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a b s t r a c t

Recent studies have shown that, in general, Nash equilibrium cannot be achieved by the players of a
differential graphical game by using distributed control policies. Alternative solution concepts that do
not necessarily lead to Nash equilibrium can be proposed to allow the players in the game determine
distributed optimal strategies. This paper analyzes the performance properties of the solution concept
regarded as minmax strategies. The minmax formulation is shown to provide distributed control
policies for linear systems under mild assumptions. The stability and robustness characteristics of
the proposed solution are studied in terms of gain and phase margins, and related to the robustness
properties of the single-agent LQR controller. The results of our analysis are finally tested by means
of a simulation example.

© 2020 Elsevier Ltd. All rights reserved.
Q
i
o
E
t
a
c
N
s
g
e

b
a
u
i

1. Introduction

Analyzing the performance of the decision-making processes
f multiagent systems has become indispensable with the in-
reasing use of autonomous systems in industrial and urban
reas. In many applications, a single system, regarded as an agent,

must complete a task while observing the state information of
only a subset of other systems, regarded as its neighbors. The
multiple connections among the agents form a communication
network.

The literature available for cooperative control in networked
systems is extensive (see Hong, Hu, & Gao, 2006; Kamalapurkar,
Dinh, Walters, & Dixon, 2013; Lewis, Zhang, Hengster-Movric, &
as, 2013; Li, Wang, & Chen, 2004; Olfati-Saber, Fax, & Mur-
ay, 2007; Qu, 2009; Ren, Beard, & Atkins, 2005; Ren, Moore,

✩ This work was supported by the ONR, USA Grant N00014-18-1-2221,
ARO, USA grant W911NF-20-1-0132 the NSF, USA Grants ECCS-1839804 and
CAREER-1714519. Author V. G. Lopez thanks the Mexican Council of Science
and Technology (Conacyt) for their support. The material in this paper was
partially presented at the 2019 American Control Conference (ACC), July 10–
12, 2019, Philadelphia, PA, USA. This paper was recommended for publication
in revised form by Associate Editor Julien M. Hendrickx under the direction of
Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: victor.lopezmejia@mavs.uta.edu (V.G. Lopez),
lewis@uta.edu (F.L. Lewis), yan.wan@uta.edu (Y. Wan),
mushuang.liu@mavs.uta.edu (M. Liu), gary.hewer@navy.mil (G. Hewer),
katia.estabridis@navy.mil (K. Estabridis).
ttps://doi.org/10.1016/j.automatica.2020.109177
005-1098/© 2020 Elsevier Ltd. All rights reserved.
& Chen, 2007; Zhang, Feng, Yang & Liang, 2015 and references
therein). The standard study of consensus and synchronization
in multiagent systems do not consider optimization procedures.
If the agents in a network have the goal of minimizing cost
functions, then they must take into account not only their own
behavior, but also the behavior of their neighbors. This prop-
erty leads to the formulation of a game (Basar & Olsder, 1999;
Isaacs, 1965; Shoham & Leyton-Brown, 2008). Game-theoretic
approaches have been recently proposed to provide optimality to
the cooperative (Vamvoudakis, Lewis, & Hudas, 2012; Yaghmaie,
Lewis, & Su, 2016) and noncooperative (Cao, Ertin, & Arora, 2008;
u & Simaan, 2009) interactions of networked agents. The most
mportant solution concept in game theory, Nash equilibrium, is
btained when all agents use their best strategies simultaneously.
very admissible solution for a graphical game, however, requires
he use of distributed control policies. This means that the agents
re allowed to use only local information received through the
ommunication graph. The distributed-policy requirement makes
ash equilibrium generally unattainable among the agents. As we
how in this paper, the information restriction imposed by the
raph topology prevents the multiagent system from reaching an
quilibrium.
The unattainability of Nash equilibrium in graphical games can

e addressed by proposing alternative solution concepts for the
gents. The solutions regarded as minmax strategies have been
sed to describe the behavior of players in strictly adversar-
al games (Basar & Bernhard, 1995; Shoham & Leyton-Brown,
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2008). In this paper, we propose the use of minmax strategies
to solve non-adversarial and cooperative games and analyze the
resulting behavior of the agents connected in a graph. Using
minmax strategies, each agent prepares its best response against
the worst-case behavior of its neighbors. From the perspective
of an individual agent, the resulting formulation of this graphical
game is the same as an H∞ control problem (Zames, 1979). In
turn, the H∞ formulation can be solved as the zero-sum game
between a system and a disturbance term (Basar & Bernhard,
1995; Lewis, Vrabie, & Syrmos, 2012). The H∞ controller has
been thoroughly studied due to its attractive robust character-
istics (Doyle, Glover, & Khargonekar, 1998; Kwakernaak, 1993;
Li, Duan, & Chen, 2011; Modares, Lewis, & Jiang, 2015). Nash
equilibrium and minmax strategies are known to be equivalent
for zero-sum games (Shoham & Leyton-Brown, 2008). In the
nonzero-sum games studied in this paper, minmax strategies do
not necessarily lead to Nash equilibrium.

The main contributions of this paper are summarized as fol-
lows. Minmax strategies are proposed to solve non-adversarial
differential graphical games for synchronization, i.e., a leader–
followers structure. This differs from the current minmax for-
mulations in the literature that are only relevant to strictly
adversarial games (Basar & Bernhard, 1995; Cao et al., 2008).
Different from the Nash equilibrium solution, minmax strate-
gies are proven to provide distributed control policies under
mild conditions in the system dynamics and the performance
functions. The conditions for stability of the global multiagent
system when all agents use their minmax policies are studied.
Robustness of the control policy of each agent is also analyzed.
The gain and phase margins of the minmax policies are obtained;
as per the authors’ knowledge, analysis of phase and gain margins
for minmax or H∞ controllers had not been yet performed.
Comparing our results with those of Safonov and Athans (1977),
the robustness properties of minmax strategies are shown to
improve the corresponding characteristics of the linear quadratic
regulator (LQR).

