques
in IEEE 802.11ax standard. Although these two techniques have
been intensively studied in cellular networks, their joint optimiza-
tion in Wi-Fi networks has been rarely explored as OFDMA was
introduced to Wi-Fi networks for the first time in 802.11ax. The
marriage of these two techniques in Wi-Fi networks creates both
opportunities and challenges in the practical design of MAC-
layer protocols and algorithms to optimize airtime overhead,
spectral efficiency, and computational complexity. In this pa-
per, we present DeepMux, a deep-learning-based MU-MIMO-
OFDMA transmission scheme for 802.11ax networks. DeepMux
mainly comprises two components: deep-learning-based channel
sounding (DLCS) and deep-learning-based resource allocation
(DLRA), both of which reside in access points (APs) and impose
no computational/communication burden on Wi-Fi clients. DLCS
reduces the airtime overhead of 802.11 protocols by leveraging
the deep neural networks (DNNs). It uses uplink channels to train
the DNNs for downlink channels, making the training process
easy to implement. DLRA employs a DNN to solve the mixed-
integer resource allocation problem, enabling an AP to obtain
a near-optimal solution in polynomial time. We have built a
wireless testbed to examine the performance of DeepMux in
real-world environments. Our experimental results show that
DeepMux reduces the sounding overhead by 62.0%∼90.5% and
increases the network throughput by 26.3%∼43.6%.

Index Terms—IEEE 802.11ax, machine learning, deep neural
network, Wi-Fi, multi-user MIMO, OFDMA, channel sounding,
resource allocation

I. INTRODUCTION

After two decades of evolution from its genesis, Wi-Fi
technology has become the dominant carrier of the Internet
traffic [1] and penetrated every aspect of our lives. With
the continuous proliferation of the Internet-based applica-
tions, Wi-Fi market is growing at an unprecedented rate, and
more than four billion Wi-Fi devices have shipped in 2019
alone [1]. To serve the large number of Wi-Fi devices and meet
their high data rate demands, Wi-Fi networks are evolving
from 802.11n/ac to 802.11ax so that a Wi-Fi access point
(AP) is capable of utilizing the spectrum more efficiently
and accommodating more Wi-Fi clients at the same time.
Compared to the carrier-sense-based 802.11n/ac, 802.11ax
features centralized resource allocation and fine-grained inter-
device synchronization. With these two features, it introduces
orthogonal frequency-division multiple access (OFDMA) and
uplink multi-user multiple-input multiple-output (MU-MIMO)
techniques for the first time.
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Although OFDMA and MU-MIMO has been well studied
in cellular networks (see Table I), their joint optimization in
Wi-Fi networks remains scarce because OFDMA is introduced
to Wi-Fi networks in 802.11ax for the first time. Given that
cellular and Wi-Fi networks have different PHY (physical)
and MAC (medium access control) layers, and that base
stations (BSs) and APs have very different computational
power, the MU-MIMO-OFDMA transmission schemes de-
signed for cellular networks may not be suited for Wi-Fi
networks, necessitating research efforts to innovate the MU-
MIMO-OFDMA design for 802.11ax networks. Particularly,
the MU-MIMO-OFDMA transmission in 802.11ax faces two
challenges. First, to perform downlink MU-MIMO transmis-
sions, an AP needs to have channel state information (CSI)
for the construction of beamforming filters so that it can
concurrently send independent data streams to multiple Wi-Fi
clients on the same Resource Unit (RU). However, existing
802.11 channel sounding protocols are notorious for their
large airtime overhead, which significantly compromises the
throughput gain of MU-MIMO. Therefore, a low-overhead
channel sounding protocol is needed. Second, the marriage
of MU-MIMO and OFDMA largely expands the optimization
space of resource allocation at an 802.11ax AP, making it
infeasible to pursue an optimal resource allocation solution
in real time due to the limited computational power of APs.
Therefore, a low-complexity, yet efficient, algorithm is needed
for an AP to solve the resource allocation problem.

In this paper, we study the channel sounding and resource
allocation problems for downlink transmissions in an 802.11ax
Wi-Fi network, where an AP serves many stations (STAs)
on a set of pre-defined RUs jointly using MU-MIMO and
OFDMA techniques. We assume that the AP is equipped
with multiple antennas, while each STA is equipped with
one antenna. In such an 802.11ax network, we propose a
practical scheme, called DeepMux, to enhance the efficiency
of downlink MU-MIMO-OFDMA transmissions by leveraging
recent advances in deep learning (DL). DeepMux addresses the
above two challenges using deep neural networks (DNNs), and
it mainly comprises the following two key components: i) DL-
based channel sounding (DLCS), and ii) DL-based resource
allocation (DLRA). Both of them reside in APs and impose
no computational/communication burden to the STAs.

To reduce the channel sounding overhead, DLCS in Deep-
Mux compresses the frequency-domain CSI during the feed-
back procedure by leveraging the compression capability of
DNNs. Specifically, instead of reporting CSI on all the grouped
tones, each STA only reports the quantized CSI on a small
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number of tones to the AP. Based on the limited CSI, the AP
infers CSI over all tones using well-trained DNNs. Particularly,
the AP takes advantage of channel reciprocity and uses uplink
CSI, which is easy to obtain, to train the DNNs for downlink
CSI, making the training process easy to conduct.

To obtain a near-optimal resource allocation solution in real
time at the AP, DLRA in DeepMux employs a DNN to solve a
mixed-integer non-linear programming (MINLP) optimization
problem. Specifically, DLRA decouples the complex resource
allocation optimization problem into two sub-problems: RU
assignment and power allocation. A DNN is then employed
to compute a sub-optimal solution to the RU assignment sub-
problem. Once RU assignment is determined, the original
MINLP problem degrades to a linear programming (LP)
problem, which is easy to solve.

The contributions of this paper are summarized as follows.
• We have designed DLCS, a DL-based channel sounding

protocol for 802.11ax networks. DLCS employs an online
training process and requires no efforts from STAs.
Numerical results show that DLCS is capable of reducing
the channel sounding overhead by 62.0%∼90.5% without
sacrificing CSI feedback accuracy.

• We have designed DLRA, a DL-based resource allocation
algorithm for 802.11ax APs to perform efficient downlink
transmissions. Numerical studies show that DLRA is
capable of yielding a sub-optimal solution to MINLP
resource allocation problems in polynomial time.

• By combining DLCS and DLRA, we have designed
DeepMux to enable efficient downlink MU-MIMO-
OFDMA transmissions in 802.11ax networks. We have
evaluated DeepMux on a wireless testbed. Experimental
results show that DeepMux improves network throughput
by 26.3%∼43.6% compared the greedy utilization of DoF
by strongest STAs on each RU.

The remainder of this paper is organized as follows. Sec-
tion II surveys the related work. Section III describes the
existing MU-MIMO protocols and discusses the underlying
challenges. Section IV explains DeepMux in nutshell. Sec-
tion V delineates the proposed DLCS protocol, and Section VI
describes the DLRA algorithm. Section VII presents our
experimental results. Section VIII concludes the paper.

II. RELATED WORK

We focus our literature review on channel sounding and
resource allocation in both Wi-Fi and cellular networks.

A. Channel Sounding

Channel Sounding for Wi-Fi: The sounding overhead issue
in Wi-Fi networks has been in focal point of view since
the accommodation of MU-MIMO in IEEE 802.11 standards.
Existing research efforts have been invested to tackle this issue
by optimizing channel sounding parameters [2]–[4], seeking
new channel sounding paradigms [5], [6], or compressing
CSI frames [7], [8]. As the pioneering trials of reducing
sounding overhead, research efforts in [2]–[4] have exploited
the semi-static nature of Wi-Fi networks to adaptively reduce
the frequency of channel sounding and avoid unnecessary

sounding overhead. Implicit channel sounding has also been
studied for rectifying sounding overhead [5], [6]. Although
implicit channel sounding can significantly lower the overhead,
it requires extra hardware for channel calibration and thus
may not be amenable to low-cost Wi-Fi networks. DeepMux
is orthogonal to these works as DLCS neither manipulates
the channel sounding frequency nor employs implicit channel
sounding.

