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Abstract

Education research has experienced a methodological renaissance over the
past two decades, with a new focus on large-scale randomized experiments.
This wave of experiments has made education research an even more
exciting area for statisticians, unearthing many lessons and challenges in
experimental design, causal inference, and statistics more broadly. Impor-
tantly, educational research and practice almost always occur in a multilevel
setting, which makes the statistics relevant to other fields with this struc-
ture, including social policy, health services research, and clinical trials in
medicine. In this article we first briefly review the history that led to this new
era in education research and describe the design features that dominate the
modern large-scale educational experiments.We then highlight some of the
key statistical challenges in this area, including endogeneity of design, het-
erogeneity of treatment effects, noncompliance with treatment assignment,
mediation, generalizability, and spillover. Though a secondary focus, we
also touch on promising trial designs that answer more nuanced questions,
such as the SMART design for studying dynamic treatment regimes and
factorial designs for optimizing the components of an existing treatment.
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1. INTRODUCTION

Educational practice has two key features that shape research and experiments. First, formal
schooling typically occurs in a multilevel setting, reflecting the hierarchical social structure of
the schooling system. Second, heterogeneity abounds among both individuals and organizations.
Children obviously vary, and on top of this they are grouped into classes mostly by age rather
than by knowledge. Naturally, teachers and administrators also vary both in basic skill and in how
faithfully they implement hypothetically standardized interventions.

These features generate many statistical challenges and, at the same time, raise interesting
substantive questions that might otherwise be overlooked. In the following, we introduce the sta-
tistical challenges under review. These topics may also interest statisticians working in one of the
many fields that share a multilevel setting and/or substantial heterogeneity, such as criminology,
social welfare, job training, and medicine. Similarly, these issues also arise in observational studies,
which, of course, must additionally contend with selection bias.

1.1. Endogeneity of Study Design

In multisite field experiments, the design is often not entirely controlled by the investigator. Site
sizes and proportions treated may be correlated with the average treatment effect (ATE) in each
site (for instance, if smaller schools are better at implementing the treatment). Though typically
not considered, this can create a difficult bias-variance tradeoff for some important targets of
inference.

1.2. Heterogeneity of Treatment Effects

Researchers suspect that educational interventions will affect children differently for a host of
reasons, but many popular methods in this area assume constant treatment effects. Heterogeneity
of impacts has broad implications for defining estimands, properties of estimators, and optimal trial
design. By generating an ensemble of unbiased treatment effect estimates across sites, multisite
trials offer unique opportunities to study heterogeneity, with implications for generalizability.

1.3. Noncompliance with Treatment Assignment

Some schools assigned to a new programmay not implement the program, and even in schools that
do implement the program, some teachers may decline to participate. Noncompliance makes the
overall average effect of treatment participation challenging to identify, so many analysts instead
estimate the average effect of treatment participation in a latent subpopulation of compliers. In
multisite trials, compliance will vary from person to person and likely (on average) from site to
site, giving rise to extra heterogeneity in the effects of treatment assignment and complicating
interpretation.

1.4. Mediation

Mediators are proximal outcomes of an intervention that, in turn, shape longer-term outcomes.
Experimenters often study such mediators to reveal mechanisms through which a treatment pro-
duces effects. Multisite trials generate new opportunities to study such causal mechanisms: The
impact of treatment on mediators may vary across sites, and how this variation affects outcomes
carries some information about mediators. However, the causal process itself may vary from site
to site.
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1.5. Generalizability

The ultimate scientific goal underpinning most trials is to accurately generalize results in some
way, often to a broader population that the observed sample may not directly reflect. By linking
data from educational experiments to population survey or census data, statisticians have begun
to tackle this challenge. Researchers in this field have concluded that many trials could be better
designed in support useful generalizations.

1.6. Spillover

Experimenters typically assume no interference between units,meaning that the treatment assign-
ment of one unit does not affect the potential outcomes of any other unit. In education, where
interventions occur in social milieu such as classrooms and schools, this assumption may be unten-
able. Some new work considers how to design experiments to uncover spillover effects and how
to detect spillover even when it is not of primary substantive interest.

1.7. Novel Designs

A dynamic treatment regime is a multistage treatment that uses up-to-date information about
individuals to personalize treatment at each stage, and it can be studied by the SMART (sequen-
tial multiple assignment randomized trial) experimental design; in education, this design is highly
relevant to instruction in many forms. A second design of growing interest is the classical facto-
rial design, which offers opportunities to study how particular components of a new intervention
contribute to treatment effectiveness.

Before discussing each of these statistical challenges, we briefly review the history of how ed-
ucation research came to its modern era of large-scale randomized experiments and describe the
most common experimental designs. We also introduce and motivate a theoretical model for the
basic multisite trial and describe key estimands.

2. HISTORY AND MAJOR DESIGNS

A huge industry of publishers, nonprofit organizations, and universities sells text books, profes-
sional training programs, tests, and technological innovations to schools.Within this vast market,
reformers have advocated the adoption of new curricula, new modes of teacher training, increased
accountability, reductions in class size, school-based management, new assessments of student
skill, and the adoption of school-wide programs for teaching reading and mathematics. Cook
(2002) concluded that, prior to 2002, few of these reform efforts had been rigorously evaluated.He
described a culture among educational program evaluators that favored surveys and small-scale,
in-depth qualitative case studies as opposed to randomized experiments. In this culture, how a
reform operated and how practitioners and students perceived its influence were more important
than estimating the average impact on students or cost-effectiveness of the reform. Many evalu-
ators, including most faculty in education, regarded randomized trials as infeasible or unethical,
and some believed that random assignment would create artificial conditions unrepresentative of
the daily practice of schooling.

2.1. A Turn Toward Experimentation

In 1999 the American Academy of Arts and Sciences sponsored a conference on the state of re-
search in education. Chairing the meeting were Frederick Mosteller and Howard Hiatt, two men
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who had helped lead the movement in the 1950s to establish the randomized trial as a foundation
for causal inference in medicine, as well as Robert Boruch, a longtime advocate of social experi-
mentation. They asked why there were there so few randomized trials in education and whether
it was time to launch a new epoch of educational research that would parallel the history of med-
ical research. The conference led to an important volume advocating more randomized trials in
education (Mosteller & Boruch 2002).

One important stimulant for this initiative was the Tennessee class size experiment (Finn &
Achilles 1990), which was motivated by a stalemate in the Tennessee legislature. The lawmakers
could not agree on whether or not to outlaw large classes, but they did agree to study that ques-
tion. Helen Pate Bain, then an associate professor at Tennessee State University and well-known
advocate for education reform, argued for a randomized trial (Boyd-Zaharias 1999). Past stud-
ies of class size had mixed results, and some studies seemed to suggest that larger classes were
actually more effective than small classes, almost surely because more effective teachers tend to
attract more students. So Tennessee funded a study in which kindergarten students and teachers
were both randomly assigned to classes large and small. Finn & Achilles (1990, p. 557) reported
that “the results are definitive”: Reducing class size could significantly increase student learning
in reading and mathematics. The findings appeared uniformly positive across 79 diverse schools,
325 teachers, and 5,786 students. Mosteller (1995) celebrated this finding for a broad audience at
the 1999 conference and asserted that this was among the best studies in the history of education.
As an interesting by-product, Krueger & Whitmore (2001) found that low-income and minority
students benefitted most from class size reduction. They also found that those randomly assigned
to smaller kindergarten classes were, on average, more likely to attend college.

In 2001 Congress passed the No Child Left Behind (NCLB) law. It is well known that NCLB
unleashed a regime of school accountability based on high-stakes testing. Less well known is the
fact that the law also mandated the formation of the Institute of Education Sciences (IES) with
the purpose of creating a new scientific basis for educational research. In 2002 Russell Whitehurst
became the founding director of IES.WithWhitehurst’s commitment to experimental evaluation,
and supported by a large increase in the budget for educational research, the IES funded more
than 175 large-scale randomized controlled trials (RCTs) during the first decade of its existence
(Spybrook 2014, Spybrook et al. 2016).Other government agencies and foundations have also lent
support to movement toward randomized trials, and subsequent leaders of IES have continued to
emphasize the importance of random assignment in program evaluation.

2.2. Research Designs

Cook (2002) discusses how many education researchers, influenced by limited exposure to ex-
perimental design and a funding landscape that did not encourage them to prioritize RCTs, were
resistant to using randomized trials in part because formany types of interventions, students within
the same classroom cannot not naturally (or, arguably, ethically) be randomized to different treat-
ments. They could not see how randomized experiments could be appropriate in broad swaths
of education. The field has come far in the past two decades, relying mainly on the following
experimental designs to fit into the context of schooling.

2.2.1. Multisite randomized trials. Many important experiments in education involve ran-
domization within sites; in the classical experimental design literature, this is a randomized
block design, and we use the term multisite randomized trial to emphasize that the blocking
sites are often of substantive interest. The National Head Start Impact Study, funded by the
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Administration for Children, Youth and Families (Puma et al. 2010), is a prominent example.
From a list of all Head Start centers in the United States, experimenters randomly selected more
than 300. At each local center, low-income families applied for their children’s admission to Head
Start. Applications outnumbered available places, so offers of admission were based on a random
lottery. Here we regard the centers as sites, and randomization is within sites. In our usage, a site
is always a unit in which randomization occurs.

