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Abstract— Control-theoretic differential games have been used
to solve optimal control problems in multiplayer systems. Most
existing studies on differential games either assume deterministic
dynamics or dynamics corrupted with additive noise. In realis-
tic environments, multidimensional environmental uncertainties
often modulate system dynamics in a more complicated fash-
ion. In this article, we study stochastic multiplayer differential
games, where the players’ dynamics are modulated by randomly
time-varying parameters. We first formulate two differential
games for systems of general uncertain linear dynamics, including
the two-player zero-sum and multiplayer nonzero-sum games.
We then show that optimal control policies, which constitute the
Nash equilibrium solutions, can be derived from the correspond-
ing Hamiltonian functions. Stability is proven using the Lyapunov
type of analysis. In order to solve the stochastic differential games
online, we integrate reinforcement learning (RL) and an effective
uncertainty sampling method called the multivariate probabilistic
collocation method (MPCM). Two learning algorithms, includ-
ing the on-policy integral RL (IRL) and off-policy IRL, are
designed for the formulated games, respectively. We show that
the proposed learning algorithms can effectively find the Nash
equilibrium solutions for the stochastic multiplayer differential
games.

Index Terms— Integral reinforcement learning (IRL), multi-
player systems, neural networks (NNs), systems with randomly
time-varying parameters, uncertainty quantification.

I. INTRODUCTION

GAME theory has been widely used in multiplayer
systems to obtain decisions that optimize individual

payoffs [1]–[6]. In the traditional game theory, a player
finds the best strategy to minimize a static and immediate
cost [1]–[3]. Recently, differential games were combined with
control theory to study dynamical systems that involve the
evolution of the players’ payoff functions [5]–[7]. Widely
used differential games include the two-player zero-sum game,
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which provides solutions for pursuit–evasion games and H∞
design for disturbance attenuation [7], and the multiplayer
nonzero-sum game, which finds applications in, e.g., the con-
trol of transportation networks and the cooperative control of
multiple robots with individual goals [6]. Most existing studies
on differential games assume deterministic dynamics. In real-
ity, multidimensional uncertainties, such as uncertain player
intentions and environmental impacts, often modulate system
dynamics in a complicated fashion. As such, in this article,
we formulate and study practical Nash solutions for new
stochastic two-player zero-sum and multiplayer nonzero-sum
games, where the system dynamics are modulated by multidi-
mensional time-varying random parameters.

For deterministic differential games, the Nash equilibrium
solutions rely on solving the Hamilton–Jacobi–Bellman (HJB)
equations for nonlinear systems or the game algebraic Riccati
equation (GARE) for linear systems. However, solving HJB
or GARE equations analytically is difficult or even impossi-
ble [6]. Moreover, this method requires the full knowledge
of system dynamics, and only provides an offline solution.
As such, the reinforcement learning (RL) method has been
developed to solve the differential games online [8]–[12].
We also explore RL to develop online solutions in this article
for the new games with dynamics modulated by uncertainties.

The RL method was developed based on the idea that
successful decisions should be remembered as a reinforce-
ment signal, such that they are more likely to be used in
future decisions [13]–[19]. RL has been used to find the
Nash equilibrium solutions online for multiplayer differential
games. In particular, for the two-player zero-sum game, [8]
presented an adaptive dynamic programming (ADP)-based
learning algorithm and used integral RL (IRL) to find the
optimal policies online. However, the developed method uses
a two-loop iteration algorithm to update the policies of the
two players in sequence, which can be time-consuming.
To deal with this problem, [20] developed a single-loop iter-
ation algorithm that updates the two players’ control policies
simultaneously. In addition, to deal with the systems with
unknown dynamics, [21] developed a model-free IRL for the
two-player zero-sum differential game using Q-learning. For
the multiplayer nonzero-sum game, [11] developed an ADP
algorithm that finds the Nash equilibrium online using IRL
and partial information of the system dynamics. To deal with
the systems of totally unknown dynamics, [12] established
an off-policy IRL to solve the nonlinear continuous-time
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multiplayer nonzero-sum games at the cost of additional com-
putation. The off-policy method solves the value function and
optimal control policies simultaneously using both critic and
actor neural networks (NNs) and does not require knowledge
of the system dynamics. All these aforementioned studies
assume time-invariant and deterministic system dynamics.