[7] and [8] are two prior efforts that reduce the channel
sounding overhead by compressing CSI in the frequency
domain. However, these two efforts require coordination from
Wi-Fi clients to fully or partially compress CSI. In contrast,
DLCS runs solely on Wi-Fi routers and requires no coordi-
nation from Wi-Fi clients. Simply put, DLCS is transparent
to Wi-Fi clients. DLCS also differs from these two works in
terms of computational complexity. Specifically, [7] and [8]
require Wi-Fi clients to estimate CSI for all frequency tones
while DLCS requires Wi-Fi clients to estimate CSI only for a
small number of tones.
Learning-Based Channel Sounding in Cellular Networks:
Sounding overhead is also a critical problem in cellular net-
works. Temporal correlation [9]–[11] and spatial correlation
[9] have been harvested to remove the redundancy of CSI
and reduce the airtime overhead of CSI acquisition. DeepMux
differs from these works as it focuses on the frequency domain.
Frequency-domain correlation of CSI has been studied in [12]
and [13] to reduce the channel sounding overhead in cellular
networks. DeepMux differs from these works because DLCS is
transparent to users (i.e., imposing no computation on users).
In addition, CSI in cellular networks is very different from
that in Wi-Fi networks. DeepMux is meticulously tailored
for Wi-Fi networks. Finally, most prior works are limited
to theoretical investigations and numerical evaluations while
DeepMux takes into account incumbent Wi-Fi protocols and
has been validated in practical indoor wireless environments.

B. Resource Allocation

Table I summarizes existing resource allocation schemes
in cellular and Wi-Fi networks. Clearly, DeepMux differs
from existing works in terms of objective, network scenario,
transmission mode, or computational complexity. In what
follows, we elaborate the existing studies and point out the
differences between DeepMux and these works.
Resource Allocation for Wi-Fi Networks: Recently, [14]
has studied downlink OFDMA in wireless local area net-
works (WLANs) and showed that its performance is highly
dependent on the resource assignment strategies at APs. This
problem has been followed in [15], with the objective of
improving the fairness among users. DLRA differs from the
proposed resource allocation scheme in [15] as it focuses on
pursuing a sub-optimal resource allocation scheme with a low
computational complexity. [16] has considered the throughput
maximization under the assumption that a user can be assigned
to at most one RU and offered a solution for both uplink and
downlink transmissions. Compared to [16], DLRA expands
the problem scope by allowing multiple RUs to serve a
user and also by allowing an RU to serve multiple users
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TABLEI:AsummaryofresourceallocationschemesinWi-Fi
andcellularnetworks,wherendenotesthenumberofactive
usersservedbyanAPoraBS.

Objective Network Mode
MU-MIMO

Polynomial
complexitysum-rate Fairness Latency Energy Wi-Fi Cellular Uplink Downlink

DeepMux O n2.5

[15] O n3

[16]
[17],[18]
[19]
[20] O n3

[21]
[22]
[23] O n3

[24]
[25] O n2.5

[26]–[28]

concurrently.[17]and[18]aretheonlyworksconsidering
downlink MU-MIMO-OFDMAin WLANs.However,these
twoworksemploygreedyiterativealgorithmstocomputea
feasiblesolution.Incontrast,DLRAemployslearning-based
approachandoffersasolutioninpolynomialtime.[19]–[21]
studiedresourceallocationinuplinkOFDMAWLANs,which
isnotthescopeofourwork.
Resource Allocationin Cellular Networks:Sincethere
aremanyresearchresultsofresourceallocationincellular
networks,wefocusourreviewonMIMO-OFDMAtechniques.
[22]hasstudiedtheresourceallocationproblemunderlatency
constraint.However,thecomplexityoftheproposedsolution
isprohibitivelylarge.[23]hasstudiedtheresourceallocation
problemwiththeobjectiveofenhancingenergyefficiency.
Theauthorshasproposedanalgorithmwithpolynomial-time
complexity.However,itonlyworksforsingle-user MIMO-
OFDMAnetworks.[24]and[25]haveinvestigatedthere-
sourceallocationproblemfor MU-MIMO-OFDMAcellular
networksandproposedlow-complexityalgorithmstocompute
thesolutions.However,thesetwoworksfocusonmaximizing
energyefficiency.Incontrast,DeepMuxaimstomaximize
networkthroughput.[26]–[28]haveexploreddownlinkMU-
MIMO-OFDMAtransmissionsindifferentnetworkscenarios.
Theseresearcheffortshaveproposedgreedyalgorithmsto
pursueoptimalsolutionsformaximizingnetworkthroughput.
DeepMuxisverydifferentfromtheseworksintermsof
networksettingsandcomputationalcomplexity.

III.PROBLEMDESCRIPTION

Consideran802.11axnetworkcomprisingamulti-antenna
APandmanysingle-antennaSTAs.DenoteNapasthenumber
ofantennasontheAP.DenoteNstaasthenumberofSTAsin
thenetwork.WeconsideradensenetworkwhereNsta>Nap.
In802.11axstandard,OFDMAand MU-MIMOtechniques
havebeenincludedforefficientcommunicationsbetweenthe
APanditsservingSTAs.Fig.1showsthefourpossibleRU
configurationswhenthenetworkworkson20MHzbandwidth.
Asthefigureshows,thetotalnumberofvalidtonesis242,
andanRUcouldconsistsof26,52,106,or242tones.
WhenMU-MIMOisenabled,anRUcanservemultipleSTAs,
dependingonthechannelcondition,datatraffic,andnetwork
setting.Inthedownlinktransmissions,inorderforanAPto
servemultipleSTAsperRU,itneedstofirstperformchannel
soundingtoobtaintheCSIandthenconstructthespatialfilters
forbeamforming.Bydoingso,independentdatastreamscan

Fig.1:FourdifferentRUconfigurationsover20MHzas
specifiedinIEEE802.11ax[29].

Fig.2:ExistingchannelsoundingprotocolinIEEE802.11ax.

bedeliveredtodifferentSTAssimultaneously.Inthisprocess,
CSIiscrucial.Inwhatfollows,wefirstpresenttheexisting
channelsoundingprotocolandthenstateourdesignobjectives.

A.802.11ChannelSoundingProtocolinNutshell

Fig.2showsthechannelsoundingprotocolspecifiedin
802.11ax,andweelaborateonitinthefollowing.
Announcement:TheAPinitiatesthechannelsoundingpro-
cedurebybroadcastingaNullDataPacketAnnouncement
(NDPA)frame, whichcontainstheaddressesofintended
STAs.Then,theAPsendsoutaNullDataPacket(NDP)
frameforSTAstoestimatethedownlinkchannelsbetween
themselvesandtheAP.
ChannelEstimation:EachSTAleveragesthepreambleinthe
NDPframetoestimatethecomplex-valuedchannelvectorsbe-
tweentheAPanditself.Reportingtherawchannelvectorsto
theAP,however,entailstoomuchairtimeoverhead.Toreduce
theairtimeoverhead,eachSTAemploysGivensrotationsand
tonegroupingtopre-processitsestimatedchannelvectors.The
pre-processingleadstoaCSIcompressioninbothspatialand
spectraldomains.
Spatialcompression:Initsgeneralform,thespatialcompres-
sionincludesaseriesofGivensrotations,pre-multiplications,
andpost-multiplicationsappliedtotherightsingularvectors
ofachannelmatrixtoextractitsspatialinformation[29]–
[31].Eachrotationorpre-multiplicationisrealizedbyan
angle,whichstoresapartofspatialinformation[32].On
eachtone,twosetsofangleswillbegenerated:Nψ ψ-type
anglesfromGivensrotationsandNφφ-typeanglesfrompre-
multiplications,whereNψ=Nφ= 2NapNr−N

2
r−Nr /2

andNristhenumberoftheSTA’santennasingeneralcase
(weassumedNr=1inthispaper).Fornotionalsimplicity,
wedenotethesetwosetsoveralltonesasΨ={ψi,k}∀i,kand
Φ={φi,k}∀i,k,whereiistheangleindex(1≤i≤Nψ),k
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isthetoneindex(1≤k≤Ntone),andNtoneisthenumber
oftones.
Generallyspeaking,ψi,k∈[0,π/2)andφi,k∈[0,2π).The

angleswillbequantizedbeforebeingsenttotheAP.In802.11
standards,twotypesofquantizationarespecifiedforfeedback:

•Feedbacktype0 uses5bitsforeachangleinΨand7
bitsforeachangleinΦ.

•Feedbacktype1uses7bitsforeachangleinΨand9
bitsforeachangleinΦ.

ToneGrouping:AsWi-Finetworkstypicallyworkinindoor
scenariosforshort-rangecommunications,theircoherence
bandwidthtendstobelarge.Hence,tonegroupinghasbeen
employedtobondNg tones.In802.11axstandard[29],
Ng={1,4,16}.Particularly,Ng=1meansthatnogrouping
isemployed.Also,Ng=16isonlyallowedwithfeedback
type1.
BeamformingReport(BR):TheBRframescarrythequan-
tizedangles(Ψ andΦ)fromeachSTAtotheAP.These
framesarealsousedtocarrythechannelstrengthinformation
(averageSNRandSNRdeviationforeachgroupoftones)
fromeachSTAtothe AP.BasedonthereportedSNR
information,theAPmanagesavailablespectralandpower
resourcestoserveSTAs.
Polling:Pollingisa mechanismtocoordinatethereport
processamongSTAs.OnceallSTAshavepreparedtheirBR
frames,theAPsendstriggerbeamformingreportpoll(TBRP)
framessequentially.EachTBRPframecoordinatesagroup
ofSTAstosendtheirBRframesthroughuplinkMU-MIMO
asillustratedinFig.2.TheAPdecodestheBRframesand
identifiesthesenderofeachreportusingthe MACaddress
inthecorrespondingframe.Afterpollingallthegroups,the
APobtainsinformationrequiredfordownlink MU-MIMO
transmission.