2.2.2. Cluster-randomized trials. As mentioned, for many educational interventions, a design
that randomizes individual students to treatments with no restrictions is clearly unacceptable. For
example, schoolwide instructional interventions apply to all children in a school (Borman et al.
2007, 2008). The sensible plan is to assign entire schools to treatments. However, the launch of
the IES program of widespread experimentation almost foundered on the shoals of inadequate
statistical power for such studies.

The problem was a widespread misunderstanding of the sample size requirements of the
cluster-randomized trial. This history paralleled the early history of city-wide health promotion
experiments (Donner et al. 1981, Fortmann et al. 1995, Murray 1995) in which entire cities were
assigned at random to treatment or control.These studies includedmany hundreds of thousands of
individuals at the cost of hundreds ofmillions of dollars, but the designers were apparently unaware
that even when the between-city variance component is very small, randomization by city requires
a fairly large number of cities in order to achieve adequate statistical power. Fortunately this ex-
perience led a small number of scientists to examine optimal sample sizes for cluster-randomized
trials and to produce books and software that could enable future researchers to avoid the error
(Klar &Donner 1997,Murray 1995,Raudenbush 1997).These ideas and tools took center stage at
a 2004 conference sponsored by theWilliam T.Grant Foundation on cluster-randomized trials in
education attended by 50 leading funders and government officials. At this conference, attendees
explored the design of hypothetical trials by applying user-friendly software. Many educational
evaluators were shocked to discover that the statistical power of a cluster-randomized trial de-
pends strongly on the number of clusters. But recruiting schools and teachers and sustaining their
involvement is expensive; if every field trial required a large number of schools, the entire project
was in danger.

To cope with this threat, educational experimenters generated two strategies (Bloom et al.
2007, Raudenbush et al. 2007). The first was to match or block clusters on demographic variables,
geographic location, prior educational outcomes, or other factors believed related to the outcome,
and then,within blocks, to randomize clusters to treatment.The secondwas to identify and control
for covariates measured at the level of the cluster that were, by hypothesis, strongly predictive
of the outcome. Both strategies showed promise for increasing power, but the second strategy
proved remarkably effective when the outcome of interest was a measure of academic achievement
such as a reading or math test, a common feature of educational evaluations. The reason is that
school mean test scores collected before and after intervention may be correlated as high as r =
0.90 (Bloom et al. 2007, Hedges & Hedberg 2013); in this case using the covariate boosts power
by roughly the same amount as doubling the number of clusters. Experience designing RCTs
in education thus led evaluators to increasingly rely on some combination of prerandomization
blocking and/or covariance adjustment to address the challenge of statistical power for the cluster-
randomized trial.

2.2.3. Multisite cluster-randomized trials. Spybrook (2014) reported that in the first 175 ran-
domized trials funded by IES, the single most common design was a multisite cluster-randomized
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trial. This is a three-level design in which sites (e.g., schools) are blocks within which clusters
(e.g., classrooms) are assigned at random; outcomes vary randomly among students who are nested
within clusters.

2.2.4. Three-level person randomized trials. An increasingly common design randomly as-
signs each student to treatments within a block that is itself nested within a site, another three-
level design. A prominent example is the school lottery study (Angrist et al. 2016, Clark et al.
2015, Hassrick et al. 2017). In such a study, parents apply for their children to be admitted to a
new school. Applications exceed the number of available places, so a randomized lottery decides
who will be offered admission. Evaluators follow lottery winners and losers to gauge the impact of
random assignment. A separate lottery is held each year for each grade within each school. Thus,
over several years, each school produces a collection of lotteries.We regard the lotteries as blocks
nested within the school conceived as a site. Hence, each school generates a collection of average
causal effects, one for each lottery, and an average over these lottery effects within each school con-
stitutes the average effect of random assignment to the school. How to summarize effects across
schools can be a tricky problem.

3. THEORETICAL MODEL

The generic goals of a randomized experiment in education (as in most fields) are to estimate
some kind of ATE and to somehow characterize the heterogeneity of treatment effects. But before
we can define these estimands with real clarity, we need to specify a theoretical model for the
phenomenon under study. Below, we introduce the core modeling decisions in the basic setting
of two-level multilevel educational experiments with a binary treatment and continuous outcome
and then describe basic estimands.We use the term theoretical model to emphasize that the model
thought to generate the datamay not be themodel used for estimation.Details and generalizations
follow in later sections.

3.1. Potential Outcomes and Causal Effects

To begin, we assume a two-level structure in each student i is nested within site j, where a
site can be a school, preschool center, or classroom. Three-level multisite trials can be re-
garded as specific cases of this design. We also assume intact sites (Hong & Raudenbush 2006),
meaning that students inhabit one and only one site, and we assume that sites are statistically
independent.

Define Ti j = 1 if student i ∈ {1, . . . , nj} in site j ∈ {1, . . . , J} is assigned to a new treatment and
Ti j = 0 if not. In principle, a student’s potential outcome may depend on the teacher who imple-
ments the treatment. Moreover, a student’s potential outcome may also depend on the treatment
assignment of other students in the same site. We discuss this possibility in Section 9. For now,
we adopt the stable unit treatment assignment assumption (SUTVA) (Rubin 1986), which holds
that there is only one version of the treatment and that each student’s potential outcomes are in-
dependent of the treatment assignment of other students. Thus, student i in site j possesses two
potential outcomes Yi j (t ) for t ∈ {0, 1} for some interval scale or binary outcome variable Y, and
one causal effect,

Bi j ≡ Yi j (1) −Yi j (0). 1.
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We never observe Bi j because if Ti j = 1, thenYi j (0) is missing, and if Ti j = 0, thenYi j (1) is missing.
The observed outcome for child i in cluster j is then

Yi j = Ti j (1) + (1 − Ti j )Yi j (0) = Yi j (0) + Ti jBi j
= μ0 j + β jTi j + εi j .

2.

Here β j = μ1 j − μ0 j is the ATE in site j; μt j = E[Yi j (t )|μt j] is the average potential outcome un-
der treatment t for students in site j; and εi j = Ti jε1i j + (1 − Ti j )ε0i j is a random zero-mean dis-
turbance where εti j = Yi j (t ) − μt j , with potentially heteroscedastic variance σ 2

i j . Heckman et al.
(2010) terms this the correlated random coefficient, emphasizing the potential correlation be-
tween the person-specific intercept, Yi j (0), and the treatment effect, Bi j . An early discussion of
this idea within education appears in Bryk & Weisberg (1976).

Now looking across sites, we writeμ0 j = μ0 + u0 j and β j = β + b j , where u0 j , b j are zero-mean
random effects having variances τ00 and τbb and covariance τ0b. This generates the familiar linear
mixed model equation,

Yi j = μ0 + βTi j + u0 j + b jTi j + εi j . 3.

The random terms in this model need not be normally, or parametrically, distributed. We focus
our discussion on two parameters, the mean β and variance τbb of the common distribution of
the site-specific treatment effects β j . This is far from the only interesting approach to describing
variability across sites; for others, see the sidebar titled A Note on Randomness.

3.2. Estimands

One common aim is to study the distribution of treatment effects over a population of sites. If
we regard each sampled site as equally representative of this population, we might define our key
estimands as

Esites(β j ) ≡ βsites, Varsites(b j ) = E(b2j ) ≡ τbb sites, 4.

the mean and variance of the site-specific ATE distribution defined over a population of sites.

A NOTE ON RANDOMNESS

One of the most fundamental issues we must confront is where randomness enters our model; in particular, should
site-specific causal effects be modeled as random or fixed? The random sampling route is natural if we want to gen-
eralize results beyond the observed sample to a large population. Most often, the sample for the trial is a volunteer
sample or a convenience sample, yet the experimenter regards the sample as generated from an infinitely large, if
not clearly defined, superpopulation.We reason that this is what interests most designers of education trials, which
is why our model above adopts this point of view. Alternatively, one might view site effects as random in a Bayesian
sense, regarding site-specific effects as exchangeable to reflect our subjective uncertainty. The notion that the site
effects are fixed is consistent with viewing the sample as a finite population. This is sensible if we confine our inter-
est to the observed sample. This approach is popular in some of the work done by contract research organizations
(Schochet 2015), but due to space limitations, we do not treat it thoroughly. For more discussion on these opposing
points of view, see Section 8, where we also discuss recent work linking convenience samples to larger, well-defined
populations.
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In contrast, suppose that the aim is to generalize to a population of students and that sites vary
in how many students they serve. Then we might define parameters differently. For example, the
person average treatment effect might be defined

Epersons(Bi j ) = βpersons = Esites(ω jβ j ), 5.

where Epersons denotes expectation over the distribution of person-specific random variables in a
population of people. Here ω j is a weight, scaled to have a mean of one, that is proportional to
the size of the student subpopulation served by site j. In the population of persons, the variance
components take on different meaning. The variance of person-specific causal effects is

Var(Bi j ) = Epersons(Bi j − β j )
2 + Esites[ω j (β j − βpersons )2]. 6.

The within-site variance component Epersons(Bi j − β j )
2 cannot be identified without heroic as-

sumptions because it depends on the within-site covariance between potential outcomes Yi j (0)
and Yi j (1), which are never jointly observed. However, the between-site variance τbb sites is identi-
fied because the multisite trial contains information about all the site-specific control group and
experimental means.