The remainder of this paper is structured as follows. Sec-
tion 2 presents the preliminaries of the paper. In Section 3,
minmax strategies are proposed to solve the graphical games
and their corresponding distributed control policies are obtained.
Sections 4 and 5 study the stability and robustness properties of
minmax strategies, respectively. Simulation studies are presented
in Section 6.

1.1. Notation and preliminary definitions

The following notations are used in the paper (Khalil, 1996;
Safonov & Athans, 1977).

The space Ln
2 is defined as the set of all piecewise continuous

functions x : [0,∞) → Rn such that

∥x∥L2 =

(∫
∞

0
xT (t)x(t)

)1/2

dt < ∞,

i.e., the space Ln
2 defines the set of all square-integrable functions

x(t).
The extended space Ln

2e is defined by

Ln
2e =

{
x|xτ ∈ Ln

2,∀τ ≥ 0
}

where xτ is a truncation of x defined by xτ (t) = x(t) if 0 ≤ t ≤ τ ,
and xτ (t) = 0 otherwise.

Define the inner-product in space Ln
2[0,∞) as

⟨x, y⟩ =
∫

∞

0
xT (t)y(t)dt (1)

where x, y ∈ Ln
[0,∞).
2
A mapping H : Lm
2e → Ln

2e is finite-gain L2 stable if there exist
nonnegative constants γ and β such that

∥(Hu)τ∥L2
≤ γ ∥uτ∥L2 + β (2)

for all u ∈ Lm
2e and τ ∈ [0,∞).

When the inequality (2) is satisfied for some γ ≥ 0, the system
is said to have L2 gain less than or equal to γ .

2. Differential graphical games

Differential graphical games study the interactions of multi-
agent systems connected in a communication graph, such that
every player is able to interact only with its neighbors. Formally,
consider a set of N agents connected by a communication graph
Gr = (V , E). Each player of the game is represented by a node
vi ∈ V of Gr , and their interconnections are described by the set
of edges E ⊆ V×V . The edge weights of the graph are represented
as aij, with aij > 0 if (vj, vi) ∈ E and aij = 0 otherwise. The
set of neighbors of node vi is Ni = {vj : aij > 0}. The graph
is assumed to have no self-loops, i.e., aii = 0 for all agents i;
this means that an agent obtains its own state information from
internal sensors and not from the communication graph. Define
the graph adjacency matrix as A = [aij]. The weighted in-degree
of node i is di =

∑N
j=1 aij, and the in-degree matrix of the graph is

D = diagi{di}. The Laplacian matrix is defined as L = D−A (Lewis
et al., 2013).

2.1. Agent dynamics

The mathematical model of each agent i, i = 1, . . . ,N , is given
by the linear dynamics

ẋi = Axi + Bui (3)

where xi(t) ∈ Rn and ui ∈ Rm are the state variable vector and
the control input vector of agent i, respectively. The pair (A, B) is
assumed to be controllable. Define an additional agent, regarded
as the leader or target node, with dynamics

ẋ0 = Ax0 (4)

where the eigenvalues of A have non-positive real parts. The
communication links between the leader and the other agents
are represented by the pinning gains gi ≥ 0. In this paper, the
general objective of all agents is to achieve synchronization with
the leader state.

Let each agent be able to observe the full state vector of its
neighbors in the graph. The local synchronization error of agent
i is thus defined as

δi =

N∑
j=1

aij
(
xi − xj

)
+ gi (xi − x0) (5)

and the local error dynamics are

δ̇i =

N∑
j=1

aij
(
ẋi − ẋj

)
+ gi (ẋi − ẋ0)

= Aδi + (di + gi) Bui −

N∑
j=1

aijBuj (6)

where the dynamics (3)–(4) have been used.
Each agent i expresses its individual objectives in the game by

means of a cost function

Ji := Ji (δi, δ−i, ui, u−i)

where Ji (δi, δ−i, ui, u−i) is a positive definite scalar function. δ−i

and u−i represent the local errors and control inputs of the
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neighbors of agent i, respectively. For synchronization games, the
function

Ji =
∫

∞

0

⎛⎝δTi Qiδi + uT
i Riui +

N∑
j=1

aijuT
j Rjuj

⎞⎠ dt (7)

with Qi ≥ 0, Ri > 0 and Rij ≥ 0, is commonly employed (Lewis
et al., 2012; Vamvoudakis et al., 2012).

2.2. Nash equilibrium

The best response of agent i for fixed neighbor policies u−i is
defined as the control policy u∗i such that the inequality Ji(δ, u∗i ,
−i) ≤ Ji(δ, ui, u−i) holds for all policies ui. Nash equilibrium is

achieved if every agent plays its best response with respect to all
its neighbors, i.e.,

Ji
(
δ, u∗i , u

∗

−i

)
≤ Ji

(
δ, ui, u∗−i

)
(8)

for all agents i = 1, . . . ,N .
It is proven in Vamvoudakis et al. (2012) that the best response

of agent i with cost function (7) is given by

u∗i = −
1
2

(di + gi) R−1
i BT

∇Vi (δ) (9)

where the functions Vi(δ) solve the Hamilton–Jacobi (HJ) equa-
tions

δTi Qiδi +∇V T
i Aδi −

(di + gi)2

4
∇V T

i BR
−1
i BT

∇Vi

+
1
4

N∑
j=1

aij(dj + gj)2∇V T
j BR

−1
j BT

∇Vj

+
1
2

N∑
j=1

aij(dj + gj)∇V T
i BR

−1
j BT

∇Vj = 0. (10)

When each agent i uses its best policy (9), Nash equilibrium is
achieved in the game.