To address uncertainties in differential games operating in
realistic environments, practical uncertainty evaluation meth-
ods are needed to evaluate expected costs [22]–[26]. The most
widely used simulation-based uncertainty evaluation methods
are the Monte Carlo (MC) method and its variants, including
the Markov chain MC and sequential MC [27]–[29]. However,
the MC-based methods require a large number of simula-
tions to estimate the expected cost function accurately, which
makes them unrealistic for online algorithms. To improve the
computational efficiency, other uncertainty sampling methods,
including the Latin hypercube sampling [30], importance
sampling [31], multilevel MC [32], and greedy and adaptive
sampling [33], [34] have also been developed. However, none
of them can estimate expected system outputs accurately
with a computational load. To deal with this challenge, [35]
and [36] developed effective uncertainty evaluation methods,
named multivariate probabilistic collocation method (MPCM)
and its variant (MPCM-OFFD), which accurately estimate
the expected output mean of a system mapping by smartly
selecting a small set of samples according to the uncertainties’
statistics (e.g., probability density functions). References [37]
and [38] further integrated the MPCM with the discrete-time
RL to solve optimal control problems online for uncertain
systems. Here, in this article, we study the integrated MPCM
and IRL to effectively solve stochastic multiplayer differential
games online.

This article, for the first time in the literature to the best
of our knowledge, analyzes multiplayer differential games
for systems modulated by general randomly time-varying
parameters and develops effective online learning methods
to solve such stochastic games. The main contributions of
this article are fourfold: 1) the formulation of two-player
zero-sum and multiplayer nonzero-sum games for systems
modulated by time-varying random parameters, which cap-
tures stochastic environmental impacts and random player
intentions [39]–[41]; 2) the analysis of the formulated differ-
ential game properties, including the stability and the Nash
equilibrium; 3) a novel policy iteration algorithm that inte-
grates IRL and an effective uncertainty sampling method,
i.e., MPCM, to provide an effective online solution for these
stochastic games; and 4) the integration of off-policy IRL and
the MPCM to solve these stochastic games online without
knowing the system dynamics.

The rest of this article is organized as follows. Section II
formulates the stochastic two-player zero-sum and multiplayer
nonzero-sum games and presents the preliminaries to facilitate
the analysis in this article. Sections III and IV study the
properties and online solutions of these two stochastic games.
Section V presents the simulation studies that demonstrate per-
formances of the proposed solutions, and Section VI concludes
this article.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first formulate two stochastic multiplayer
games with general linear uncertain dynamics, including the
two-player zero-sum and multiplayer nonzero-sum games.
Preliminaries are then introduced to facilitate the analysis in
this article.

A. Problem Formulation

Game 1 (Stochastic Two-Player Zero-Sum Game): Con-
sider a generic two-player linear system with a randomly
time-varying vector a(t) of dimension m

ẋ = A(a)x + Bu + Cd (1)

where x = x(t) ∈ R
n is the system state vector, u =

u(t) ∈ R
p is the control input, and d = d(t) ∈ R

q is
the adversarial control input. A(a), B, and C are the drift
dynamics, input dynamics, and adversarial input dynamics,
respectively. Each element of a(t), ap(t) (p = 1, 2, . . . , m),
changes independently over time with pdf fAp (ap(t)), and the
sample functions of ap(t) are well-behaved so that the sample
equations for (1) are ordinary differential equations [42], [43].

This stochastic game formulation has a wide range of
potential applications, e.g., the pursuit–evasion games and H∞
design for disturbance attenuation in real environments mod-
ulated by uncertain parameters. One specific example is the
aircraft dynamics described as v̇(t) = −K v(t)+Fu(t)+Fd (t).
Here, v is the velocity, Fu(t) is the controlled thrust force,
Fd(t) is the disturbance force, and K is the air resistance coef-
ficient. The air resistance coefficient, related to air density and
air humidity, is a randomly time-varying parameter affected by
uncertain weather conditions. The statistics (e.g., pdfs) of such
weather conditions can be obtained from probabilistic weather
forecasts.

The expected cost to optimize is

J (x(0), u, d) = E

[∫ ∞

0
r(x, u, d)dt

]

= E

[∫ ∞

0
(xTQx + uTRu − γ 2‖d‖2)dt

]
(2)

where Q and R are positive semidefinite and positive definite
matrices, respectively, and γ is the amount of attenuation from
the disturbance input to the defined performance.