B.DesignObjectivesandChallenges

Theobjectivesofthisworkaretodesignandevaluatea
practical,yetefficient,downlinkMU-MIMO-OFDMAtrans-
missionschemefor802.11axnetworks.Towardstheseobjec-
tives,wefacethefollowingtwochallenges.
Challenge1–ChannelSoundingOverhead:Channelsound-
ingiscrucialforbeamformingindownlinkMU-MIMOtrans-
missions.However,theexistingchannelsoundingprotocol
inFig.2entailsalargeairtimeoverheadandsignificantly
compromisesthethroughputgainofMU-MIMO.Forinstance,
consideranAPwith8antennasandasingle-antennaSTA
workingon160MHzbandwidth.Evenwiththetonegrouping,
theanglesinformationinasinglereportcouldbeaslarge
as7.0kB1,whichisfarbeyondamaximumtransmission
unit(2.3kB)inWLANs[33].ThismeansthataBRframein
Fig.2cantakemorethan3packetsforCSIfeedback.Sucha
largeairtimeoverheadnotonlyconsumesnetworkbandwidth
butitalsoruinsthefreshnessofCSIforbeamforming.
Challenge2–JointResourceAllocation:Themarriageof
MU-MIMOandOFDMAcreatesajointresourceallocation
problemfortheAP,whichinvolvesRUassignmentforusers

1Inthiscase,Nψ=Nφ=7andfeedbacktype1isusedover498groups
oftones.Representationofanglesrequires55,776bits≈7.0kB.

Fig.3:TheoverviewofDeepMux.

andpowerallocationfor MIMOstreams.Thisproblemis
complicatedasitcrossesspectralandpowerdomains.Solving
theresourceallocationproblemistime-constrainedasthe
coherenceofwirelesschannelsdegradesovertime.Itisthere-
foreimportantforanAPtohavealow-complexityalgorithm
thatcanfindanefficientresourceallocationsolutioninreal
time.Aclassicalapproachforsolvingthisproblemistofirst
formulatetheproblemasanoptimizationproblemandthen
employexistingoptimizationsolverstocomputetheoptimal
solution.Thisapproach,however,isinfeasibleinpractice
duetothehighcomputationalcomplexityfromanexhaustive
searchoverRUassignmentinstances.Forexample,considera
small802.11axnetworkwherea4-antennaAPserves6single-
antennaSTAsoverfour52-toneRUson20MHzbandwidth.
WeformulatetheresourceallocationproblemasanMINLP
optimizationproblemandemployCVXpackagetosolveitfor
agivenRUassignment.Ourobservationisthatittakesupto
342minutestofindanoptimalsolutionwithsearchover223.3

RUassignmentinstances.Suchalargedelaymakesresource
allocationinfeasibleforpracticaluseandurgesustodevisea
low-complexityresourceallocationmechanism.

IV.OVERVIEWOFDEEPMUX

Inthissection,wepresentanoverviewofDeepMux,which
leveragesrecentadvancesinDNNstoaddressthechallenges
fordownlinkMU-MIMO-OFDMAtransmissionsin802.11ax
networks.Fig.3showsahigh-levelstructureofDeepMux.It
mainlycomprisestwocomponents:DLCSandDLRA.Inwhat
follows,wepresentthebasicideaofthesetwocomponents.

A.BasicIdeaofDLCS

DLCSisanenhanced802.11channelsoundingprotocol
aimingtoreducethesoundingoverhead.Itsdesignisbased
onthefollowingtwoobservations:i)wirelesschannelsin
localareanetworksarehighlycorrelatedinthefrequency
domain;andii)tonegroupinginthecurrent802.11sounding
protocolisnotanefficientapproachforfeedbackcompression.
MotivatedbythesuccessofDNNsforimagecompression,we
proposetouseDNNstoreducethechannelsoundingoverhead
intheCSIfeedbackprocess.Specifically,insteadofreporting
CSIoveralargenumberoftones,eachSTAonlyreportsCSI
overasmallnumberoftones.BasedonthereportedCSIover
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sparsetones,theAPattemptstoinfertheCSIoveralltones
usingDNNs.
Whiletheideaisstraightforward,animportantquestionis

howtotraintheDNNssothattheycaninferthefullCSI
basedonthelimitedfeedback.Forthisquestion,onesolution
isthattheAPaskseverySTAtoreportalargeamountof
CSIoveralltonesatthebeginningandusesthelargeamount
ofCSItotraintheDNNs.Thissolution,however,imposes
heavycomputationalandcommunicationburdensonSTAs,
andthusisnotamenabletoimplementation.Tocircumvent
thisissue,weuseuplinkCSI,insteadofdownlinkCSI,for
thetrainingofDNNs.Thisisbecauseuplinkanddownlink
channelshavethesameprofileinthefrequencydomain,thanks
tothechannelreciprocity[34].Inotherwords,uplinkand
downlinkchannelsbearthesameshapeoverfrequencydomain
evenwithoutchannelcalibration,makingitpossibleforDNNs
tolearnthedownlinkfrequency-domainCSIcorrelationusing
uplinkCSIsamplesintheabsenceofchannelcalibration.
Additionally,anAPcaneasilyobtainuplinkCSIoverall

tones.ObtaininguplinkCSIrequiresnoeffortfromSTAs,
makingthetrainingprocesstransparenttotheSTAs. When-
everanAPreceivespacketsfromSTAs,itcanmeasurethe
uplinkchannelbasedonthepackets’preamble.Wenotethat,
differentfrompriorchannelreciprocityapplications,channel
calibrationisnotneededforourapplication.DetailsofDLCS
arepresentedinSectionV.

B.BasicIdeaofDLRA

ThemarriageofMU-MIMOandOFDMAcreatesachal-
lengeforan802.11ax-enabledAPtooptimallyallocatethe
availablespectralandpowerresourcesinareasonableamount
oftime.Toaddressthischallenge,DeepMuxformulatesthe
resourceallocationproblemasanoptimizationproblem.In
itsoriginalform,theoptimizationproblemisan MINLP
problem,whereitsbinaryvariablescorrespondtoRUas-
signmentsub-problemanditscontinuousvariablescorrespond
topowerallocationsub-problem.DeepMuxapproachesthe
MINLPproblembyreformulatingitintoamixed-integerlinear
programming(MILP)problem.UnlikeanMINLPproblem,an
MILPproblemcanbesystematicallysolvedintwosteps:i)an
organizedsearchmechanismoverdiscreteinstancesofthe
feasibleregion(RUassignmentinstances),andii)aninterior-
pointalgorithmthatsolvestheconvexsub-problem(power
allocation)foragivenRUassignment.
GiventhatMILPisNP-hardingeneral,wetakeadvantage

ofrecentadvancesinDNNstodeterminetheoptimalRU-
assignmentinthefirststep.Specifically,DeepMuxemploys
aDNNtocomputethevaluesforthebinaryoptimization
variablesintheMILPproblem.SuchaDNNistrainedoffline,
inasupervisedmanner,usingtheSNRreportsfromSTAs,as
showninFig.3.Afterthebinaryvariables(correspondingto
theRUassignmentsub-problem)aredetermined,the MILP
problemdegradestoalinearprogrammingproblem,whichis
easytosolve.DetailsofDLRAarepresentedinSectionVI.

V.DLCS:ALOW-OVERHEADCHANNELSOUNDING
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DLCSenhancesthe802.11channelsoundingprotocolin
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Fig.5:DNNs’structureattheAPforinferringΨandΦbased
onlimitedfeedback.

isdonethroughsparsificationofΨ andΦ anglesinthe
frequencydomain.Thatis,eachSTAreportsCSIanglesover
afewtones,andtheAPinferstheCSIanglesforalltones
basedonthesparsifiedfeedbackusingDNNs.
Beforedivinginto DLCS, wefirsttakealookatthe
frequency-domaincorrelationofCSIangles. Wecollected
50,000ΨandΦsamplesinanofficeenvironmenttomeasure
thefrequency-domaincorrelation.Forasequencex∈R1×L,
wedefineCD asitscorrelationatdepthDbyletting:

CD =Em
x(m+1:m+D)x

T
(m+D+1:m+2D)

x(m+1:m+D) x(m+D+1:m+2D)
, (1)

where x(i:j) [xi,xi+1,···,xj]with xibeingtheith
elementinx,and(·)Tistransposeoperator.Fig.4showsthe
correlationofthecollectedCSIanglesatdifferenttonedepths.
Itcanbeseenthat,whenthetonedepthisgreaterthan16(i.e.,
D>16),thecorrelationisstillconsiderableforbothΨand
Φangles.Thismeansthat,groupingtheanglesoverNgtones
(simplybyaveragingoperation)cannotfullyharvestsucha
significantcorrelationforcompressionpurpose.Ontheother
hand,tonegroupingmayleadtoaninaccuratefeedbackwhen
Ng>16.DLCSisamoresophisticatedcompressionapproach
toreducethesoundingoverheadbyexploitinginter-toneCSI
correlation.
Inwhatfollows,wefirstpresentthesettingsofDNNsand
thenelaborateontheirtraining(exploration)andsparsification
(exploitation)phasesseparately.