3.3. Choice of Estimands

The choice of estimands can significantly affect the optimal design of an experiment. For exam-
ple, if the population of interest is composed of sites, a simple random sample of sites combined
with a simple random sample of students within sites may be optimal, depending on costs. If the
population of interest is students, it will make sense to sample sites with probability proportional
to size, again depending on costs. However, based on our reading of recent RCTs in education,
we argue that both populations will often be of great interest. Policy makers will typically want to
know the average impact of an intervention over the target population of students. However, in-
formation about the distribution of treatment effects across sites will often be of great interest for
identifying especially effective or ineffective sites (Rubin 1981) and for learning about variation
in the effectiveness of educational organizations. Moreover, we show below that the analyst can
learn a great deal about noncompliance and mediation by studying variation in treatment effects
across a population of sites. Therefore, designs that allow us to explore different populations may
be of great interest, if feasible. For example, in a three-level design, we might be interested in a
population of students, and a population of teachers, and a population of schools.

4. ESTIMATION AND ENDOGENEITY OF DESIGN

4.1. Data

We define nj as the sample size for site j, and the proportion of the sample assigned to treat-
ment in site j is T̄j . Under SUTVA, intact schools, and random assignment within each site, the
sample mean difference β̂ j = Ȳ1 j − Ȳ0 j is unbiased for the site-specific ATE β j = E(Bi j|Site = j),
and its sampling variance is Var(β̂ j|β j ) = Vj . We assume Vj = c/[njT̄j (1 − T̄j )]. Many analysts
have assumed a constant within-site variance, σ 2

i j = σ 2 for all i and j, in which case c = σ 2. Be-
cause treatment effects plausibly vary across students, Bloom et al. (2017) recommend specifi-
cation of separate variances σ 2

1 and σ 2
0 for treatment and control students, respectively. In this

case c = σ 2 + (σ 2
1 − σ 2

0 )(1 − 2T̄ ), where σ 2 = T̄σ 2
1 + (1 − T̄ )σ 2

0 with T̄ = ∑J
j=1

∑n j
i=1 Ti j/N . Un-

der either choice, the sampling precision of β̂ j as an estimator of β j is

Pj = V −1
j ∝ njT̄j (1 − T̄j ). 7.
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To focus on key ideas, we assume Vj to be known, as c is estimated with great accuracy in edu-
cational RCTs. Thus, the basic data for our purpose here consist of β̂ j ,Vj for j ∈ {1, . . . , nj}, j ∈
{1, . . . , J}. Given the endogeneity of design, we assume Vj to be random.

4.2. Endogeneity of Design

Asmentioned,when a new school or educational program opens, it is often the case that more peo-
ple apply for admission than can be accommodated. If the number of applicants exceeds the num-
ber of available places, it is common practice, and in some cases legally required, to hold a random
lottery to decide who should be offered admission. These lotteries have generated many opportu-
nities for researchers to experimentally test novel approaches to school organization and practice
(Angrist et al. 2016, Clark et al. 2015, Dobbie & Fryer 2013), in large part because they support
both fairness to applicants and the priorities of statistical inference. Moreover, entire school dis-
tricts have recently adopted new admissions rules that enable parents to list preferred schools for
their children (Bloom & Unterman 2014), holding open the possibility of experimentally testing
the impact of many regular public schools.

A concern, however, is that the number of persons who apply, equivalent to the sample size, nj ,
may reflect the popularity—and thus, indirectly, the effectiveness—of the new program.Weight-
ing site-specific data by site-specific precision Pj may then bias estimates of the site ATE βsites

by up-weighting the most effective schools. The number who apply may alternatively reflect the
availability of good local alternatives, in which case, a large applicant pool might indicate a com-
paratively disadvantaged local population. In either case, the combination of the number who
apply and the number of available seats determines the fraction, T̄j , that are offered admission.
Therefore, T̄j may also be endogenous. Hence, the sampling precision Pj ∝ njT̄j (1 − T̄j ) may, in
many cases, be regarded as an endogenous variable, that is, as a nonignorable random variable
rather than a fixed aspect of the design, as is conventional in experimental research.

Even in studies that do not use lotteries, it may be the case that sites with varied size, more or
fewer resources, or varied preferences may vary with respect to sampling precision Pj , opening up
the possibility that precisions covary with site effectiveness. This is a common reality in education
research and other fields (e.g., multihospital clinical trials), so we keep the effects of endogenous
designs in mind as we discuss basic estimators for the estimands of a multisite trial.

4.3. Estimating the Site Average Treatment Effect

Under endogeneity of design, the familiar ATE estimators have different properties than usual,
leading to a nontrivial bias-variance tradeoff (Raudenbush & Schwartz 2019). We highlight the
basic results for the site ATE below.

4.3.1. Unweighted estimator. If each site equally represents the population of sites, Schochet
(2015) recommends an unweighted estimator

β̂uw = J−1
J∑
j=1

β̂ j . 8.

This is clearly consistent for βsites, though it treats all sites as equally informative, so it will typically
have larger sampling variance than weighted estimators when precision, Pj , varies significantly
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from site to site. Under our theoretical model,

Varsites(β̂uw) = τbb sites + Esites(Vj ). 9.

4.3.2. Ordinary least squares with site fixed effects. Probably the single most commonly
used estimator regresses the outcome Y on treatment T with site fixed effects, yielding

β̂FE =
∑J

j=1 (Ti j − T̄j )Yi j
∑J

j=1 (Ti j − T̄j )
2 = J−1

J∑
j=1

Pj
P̄

β̂ j , 10.

where P̄ = ∑
Pj/J. We see that β̂FE weights each site’s estimate β̂ j proportional to its sampling

precision, Pj . The fixed effects model is our general model (Equation 3) with μ0 + u0 j set to a
fixed constant from site to site and b j set to zero so that τbb sites = 0. If this model is correct and the
within-site variances are homogeneous, the familiar Gauss-Markov theory guarantees that β̂FE is
best linear unbiased with variance

Varsites(β̂uw) = E
( J∑

j=1

Pj
)−1

. 11.

Under these assumptions, β̂FE can be much more precise than β̂uw, since then

Varsites(β̂uw)
Varsites(β̂FE)

= E[V̄Arithmetic]
E[V̄Harmonic]

, 12.

where V̄Arithmetic = ∑
Vj/J is the arithmetic mean of the sampling variances and V̄Harmonic =

J/
∑
Pj is the harmonic mean of the sampling variances (recall that the harmonic mean of positive

numbers is always smaller than the arithmetic mean). However, if the treatment effects vary and
are correlated with precision β̂FE is inconsistent, with finite-sample bias

Esites(β̂FE) − βsites = Covsites
(Pj
P̄
,β j

)
. 13.

4.3.3. Fixed intercepts, random coefficients. The fixed intercepts, random coefficients
(FIRC) approach proposed by Bloom et al. (2017) is similar to fixed effects in setting μ0 + u0 j
to a fixed constant from site to site in order to minimize covariance assumptions. However, unlike
with fixed effects, b j is allowed to vary with τbb sites ≥ 0, yielding

β̂FIRC = J−1
J∑
j=1

w j FIRC

w̄FIRC
β̂ j , 14.

where wFIRC j = (Vj + τ̂bb sites )−1 = Pj/(1 + Pj τ̂bb sites ) and w̄FIRC = ∑
wFIRC j/J. Note that the de-

gree of precision-weighting depends on the (estimated) cross-site treatment effect variance: As
τ̂bb sites → 0, β̂FIRC → β̂FE, and as τ̂bb sites → ∞, β̂FIRC → β̂uw (Raudenbush & Bloom 2015). Thus,
β̂FIRC lies on an interval between β̂FE and β̂uw, tending toward β̂FE when treatment effects are
compressed and toward β̂uw when they are dispersed. For known τbb sites, β̂FIRC is best linear unbi-
ased when b j ⊥Pj and nearly efficient when the within-site and between-site random effects are
normally distributed withVj correctly specified. Under these assumptions, β̂FIRC is potentially far
more efficient than is β̂uw. For large J,

Varsites(β̂uw)
Varsites(β̂FIRC)

= E[D̄Arithmetic]
E[D̄Harmonic]

, 15.
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where D̄Arithmetic is the arithmetic mean of Dj = Vj + τbb sites and D̄Harmonic is the harmonic
mean.

However, if the assumption b j ⊥Pj fails, β̂FIRC is inconsistent with bias

Esites(β̂FIRC) − βsites = Covsites
(wFIRC j

w̄FIRC
,β j

)
. 16.

Raudenbush & Schwartz (2019) prove that the bias of β̂FIRC is never larger that of β̂FE. Neverthe-
less, the inconsistency of β̂FIRC under these conditions is troubling.

4.3.4. Open questions. Endogeneity of precision combined with treatment effect heterogene-
ity generates a bias-variance tradeoff that is worthy of more study. It stands to reason that a hybrid
estimator will work better than those under consideration here, but such a hybrid has not appeared
in the literature on educational field trials.

4.4. Estimating the Person Average Treatment Effects:
Unweighted Persons Estimator

Recall that when the target is a population of students, the estimand is

βpersons = Epersons(Bi j ) = Esites(ω jβ j ), 17.

where ω j is proportional to the size of site j. If sites are sampled with probability proportional to
size, the desired weight (scaled to have a mean of 1.0) is ω j = n j

n̄ , where n̄ = ∑
nj/J, yielding

β̂persons = J−1
J∑
j=1

nj
n̄

β̂ j . 18.