The Nash equilibrium solution for differential graphical games
presents, however, a drawback. Consider the following. A valid
distributed control policy (9) requires that the value function for
agent i employs only local information, i.e., Vi(δ) = Vi(δi). Make
this assumption and rearrange the HJ equation (10) as

1
4

N∑
j=1

aij
[
∇Vi +∇V̄j

]T
BR−1

j BT [
∇Vi +∇V̄j

]
=

1
4
∇V T

i B

⎛⎝(di + gi)2R−1
i +

N∑
j=1

aijR−1
j

⎞⎠ BT
∇Vi

−δTi Qiδi −∇V T
i Aδi (11)

where ∇V̄j = (dj+gj)∇Vj. This equation has the form f1(δi, δ−i) =
f2(δi) and, in most cases, it will not hold true for all possible
neighbor trajectories δ−i.

In general, there may not exist a set of functions Vi(δi) that
solve the HJ equations (10) and provide distributed control poli-
cies for the agents. This is an expected result due to the limited
knowledge of the agents connected in the communication graph.
If agent i does not know the local information of his neighbors,
δj, then it cannot determine their best responses in the game and
prepare its best strategy accordingly.

In the following section, minmax strategies are proposed as a
practical alternative to the Nash equilibrium solution of graphical
games.
3. Minmax strategies for graphical games

In this section we remedy the inconveniences presented in the
previous section by defining the minmax strategies for differen-
tial graphical games. Intuitively, minmax strategies are obtained
when each agent prepares itself for the worst-case behavior of
its neighbors. As it is shown below, the corresponding Hamilton–
Jacobi–Isaacs (HJI) equations for minmax strategies are generally
solvable for linear systems and distributed control policies are
obtained accordingly.

3.1. Formulation of minmax strategies

Let agent i prepare its minmax strategy by making the con-
servative assumption that the goal of its neighbors is to maximize
its own performance index, Ji. The following definition formalizes
the concept of minmax strategy employed in this paper.

Definition 1 (Minmax Strategies). In a differential graphical game,
the minmax strategy of agent i is given by

u∗i = argmin
ui

max
u−i

Ji (δi, ui, u−i) . (12)

The performance index (7) requires to be modified to formu-
late a zero-sum game between agent i and its neighbors. To this
end, define the function

Ji =
∫

∞

0

(
δTi Qiδi + (di + gi) uT

i Riui

−γ 2
N∑
j=1

aijuT
j Rjuj

)
dt (13)

here Qi ≥ 0, Ri, Rj > 0 and γ is a positive scalar. To determine
ts minmax strategy, agent i assumes that the goal of its neigbors
s to maximize its cost function (13).

Define the Hamiltonian function associated with the cost in-
ex (13) as

i = δTi Qiδi + (di + gi) uT
i Riui

−γ 2
N∑
j=1

aijuT
j Rjuj +∇V T

i (δi)δ̇i (14)

ith δ̇i as in (6). If the value function Vi has a quadratic form, i.e.,

i (δi) = δTi Piδi, (15)

hen (14) can be expressed as

i = δTi Qiδi + (di + gi) uT
i Riui − γ 2

N∑
j=1

aijuT
j Rjuj

+2δTi Pi

⎛⎝Aδi + (di + gi) Bui −

N∑
j=1

aijBuj

⎞⎠ (16)

The optimal control policy for agent i is now obtained by
eans of the stationary condition ∂Hi

∂ui
= 0, which yields

u∗i = −R−1
i BTPiδi. (17)

imilarly, the worst-case policy of the neighbors of agent i can be
btained as

∗

j = −
1
γ 2 R

−1
j BTPiδi. (18)

Notice that υ∗

j is not necessarily the actual control policy em-
ployed by agent j, u .
j
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The HJ equation to be solved for matrix Pi is finally obtained by
substituting the policies (17) and (18) in (16), and equating it to
zero. This procedure yields the algebraic Riccati equations (ARE)

Qi + PiA+ ATPi − (di + gi) PiBR−1
i BTPi

+
1
γ 2

N∑
j=1

aijPiBR−1
j BTPi = 0. (19)

Remark 1. Control policies (17) are distributed, in contrast to the
ash solution policies given by (9).

emark 2. If the ARE (19) has a solution Pi > 0, then substituting
the function (15) and the control policies (17)–(18) in the Hamil-
onian (14) satisfies the HJ equation Hi(u∗i , υ

∗

i ,∇Vi) = 0, verifying
that (15) is indeed the value function of the game.

Remark 3. Equations in the form of (19) are known to have
solutions for Pi if

(
A,

√
Qi
)
is observable, (A, B) is stabilizable, and

di + gi)R−1
i −

1
γ 2

∑N
j=1 R

−1
j > 0 (Lewis et al., 2012). Notice the

influence of the parameter γ to make this inequality hold.