The value function V (x(t)) corresponding to the perfor-
mance index is defined as

V (x(t)) = E

[∫ ∞

t
(xTQx + uTRu − γ 2‖d‖2)dτ

]
. (3)

Define the two-player zero-sum differential game as

V ∗(x(0)) = min
u

max
d

J (x(0), u, d) (4)

where V ∗(x(0)) is the optimal value function. In the
two-player zero-sum game, one player u seeks to minimize
the value function, and the other d seeks to maximize it.

Game 2 (Stochastic Multiplayer Nonzero-Sum Game): Con-
sider a generic N-player linear system with a time-varying
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uncertain vector a(t) of dimension m. The system dynamics
is

ẋ = A(a)x +
N∑

j=1

Bu j (5)

where x = x(t) ∈ R
n is the system state vector, u j = u j (t) ∈

R
p is the control input of player j , and A(a) and B are the

drift dynamics and input dynamics, respectively. Each element
of a(t), ap(t) ( p = 1, 2, . . . , m), changes independently over
time with pdf fAp (ap(t)), and the sample functions of ap(t)
are well-behaved so that the sample equations (5) are ordinary
differential equations [42], [43].

The expected cost to optimize for player i is

Ji (x(0), ui , u−i ) = E

[∫ ∞

0
ri (x, ui , u−i )dt

]

= E

⎡
⎣∫ ∞

0

⎛
⎝xTQix+

N∑
j=1

uT
j Ri j u j

⎞
⎠dt

⎤
⎦
(6)

where u−i is the supplementary set of ui : u−i = {u j , j ∈
(1, 2, . . . , i −1, i +1, . . . , N)}. Qi and Ri j (i �= j ) are positive
semidefinite matrices, and Rii is positive definite.

The value function for player i is defined as

Vi (x(t)) = E

⎡
⎣∫ ∞

t

⎛
⎝xTQi x +

N∑
j=1

uT
j Ri j u j

⎞
⎠dτ

⎤
⎦ . (7)

Define the multiplayer differential game as

V ∗
i (x(0)) = min

ui
Ji (x(0), ui , u−i ) (8)

where V ∗
i (x(0)) is the optimal value function for player i .

In the multiplayer game, each player tries to minimize its
cost by choosing its control policy ui based on the full-state
information of the system.

B. Preliminaries

Definition 1 [42]: The equilibrium solution of a system is
said to be stable in the mean (norm) if for any ε > 0 there
exists a δ(ε) > 0, such that for any initial condition satisfying
‖x0‖ < δ(ε)

E{‖x(t)‖} < ε

for all t ≥ t0.
It is assumed that the system described in (1) is stabilizable

in the mean, that is, there exist control policies u = −Kux
and d = −Kdx, such that the closed-loop system ẋ = (A(a)−
BKu − CKd )x is stable in the mean.

Definition 2 [42]: The equilibrium solution is said to be
asymptotically stable in the mean (norm) if it is stable in the
mean and moreover, there exists a δ(t0) > 0, such that for any
initial condition satisfying ‖x0‖ < δ(t0)

lim
t→∞ E{‖x(t)‖} → 0.

Definition 3 [44]: The system (1) is said to have L2-gain
less than or equal to γ if the following disturbance attenuation

condition is satisfied for all T ≥ 0 and all d ∈ L2[0,∞) with
x(0) = 0, where 0 is a zero matrix with proper dimensions∫ T

0 ‖z(τ )‖2dτ∫ T
0 ‖d(τ )‖2dτ

≤ γ 2

where ‖z(t)‖2 = xTQx + uTRu, d(t) is the disturbance input,
and γ is the amount of attenuation.

It is assumed that γ in (2) satisfies γ > γ ∗, where γ ∗ is the
smallest γ that satisfies the disturbance attenuation condition
for all possible A(a), to make sure that the system is always
stabilizable.

Definition 4 [5]: Policies {u∗
1, u∗

2, . . . , u∗
N } are said to con-

stitute a Nash equilibrium solution for the N-player game if
the following equation is satisfied for ∀ui∀i ∈ N :

J ∗
i (u∗

1, u∗
2, . . . , u∗

i , . . . , u∗
N ) ≤ Ji (u∗

1, u∗
2, . . . , ui , . . . , u∗

N ).

The N-tuple {J ∗
1 , J ∗

2 , . . . , J ∗
N } is known as a Nash equilibrium

value set of the N-player game.
Lemma 1 [42, Th. II]: Consider a system ẋ = f (x(t), a(t)),

where a(t) is a vector of time-varying random parameters. If
there exists a Lyapunov function Ṽ (x(t)) defined over the state
space and satisfies the conditions listed as follows (1–4), then
the equilibrium solution of the system is asymptotically stable
in the mean.