For small τbb persons, β̂persons is likely to be quite precise, though its variance will exceed that of β̂FE.
If treatments effects vary and are correlated with precision, β̂FE is inconsistent with bias

Covpersons
(w1 j

w̄1
,Bi j

)
= Esites

[
ω j

(w1 j

w̄1
− 1,β j

)]
, 19.

where w1 j = T̄j (1 − T̄j ) and w̄1 = ∑
w1 j/J. Under the same scenario, the bias of FIRC is a bit

more complex and has not been studied.

4.5. Estimating the Variance Components

Raudenbush & Bloom (2015) show that an unbiased estimator of the treatment effect variance has
the form

τ̂bb pop = J−1
∑ wpop j

w̄pop
[(β̂ j − β̂pop)

2 −Vj], 20.

where, for the designs mentioned above,wpop j = 1 if pop= sites, andwpop j = n j
n̄ if pop= persons,

and β̂pop is the unbiased ATE estimate for the population given by Equation 4 or Equation 5. If
negative estimates are set to zero, the estimates are no longer unbiased but are J-consistent so
long as τbb pop > 0. Similar to the site ATE story, the consistent estimator for τbb sites may be quite
inefficient if precisions vary substantially from site to site. The maximum likelihood estimator

under the FIRC model substitutes
w2
FIRC j∑

w2
FIRC j/J

as the weight in Equation 18, and this estimate will
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tend be more efficient than those given by Equation 20 if precisions are independent of treatment
effects. The logic of estimation of the remaining variance components is similar. Relatively little
research has examined variance components estimation when precisions are nonignorable. Given
the widespread interest in linear mixed models, this is a topic of considerable interest.

4.6. An Empirical Example

Using the methods just described, Raudenbush & Schwartz (2019) reanalyze data from the Na-
tional Head Start Impact Study, including 3,392 children randomly assigned by lottery within each
of 316 sites. Site-specific sample sizes vary widely, with many small sites. Across five outcomes
(reading, math, oral language, receptive vocabulary, and aggressive behavior), point estimates of
the ATE and decisions based on a nominal significance level of α = 0.05 were quite similar, with
two exceptions: For math and aggressive behavior, standard errors using the unweighted estimator
were more than half the size of the point estimates. The unweighted estimator βsites, while consis-
tent, appears woefully inefficient when site sizes are highly variable and often small. The perfor-
mance of the unweighted estimator of τbb sites is particularly variable in this case. Raudenbush &
Schwartz (2019) emphasize the need for more research on estimation of βsites and τbb sites when site
sizes are highly variable,which often arises in large-scale field trials that use lotteries to accomplish
random assignment.

5. STUDYING HETEROGENEITY OF TREATMENT EFFECTS

Statisticians have primarily pursued two main questions describing and estimating heterogeneity
of treatment effects: “How much?” and “Where?” In this section, we discuss both in turn. A third,
“Why?”, is treated in Section 7.

5.1. Quantifying Between-Site Variation in Treatment Effects

We saw in Section 4 that multisite trials enable the analyst to estimate the between-site component
of the variance of the treatment effects. A recent survey of multisite trials in education and job
training programs suggests that the between-site variance may tend to be small in studies where
the intervention itself has a small ATE (Weiss et al. 2017). This type of heterogeneity is discussed
at length by Raudenbush & Bloom (2015), who also present basic random effects estimators.

5.2. Visualizing Between-Site Variation in Treatment Effects

Suppose we display a histogram of sample mean differences, that is, β̂ j = Ȳ1 j − Ȳ0 j , j = 1, . . . , J.
Unless all site sizes are large, this histogram will be too wide because of the noise of β̂ j as an
estimate of β j . Bayes or empirical Bayes estimates, which shrink unreliable estimates toward the
mean, will be too narrow, but Louis (1984) shows how to recalculate these estimates to ensure
that the dispersion in the histogram is consistent with the estimate of τbb sites. Bloom et al. (2017)
provide an example in education. We note that the shape of such a histogram will be influenced
by parametric assumptions regarding the distribution of the unobservable values of β j . Shrinkage
estimators of site-specific effects can be used to rank sites by effectiveness and to identify especially
effective (or harmful) sites for further study (Shen & Louis 1998, Paddock et al. 2006).

5.3. Quantifying Within-Site Variation in Treatment Effects

We noted earlier that the variance of treatment effects within sites is not identified because the
data contain no information about the covariance between the two potential outcomes of any unit.
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However, Ding et al. (2016) show in a single-site setting that at least there always exists a valid test
of zero treatment effect variance in the finite sample, and thus in any population containing that
sample. Their approach relies on a Fisher randomization test, using a clever trick (Berger & Boos
1994) to handle the unknown ATE, which in this setting is a nuisance parameter. Under a similar
framework the same authors give sharp bounds for the treatment effect variance using a mathe-
matical property of the empirical quantile function (Ding et al. 2019). Both of these methods can
also be used to study the idiosyncratic variance that remains in treatment effects after conditioning
on covariates that moderate the effects, as discussed in the next section.

5.4. Identifying Moderators of a Treatment Effect

Moderation occurs when the conditional average treatment effect (CATE) differs from the ATE.
Moderation answers the question “for whom does the treatment work differently?” Generally,
moderation refers to CATEs that condition on some observed pretreatment covariate like race or
gender, though we might also expand our conception to include conditioning on latent character-
istics as in principal stratification (Feller et al. 2016).We also see in Section 7 that statisticians have
expanded the concept of mediation to apply to interaction effects between treatment assignment
and a mediator. Potential moderators may be chosen by substantive theory (Angrist et al. 2013,
Shadish et al. 2002) or by statistical methods for variable selection and high-dimensional data
(Green & Kern 2012, Guo et al. 2017, Imai & Ratkovic 2013, Wager & Athey 2018). In either
case, researchers should be wary of multiple testing since searches for moderation may devolve
into fishing expeditions (Wang & Ware 2013).

5.5. Principal Stratification

Frangakis & Rubin (2002) propose a novel approach to studying the moderating effect of mem-
bership in a principal stratum, a latent class of persons. To illustrate, Feller et al. (2016) provide
an application of this approach using the National Head Start Impact Study. They define three
principal strata according to how students would respond to treatment assignment. Stratum 1
are those who would attend Head Start if assigned to Head Start but who would attend an al-
ternative day care center if assigned to control. Stratum 2 includes those who would go to Head
Start if so assigned, but who would otherwise stay home (with a parent, neighbor, or relative).
Stratum 3 consists of those who would go to an alternative center regardless of treatment assign-
ment, and Stratum 4 are those who would stay home regardless of treatment assignment. Other
logically possible strata are assumed empty. For example, those who would not attend Head Start
if assigned to Head Start but who would attend Head Start if not assigned to Head Start are called
defiers and are assumed not to exist. Similarly, random treatment assignment is assumed not to
affect the choice between attending an alternative center or staying home. A crucial feature of this
methodology is that stratum membership is treated as a pretreatment covariate, though one we
cannot observe for all units. We discuss a special case of this methodology in detail in Section 6.

5.6. Nonuniqueness of Moderator Models

Using principal stratification, Feller et al. (2016) find that the children who benefitted most are
those who would attend Head Start if assigned but who would otherwise stay home. In contrast,
those who would attend Head Start if assigned but who would otherwise attend an alternative
preschool center benefitted little. Using the same data but a different methodology, Bitler et al.
(2014) found that children with low skills as measured by pretreatment cognitive assessments
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benefitted most from assignment to Head Start. By analyzing impacts across demographic
subgroups, Bloom & Weiland (2015) find that low-income Hispanic children benefitted most.
In fact, it is possible that all three findings are correct, if the low-skill children were low-income
Hispanic children who would have stayed home if not assigned to Head Start. More generally,
moderation models do not give unique explanations. See Section 7 for a review of strategies for
testing explanatory theories.

6. NONCOMPLIANCE

So far,we have studied the impact of random assignment to treatmentT. If all units actually receive
their assigned treatment, the effect of assignment is simply the effect of the treatment. This is a
benign state of affairs that statisticians have labeled full compliance with treatment assignment.
Full compliance is not typically at play in large-scale educational field trials, and under partial
compliance the effect of random assignment is called the intention to treat (ITT) effect. In the
Tennessee study of class size reduction, some students assigned to large classes ended up in small
classes (Krueger & Whitmore 2001). In the National Head Start Impact Study, about 25% of
the children randomly offered a place in Head Start did not attend, and about 15% of those not
offered a place actually did attend (Bloom & Weiland 2015). In lottery studies of new schools, a
typical finding is that about 75% of lottery winners and 25% of lottery losers attend the school
(Hassrick et al. 2017). This occurs because the lottery losers are placed on a waiting list and may
be offered a place if lottery winners decline.

6.1. Noncompliance in a Single-Site Study

The method of instrumental variables (IV) has been widely used to study the impact of pro-
gram participation in randomized experiments when compliance with randomization is imperfect:
Treatment assignment is an instrument used to identify the impact of actually experiencing the
program (Angrist et al. 1996, Heckman & Robb 1985).We first review how the IV method is now
conventionally used in single-site studies. Next, we consider a much smaller literature that gen-
eralizes these results to the case of multisite trials.We see that new complications arise, requiring
careful consideration of assumptions that underlie alternative analytic strategies.