The following theorem shows that control policy (17) with
i being the solution of (19) provides the minmax strategy for
gent i. The proof of this theorem assumes stability of the error
ynamics (6); such stability will be analyzed in Section 4.

heorem 1. Let the agents of a differential graphical game with
ynamics (3) and a leader with dynamics (4) use the control policies
17) where matrices Pi are the solutions of the AREs (19). Moreover,
ssume these control policies achieve asymptotical stability of the
ocal synchronization errors (6) for all agents i. Then, all agents
ollow their minmax strategies as defined in Definition 1 and the
inmax value of the game is Vi(δi(0)).

roof. Consider the value function (15) and express the perfor-
ance index (13) as

i =

∫
∞

0

(
δTi Qiδi + (di + gi) uT

i Riui

− γ 2
N∑
j=1

aijuT
j Rjuj

)
dt −

∫
∞

0
V̇i(δi)dt

+

∫
∞

0
2δTi Pi

⎛⎝Aδi + (di + gi) Bui −

N∑
j=1

aijBuj

⎞⎠ dt.

sing the inner-product notation (1), express Ji as

i = ⟨δi,Qiδi⟩ + (di + gi) ⟨ui, Riui⟩

−γ 2
N∑
j=1

aij
⟨
uj, Rjuj

⟩
+ Vi(δ(0))+ 2 ⟨δi, PiAδi⟩

+2(di + gi) ⟨δi, PiBui⟩ − 2
N∑
j=1

aij
⟨
δi, PiBuj

⟩
here we have used the fact that

∫ τ

0 V̇i(δi)dt = Vi(δi(τ ))−Vi(δi(0)),
nd that, because the global closed-loop system is asymptotically
table, Vi(δi(τ )) = 0 as τ → ∞. As Pi makes the ARE (19) hold,
e get

i = (di + gi)
⟨
u∗i , Riu∗i

⟩
− γ 2

N∑
j=1

aij
⟨
υ∗

i , Rjυ
∗

i

⟩
+ (di + gi) ⟨ui, Riui⟩ − γ 2

N∑
aij
⟨
uj, Rjuj

⟩

j=1
− 2(di + gi)
⟨
u∗i , Riui

⟩
+ 2γ 2

N∑
j=1

aij
⟨
υ∗

i , Rjuj
⟩

+ Vi(δ(0))
= (di + gi)

⟨
ui − u∗i , Ri(ui − u∗i )

⟩
− γ 2

N∑
j=1

aij
⟨
uj − υ∗

j , Rj(uj − υ∗

j )
⟩
+ Vi(δ(0)). (20)

Therefore, u∗i in (17) is the minmax strategy of agent i and the
alue of the game is given by Vi(δi(0)). □

The following two sections analyze the stability and robust-
ess properties of the proposed minmax solutions. In Section 4,
he conditions under which the control policies (17) stabilize the
ystem are studied.

. Stability of minmax strategies

Conditions for the stability of minmax strategies are well
nown for adversarial games (Basar & Bernhard, 1995; Cao et al.,
008). However, in non-adversarial games the worst-case be-
avior assumption made by the agents is not the true strategy
ollowed by its neighbors. Here, we determine the conditions on
hich the minmax assumption leads to stability of the global
ystem.
Two stability concepts are analyzed in this section for minmax

trategies. First, it is proven that the system (6) with control
olicies u∗i in (17) is finite-gain L2 stable. Then, conditions for
symptotic stability of the global multiagent system are provided.

.1. L2 Stability

When using minmax strategies, an agent with error dynamics
6) considers the effect of its neighbors policies,

∑N
j=1 aijBuj, as a

isturbance term to be rejected. The nominal system for agent i
an then be defined as
˙̄
i = Aδ̄i + (di + gi) Bui. (21)

his idea provides the foundation of the following analysis. Define
he performance output of agent i as

zi(t)∥2 = δTi Qiδi + (di + gi)uT
i Riui. (22)

imilarly, the disturbance input produced by the neighbors of
gent i is defined as

ζi(t)∥2 =
N∑
j=1

aijuT
j Rjuj. (23)

According to (2), the output (22) is L2 stable if

zi(t)∥L2
≤ γ ∥ζi(t)∥L2

+ β (24)

or some γ , β ≥ 0. The following theorem shows the L2 stability
roperties of the minmax policies (17).

heorem 2. The system (6) with policy u∗i as in (17) and Pi as the
olution of (19) is L2 stable with L2-gain bounded by γ according
o (24).

roof. In the proof of Theorem 1, the final step (20) showed that

i = ⟨δi,Qiδi⟩ + (di + gi) ⟨ui, Riui⟩ − γ 2
N∑
j=1

aij
⟨
uj, Rjuj

⟩
= (di + gi)

⟨
ui − u∗i , Ri(ui − u∗i )

⟩
− γ 2

N∑
aij
⟨
uj − υ∗

j , Rj(uj − υ∗

j )
⟩
+ Vi(δ(0)).
j=1
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Fig. 1. Closed-loop multiagent system.

Because L2 stability must hold for all initial conditions, select
δi(0) = 0. This implies Vi(δi(0)) = 0. Let ui = u∗i to obtain

⟨δi,Qiδi⟩ + (di + gi) ⟨ui, Riui⟩ − γ 2
N∑
j=1

aij
⟨
uj, Rjuj

⟩
= −γ 2

N∑
j=1

aij
⟨
uj − υ∗

j , Rj(uj − υ∗

j )
⟩
≤ 0

which implies

⟨δi,Qiδi⟩ + (di + gi) ⟨ui, Riui⟩ ≤ γ 2
N∑
j=1

aij
⟨
uj, Rjuj

⟩
aking the square root to both sides of the inequality shows that
24) holds. □

The asymptotic stability of minmax strategies is studied in the
ollowing subsection.