A.DNNsSettings

AsshowninFig.5,DLCSemploysDNNsattheAPto
inferfullCSIanglesbasedonasparsifiedfeedback.One
DNNisusedfortheanglesinΨandanotherDNNisused
fortheanglesinΦ.ThedimensionofinputlayerisS,
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correspondingtothequantizedCSIanglesoverStones.The
valueofSisselectedthroughexperimentalstudies,which
willbeshownshortly.TheDNNshaveNtoneneuronsonthe
outputlayer,correspondingtotheinferredCSIanglesoverall
tones(e.g.,Ntone=234forallthenine26-toneRUsover
20MHzbandwidth).DNNshavemultiplehiddenlayers,say
Lhiddenlayers.Thedimensionoftheithhiddenlayerisdi.
Eachhiddenlayerisfully-connected,followedbyabatch-
normalizationlayertospeedupthetrainingconvergence[35].
Rectifiedlinearunit(ReLU)activationfunctionisusedfor
eachlayer.SincetheDNNsaredesignedforinterpolation
purpose,theyareinanenlargingtrapezoidshape.

B.TrainingPhase

Asweexplainedbefore,theAPdoesnotrequireSTAsto
reportalargeamountofdownlinkCSIanglesfortraining
DNNsbecausedoingsoimposesheavycomputationaland
communicationburdensonSTAs.Instead,theAPusesits
estimateduplinkchannelstocalculateCSIanglesandtrain
theDNNsbytakingadvantageofwirelesschannelreciprocity.
SincetheDNNsfocusonlyonlearningthefrequency-domain
propertiesofCSI,channelcalibrationisnotnecessaryto
compensatetheresponsedifferencebetweenTxandRxRF
chains.
UsingtheuplinkCSItotraintheDNNshavetwobenefits.
First,itiseasyforanAPtocollectalargeamountofsamples
fortrainingpurpose.AslongasanSTAsendsapacket,the
APcanestimatetheuplinkchannelanduseitforgenerating
anglesandtrainingDNNs.Simplyput,theAPrequireszero
efforttoobtaindatasetfortrainingDNNs.Second,ittends
toofferbettertrainingresultsasuplinkCSIdoesnotsuffer
fromtonegroupingandquantizationerrors.IftheAPwants
tousedownlinkCSIfortrainingDNNs,quantizationofthe
estimateddownlinkCSIatSTAsisneededtofacilitatethe
feedback.Thisintroducesquantizationerroranddegradesthe
trainingperformance.Incontrast,usinguplinkCSIfortraining
purposedoesnotsufferfromthisissue.
In whatfollows, wedescribetheoperationsof DNNs
trainingattheAP.NoextraeffortisneededattheSTAs.
DataCollection:APandSTAsworkintheirordinarymode.
WhenevertheAPreceivesapacket,itdecodesthepacketand
recordsitsestimateduplinkchannelonalltones.Then,theAP
performsspatialcompressionontheestimateduplinkchannel
overeverytone,asspecifiedin802.11standards[29]tocollect
CSIangles(i.e.,Ψ andΦ).ThegeneratedCSIanglesare
organizedinbatchesandusedfortrainingDNNs.
DataPreprocessing:AsshowninFig.3,eachbatchof
CSIanglesarepre-processedbeforebeingusedfortraining
theDNNs.Thepre-processistomaketheangleszero-mean
andunite-varianceoveralltones[36].Albeitsimple,this
pre-processsignificantlyimprovestheconvergenceofDNNs
[36],especiallywhengradientdescentalgorithmsareused
forweightadaptation[37].TheAPalsoquantizesthesepre-
processedangleswithdifferentnumbersofbitsandkeepsall
versionstoexaminetheirperformance.
Training Parametersand Provisions

Ph
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e

Tone index

Quantized samples 
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BR 
frame

Ph
as
e

Tone index

Angles over 
all tones

AP STA

DNN

: Normalized mean
squarederror(NMSE)lossfunctionisemployedtomeasure

Fig.6:DLCSworkflowinsparsification(exploitation)phase.

thesparsificationerror.TheDNNsaretrainedusingAdam
optimizer[38].Thetrainingisperformedwithaninitiallearn-
ingrateof0.001anddecayingrateof0.98followingastep-
wiseapproach.Thebatchsizeissetto128.Allparameters
areinitializedusingXavierinitialization[39].Dropout[40]is
appliedtoallhiddenlayerstopreventover-fittingandimprove
thegeneralizationofthemodel.AllDNNsaretrainedend-to-
endusingPytorchv1.4library[41].

C.SparsificationPhase

Aftercompletingthetrainingphase,theAPinitiatesthe
sparsificationphase.Thatis,thenetworkbeginstousethe
trainedDNNstoreducethechannelsoundingoverheadwhen
applicable.Todoso,theAPinformsallSTAsofSψ,Sφ,qψ,
andqφ,whereSψandSφarethenumberoftonesforwhich
STAsreportanglesofΨandΦ,respectively.qψandqφare
thenumberofbitsforquantizingeachangleinΨ andΦ,
respectively.Fig.6illustratestheCSIreportingprocesswhen
theAPisequippedwiththetrainedDNNs.Inwhatfollows,
weelaboratetheoperationsatanSTAandtheAP,respectively.
OperationsatanSTA: ReferringtoFig.2,when MU-
MIMOtransmissionistriggeredbyanNDPAframe,each
STAestimatesthedownlinkchannelvectorH(k)basedon
thereceivedNDPframe,wherek={kψ,kφ}istheselected
toneindices,kψ ∈{0.5Ntone/Sψ ,1.5Ntone/Sψ ,···,
(Sψ−0.5)Ntone/Sψ }isthesetoftoneindicesforwhich
STAsreportΨ andkφ∈{0.5Ntone/Sφ,1.5Ntone/Sφ,
···,(Sφ−0.5)Ntone/Sφ}isthesetoftoneindicesfor
whichSTAsreportΦ.Spatialcompressionisperformedon
H(k)toobtaintheanglesinΨ andΦ,whicharethen
quantizedusingqψandqφbits(usingthequantizationmethod
in[31]),respectively.IntheBRframeshowninFig.2,instead
ofreportingCSIanglesonallgroupsoftones,theSTAs
reportψandφanglesonlyonthoseSψtonesandSφtones,
respectively.Inaddition,eachSTAalsoreportsthemeasured
SNRvaluestotheAPintheBRframe,followingtheexisting
802.11protocol[31].
OperationsattheAP:Uponreceivingthereportsfroman
STA,theAPextractsthequantizedanglesandSNRreports.
AsillustratedinFig.6,thereceivedanglesarethenfedinto
theDNNstoinfertheanglesoveralltones.Theoutputofthe
DNNsarethenusedtoconstructthebeamformingvectorsfor
downlinkMU-MIMOtransmissions.

D.ParameterSelectionandNumericalResults

Aquestiontoaskishowtochoosethevaluesforspar-
sificationparametersSψ,Sφ,qψ,andqφ.Inourdesign,
theparametervaluesareselectedtoensuretheend-to-end
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TABLEII:End-to-enderrorofDNNsininferringtheangles
inΨ.

Sψ=5 Sψ=6 Sψ=7 Sψ=8 Sψ=9
qψ=3bits 10.55% 10.63% 12.00% 8.99% 9.88%
qψ=4bits 5.85% 4.95% 5.03% 3.86% 3.29%
qψ=5bits 3.97% 2.77% 2.52% 1.93% 1.32%
qψ=6bits 3.52% 2.16% 1.53% 1.35% 1.14%
qψ=7bits 3.19% 2.08% 1.16% 1.14% 0.80%

TABLEIII:End-to-enderrorofDNNsininferringtheangles
inΦ.