6.1.1. Homogeneous treatment effects. Figure 1a displays a model of the association treat-
ment assignment, T ∈ {0, 1}, program participation M ∈ {0, 1}, and Y. The effect of assignment
on participation is regarded here as a constant, γ . The effect of participation on the outcome is
regarded as the constant δ. Note that there is no direct path between T and Y (the direct effect
θ is then set to 0). This is known as an exclusion restriction, reflecting the key assumption that a
student’s assignment to treatment can affect the outcome only if that student participates in the
program.

We regressM on T to obtain an estimate of γ , and we regress Y on T to obtain an estimate of β.
Both estimates, protected by randomization, are unbiased, so the ratio δ̂ = β̂/γ̂ , called the Wald
estimator after Wald (1940), is consistent for δ so long as γ 	= 0. In practice, the null hypothesis
H0 : γ = 0 must be rejected with sufficient confidence to avoid what is called finite-sample bias
(Bound et al. 1995). Analysts often use F(1, df ) > 10, where df is the denominator degrees of
freedom for the central F distribution, as a criterion that renders finite-sample bias small.
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T
γ

δ

θ
β = γδ + θ
If θ = 0, E(β) = γδ

M

Y

T
Γi

Δi

Θi
Bi = ΓiΔ i + Θi

If Θi = 0, E(Bi) = γδ = Cov(Γi,Δ i)

M

Y

a Site-specific causal model b Person-specific causal model

Homogeneous treatment effects Heterogeneous treatment effects

Figure 1

A path model with (a) homogeneous treatment effects and (b) heterogeneous treatment effects.

6.1.2. Heterogeneous treatment effects. While Figure 1a represents a causal model for a
population under the assumption of homogeneous treatment effects,Figure 1b displays a person-
specific causal model using potential outcomes (Raudenbush et al. 2012). Define the person-
specific causal effect of assignment on participation as �i ≡ Mi(1) −Mi(0) and the person-specific
effect of participation �i ≡ Yi(m = 1) −Yi(m = 0). In principle, the potential outcome of assign-
ment depends not only on assignment itself but also on whether assignment generates participa-
tion. Thus, we can write the potential outcomesYi(t ) = Yi(t,Mi(t )) (Angrist et al. 1996).However,
under the exclusion restriction, once we know whether student i participates, knowing that stu-
dent’s treatment assignment has no bearing on that student’s outcome. Thus, under the exclusion
restriction,Yi(t ) = Yi(t,Mi(t )) = Yi(Mi(t )) and the ITT effect is

Bi ≡ Yi(Mi(1)) −Yi(Mi(0))
= Yi(0) +Mi(1)�i − [Yi(0) +Mi(0)�i]
= [Mi(1) −Mi(0)]�i

= �i�i.

21.

The second step in Equation 21 follows from linearity, which is trivially met here because the
predictor Mi(t) is binary but can be contentious when Mi(t) is continuous. We can define the
average ITT effect through the equation

E(Bi ) ≡ β = E(�i�i ) = E(�i ) ∗ E(�i ) + Cov(�i,�i )
≡ γ δ + σ�
.

22.

We see from Equation 22 that average effect of treatment assignment will be large when any of
three terms is sufficiently large: the average compliance γ , the average benefit of treatment δ, or
the covariance σ�
. This covariance will be large when program staff are able to induce students
who stand to benefit most from the program to comply with treatment assignment, or when these
students are otherwise more likely to comply. But recall that the conventional IV estimand is (for
γ 	= 0)

β/γ = δ + σ�
/γ . 23.

So, the conventional instrumental variable estimator will only be consistent if σ�
 = 0, the strong
assumption of no covariance between compliance and effect, which in most education applications
we would like to avoid.
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6.1.3. Monotonicity. Angrist et al. (1996) propose replacing the assumption σ�
 = 0 with a
weaker assumption known as monotonicity, namely, that �i ≥ 0 for all units i. This assumption
requires that treatment assignment discourages no one from participating in the treatment. The
price we pay for this weaker assumption is that our interpretation of δ is more constrained.

Tomotivate this concept, and following Frangakis & Rubin (2002), we define principal strata as
subsets of students defined by their potential participation under random assignment. The com-
pliers are those who would participate [Mi(1) = 1] if offered the program and not participate
[Mi(0) = 0] if assigned to control. For compliers, therefore, the impact of being assigned to the
program is �i = 1. Noncompliers include never takers, those who would not participate under
either treatment assignment [Mi(1) = Mi(0) = 0], and always takers, those who would partici-
pate regardless of treatment assignment [Mi(1) = Mi(0) = 1]. Thus, for noncompliers, �i = 0. A
fourth, logically possible stratumwould include defiers,whowould take up the program if assigned
to control but not if assigned to the program. For defiers, �i = −1. The monotonicity assump-
tion rules out the existence of this stratum.Decomposition of the ITT effect by stratum generates
E(�i|�i = 1) ≡ δCACE, or simply CACE, the complier average causal effect:

β = E(Bi ) = E(�i�i ) = 1 ∗ E(�i|�i = 1) Pr(�i = 1) + 0 ∗ E(�i|�i = 0) Pr(�i = 0)
= E(�i|�i = 1)γ ≡ δCACEγ.

24.

Hence,we can identify δCACE = β/γ , γ > 0, the average causal effect for the subpopulation whose
participation is influenced by random assignment.

A problem for interpretation is that the magnitude of δCACE may depend on how effective
the program is at inducing participation (Heckman & Vytlacil 2001). A program director who is
very skilled at encouraging participation in one study may generate a different δCACE than will a
program director in another study who is less skilled at doing so, even if the population average
impact of participation, δATE, is the same in the two studies. This ambiguity pervades applications
of IV in multisite trials, where staff and participants vary across sites. A beautiful feature of the
multisite trial is its capacity to evaluate heterogeneity in compliance and therefore to explore the
seriousness of this potential ambiguity for interpretation.

6.1.4. Heckman correction. Heckman (1979) introduced an unbiased estimator of the average
effect of program participation (not just among compliers) under alternative assumptions, which is
now known as the Heckman correction. This approach uses a simultaneous equation model: One
equation is a probit regression of program participation on assignment, and the other equation
is a linear regression of the outcome on participation. The two equations have correlated errors.
The key assumption is that the outcome errors and the latent propensity to participate (from the
probit) are bivariate normal in distribution. This can be a strong and brittle assumption, leading
to poor properties for apparently small violations. Zhelonkin et al. (2016) propose modifications
to increase robustness (see also Kline & Walters 2019).

6.2. Extension to Multisite Trials

In a multisite trial, the process described above is replicated within each site. We have person-
specific effects of treatment assignment, Bi j = �i j�i j , and site average effects of treatment as-
signment, β j = γ jδ j (under a within-site no covariance assumption), where γ j is the fraction of
persons who comply with treatment assignment in site j and δ j is the CACE in site j. As before,
we might identify CACE within each site through Wald estimators, but this requires a relatively
large sample and high compliance in each site of the trial, and these conditions have not held in
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educational RCTs to date. Raudenbush et al. (2012) consider methods for studying the mean and
variance of δ j using a site-level no-compliance-effect covariance assumption. In highly original
work, Walters (2015) responds to this problem by extending the traditional Heckman correction
with site-specific pairs of simultaneous equations, which have coefficients with random effects that
induce shrinkage across sites. This method relies on potentially strong parametric assumptions.

6.2.1. Comment on interpretation. If we have full compliance in all sites, treatment effects
will vary if one or both of two conditions hold: (a) sites vary in subpopulations and subpopulations
respond variably to the same treatment, and (b) the treatment is implemented with variable effec-
tiveness across sites. Under noncompliance, CACE can differ not only because of a and b but also
because (c) some sites achieve higher compliance than others or (d) different sites encourage dif-
ferent subsets of the population to comply. Thus, the complier population is really an endogenous
outcome of the interplay between site practices and heterogeneous subpopulations. If a site can
achieve a large CACE by encouraging only the most promising persons to comply, that site will
look better than average on CACE. Stated more generally, if high compliance predicts low CACE,
the low-compliance sites will look better than average, particularly compared with δpersons. If high
compliance predicts high CACE, high-compliance sites will look better than average, particularly
when compared with δsites.

6.3. Open Problems

From the standpoint of the multisite trial, it seems that in replacing the no-covariance assumption
with themonotonicity assumption and thereby changing the definition of the impact of attendance
from ATE to CACE, we have not really solved the problem of selection bias that noncompliance
generates (Heckman & Vytlacil 2001). In essence, the multisite trial can reveal the challenges
of summarizing evidence from a replicated experiment characterized by noncompliance. Unless
compliance rates are uniformly high, some modeling based on additional assumptions appears
essential to achieve clear scientific interpretation.More research is needed on alternativemodeling
strategies and required assumptions.