.2. Asymptotic stability

The conditions for asymptotic stability of the dynamics (6) for
ll i = 1, . . . ,N , are now studied. Substitute the control policies
17) in the error dynamics (6) to get

˙i =
(
A− (di + gi)BR−1

i BTPi
)
δi +

N∑
j=1

aijBR−1
j BTPjδj. (25)

ystem (25) can be expressed in global form by defining the
ariable δ = [δT1 , . . . , δTN ]

T , such that

˙ =
[
(I ⊗ A)− ((L+ G)⊗ B)R̄−1(I ⊗ BT )P

]
δ (26)

here I is an identity matrix of appropriate dimensions, ⊗ rep-
esents the Kronecker product, G = diagi {gi}, R̄ = diagi {Ri} and
= diagi {Pi}. Fig. 1 shows the block diagram of the feedback

lobal system.
Two additional assumptions will be considered to complete

he stability analysis of the global system (26).

ssumption 1. The matrices Ri in the performance indices (13)
re selected such that Ri = Rj = R for all agents i and j.

ssumption 2. The graph weights aij and gi have sufficiently
mall magnitudes for all pairs i, j, such that

min(Qi) ≥
[(

1−
1
γ 2

)
di + gi

]
λmax(PiBR−1BTPi) (27)

here di =
∑N

j=1 aij, λmin(·) and λmax(·) are the minimum and
aximum eigenvalues of a matrix, respectively, and all matrices
re defined in the ARE (19).
Assumption 2 is a restriction on the graph weights that will
e used to guarantee asymptotic stability of the global system.
ssumption 1 allows us to write R̄−1

= I ⊗ R−1, such that (26)
an be expressed as

˙ =
[
(I ⊗ A)− ((L+ G)⊗ BR−1BT )P

]
δ. (28)

imilarly, the ARE (19) can be written as

= Qi + PiA+ ATPi

−

[(
1−

1
γ 2

)
di + gi

]
PiBR−1BTPi. (29)

The following lemmas are used in our main proof of stability
elow. Recall that if the graph Gr is strongly connected, then
= 0 is a simple eigenvalue of the Laplacian matrix L (Lewis

t al., 2013).

emma 1. Let L be the Laplacian matrix of a strongly connected
raph, let G = diagi{gi} be the pinning gain and let R be a symmetric,
ositive definite matrix. Then, there exists a matrix W = diagi{wi}

such that

S1 :=
(
(L+ G)W−1

+W−1(L+ G)T
)
⊗ BR−1BT

≥ 0. (30)

Proof. It is proven in Zhang, Li, Qu and Lewis (2015) that there
exists a diagonal matrix W , such that W (L+ G)+ (L+ G)TW > 0
for strongly connected graphs. By properties of the Kronecker
product (Brewer, 1978) and the fact that BR−1BT is a symmetric,
positive semidefinite matrix, we get

(
W (L+ G)+ (L+ G)TW

)
⊗

R−1BT
≥ 0. Premultiplying and postmultiplying both sides of

this expression by W−1
⊗ I , we obtain (30). □

Lemma 2. Let matrix A have all eigenvalues with non-positive real
parts, let matrix Pi solve the ARE (29) and let Assumption 2 hold.
Define the matrix Pw = (W ⊗ I)P with W defined in Lemma 1 and
P is as in (26). Then,

S2 := −P−1
w (I ⊗ AT )− (I ⊗ A)P−1

w ≥ 0. (31)

Proof. Express the ARE (29) as

−PiA− ATPi

= Qi −

[(
1−

1
γ 2

)
di + gi

]
PiBR−1BTPi. (32)

rom (32), if (27) holds it is clear that −PiA − ATPi ≥ 0. Because
the graph is strongly connected, wi > 0 for all elements of the
vector w (Zhang, Li et al., 2015), and the inequality −w−1

i PiA −

w−1
i ATPi ≥ 0 holds. Premultiplying and postmultiplying both

sides of this expression by P−1
i , we get −w−1

i AP−1
i −w−1

i P−1
i AT

≥

0, which leads directly to (31). □

The result in Lemma 3 is used in the proof of the following
theorem.

Lemma 3. Consider the matrix S1 defined in Lemma 1. Then,
δT S1δ = 0 if and only if for all the subvectors δi of δ, we have
BR−1BT δi = 0.

Proof. The null space of any symmetric, positive semidefinite
matrix S is given by Null(S) = {δ|δT Sδ = 0} (Bernstein, 2009,
Fact 8.15.2). This implies that δT S1δ = 0 if and only if S1δ =

0; thus, δ must be an eigenvector of S1, associated with an
eigenvalue equal to zero. From the properties of the Kronecker
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product (Brewer, 1978), δ is such eigenvector if it can be ex-
pressed as δ = z1 ⊗ z2, where either (((L + G)W−1

+ W−1(L +
G)T ))z1 = 0 or BR−1BT z2 = 0. As the matrix (L+G)W−1

+W−1(L+
G)T is nonsingular (Zhang, Li et al., 2015), we get that each
component δi can be expressed as δi = z2, where BR−1BT z2 =

. □

We are ready to prove that the minmax policies (17) make the
lobal system (28) asymptotically stable. The following theorem
s our main result in this section.

heorem 3. Let the conditions in Theorem 1 hold, and make
ssumptions 1 and 2. Furthermore, let the graph Gr have a spanning
ree with the leader node as the root. Then, control policies (17)make
he system (28) asymptotically stable.

roof. The proof of this theorem is divided in two parts. First, we
rove that asymptotic stability is achieved for strongly connected
raphs. Then, we generalize the result for graphs with a spanning
ree.