Sφ=5 Sφ=6 Sφ=7 Sφ=8 Sφ=9
qφ=3bits 26.51% 22.70% 27.39% 29.83% 21.57%
qφ=4bits 8.30% 6.63% 6.33% 6.09% 5.73%
qφ=5bits 3.01% 2.40% 2.19% 2.14% 1.85%
qφ=6bits 2.67% 2.06% 1.10% 1.01% 0.76%
qφ=7bits 2.30% 1.07% 0.82% 0.77% 0.57%

errorsbelowapre-definedthreshold,whichisempiricallyset.
Specifically,aftertheAPcollectsthesufficientchanneldata,
itfirsttrainsDNNsunderdifferentvaluesofsparsification
parametersandthenrecordstheend-to-enderrorinthetest
phase.TheAPselectsthevaluesforsparsificationparameters
thatyieldthelowestsoundingoverheadwhilemeetingthe
end-to-enderrorrequirement(belowapre-definedthreshold).
Toillustratethisselectionapproach,weresorttoexper-

iments. WeimplementedDLCSinanindoorenvironment
andcollectedabout50,000anglesamplesintheuplinkover
20MHzbandwidth.Wetunedthoseparametersandexamined
theperformanceofwell-trainedDNNs.Asapossibleend-to-
enderrorthresholdininferringtheangles,weuseerrorfrom
thetonegroupingmechanism.TableIIandTableIIIpresent
ourresults.Ineachtable,theDNNsettingswhichmeetthe
end-to-enderrorrequirementarehighlightedingreencolor.
Basedontheresults,wechoose(Sψ=9,qψ=5)whichleads
to0.19bits/angle/toneoverheadand1.32%errorfortheangles
inΨ.Wechoose(Sφ=6,qφ=7)fortheanglesinΦwhich
leadsto0.18bits/angle/toneoverheadand1.07%error.Finally,
theDNNswechoosearea9×16×32×64×128×234DNN
forsparsificationofΨanda6×16×32×64×128×234DNN
forsparsificationofΦ. Wenotethattheresultantparameter
valuesarescenario-specific. WhenanAPismovedtoanew
scenario,itneedstore-tunetheparameterstoobtainthe“best”
valuesforthoseparameters.Fortunately,theparameterre-
tuningprocesscanbedonebytheAPautomaticallywithout
humanintervention.
WenowcompareDLCSwithexisting802.11protocolsin

termsoferrorandsoundingoverhead.Fig.7presentsour
results.Particularly,TiGjinthefiguremeansfeedbacktypei
isemployedandNg = jtonesaregroupedforfeedback.
Fig.7(a)showsthesuperiorperformanceofDLCSinterms
oferror.DLCSreaches1.19%error,whileT0G4,T1G4,and
T1G16reach2.48%,1.64%,and7.05%error,respectively.
Fig.7(b)showsthatDLCSentailssignificantlylowerover-
headcomparedtoexisting802.11protocols.DLCSreachesa
soundingoverheadaslowas0.19bits/angles/tonewhileT0G4,
T1G4,andT1G16reach1.50,2.00,and0.50
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Fig.7:ErrorandoverheadcomparisonbetweenDLCSand
existing802.11protocols[29].

overhead,respectively.ThismeansDLCSreducessounding
overheadby62.0%∼90.5%.

VI.DLRA:ALIGHTWEIGHTRESOURCEALLOCATION

Inthissection, weemploy DNNstofacilitatethere-
sourceallocationproblemattheAP,whichincludestwosub-
problems:RUassignmentandpowerallocation.Recallthat
theAPrecoversanglesinΨandΦusingDNNs,anditalso
collectsSNRvaluesoveralltones.TheanglesinΨ andΦ
canbeusedtopartiallyreconstructtherightsingularvectorsof
channelmatrices,whichcanbeleveragedtomitigateinter-user
interferenceinthedownlinktransmissions.TheSNRvalues
providetheinformationofchannelquality,whichcanbeused
tooptimizetheresourceallocation.Inwhatfollows,wefirst
formulatetheresourceallocationproblemasanoptimization
problem,andthendevelopalearning-basedalgorithmtosolve
it.Finally,weoffernumericalresultstoshowtheeffectiveness
oftheproposedlearning-basedalgorithm.

A.ProblemFormulationandReformulation

ProblemFormulation:AtanAP,denoteN asthesetof
STAsthatitservesinthedownlink MU-MIMO-OFDMA
transmission.DenoteR asthesetofRUs,whicharethe
granularityforassignment.Let|N|=Nstaand|R|=Nru.
Wedefineabinaryvariablezi,jtoindicatetheRUassignment.
Specifically,zi,j=1ifRUjisassignedtoSTAi;andzi,j=0
otherwise. Denotepi,jastheportionofthe AP’spower
allocatedtoSTAionRUj.DenoteWjasthebandwidthof
RUj.Denoteγi,jasreportedSNRatSTAionRUj.Denote
ri,jasthedatarateachievedbySTAionRUj.Denoterias
theachievabledatarateforSTAi.DenoteΩ(·)asthemapping
functionfromSNRtodatarate.
Then,theresourceallocationproblemwiththeobjectiveof
maximizingtotalSTAs’dataratecanbeexpressedas:

maximize
p,z

i∈N

ri (2a)

s.t. ri≤
j∈R

ri,j, i∈N; (2b)

ri,j≤Wjzi,jΩ(pi,jγi,j), i∈N,j∈R; (2c)

i∈N

zi,j≤Nap, j∈R; (2d)

i∈N,j∈R

pi,j≤1. (2e)
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Fig.8:IllustrationofShannoncapacity,MCS-baseddatarate,
andachievabledatarate.

Inthisformulation,z = {zi,j}i∈N,j∈R andp =
{pi,j}i∈N,j∈R areoptimizationvariables.{γi,j}i∈N,j∈R,
{Wj}j∈R,andNap aregivenparameters.Constraint(2b)
calculatestheachieveddataratebyanSTAoverallRUs.Con-
straint(2c)definestheachievablerateregion.Constraint(2d)
isspatialDoFconstraintsonthemaximumnumberofSTAs
thatcanbeallocatedtoanRU.Constraint(2e)characterizes
thepowerbudgetattheAP.

AchievableRateRegion:AclassicalwaytomapSNRto
datarateisShannoncapacity.However,Shannoncapacityis
atheoreticalboundandhardtoreachinpractice.In802.11
networks,adaptiveMCS(modulationandcodingscheme)is
usedtoadjustthedataratebasedonSNR.Asshownin
Fig.8,thereisasignificantgapbetweenShannoncapacity
andMCS-baseddatarate.Therefore,Shannoncapacityisnot
anidealfunctionforourpurpose.Moreover,whentakinginto
accounttheoverheadfromOFDMcyclicprefixandpilottones
in802.11ax2,theachievabledataratebecomesevenlower,
asshowninFig.8.Theachievabledatarateregion(MCS-
basedratewithoverhead)ischaracterizedbyastaircasecurve,
whichisnon-convexfunction.Tosimplifytheoptimization,
weapproximatetheachievablerateregionusingaseriesof
linearconstraintsasillustratedbyFig.8.

Mathematically,bydefining γasameasuredSNRvalue,
weapproximatetheachievablerateregionasfollows:

Ω(γ)≤akγ+bk; k∈K, (3)

whereakandbkaregiveninTableIVasperIEEE802.11ax;
andK {1,2,···,13}. WenotethattheEVMinTableIV
isequivalenttotheinverseofpost-SNRofadecodeddata
streamatareceiver.Therelationofγin(3)andtheEVM
valueinTableIVcanbeexpressedasγ=10−EVM/10.

BasedontheEVMregionsspecifiedinTableIV,the
approximatedachievablerateregionwithitsboundariesis
showninFig.8.Then,constraintsin(2c)canbeexpressed
as:

ri,j≤Wjzi,j(akpi,jγi,j+bk), i∈N,j∈R,k∈K.(4)

2For802.11axwith20MHzbandwidth,every26-toneRUhas2tonesfor
pilot.

TABLEIV:EVMspecifiedinIEEE802.11axstandard[29].

EVM(dB) [+∞,−5) [−5,−8) [−8,−10) [−10,−13) [−13,−16) [−16,−19) [−19,−22)
Modulation N/A BPSK BPSK QPSK QPSK 16QAM 16QAM
Codingrate N/A 1/2 3/4 1/2 3/4 1/2 3/4
Γ(EVM) N/A 1/2 3/4 1 3/2 2 3
ai 0.1067 0.0536 0.0457 0.0339 0.0170 0.0170 0.0085
bi 0 0.1679 0.2177 0.3359 0.6734 0.6718 1.3468

EVM(dB) [−22,−25) [−25,−27) [−27,−30) [−30,−32) [−32,−35) [−35,−∞) [−35,−∞)

Modulation 64QAM 64QAM 64QAM 256QAM 256QAM 1024QAM 1024QAM
Codingrate 2/3 3/4 5/6 3/4 5/6 3/4 5/6
Γ(EVM) 4 9/2 5 6 20/3 15/2 25/3
ai 0.0021 0.0018 0.0013 0.0008 0.0007 N/A 0
bi 2.3609 2.4605 2.6968 3.2806 3.3696 N/A 5.6250

Using(4),theresourceallocationproblemin(2)canbe
re-definedas:

maximize
p,z

i∈N

ri (5)

s.t. (2b),(2d),(2e),and(4).