7. MEDIATING MECHANISMS

In 2002, the IES created the What Works Clearinghouse, an agency that sorts through claims
of educational effectiveness and certifies particular interventions as effective (Confrey 2006). In
recent years, however, IES has increasingly pressed for answers to harder questions, not about
whether an intervention works, but rather about why. For example, suppose that a training pro-
gram helps students learn only if it improves a teacher’s measurable instructional practice (see
Allen et al. 2011). Knowing this is crucial for those who are adopting an experimentally tested in-
tervention at a new site. If measured teacher practice is not changing at the new site, the training is
not working as expected there, and one needs to modify or discontinue the training. This sounds
simple, but nailing down mediational mechanisms is hard.

7.1. Conventional Mediation in Single-Level Studies

Many thousands of studies have explored mediating mechanisms using path analysis, an approach
originated by Wright (1921), extended by Duncan (1966), and codified for application by Baron
& Kenny (1986) in one of the most widely cited articles in the history of psychology. Hong (2015,

www.annualreviews.org • Randomized Experiments in Education 193

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

20
.7

:1
77

-2
08

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 U
ni

ve
rs

ity
 o

f C
hi

ca
go

 L
ib

ra
rie

s o
n 

11
/0

1/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ST07CH08_Raudenbush ARjats.cls February 11, 2020 16:35

chapter 10) provides a detailed review of this approach as well as modern criticism and alternative
approaches.

A stylized representation of this approach is displayed in Figure 1a. The impact of T onM is
represented by the regression coefficient γ ; the effect of M on Y is the regression coefficient δ.
The total effect of T on Y is then the regression coefficient β = γ δ + θ , where γ δ is the indirect
effect of T that operates through the mediatorM, and θ is the direct effect that operates through
unspecifiedmediators. If γ δ is large and θ is small,M is said to largelymediate the impact ofT onY.

7.2. Assumptions Underlying the Conventional Model

Holland (1988) was the first to apply the counterfactual account of causality (Haavelmo 1943,
Holland 1986, Neyman 1935, Rubin 1978) to derive the assumptions required for this conven-
tional method of mediation analysis. A useful extension is provided by Bullock et al. (2010). Hong
(2015, chapter 10) reviews these critiques and evaluates a series of methodological innovations in-
tended to relax the strong assumptions underlying this model. Assuming T is randomly assigned,
the following assumptions must be met if the conventional model is to identify the causal pathway:
(a) linearity of the association betweenM and Y within levels of T; (b) additivity of the impact of
T andM on Y, meaning that the impact of the mediator cannot depend on treatment assignment;
(c) ignorable assignment of M; (d) unobserved mediators lurking within θ are uncorrelated with
M given T; and (e) no covariance between the person-specific impact of T on M and the impact
of M on Y. To understand this last assumption, we find it useful to represent the mediation pro-
cess through a person-specific model with heterogeneous effects (see Figure 1b).We see that the
person-specific indirect effect �i�i has expectation

E(�i�i ) = γ δ + Cov(�i,�i ). 25.

The conventional model requires setting this covariance to 0. To see why this is a strong assump-
tion, let us consider the following example (Nomi & Allensworth 2009): Assignment to intensive
high-school math instruction (T ) increases advanced mathematics course-taking later in high-
school (M), which in turn increases college enrollment (Y ). To assume Cov(�i,�i ) = 0 is to as-
sume that students who respond to treatment assignment by taking more advanced courses (that
is, who have large values of �i) are not especially likely to benefit in terms of college enrollment
from taking advanced math courses (that is, to have large values of �i). This seems implausible
and motivates further modeling.

7.3. Attempts to Relax the Assumptions of the Conventional Model

Suppose now that we conceive of T (receiving intensive math instruction early) and M (taking
advanced math courses later on) as two treatments, both binary. Rather than regarding a student’s
potential mediator values as a pretreatment covariate as in principal stratification, we view
advanced course taking as a second treatment to which a student is effectively randomly assigned.
By hypothesis, random assignment to T increases the probability of random assignment to M,
which increases the outcome Y. Random assignment to M, however, does not occur in practice.
Instead, the analyst regards subsets of students who have the same distribution of pretreatment
covariates, X, as being, in effect, randomly assigned toM. The information in X, which may have
high dimension, is summarized by the propensity score (Rosenbaum & Rubin 1983).

Recall that in principal stratification with binary T and binary M, potential mediator values
were fixed a priori, so that each participant possessed two potential outcomes. In contrast, under
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sequential random assignment, each participant possesses four potential outcomes. Define M(1)
and M(0) as two random variables, each of which can take on two values (1 or 0). We now have
the decomposition (Pearl 2001)

E[Y (1,M(1))] − E[Y (0,M(0))] = {
E[Y (1,M(1))] − E[Y (1,M(0))]

}
+ {

E[Y (1,M(0))] − E[Y (0,M(0))]
}
.

26.

Here E[Y (1,M(1))] − E[Y (1,M(0))] is the indirect effect of the mediator, holding T constant
at 1, and E[Y (1,M(0))] − E[Y (0,M(0))] is the direct effect of treatment T conditional on M(0).
Note that the decomposition is not unique, since we could have instead added and subtracted
E[Y (0,M(1))]. The curious feature of the decomposition in Equation 26 is the counterfactual
quantity E[Y (1,M(0))]. We can think of this as the mean outcome if the entire population were
treated (T= 1) but the fraction of persons assigned to mediator (M = 1) was Pr(M(0) = 1) rather
than Pr(M(1) = 1). Three statistical approaches have emerged to model and estimate this decom-
position. All rely on sequentially ignorable mediator assignment given covariates, and each allows
statistical interaction between the treatment T and the mediatorM.

7.3.1. Elaborated regression approaches. Petersen et al. (2006) andVanderWeele (2015) elab-
orate the conventional model to allow for interactions betweenM and Y and for nonlinear associ-
ations betweenM and Y. They also emphasize eliminating observable confounding by including
pretreatment covariates, call them X, in their models. A series of regressions and a strategy for
combining results across regressions are required to identify the causal effects of interest. We do
not describe thesemethods in detail because our space is limited and these references are admirably
clear. We can, however, conclude that this line of work essentially relaxes the assumptions of the
conventional model by making the model more complex. Nonadditive and nonlinear structural
forms can replace the linear and additive forms but must be explicitly specified. The assumption
that the covariance in Equation 25 is null is weakened by virtue of conditioning on covariates X.
The price to be paid using this approach is a series of functional form assumptions required to
efficiently estimate an increased number of parameters.

7.3.2. Weighting-based approaches. Using Equation 26, Hong (2015) proposed a ratio of
inverse probability of treatment weighting, a strategy that reweights the experimental group to
have the same distribution as the control group on the mediator. This weighting effectively occurs
within levels of the propensity score conditional on X. Like the elaborated regression approaches,
weighting approaches assume sequential randomization given X. However, the elaborated regres-
sion approach is more ambitious because it seeks to estimate paths between T andM andM and
Y while the weighting approach just estimates two quantities: the average indirect and average
direct effects. The more ambitious elaborated regression approach requires more functional form
assumptions. It is also presumably more efficient under those assumptions. In contrast, the weight-
ing approach uses an essentially nonparametric model for the outcome.

7.3.3. Simulation-based methods. Imai (2010) proposes Monte Carlo methods for estimating
the counter-factual quantity E[Y (1,M(0))]. First, sampleM given the covariates X and treatment
assignment T = 0. Next, simulate E[Y (1,M(0))] from the model for Y given covariates X and
T= 1 andM(0).These simulations can be obtained under a variety of models, linear and nonlinear,
for a variety of discrete and continuous predictors.
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7.4. Multilevel Mediation Models

The multilevel setting can increase the complexity of the mediation model. For example, one or
more of the coefficients in the extended regression coefficient approach can vary over sites, and
direct and indirect effects may vary and covary across sites. However, the multilevel setting offers
new opportunities to learn about mediation processes, and we consider three briefly.

7.4.1. Multilevel intervention as a process of sequential randomization. The 4Rs interven-
tion is a school-wide program that aims to encourage instruction that is rigorous, is relevant to stu-
dent interests, and reduces aggressive behavior (VanderWeele et al. 2013). Schools were matched
on demographics and then, within pairs, randomly assigned to treatment or control conditions.
Within the experimental condition teachers received training needed to implement the program.
The fidelity of implementation depended on the teacher’s interest and skill. Sequential randomiza-
tion seems an appropriate model here. Define Tk = 1 if school k is assigned to treatment, Tk = 0
if not; next, Mjk = 1 if teacher j within school k implements the treatment and Mjk = 0 if not.
We assume that children are nested within schools, but assignment to teachers is uncertain. This
generates four potential outcomes for each child i: Yi jk(Tk,Mjk(Tk )) where Tk and Mjk are each
binary.

Hong & Raudenbush (2013) regard this as an iconic model of how many policies operate.
A policy is framed for each of many organizational units, for example, schools, clinics, or police
precincts, the success of which depends on heterogeneous agents (teachers, physicians, police of-
ficers), with consequences for the intended recipients (students, patients, community residents).
VanderWeele et al. (2013) also model spillovers across classrooms. They reasoned that even if the
4Rs intervention was poorly implemented within a particular classroom, students might benefit
from effective implementation in other classrooms. For example, if a teacher in a neighboring
classroom was effective at promoting well-regulated behavior among her students, those students
would be less likely to engage in altercations with other students during lunch and after school.
Hence, the conventional SUTVAmust be relaxed for two reasons: because the treatment depends
for its implementation on heterogeneous teachers, and because of spillovers within schools.