Assume a strongly connected graph Gr and notice that
emmas 1 and 2 hold from Assumptions 1 and 2. Now,
−1
w

[
(I ⊗ A)− ((L+ G)⊗ BR−1BT )P

]T
+
[
(I ⊗ A)− ((L+ G)⊗ BR−1BT )P

]
P−1

w

= P−1
w (I ⊗ AT )− (W−1

⊗ I)((L+ G)T ⊗ BR−1BT )

+ (I ⊗ A)P−1
w − ((L+ G)⊗ BR−1BT )(W−1

⊗ I)

= P−1
w (I ⊗ AT )− (W−1(L+ G)T ⊗ BR−1BT )

+ (I ⊗ A)P−1
w − ((L+ G)W−1

⊗ BR−1BT )
= −S1 − S2 ≤ 0.

By Lyapunov theory (Khalil, 1996), the system (26) is stable.
oreover, using LaSalle’s extension (Khalil, 1996), the system

rajectories δ converge to the largest invariant set such that
T (S1 + S2)δ = 0. We now prove that this happens only when
= 0. Consider the ARE (19) and notice that PiA + ATPi −

di + gi)PiBR−1
i BTPi < 0. Premultiplying and postmultiplying this

nequality by P−1
i , we get

P−1
i + P−1

i AT
− (di + gi)BR−1

i BT < 0 (33)

y Lemma 3, δT S1δ = 0 if and only if BR−1BT δi = 0. It is also clear
hat δT S2δ = 0 if and only if δTi (P

−1
i AT

+AP−1
i )δi = 0. Assume now

hat there exists a vector δ ̸= 0 such that δT S1δ = 0 and δT S2δ =

. This would imply δTi (AP
−1
i + P−1

i AT
− (di + gi)BR−1

i BT )δi = 0,
hich contradicts the negative definiteness of (33). Therefore,
= 0 and the system is asymptotically stable.
Consider now the case when the graph has a spanning tree

ith the leader as a root. If Gr has a spanning tree but is not
trongly connected, then the Laplacian matrix is reducible and
an be expressed by means of a permutation transformation as
he Frobenius form Lewis et al. (2013)

L11 0 · · · 0
L21 L22 · · · 0
...

LM1 LM2 · · · LMM

⎤⎥⎥⎦
here each submatrix Lkk is irreducible. Irreducibility of matrix

kk implies that the subgraph connecting only the agents in the
th block row of L is strongly connected. This implies that the
ynamics of the agents in the first block row are asymptotically
table.
We can now prove stability of the global system by induction.

ssume all agents in the block rows 1 to k − 1 have stable
ynamics. Thus, as t → ∞, the influence of their local errors
j over the dynamics (25) of the agents in the kth block row
anishes. This leaves only the strongly connected interaction of
he agents in the kth block row, which is proven to be stable. □

Theorem 3 provides sufficient conditions for the asymptotic
tability of the minmax policies. In the following section, we show
hat minmax strategies also provide strong robustness properties
o the closed-loop system.

. Robustness analysis for minmax strategies

In this section, we are particularly interested in determining
he gain and phase margins of the agents provided by the min-
ax policies (17). Our approach to perform this analysis is to
onsider each individual agent using its minmax input (17) and
etermine how the neighbor policies, seen as a disturbance, affect
ts stability.

Let the perturbed version of the nominal system (21) be given
y the dynamics
˙̂
i = Aδ̂i + (di + gi) (BPui) (34)

here the disturbance P is assumed to be a finite-gain operator
ith P0 = 0, and δ̂i represents the state trajectories of the
erturbed system. We let δ̂i(0) = δi(0).
The subsequent robustness analysis follows a similar proce-

ure as in Safonov and Athans (1977). The following lemma
hows a sufficient condition on the disturbance P that guaran-
ees the stability of δ̂i. The gain and phase margins of the system
re then shown to be a particular case of such condition. Notice
lso that guaranteeing the stability of δ̂i implies the stability of δi.

emma 4. If the perturbation P of the system (34) is such that

u,

⎡⎣(di + gi)(2P − I)R−1
i +

1
γ 2

N∑
j=1

aijR−1
j

⎤⎦ u⟩ ≥ 0 (35)

for all u ∈ Lm2 [0,∞), then

δTi (0)Piδi(0) ≥ ⟨δ̂i,Qiδ̂i⟩. (36)

If, additionally,
[√

Q , A
]

is detectable, then δ̂i is asymptotically
stable.

Proof. Using the definition of the perturbed system (34) and the
ARE (29), we have for every τ ,

δTi (0)Piδi(0)

= δ̂Ti (τ )Piδ̂i(τ )−
∫ τ

0

d
dt

(
δ̂Ti (t)Piδ̂i(t)