1) Ṽ (0) = 0.
2) Ṽ (x(t)) is continuous with both x and t , and the first

partial derivatives in these variables exist.
3) Ṽ (x(t)) ≥ b‖x‖ for some b > 0.

4) E
[ ˙̃V (x(t))

]
is a negative definite.

III. STOCHASTIC TWO-PLAYER ZERO-SUM GAME

In this section, we study the properties and optimal solutions
of the stochastic two-player zero-sum game. Section III-A
studies the stability and the Nash equilibrium of the pro-
posed game, and Section III-B develops both on-policy and
off-policy IRL solutions to solve the game online.

A. Stability and Nash Equilibrium

With the value function defined in (3), the following Bell-
man equation can be derived by taking derivative of V (x(t))
with respect to time t

r(x, u, d) + E

[
∂V T

∂x
(A(a)x + Bu + Cd)

]
= 0. (9)

with the Hamiltonian function

H

(
x, u, d,

∂V

∂x

)

= r(x, u, d) + E

[
∂V T

∂x
(A(a)x + Bu + Cd)

]
. (10)

The optimal control policies u∗ and d∗ can be derived
by employing the stationary conditions in the Hamiltonian
function [5, p. 447]

∂ H

∂u
= 0 → u∗ = −1

2
R−1BT ∂V ∗

∂x
∂ H

∂d
= 0 → d∗ = 1

2γ 2 CT ∂V ∗

∂x
. (11)
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Substituting (11) into the Bellman equation (9), the follow-
ing HJB equation is obtained

H
(
x, u∗, d∗, V ∗

X

)
= xTQx + E

[
V ∗T

X A(a)x − 1

4
V ∗T

X BR−1BTV ∗
X

+ 1

4γ 2 V ∗T

X CCTV ∗
X

]
= 0, V (0) = 0 (12)

where V ∗
X = ∂V ∗/∂x.

Note that the HJB equation (12) contains the randomly
time-varying vector, a(t). Compared with the HJB equation
defined in deterministic systems, (12) is harder to solve, as it
involves the evaluation of uncertainty, which can be computa-
tionally expensive. In Section III-B, we introduce an effective
uncertainty evaluation method and show its integration with
learning methods to solve the HJB equation (12) online.

Lemma 2: For any admissible control and disturbance poli-
cies u and d, let V ≥ 0 be the corresponding solution to the
Bellman equation (10), and then, the following equation holds
[5, Lemma 10.2-1]:

H (x, u, d, VX) = H (x, u∗, d∗, VX )

+ (u − u∗) TR(u − u∗) − γ 2‖d − d∗‖2

where u∗ and d∗ are described in (11), and VX = ∂V /∂x.
Proof: See Appendix A. �

Theorem 1: Let V (x(t)) > 0 be a smooth function satisfy-
ing the HJB equation described in (12), and then, the following
statements hold.

1) The system (1) is asymptotically stable in the mean with
the policies u∗ and d∗ described in (11).

2) The solution (i.e., policies u∗ and d∗) derived in (11)
provides a saddle point solution to the game, and the
system is in Nash equilibrium with this solution.

Proof: See Appendix B. �

B. Approximate Solutions Using On-Policy and
Off-Policy IRL and the MPCM

Solving the HJB equation (12) analytically is extremely
difficult or even impossible [44]. Here, we integrate IRL
and the MPCM to provide effective online algorithms to
approximate the solution of the HJB equation.

The IRL Bellman equation can be written as

V (x(t))= E

[∫ t+T

t
r(x(τ ), u(τ ), d(τ ))dτ +V (x(t+T ))

]
(13)

where T is the time interval.
It is assumed that there exists a weight W, such that the

value function is approximated as

V (x) = WTφ(x) (14)

where φ(x) is the polynomial basis function vector.
1) On-Policy IRL: With the value function approximation

(VFA), one can find the optimal solution from the policy
iteration (PI) algorithm by iteratively conducting two steps:

policy evaluation that evaluates the value function V (x)
using (13) and policy improvement [5] that finds the optimal
solution based on the current approximated value function
using (11). For systems with uncertain system dynamics,
the policy evaluation step involves uncertainty evaluation,
which is typically solved by the MC method, too slow to be
used for online solutions.