7.4.2. Exploiting site-to-site variation. Moving to Opportunity is a program that aimed to
encourage educational, economic, and health outcomes among low-income residents of inner-
city housing projects. Local housing authorities in each of five cities randomly assigned the offer
of a housing voucher to residents under the condition that the voucher be used to relocate to low-
poverty neighborhood. To study the impact of using mediators (e.g., the posttreatment poverty
level of the residence), Kling et al. (2007) proposed what is now called the multisite,multimediator
model. Reardon & Raudenbush (2013) derived the assumptions needed to identify causal effects
within this model, which has been implemented by Duncan et al. (2011) andNomi & Raudenbush
(2016).

To understand how this model works, we can regard the model for noncompliance as a special
case where we have adopted the exclusion restriction. Recall that, within a multisite trial with
binary treatment and binary compliance measure, we can define β j = γ jδ j as the average effect of
treatment assignment within site j, where γ j is the average effect of assignment on participation
and δ j is the average impact of participation on the outcome in that site. We can therefore write
a simple random effects regression model for the estimate impact of random assignment on the
outcome in site j:

β̂ j = γ jδ j + β̂ j − β j

= γ jδ + γ j (δ j − δ) + β̂ j − β j.
27.
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Note that the model has no intercept, which reflects the exclusion restriction in the compliance
model: Random assignment can affect the potential outcome only if it affects participation in the
program.Themodel can be identified by substituting the estimate γ̂ j for γ j under (a) the exclusion
restriction, (b) Var(γ j ) > 0 and/or E(γ j ) > 0, and (c) E[(δ j − δ)|γ j] = E[(δ j − δ)] = 0. Assumption
a is standard in noncompliance studies while c is strong and uncheckable. For that reason, we do
not include this approach in our review of noncompliance above. However, the nice feature of
Equation 27 is that it can be expanded to include multiple mediators. Ignorability assumptions
such as c remain strong, but a major advantage here is that we need not make an assumption
that the mediator is randomly assigned. We are, in fact, exploiting the association between the
quantities β̂ j and γ̂ j , each of which is protected by randomization. Reardon et al. (2014) propose
a bias correction when assumption c is violated. If the exclusion restriction comes under doubt,
we can add an intercept to the model under the assumption that unobserved mediators are not
associated with the observed mediators.

7.4.3. Modeling variation in the mediation process. Qin et al. (2019) extend the weighting
approach under sequential randomization to study such variation across sites in the mediation
process. Recall that the outcome model associated with this method is remarkably simple. This
makes the process of extended the model to include random coefficients quite straightforward
without adding undue complexity.

8. GENERALIZABILITY

Although the turn toward large-scale randomized experiments has improved the internal validity
of causal claims in education, it is well known that many RCTs use convenience samples (Stuart
et al. 2017). Two notable exceptions are Head Start and Job Corps, which took probability samples
of program centers from full national frames.Of course, the predominance of convenience samples
is also a major concern in other fields that rely on randomized experiments, such as medicine
(Huebschmann et al. 2019, Kennedy-Martin et al. 2015). The result is that observed samples in
RCTs cannot be regarded as representative of actual populations of interest, so estimated ATEs
may not closely reflect the actual ATEs of interest. Some authors have begun to argue that in
many settings this external validity bias is likely intolerably large by the standards of internal
validity (Bell & Stuart 2016). As a result, the past few decades have also seen renewed attention
to methods to measure and improve the generalizability of study designs and actually make causal
generalizations under explicit assumptions when the RCT constitutes a convenience sample.

8.1. Defining Generalizability

Some social scientists make a provocative argument that the most interesting generalizations
draw upon the underlying science behind why a treatment works the way it does (Deaton &
Cartwright 2018, Rothman et al. 2013); this poses causal generalization as a scientific problem
about the underlying nature of treatments. Shadish et al. (2002) describe an approach in which
the investigator’s knowledge of program theory leads to hypotheses about characteristics of
settings and persons that ought to amplify or muffle the impact of the intervention. A broadly
generalizable program has similar positive effects across those characteristics. If the impact of the
program depends on favorable moderators, generalizations are hedged accordingly.

From an alternative point of view, the statistics literature frames causal generalization as a
problem of sampling—extending inferences from the observed (convenience) sample to some
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well-defined target population about which one has considerable information. In this section we
focus on this perspective.

In some cases, the sample is a subset of the target population. In others, the sample is not a
subset. For example, the RCT may contain schools in one state while the target population in
schools is located in another state. In this case the problem of generalization may be recast as a
problem of transportability (Pearl & Bareinboim 2014, Westreich et al. 2017), though this usage
has not been adopted universally (Hernán&VanderWeele 2011).Mathematically, the assumptions
required to solve these problems are nearly identical (Tipton 2013). The informal language we
use to discuss target populations seems to lend itself to the classical finite population theory of
survey sampling (Cochran 1977), since often the target population is some specific population
with a known frame. Classically, only sample inclusion and treatment assignment are random,
though some recent work also treats covariates and outcomes as random (Tipton 2014). Instead,
we might use a superpopulation model, which may include an embedded finite population of
interest (Deming & Stephan 1941,Graubard & Korn 2002,Hartley & Sielken 1975) or not (Ding
et al. 2017; Imbens & Rubin 2015, p. 39). Beyond statistics, our reading of the literature is that
education research has not widely confronted these alternatives or reached consensus about which
point of view best fits most educational applications.

8.2. Identification and Estimation Strategies for Population Average
Treatment Effects

Recently, statisticians have proposed a new type ofmethod for generalization when the experimen-
tal sample is a convenience sample (Stuart et al. 2011,Tipton 2013).The strategy is to augment the
experimental data with data from a large, representative sample survey or even a census from an
interesting population. For example, Tipton (2013) considers a cluster-randomized trial of math-
ematics software in 92 middle schools in Texas and merges these data with publicly available data
on 1,713 middle schools in Texas.Crucially, the experimental data and the auxiliary data must have
measured the same covariates. Typically the auxiliary data do not contain the outcome of interest,
or it is at least assumed that these units have not received the treatment, so all potential outcomes
may be missing in the population. The analyst merges the auxiliary data with the data from the
experimental trial and attempts to model the connection between the experimental and auxiliary
data.

Some have modeled the sample selection process (sampling propensity score methods); others
study the outcome as a function of covariates (response surfacemodeling) in the experimental sam-
ple and predict outcomes in the auxiliary portion. A third approach combines selection modeling
and outcome modeling (doubly robust methods). We discuss the crucial assumptions underlying
these methods in the next subsection.

8.2.1. Sampling propensity score methods. Using the merged data, the analyst fits the
conditional probability of being in the experiment given covariates. One way to use the propen-
sity score for causal generalization is weighting (Kern et al. 2016, Stuart et al. 2011). Units in
the experimental sample with high propensity scores are weighted down, while units with low
propensity scores are weighted up. The reweighted experimental sample then has approximately
the same distribution on covariates as does the larger, representative survey or census. This
approach closely resembles methods that use weighting to correct for nonresponse in surveys.
An alternative strategy classifies members of the experimental sample into strata with closely
matching propensity scores and then weights observations by stratum size (O’Muircheartaigh &
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Hedges 2014, Tipton 2013). This method may produce more stable weights, yielding a smaller
sampling variance but slightly more bias than simply using propensity scores as weights.

8.2.2. Response surface modeling. In this case the analyst regresses the outcomes on treat-
ment, covariates, and treatment-by-covariate interactions using only the RCT data. Using this
fitted model, the analyst predicts both potential outcomes for every member of the auxiliary data
set to estimate an ATE in the target population. This approach is less popular in other areas of
causal inference, perhaps because researchers feel more confident estimating propensity scores
than specifying functional forms for the outcome regression; it is not clear a priori that either
strategy is more challenging. One notable exception is Kern et al. (2016), who use a semipara-
metric Bayesian tree-based regression method that allows flexible functional forms but penalizes
complexity through clever default priors (Chipman et al. 2010); it has been used successfully for
sample ATEs in observational data (Dorie et al. 2019, Hill 2011).

8.2.3. Doubly robust methods. These approaches model both the sampling process and the
outcome regression and, somewhat comfortingly, give consistent population average treatment
effect estimates when either model is specified correctly; they have met some success in general-
izability but are not guaranteed to strike the optimal bias-variance tradeoff (Dahabreh et al. 2019,
Kern et al. 2016).

8.3. Assumptions for Generalizability

The key challenge in causal generalization using the methods just described is that wemust explic-
itly model how the experimental sample provides information about the ATE in the target popula-
tion. Typically researchers have made two main assumptions to this end: unconfounded sampling
and common support between the sample and population (Tipton 2014). Together, these assump-
tions may be called strongly ignorable sampling, borrowing from the language of Rosenbaum &
Rubin (1983).

Define the potential outcomes as Yi(1) if unit i were treated and Yi(0) if not, and define Si = 1
if unit i is in the experiment and Si = 0 if that unit is in the auxiliary data. The unconfoundedness
assumption states that every unit’s person-specific treatment effect is independent of membership
in the RCT,

Yi(1) −Yi(0)⊥Si|Xi, 28.

and is analogous to the missing at random assumption (Little & Rubin 2002) in the context of
missing data. The common support assumption, also referred to as positivity, requires that

0<Pr(Si = 1|Xi ) < 1. 29.