)
dt

≥ −2⟨δ̂iτ , Pi
(
A− (di + gi)BPR−1

i BTPi
)
δ̂iτ ⟩

= ⟨δ̂iτ , (−PiA− ATPi)δ̂iτ ⟩

+ ⟨δ̂iτ , (2(di + gi)PiBPR−1
i BTPi)δ̂iτ ⟩

= ⟨δ̂iτ , (di + gi)PiB(2P − I)R−1
i BTPiδ̂iτ ⟩

+ ⟨δ̂iτ ,

⎛⎝ 1
γ 2

N∑
j=1

aijPiBR−1
j BTPi + Qi

⎞⎠ δ̂iτ ⟩

where δiτ is the truncation of δi as defined in Section 1.1. Let
Πi = (di + gi)(2P − I)R−1

i + (1/γ 2)
∑N

j=1 aijR
−1
j and write

δTi (0)Piδi(0)− ⟨δ̂iτ ,Qiδ̂iτ ⟩ ≥ ⟨δ̂iτ , PiBΠiBTPiδ̂iτ ⟩

= ⟨BTPiδ̂iτ , ΠiBTPiδ̂iτ ⟩
= ⟨ū, Πiū⟩ ≥ 0
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where ū = BTPiδ̂iτ and the last inequality holds by assumption.
In the limit τ → ∞, it follows that δTi (0)Piδi(0) ≥ ⟨δ̂i,Qiδ̂i⟩

which implies that ⟨δ̂i,Qiδ̂i⟩ is bounded. As [
√
Q , A] is detectable,

δ̂i is square-integrable. Because P has finite gain, so does the
matrix A − (di + gi)BPR−1

i BTPi. From (34), we notice that ˙̂
δi is

also square integrable. Since both δ̂i and
˙̂
δi are square integrable,

δ̂i is asymptotically stable (Safonov & Athans, 1977). □

The following theorem sets the result in Lemma 4 for the case
hen the disturbance P is a linear operator.

heorem 4. Let P be a finite-gain, linear time-invariant operator
with transfer matrix H(jω). If for all frequencies ω ∈ R

di + gi)
(
H(jω)R−1

i + R−1
i H∗(jω)− R−1

1

)
+

1
γ 2

N∑
j=1

aijR−1
j ≥ 0 (37)

nd if
[
Q 1/2, A

]
is detectable, then the system (34) is asymptotically

table.

roof. Expressing P as a linear operator H and using Parseval’s
heorem (Khalil, 1996), we get

ui,

⎡⎣(di + gi)(2P − I)R−1
i +

1
γ 2

N∑
j=1

aijR−1
j

⎤⎦ ui⟩

= ⟨ui,

⎡⎣(di + gi)(2H − I)R−1
i +

1
γ 2

N∑
j=1

aijR−1
j

⎤⎦ ui⟩

=
1
2π

∫
∞

−∞

U∗

i (jω)

[
(di + gi)

(
H(jω)R−1

i

+ R−1
i H∗(jω)− R−1

1

) 1
γ 2

N∑
j=1

aijR−1
j

]
U(jω)dω

≥ 0

here the last inequality holds by the assumption in (37). The
roof is completed by Lemma 4. □

From Theorem 4 we derive our main robustness results. The
following corollary holds for a particular selection of matrices Ri
and the disturbance P .

Corollary 1. Let Ri = diagk
{
ri,k
}
and let the disturbance P be such

that

Pui =

⎡⎢⎣ P1ui,1
...

Pmui,m

⎤⎥⎦ . (38)

If each of the perturbations Pk is linear time-invariant with proper
transfer function Hk(s), Re{sj} < 0 for all poles sj of Hk(s), and

Re{Hk(jω)} ≥
1
2

⎡⎣1−
1

(di + gi)γ 2

N∑
j=1

aij
ri,k
rj,k

⎤⎦ (39)

for all ω, then the system (34) is asymptotically stable.

Proof. Re{sj} < 0 assures that P has finite gain. Take H(s) =

diagk {Hk(s)}. Now,

(di + gi)r−1
i,k

(
Hk(jω)+ H∗

k (jω)− 1
)
+

1
γ 2

N∑
aijr−1

j,k

j=1
= 2(di + gi)
(
r−1
i,k Re{Hk(jω)} − r−1

i,k

)
+

1
γ 2

N∑
j=1

aijr−1
j,k

≥ 2(di + gi)r−1
i,k

⎛⎝1
2
−

1
2γ 2

1
di + gi

N∑
j=1

aij
ri,k
rj,k

⎞⎠
− (di + gi)r−1

i,k +
1
γ 2

N∑
j=1

aijr−1
j,k

= 0

As the conditions of Theorem 4 are satisfied, (34) is asymptoti-
cally stable. □

We can finally determine the phase and gain margins of min-
max strategies by means of the following result, which follows
from Corollary 1.

Corollary 2. Let the conditions of Corollary 1 hold. A phase shift φi
with

|φi| ≤ 60◦ + θ (40)

where θ = arccos
(
0.25(c +

√
12− 3c2)

)
and c = 1 − (di +

gi)−1γ−2∑ aijri,kr−1
j,k , in the respective feedback loops of each of

the controls ui will leave an asymptotically stable system. Moreover,
inserting a gain of αk such that

αk ≥
1
2

⎡⎣1−
1

(di + gi)γ 2

N∑
j=1

aij
ri,k
rj,k

⎤⎦ (41)

n the feedback loops of the controllers ui,k, leaves the system asymp-
otically stable.

roof. Expressing the complex number Hk(jω) in polar form,
it is clear from Corollary 1 that the condition for stability is
cosφk(ω) ≥ 0.5 − 0.5(di + gi)−1γ−2∑ aijri,kr−1

j,k , or |φk(ω)| ≤

arccos(0.5 − 0.5(di + gi)−1γ−2∑ aijri,kr−1
j,k ). Using trigonometric

identities, we can express this result as

|φi(ω)| ≤ arccos
(
1
2

)
+ arccos

(
c +

√
12− 3c2

4

)
with the constant c defined in the corollary statement. This
proves the phase margin of minmax policies.