Theoptimizationproblemin(5)isan MINLPproblem.
Thenon-lineartermisfrom(4),wherebinaryandcontinuous
optimizationvariablesaremultiplied.
ProblemReformulation:Toreducetheprocessingtime,we
reformulatetheMINLPproblem(5)toanMILPproblemby
leveragingaclassiclinearizationtechnique[42].Todoso,
weassumethattheSNRvalueisbounded.Thisisavalid
assumptioninpractice.Denoteγmax asthemaximumvalue
ofSNR(e.g.,45dBinourdesign)anddefineaconstant
A=maxj,k{Wj(akγmax+bk)}.Then,(4)canbeequivalently
expressedas:

ri,j≤Wj(akpi,jγi,j+bk), i∈N,j∈R,k∈K. (6a)

0≤ri,j≤zi,jA, i∈N,j∈R. (6b)

Therefore,theMINLPproblemin(5)canbereformulatedto
thefollowingMILPproblem:

maximize
p,z

i∈N

ri (7)

s.t. (2b),(2d),(2e),and(6).

WenotethattheMINLPproblemin(5)andtheMILPprob-
lemin(6)haveidenticalfeasibleregion.Thereformulation
doesnotalterthesolutionspace.Thenewoptimizationprob-
leminvolves2NstaNru+Nstacontinuousvariables,NstaNru
binaryvariables,and14NstaNru+Nsta+Nru+1constraints.
RecalltheexampleinSectionIII-B,wherea4-antennaAP
servessixSTAsonfour52-toneRUs.Byformulatingthe
resourceallocationproblemintheformof(7),off-the-shelf
optimizationsolverMOSEK[43]canfindanoptimalsolution
within5secondsformostcases.Ingeneral,MILPisNP-hard.
Itscomputationalcomplexityisstillbeyondtheacceptable
rangeofawirelessAPdevice.

B.DLRA:ADeep-Learning-BasedResourceAllocation

SolvinganMILPproblemisstillbeyondthecomputational
capacityofan802.11ax-enabledAPtoallocateitsresources
fordownlinktransmissions.Toreducethecomputational
complexity,wetakeadvantageofrecentadvancesinDNNs.
Specifically,wefirstreformulatetheresourceallocationprob-
lemasanMILPproblemasshownin(7),andthenemploy
aDNNtocomputethebinaryvariables.Oncethebinary
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Fig.9:DLRAworkflowintrainingandexploitationphases.

variablesaredetermined,the MILPproblemdegradestoa
linearprogrammingproblem,whichiseasytosolve.Inwhat
follows,wefocusonthedesignofaDNNtodeterminethe
binaryvariablesin(7).

DNNSettings:Fig.9showstheDNN-basedapproachin
trainingandsparsification(exploitation)phases.Theinput
oftheDNNistheSNRvaluesreportedbytheSTAs.The
dimensionofinputlayerisNstaNru.TheDNNconsistsof
multiplehiddenlayers.Eachhiddenlayerisfully-connected,
followedbyabatch-normalizationlayertospeedupthe
trainingconvergence[35].Sigmoidactivationfunctionisused
foreachlayer.TheoutputlayerhasNstaNruneurons,each
ofwhichcorrespondstoabinaryvariableinRUassignment
sub-problem.Inourexperiments,weconsiderthecasewhere
an8-antennaAPserves20STAson9RUs.Forthiscase,
theinputandoutputlayersbothhave180neurons,andthe
overallDNN’sstructurewetrainedforRUassignmentis
180×128×128×180.

DataCollectionandPre-processing:Wecollect60,000SNR
reportsfromanofficeenvironment.EachreportconsistsSNR
valuesoverallthenine26-toneRUson20MHzbandwidth.
EverysetofSNRvalues(20SNRreports)willbeflattened,
normalized,andthenusedfortrainingtheDNNasaninstance
ofitsinput.Atthesametime,thesetofunprocessedSNR
valueswillbefedinto(7).Theoutputof(7)includesRU
assignmentandpowerallocationcoefficients.TheresultantRU
assignmentwillbeusedasthereferenceoutputoftheDNN
initssupervisedtrainingprocedure.WeuseMOSEkv.9[43]
tosolve(7)foragivensetofSNRvalues.Sincedata
generationprocessisprettyslow,weaugmentthetrainingdata
setbyaddingnegligiblenoisetotheoriginalinputsamples.
Moreover,wesetasideonethirdofinput-outputsamplepairs
fortestpurpose.Weaugmenttheremainingsamples4.5times.

TrainingProcess:TotraintheDNN,weuseNMSEloss
function.Theoutputsof(7)forgivensetsofSNRvalues
areusedasreferenceoutputsoftheDNNintrainingloss
calculation.FortrainingtheDNN,weuseAdamoptimizer
[38]andPyTorchv1.4library[41]. Wealsoapplybatch
normalization[35]andXavierinitialization[39]approaches
toacceleratethetrainingprocess.

Post-Processing:TheoutputofDNNwillbepost-processedin
twosteps:binarizationandcorrection.TheoutputofDNNis
avectorcomprisingrealvaluesboundedbetween0and1

0 0.2 0.4 0.6 0.8 1

Threshold

0

0.5

1

N
or
m
al
iz
e
d 
er
r
or

Threshold=0.54

Error=0.011

.We

20 40 60 80 100

Gross throughput (Mbps)

0

0.5

1

C
D
F

DLRA

MILP (8)

(a)Binarizationthresholdversus
normalizederror.

(b)Performancegapbetween
DLRAandtheoptimumto(7).

Fig.10:IllustratingtheperformanceofDLRAwhencompared
toanoptimalsolution.

applyathreshold-basedbinarizationonoutputsoftheDNNto
transformthemintobinaryentities.Oncethebinaryvectoris
obtained,wecanuseourdomainknowledgetofurtherpolish
thisvector.Tworulesarefollowedinthecorrectionstep:i)If
theDoFconstraintisviolatedonanRU,theSTAwiththe
lowestSNRwillberemoveduntiltheDoFconstraintismet.
ii)WhentheDoFsonanRUareunder-utilized,theSTAwith
thehighestSNRwillbeactivatedifthereisanassignedSTA
withalowerSNR.
ComputationalComplexity:ReferringtoFig.9,thecompu-
tationalcomplexityofpre-processingandpost-processingop-
erationsisO(Nsta),providedthatNru<Nsta.Forthetrained
DNN,assumingthatthesizeofhiddenlayerisproportional
tothesizeofinput,itscomputationalcomplexityisO N2sta.
ForagivenRUassignment,MILPin(5)degradestoanLP
problem.ThecomputationalcomplexityofsolvingtheLP
problemisO N2.5sta.Therefore,theoverallcomplexityof
DLRAisO N2.5sta.
NumericalResults:AftertheDNNistrained,weuseasetof
datasamplestotestitsperformance.Weexaminetheaccuracy
ofDNNoutputwhendifferentthresholdsareusedforthe
binarizationpost-processing.Fig.10(a)showstheresults.It
canbeseen,DLRAreaches98.9%accuracywhenusing0.54
asthebinarizationthreshold.ThismeansthatDLRAoffersa
veryaccurateRUassignment. Wemeasuredtheperformance
gapbetweentwocases,wheretheAPusesDLRAandwhere
theAPusesMILPproblemforresourceallocation.Asshown
inFig.10(b),theresultsconfirmthattheDLRAalmostreaches
theoptimalperformance.

VII.EXPERIMENTALEVALUATION

Inthissection,weevaluatetheperformanceofDeepMux
bycomparingitwithexisting802.11axprotocols.

A.ExperimentalSettings

WirelessTestbedandExperimentalSetting: Fig.11(a)and
Fig.11(b)showthewirelesstestbedthatweusetoevaluate
DeepMux.ThetestbedhasoneAPandfourSTAswhichare
builtusingUSRPN210devicesandgeneralcomputers.The
APisequippedwith8antennaswhileeachSTAisequipped
withoneantenna.AsshowninFig.11(c),theAPisplaced
atafixedlocation,whilethefourSTAshavemanyrandom
locationstobeplaced.
Implementationof802.11ax:The802.11axprotocolinFig.2
isimplementedonthetestbed.Thecarrierfrequencyisset
to2.484GHz,andthebandwidthissetto20MHz.Dueto
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Fig.11:Illustratingourwirelesstestbedandtestenvironment.
(a)PrototypedSTA.(b)PrototypedAP.(c)Floorplanoftests.

thehardwarelimitation,theinter-framespacingisequalto
onesecond.Aframehas256tonesinitsOFDMmodulation,
with18pilottones,216payloadtones,and22unusedtones.
The26-toneRUconfiguration(seeFig.1)isusedinour
study.ThetransmissionpoweroftheAPandSTAsissetto
15dBm.ThesignalprocessingmodulesatbothAPandSTAs
areimplementedusingC++inGNURadio-Companion.LDPC
channelencodinganddecodingarenotimplementedtoreduce
theimplementationcomplexity.