The first consequence of Equation 29 is that the sampling process cannot systematically
exclude subsets of the target population—this is analogous to a coverage error in survey sampling
and is discussed at length by Tipton (2013). A second consequence is that the sample used for
making generalizations cannot include units not reflected in the target population. In many stud-
ies, common support is not met in at least some populations of interest, so researchers must instead
target subpopulations for which common support holds in order to avoid heroic extrapolation.

Often the strongly ignorable sampling assumption is stated in terms of all available covariates,
but there are two important nuances to covariate selection that must be addressed statistically
and scientifically. First, for the purpose of estimating the population average treatment effect,
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generalization methods only need to use covariates that affect both the probability of sampling
and the treatment effects (i.e., moderators) (Hill & Su 2013, Stuart et al. 2011). Second, as some
have pointed out (D’Amour et al. 2017), unconfoundedness and common support assumptions
are antagonistic goals—including more covariates makes unconfoundedness more plausible but
also makes common support harder to satisfy as the dimension of the covariate space grows.

8.4. Measuring Generalizability

Methods to assess the generalizability of RCT results are important for a variety of reasons even
before an RCT is conducted or generalized estimates are produced. First, they may be useful dur-
ing study design in considering eligibility criteria and sample selection or recruitment. Second,
in analysis, some potential populations of interest may be much more amenable to generaliza-
tions from a particular study, so investigators may discover that while one target population is
intractable, another one is not. For specific diagnostics, Stuart et al. (2011) consider the standard-
ized mean difference of propensity scores in the sample and population data, while Tipton (2014)
propose an index between 0 and 1 that depends directly on more nuanced features of these two
propensity score distributions.

8.5. Open Problems

Two factors conspire to make population average treatment effects more difficult to estimate ac-
curately than their sample counterparts—basic sampling variability (Tipton et al. 2017) and the
strong ignorability of sampling assumption.These factors suggest that the field needs more meth-
ods for thorough but approachable sensitivity analysis (Nguyen et al. 2017) since all causal gen-
eralizations from RCTs generally rest on assumptions that data cannot definitively test. Relatedly,
we need a better understanding of optimal design for RCTs that are more generalizable (Tipton
et al. 2014, Tipton & Peck 2017).

9. SPILLOVERS AND HETEROGENEOUS AGENTS

Recall that SUTVA requires that there be only one version of the treatment and that one per-
son’s potential outcome is not influenced by the treatment assignment of other people. However,
education is a social process. Any educational policy must be implemented by teachers who are
heterogeneous in skill. Hence, students may experience different versions of the treatment in dif-
ferent classrooms or schools. Moreover, students typically learn not only from the teacher but
from each other. Thus, one student’s treatment assignment may spill over to another student.
Recognizing this, educational researchers and other social scientists have devised strategies for
relaxing SUTVA.

Again, define Ti j = 1 if student i in cluster j is assigned to a new treatment and Ti j = 0 if not.
DefineT j = (T1 j ,T2 j , . . . ,TN j ) as the vector of randomly varying treatment assignments of all Nj

students in site j, and define the outcome that student i will display under the realization T j = t j
as Yi j (t j ). The causal effect on the outcome of student i of t j relative to an alternative assignment
vector t∗j is therefore Yi j (t j ) −Yi j (t∗j ), the difference between these two potential outcomes. The
possibility that perturbing the treatment assignment of any subset of students in a site would
modify the potential outcome of all students in that site makes causal inference intractable because
the number of potential outcomes for any student is 2Nj . SUTVA requires that Yi j (t j ) = Yi j (ti j ).

SUTVA makes causal inference tractable, but educational researchers have questioned its ap-
plicability in some cases. Hong & Raudenbush (2006) studied the effect of requiring children
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who show little progress during kindergarten to repeat kindergarten rather than being pro-
moted to first grade, a practice known as grade retention. The authors reasoned that the impact
of grade retention on a given student would depend upon how many of their classroom peers
were retained. It also seemed plausible that the retention of slowly progressing peers might af-
fect the potential outcomes of children who would always be promoted. They proposed a relax-
ation of SUTVA (Hudgens & Halloran 2008, Sobel 2006) such that Yi j (t j ) = Yi j (ti j , f (t j )) where
f (t j ) is a scalar function of the entire vector of treatment assignments in site j. For example,
f (t j ) = tTj t j/nj , the fraction of students in school j who are retained, might be regarded as cap-
turing the mechanism by which peer treatment assignments affect a student’s potential outcome.
Hence, Yi j (0, f (t j )) −Yi j (0, f (t∗j )) would represent the effect on a student who would be pro-
moted of having f (t j ) rather than f (t∗j ) of her peers retained. Notice that f (t j ) is a site-level
causal variable, suggesting a useful experiment in which clusters are randomly assigned to values
of f (t j ) and eligible students within clusters are assigned at random to be retained (Hudgens &
Halloran 2008). Basse et al. (2019) studied an intervention to reduce truancy and used this frame-
work to study the effect of a sibling’s treatment assignment on untreated siblings.Key assumptions
in this framework are (a) intact sites, that is, students do not migrate from one site to the other
during the course of the study, and (b) no interference between sites. Randomization by cluster
may be regarded as a strategy for relaxing SUTVA. Suppose that cluster j is assigned at random
to treatments. We can then write the child-specific causal effect as

Bi j ≡ Yi j (1, 1, . . . , 1) −Yi j (0, 0, . . . , 0). 30.

Thus, assignment of the entire cluster affects the treatment assignment of every student in that
cluster and we have identification without SUTVA.

10. PROMISING EXPERIMENTAL DESIGNS

In this section we review two promising experimental designs that are leading to success in other
fields and are beginning to arouse interest in education.We hope that education research will see
another methodological renaissance, this time focused on experimental designs that answer even
richer questions about real-world interventions.

10.1. Sequential Multiple Assignment Randomized Trial Designs
for Adaptive Interventions

Adaptive interventions, also called dynamic treatment regimes, are multistage interventions that
include a sequence of decision rules that use current information about each person to determine
individualized treatment at each stage (Chakraborty & Murphy 2014). The SMART is the basic
experimental design used to study adaptive interventions, and it sequentially randomizes subjects
to the treatments available at each stage according to their previous outcomes (Murphy 2005).
Estimating and describing uncertainty about the optimal dynamic treatment regime (i.e., the set
of adaptive decision rules that lead to the best average outcome at the end of the intervention) are
challenging because the parameters of interest are nonsmooth functions of themodel, somost clas-
sical statistical theory relying on asymptotic expansions is not relevant (Laber et al. 2014, Luedtke
& van der Laan 2016).

These methods have been primarily used in behavioral science and clinical trials (Lei et al.
2012, Wahed & Tsiatis 2004), though adaptive interventions are clearly of great interest in ed-
ucation (Almirall et al. 2018, Raudenbush 2008). For example, Kilbourne et al. (2018) describe
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an ongoing SMART on training school staff to provide cognitive behavioral therapy (CBT) to
students seeking mental health services. More than 100 high schools in Michigan with over 200
school staff members were cluster-randomized to receive two types of CBT training, and then
after three months, within both initial randomization groups, schools were again randomized
to different follow-up training. In another recent example, Kim et al. (2019) used a SMART
to refine a literacy intervention for kindergarten to grade 2 students by considering a second
stage targeted at improving outcomes for children who were not helped by the first-stage treat-
ment. Of course, all teaching can also be considered an adaptive intervention in which teachers
continually assess their students’ understanding and then tailor instruction accordingly. In one
study, children aged 3–5 were assessed every 10 weeks on early math skills, and teachers used
these assessments to make updated instructional plans (Raudenbush et al. 2020). One might also
imagine studying adaptive instruction at a much more fine-grained scale in educational software
that provides near-constant assessment of student knowledge, perhaps borrowing from meth-
ods for so-called microrandomized trials in mobile health (Boruvka et al. 2018, Klasnja et al.
2015).

Observational data have also been used to estimate optimal dynamic treatment regimes in edu-
cational examples including intensive elementary mathematics instruction (Hong & Raudenbush
2008) and tracking in high schools (Zajonc 2012), though the additional required ignorability
assumptions may be very strong.There is great room to apply SMARTs more widely in education.
Some methods exist to study adaptive interventions in multilevel settings (Kilbourne et al. 2013,
NeCamp et al. 2017) but this is an understudied area, especially in the context of multisite trials
where much might be learned about how these complex interventions differ in effectiveness
across sites.

10.2. Factorial Designs for Multicomponent Interventions

Long after their storied past in classical experimental design, factorial designs are receiving re-
newed attention as part of the MOST (multiphase optimization strategy) framework for develop-
ing and improving complex interventions (Collins 2018,Collins &Kugler 2018,Dziak et al. 2012).
TheMOST approach, which has been used predominantly in behavioral medicine (McClure et al.
2012, Pellegrini et al. 2014), is analogous to the multiple phases of clinical trials for drug approval
but is focused on interventions that have multiple components that may be manipulated. Factorial
experiments here are used as an exploratory tool to identify the form of an intervention with the
optimal combination of features. Formal evaluation of this optimized intervention is based on a
traditional confirmatory two-arm randomized trial (Wyrick et al. 2014). This research strategy
is highly promising in education, where interventions are often complex by necessity and even
seemingly straightforward interventions may be implemented in many ways (McLaughlin 1987).
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