From Corollary 1, if Hk(jω) represents a scalar gain αk, then
(41) guarantees stability of the system. □

Remark 4. Corollary 2 shows that minmax strategies have infi-
nite gain margin, gain reduction tolerance of more than 50% and
phase margin of more than 60◦. The amount of additional phase
delay and of additional gain reduction tolerance depend on the
selection of matrices Ri, parameter γ and the graph topology. This
is an improved result from the LQR controller, which is known to
have infinite gain margin, 50% gain reduction tolerance and 60◦
of phase margin (Safonov & Athans, 1977).

Remark 5. Minmax strategies are not a best response against
the actual behavior of the neighbors. Thus, the improved minmax
robustness properties are obtained at the cost of paying a higher
payoff when compared to the Nash, non-distributed policies.

6. Simulation results

Two numerical examples are presented to test the validity of
our theoretical results. First, we show the applicability of minmax
strategies to achieve synchronization. Then, the robustness prop-
erties of the minmax policies are compared with those of the LQR
solution.
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Fig. 2. Graph topology for simulation.

.1. Leader–followers synchronization

Consider a set of 5 agents and one leader connected as shown
n Fig. 2. If j ∈ Ni, let aij = 0.3. Each agent is taken with linear
ynamics given by (3), where

=

[
1 2

−2 −1

]
, B =

[
3 0
0 3

]
. (42)

We first show that the agents in this system do not have dis-
tributed control policies of the form (17) that achieve Nash equi-
librium. Consider, then the performance indices (7) and quadratic
value functions as in (15) and notice that the HJ equations (10)
are now expressed as

δTi
(
Qi + PiA+ ATPi − (di + gi)2PiBR−1

i BTPi
)
δi

+

N∑
j=1

aij(dj + gj)2δjPjBR−1
j RijR−1

j BTPjδj

+2
N∑
j=1

aij(dj + gj)δiPiBR−1
j BTPjδj = 0. (43)

which must now be solved for matrices Pi for all agents i. Because
(43) must hold for all values of δi and δj, then the matrices Pi and
Pj, j ∈ Ni, must solve simultaneously the matrix equations

Qi + PiA+ ATPi − (di + gi)2PiBR−1
i BTPi = 0,

PjBR−1
j RijR−1

j BTPj = 0,

PiBR−1
j BTPj = 0. (44)

Note that there are N sets of equations of the form (44) that need
to be solved simultaneously. It is clear that these equations do not
have positive definite solutions.

Minmax strategies are now designed as proposed in this paper.
The minmax performance indices of the agents are defined by
(13) with Q1 = Q3 = 2I , Q2 = Q5 = 3I and Q4 = I , where I is the
identity matrix. Let all agents use the same values for R = 2I and
γ = 2.

The matrices Pi that solve the minmax strategies problem
are obtained by solving the algebraic Riccati equations (19). The
resulting matrices are shown below.

P1 =
[

0.5055 0.0314
0.0314 0.3537

]
, P2 =

[
1.1928 0.1314
0.1314 0.7597

]
,

P3 =
[

0.6756 0.0612
0.0612 0.4441

]
, P4 =

[
0.4991 0.0707
0.0707 0.3068

]
,

5 =

[
0.8049 0.0542
0.0542 0.5558

]
.

The minmax control policies are now given by (17) with

he appropriate matrix Pi for each agent. Using these policies,
Fig. 3. State trajectories with minmax policies.

Fig. 4. Synchronization in time with minmax policies.

the agents successfully achieve synchronization with trajectories
shown in Fig. 3. Fig. 4 shows the trajectories of the agents also
along a time axis.

6.2. Robustness comparison

To test the results presented in Section 5, we present a sim-
ulation comparison when the system (21) presents parametric
uncertainties. The LQR and the minmax policies used here differ
only in the selection of matrix Pi. For minmax, the ARE (19) is
solved, while for the single-agent LQR Pi is the solution of the
ARE

Qi + PiA+ ATPi − PiBR−1
i BTPi = 0. (45)

These equations are solved using the matrices in (42). However,
let the actual system be given by the matrices

Ā =

[
3 2

−2 1

]
, B̄ =

[
1.7 0.2
0.2 1.2

]
.

For clarity, we show the following results only for agent 1.
Similar results are obtained for all other agents. Using the sim-
ulation parameters in (40) and (41), we get

|φ1| ≤ 60◦ + arccos
1
4

(
5
6
+

√
12−

25
12

)
= 65.37◦,
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α

r

Fig. 5. The LQR policy leaves the uncertain system unstable.

Fig. 6. Minmax policies stabilize the uncertain system.

1 ≥
1
2

(
1−

1
6

)
=

5
12

.

These results improve the 60◦ phase margin and the 0.5 gain
eduction tolerance of the LQR controller.

The simulation results are shown in Figs. 5 and 6. Fig. 5,
shows that the system with parametric uncertainties remains
unstable when the LQR controller is applied. On the other hand,
the minmax policy is shown in Fig. 6 to stabilize the system in
spite of the incorrect model used to design it.

7. Conclusion

Minmax strategies were designed and analyzed as an alter-
native solution concept for differential graphical games. The as-
sumption made by each agent about the worst intentions of its
neighbors yields robust control policies, as analyzed in Section 5.
Such policies are always distributed in the sense that the agents
use only local information obtained from the graph topology.
Although the agents prepare their strategies against neighbor
policies that are not being used, the global system still reaches
asymptotic stability and synchronization with the leader node.

Despite its attractive features, the robustness properties of
minmax may be too conservative for certain applications. For
this reason, research about differential graphical games is being
continued by the authors considering different solution concepts
that still allow solutions using distributed input policies.
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