ImplementationofDeepMux:DeepMuxisimplementedon
topofthe802.11axprotocol,anditsDNNsaretrainedatthe
APusingPytorchv1.4library[41].TotrainDNNs,ourdata
collectioncampaignlastedthreedays.Duringthecampaign,
lowandmoderatehumanactivities(i.e.,0∼5personswith
briskwalkingspeed)wereobservedintheenvironmentshown
inFig.11(c).Inthiscampaign,100,000angles(50,000
vectorsinΨ and50,000vectorsinΦ)on234toneswere
collectedforDLCStotrainitstwoDNNs.Meanwhile,60,000
SNRreportswerecollectedfromtheBRframesforDLRAto
trainitsDNN.

B.PerformanceMetrics

ErrorVector Magnitude(EVM):EVMiswidelyusedto
measurethequalityofreceivedsignal.Mathematically,EVM

isdefinedas:EVM=10log10
E[|̂X−X|2]
E[|X|2] ,whereXandX̂

areoriginalandestimatedsignals,respectively.

GrossThroughput:Grossthroughputistheover-the-airdata
rateachievedbyanSTAortheAP.Itcanbeinferredbased
onthemeasuredEVMbyr=

Np
Nfft+Ncp

·b·Γ(EVM),where
risthegrossthroughput,Npisthenumberofpayloadtones,
NfftisFFTpoints,Ncpisthelengthofcyclicprefix,bis
thesamplingrate,andΓ(EVM)istheaveragenumberof
bitscarriedbyonetone,asspecifiedinTableIV.Γ(EVM)

STA 2STA 1

AP

isdeterminedbymodulationorderand(LDPC)codingrate.

STA 3STA 2STA 1

AP

(a)Two-usercase.

STA 3STA 2STA 1 STA 4

AP

(b)Three-usercase. (c)Four-usercase.

Fig.12:TestscenariosusedforevaluationofDLCS.

NetThroughput:Netthroughputcalculatesthedatarate
whiletakingintoaccountchannelsoundingairtimeover-
head.Itcanbeexpressedas:rnet =

tpayload
tpayload+toverhead

·r,
wheretpayloadandtoverheadarethetimedurationofdata
transmissionandchannelsounding,respectively.toverheadis
determinedbytheairtimeusedfortransmittingBR,NDPA,
NDP,andTBRPframes.Forsimplicity,wedonotconsider
inter-framespace,re-transmission,andframeaggregationin
ourcalculations.
ComparisonBaselines:ForDLCS,wecompareitwiththe
tonegroupingapproachesspecifiedin802.11ax.Fornotational
simplicity,weuseTiGjtodenotethe802.11channelsounding
protocolwithfeedbacktypei∈{0,1}andj∈{4,16}tones
ineachgroup.ForDLRA,thereisnotastandardizedbase-
lineforcomparison.Hence,weimplementthebestresource
allocationeffortontoIEEE802.11ax.Thebesteffortisfull
utilizationofavailableDoFsoneachRU.

C.ACaseStudyforDLCS

WeconsiderthecaseasshowninFig.12(b),wherethe
APservesthreeSTAs.TheAPisplacedatthesquaremark
inFig.11(c),andthethreeSTAsareplacedatthetriangle
marksinthefigure.EveryRUservesthesethreeSTAswith
equalpowerallocation,andnoresourceallocationisinvolved
inthisstudy.Inwhatfollows,wepresentourresults.
Constellation:Weperformdownlink MU-MIMOtransmis-
sionsusingboth802.11axandDLCSchannelsoundingproto-
colsandcollectthedecodedsignalsatthethreeSTAs.Fig.13
showstheconstellationsofdecodedsignalsatthethreeSTAs.
TheEVMsofthedecodedsignalsarepresentedinTableV.
ItcanbeseenfromthemeasuredEVMsthatDeepMuxoffers
thebestsignalqualityinthedownlinktransmissions.Thisis
becausetheDNNsattheAPcanaccuratelyrecoverCSIover
alltonesbasedonthelimitedCSIfeedback.Italsocanbe
seenfromFig.13thatDeepMuxand802.11-T1G4achieve
similarsignalquality(constellation)inthedownlink.Thisis
becauseweused802.11-T1G4astheperformancebenchmark
toselecttheDNNparametersforDLCSinourexperiments.
Feedback Overhead:DeepMuxentails0.6kbitoverhead
forCSIfeedbackfromeachSTA.Incontrast,802.11-T0G4,
802.11-T1G4,and802.11-T1G16entails4.9kbit,6.5kbit,and
1.6kbitoverheadforCSIfeedback,respectively.
EVM,GrossThroughput,andNetThroughput:TableV
presentsourexperimentalresults. Wehavethefollowing
observations.First,intermsofEVMandgrossthroughput,
DLCSisslightlybetterthan802.11-T0G4,802.11-T1G4,and
802.11-T1G16.Second,intermsofnetthroughput,DLCS
issignificantlysuperiorto802.11-T0G4,802.11-T1G4,and



-1 0 1

-1

0

1

11

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

(a)DeepMux:ConstellationofdecodedsignalsatthethreeSTAs.

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

(b)802.11-T0G4:ConstellationofdecodedsignalsatthethreeSTAs.

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

(c)802.11-T1G4:ConstellationofdecodedsignalsatthethreeSTAs.

-1 0 1

-1

0

1

-1 0 1

-1

0

1

(d)802.11-T1G16:ConstellationofdecodedsignalsatthethreeSTAs.

Fig.13:ConstellationsofdecodedsignalsatSTA1(left),
STA2(middle),andSTA3(right),whenthe WLANuses
differentfeedbackprotocols.

TABLEV:AcasestudyforcomparingDLCSofDeepMux
with802.11protocols.

STA1 STA2 STA3 AP

De
e
p
M
u
x EVM(dB) -23.5 -19.1 -24.0 –

PerRUGrossthroughput(Mbps) 6.5 4.9 6.5 17.9
Netthroughput(Mbps) 19.1 14.3 19.1 52.5

T0
G
4 EVM(dB) -20.1 -17.6 -21.3 –

PerRUGrossthroughput(Mbps) 4.9 3.2 4.9 13.0
Netthroughput(Mbps) 13.7 9.1 13.7 36.5

T1
G4

EVM(dB) -23.0 -17.9 -23.6 –
PerRUGrossthroughput(Mbps) 4.9 3.2 4.9 13.0

Netthroughput(Mbps) 14.7 7.4 14.7 36.8

T1
G1
6 EVM(dB) -19.8 -18.2 -20.7 –

PerRUGrossthroughput(Mbps) 6.5 3.2 6.5 16.2
Netthroughput(Mbps) 15.6 10.4 15.6 41.6

802.11-T1G16.ThisisnotsurprisingbecauseDLCSconsumes
muchlowerairtimeforCSIfeedbackcomparedto802.11
channelsoundingprotocols.

D.ExtensiveResultsofDLCS
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Weextendthecasestudytoextensiveexperimentaltrialsto
thoroughlyexaminetheperformanceofDLCS. Weconsider
threecases:two-user,three-user,andfour-user MIMOas
showninFig.12.TheAPservesthesetwo/three/fourusers
exclusivelyonallRUs,withequalpowerallocation.EachSTA
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Fig.14:ComparisonofDeepMuxand802.11protocolsin
two-userMIMOdownlinktransmission.
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Fig.15:ComparisonofDeepMuxand802.11protocolsin
three-userMIMOdownlinktransmission.

0 2 4 6 8

Throughput(Mbps)

0

0.5

1

C
D
F

DeepMux

T0G4

T1G4

T1G16

(a)EVM

10 20 30 40 50 60

Throughput(Mbps)

0

0.5

1

C
D
F

DeepMux

T0G4

T1G4

T1G16

(b)Grossthroughput (c)Netthroughput

Fig.16:ComparisonofDeepMuxand802.11protocolsin
four-userMIMOdownlinktransmission.

isplacedatarandomlyselectedspotmarkedwithafilledcircle
inFig.11(c).

Two-UserCase:Fig.14presentsthecomparisonresultsof
DeepMuxand802.11protocolsintermsofEVM,gross
throughput,andnetthroughput.PerFig.14(a),DeepMux
achieves−27.1dBEVMonaverage,while802.11-T0G4,
802.11-T1G4,and802.11-T1G16reach−24.7dB,−26.7dB,
and−23.8dBEVM,respectively.PerFig.14(b), Deep-
Muxslightlyoutperforms802.11protocolsintermsofgross
throughput.DeepMuxachieves7.7Mbpsgrossthroughputper
RUonaverage.Incontrast,802.11-T0G4,802.11-T1G4,and
802.11-T1G16achieve6.8Mbps, 7.5Mbps,and 6.4Mbps
grossthroughputper26-toneRU,respectively.

NetthroughputreflectstheadvantageofDLCSasittakes
intoaccountairtimeoverheadinthecalculationofthrough-
put.AsshowninFig.14(c),DeepMuxobtains45.2Mbps
netthroughputonallRUsonaverage.Incontrast,802.11-
T0G4,802.11-T1G4,and802.11-T1G16achieve34.2Mbps,
33.5Mbps,and38.2Mbpsnetthroughput,respectively.Deep-
Muxoffers 31.6%,34.3%,and17.8%netthroughputgains
comparedto802.11-T0G4,802.11-T1G4,and802.11-T1G16,
respectively.

Three-UserCase:Theobservationsinthree-usercaseare
consistentwiththoseintwo-usercase.Fig.15showstheex-
perimentalresults.DeepMuxslightlyoutperforms802.11pro-
tocolsintermsofEVMandgrossthroughput.PerFig.15(a),
DeepMuxachieves−20.4dBEVMonaverage,while802.11-
T0G4,802.11-T1G4,and802.11-T1G16achieve−19.6dB,
−20.1dB,and−18.9dBEVM,respectively.PerFig.15(b),
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Fig.17:TestscenarioforevaluatingDeepMuxinMU-MIMO-
OFDMAtransmissions.

DeepMuxachieves4.9Mbpsgrossthroughputonaverageper
RU,while802.11-T0G4,802.11-T1G4,and802.11-T1G16
achieve4.1Mbps, 4.6Mbps,and 4.4Mbpsrespectively.
DeepMuxoffersasignificantgainofnetthroughputover
802.11protocols.PerFig.15(c),DeepMuxobtains45.2Mbps
netthroughputonaverage.Incontrast,802.11-T0G4,802.11-
T1G4,and802.11-T1G16achieve36.1Mbps,34.8Mbps,and
39.4Mbpsnetthroughput,respectively.Thisindicatesthat
DeepMuxoffers25.2%,30.0%,and14.7%gainscomparedto
802.11-T0G4,802.11-T1G4,and802.11-T1G16,respectively.
Four-UserCase:Theobservationsinthiscaseareconsistent
withthoseinprevioustwocases.Fig.16presentstheex-
perimentalresults.Intheend,DeepMuxachieves43.7Mbps
netthroughputonaverage.Incontrast,802.11-T0G4,802.11-
T1G4,and802.11-T1G16achieve35.2Mbps, 34.6Mbps,
and37.0Mbpsnetthroughput,respectively. Numerically,
DeepMuxoffers24.1%,26.3%,and18.1%netthroughput
gainscomparedto802.11-T0G4,802.11-T1G4,and802.11-
T1G16,respectively.

E.OverallPerformanceofDeepMux

Methodology: ThefullevaluationofDeepMuxrequiresa
large-scalewirelesstestbedwithmanySTAstomimicreal
802.11axnetworksin MU-MIMO-OFDMAtransmissions.
However,wedonothavesuchaluxury. Wethereforeusea
hybridapproachthatcombinesemulationandexperimentation
toevaluateDeepMux.Fig.17showsourtestbedsetting,where
theAPserves4realSTAsand16virtualSTAs.The4real
STAsperformover-the-airtransmissions,whilethe16virtual
STAsarecreatedbytheAPbasedonthepre-storedCSIfrom
otherlocations.ThevirtualSTAsareusedforDLRA.Inthe
downlinktransmission,theAPsendsprecodedsignalstoall
(realandvirtual)STAs,andtheperformanceismeasuredat
STAs.
A Close Lookinto DLRA:
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Asacasestudy, weplace
oneofrealSTAsatthelocationsmarkedbytriangle1in
Fig.11(c).Fig.18(a)showstheSNRvaluesfromtherealand
virtualSTAs.ThereportedSNRvaluesarefirstpreprocessed
fornormalization,asshowninFig.18(b).Thenormalized
valuesarethenfedintoaDNNforRUassignment.Fig.18(c)
showstheRUassignmentresultsfromtheDNN.WiththeRU
assignmentresultsfromDNN,theoptimizationproblemin(7)
degradestoanLPproblem.TheLPproblemisthensolved
toobtainthepowerallocationresults,whichareshownin
Fig.18(d).
ReferringtoFig.18(d),therightmostcolumndenotes

RUassignmentandallocatedpowertotheSTAofinterest.
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Fig.18:AcasestudyonresourceallocationbyDLRA.
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Fig.19:EVMofdecodedsignalonfirstSTAoverfirstRU.

Fig.19showstheconstellationofreceivedsignalbythe
mentionedSTAonthefirstRUwiththeaidofDeepMux
andexistingprotocolsin802.11ax.Theresultsrevealsuperior
performanceofDeepMuxintermsofEVM.ForthisSTA,
thegrossthroughputachievedonthefirstRUis2.4Mbps,
1.2Mbps,1.2Mbps,and0.8MbpswithDeepMux,802.11-
T0G4,802.11-T1G4,and802.11-T1G16,respectively.Thenet
throughputachievedbythisuseronthefirstRUis9.1Mbps,
4.9Mbps,6.5Mbps,and4.7MbpswithDeepMux,802.11-
T0G4,802.11-T1G4,and802.11-T1G16,respectively.Over
allRUs,DeepMuxobtains43.5Mbpsnetthroughput,while
802.11-T0G4,802.11-T1G4,and802.11-T1G16respectively
achieve31.7Mbps,29.9Mbps,and37.8Mbps.
ExtensiveResults:Toobtain morecomprehensiveresults,
weplacethefourrealSTAsatdifferentlocationsmarked
withfilledcirclesinFig.11(c).Theexperimentalresultsare
summarizedasfollows.

•EVM:Fig.20(a)presentsthemeasuredEVMatSTAs.
Onaverage, DeepMuxachieves −11.2dBEVMfor
STAs,while802.11-T0G4,802.11-T1G4,and802.11-
T1G16reach−10.1dB,−10.9dB,and−8.6dBEVM,
respectively.
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Fig.21:AveragenetthroughputachievedbyDeepMuxand
802.11protocols.

•GrossThroughputper RU: Fig.20(b)presentsthe
grossthroughputperRU.Specifically,DeepMuxachieves
1.6Mbpsgrossthroughputper26-toneRU.Incontrast,
802.11-T0G4,802.11-T1G4,and802.11-T1G16achieve
1.4Mbps,1.6Mbps,and1.1Mbps,respectively.

•NetThroughput:Fig.20(c)showsthenetthroughput
achievedbydifferentprotocols,andFig.21showsthe
averagenetthroughputattheAP.Specifically,Deep-
Muxachieves 45.9Mbpsnetthroughputonaverage.
Incontrast,802.11-T0G4,802.11-T1G4,and802.11-
T1G16achieve35.7Mbps,32.0Mbps,and36.4Mbps,
respectively.ThenetthroughputgainofDeepMuxis
34.9%comparedto802.11-T0G4,43.6%,comparedto
802.11-T1G4,and26.3%comparedto802.11-T1G16.

VIII.CONCLUSION

Inthispaper,wepresentedDeepMux,adeep-learning-
basedapproachtoenhancetheefficiencyofdownlink MU-
MIMO-OFDMAtransmissionsin802.11axnetworks.Deep-
Muxisdesignedupontwocomponents,namelyDLCSand
DLRA,bothofwhichresideinAPsandimposenocompu-
tation/communicationburdento Wi-Ficlients.DLCSlever-
agesDNNstoreduceoverheadofCSIfeedbackin802.11
protocols.Itusesuplinkchannelstotrainthe DNNsfor
downlinkchannels,makingthetrainingprocesseasytoimple-
ment.Numericalresultsshowthatitcanreducethesounding
overheadby62.0%∼90.5%withoutsacrificingCSIfeedback
accuracy.DLRAtacklesanMILPresourceallocationproblem
bydecouplingitsintegerandcontinuousoptimizationsub-
problemsandemployingaDNNtocomputeasolutiontothe
integerpart.NumericalresultsshowthatDLRAcanachieve
98.9%optimalityinRUassignment whilebearingalow
computationalcomplexity. Wehavebuiltawirelesstestbed
toexaminetheperformanceofDeepMuxinanindoorenvi-
ronment.ExperimentalresultsshowthatDeepMuxincreases

networkthroughputby26.3%∼43.6%comparedto802.11
protocols.
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