Here, we utilize an effective uncertainty evaluation method,
called the MPCM [35]. To map to the MPCM framework,
we denote the generic function whose expectation to be
evaluated as G(a1, a2, . . . , am), which is modulated by m
uncertain parameters, i.e., a1, a2, . . . , am , with the degree of
each parameter up to 2n p − 1, where p = 1, 2, . . . , m.
The MPCM accurately evaluates the output mean of G by
conducting the following three steps: 1) selecting a limited
number of sample points according to the Gaussian quadrature
rules and the pdfs of the uncertain parameters, i.e., fAp (ap(t));
2) evaluating the system outputs at selected sample points; and
3) finding the output mean of G from a reduced-order mapping
G′. The properties of the MPCM are briefly described in the
following lemma. For the detailed MPCM design procedure,
please refer to [35].

Lemma 3 [35, Th. 2]: Consider a system mapping modu-
lated by m independent uncertain parameters

G(a1, a2, . . . , am) =
2n1−1∑
q1=0

2n2−1∑
q2=0

· · ·
2nm−1∑
qm=0

ψq1,q2,...,qm

m∏
p=1

a
qp
p

(15)

where ap is an uncertain parameter with the degree up to
2n p − 1, p = 1, 2, . . . , m. n p is a positive integer, and
ψq1,q2,...,qm ∈ R are the coefficients. Each uncertain para-
meter ap follows an independent pdf fAp (ap). The MPCM
approximates G(a1, a2, . . . , am) with the following low-order
mapping:

G′(a1, a2, . . . , am) =
n1−1∑
q1=0

n2−1∑
q2=0

· · ·
nm−1∑
qm=0

	q1,q2,...,qm

m∏
p=1

a
qp
p

with E[G(a1, a2, . . . , am)] = E[G′(a1, a2, . . . , am)], where
	q1,q2,...,qm ∈ R are coefficients.

As shown in Lemma 3, the MPCM reduces the number of
simulations from 2m∏m

p=1 n p to
∏m

p=1 n p . Despite the signif-
icant reduction of computation by 2m , the MPCM accurately
predicts the output mean [35]. Here, we integrate the MPCM
into IRL to provide effective online learning-based solutions
for differential games of systems with randomly time-varying
parameters.

Define a system mapping subject to uncertain parame-
ters a(t), GV (t)(x, u, d, a) = ∫ t+T

t r(x(τ ), u(τ ), d(τ ))dτ +
V (x(t + T )). Given the current system state x(t) and
admissible control and disturbance policies u(t) and d(t),
the value function described in (13) can be approximated
by the mean output of the system mapping GV (t)(x, u, d, a)
(i.e., V (x) = E

[
GV (t)(x, u, d, a)

]
), using the MPCM. In par-

ticular, we select a set of samples based on the pdfs of
uncertain parameters, fAp (ap), and run simulations at these
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samples to estimate E
[
GV (t)(x, u, d, a)

]
. Under the assump-

tion that each uncertain parameter ap has a degree up to
2n p − 1, GV (t)(x, u, d, a) has the following form:

GV (t)(x, u, d, a)

=
2n1−1∑
q1=0

2n2−1∑
q2=0

· · ·
2nm−1∑
qm=0

ψq1,q2,...,qm (x, u, d)

m∏
p=1

a
qp
p . (16)

With this mapping, the value function can be estimated
from the mean output of a reduced-order mapping according
to Lemma 3 as

V (x(t)) = E[GV (t)(x, u, d, a)] = E
[
G′

V (t)(x, u, d, a)
]

(17)

where G′
V (t)(x, u, d, a) is the reduced-order mapping derived

from the MPCM procedure [35]

G′
V (t)(x, u, d, a)

=
n1−1∑
q1=0

n2−1∑
q2=0

· · ·
nm−1∑
qm=0

	q1,q2,...,qm (x, u, d)

m∏
p=1

a
qp
p . (18)

The PI algorithm that integrates IRL and the MPCM for the
two-player zero-sum game with uncertain system dynamics is
summarized in Algorithm 1.

Theorem 2: Consider the stochastic two-player zero-sum
game shown in (1)–(4). The uncertainties in the system
dynamics ap follow time-invariant pdfs fAp (ap). Assume the
following: 1) VFA in (14) holds; 2) the relation between
the value function V (x(t)) and the uncertain parameters a(t)
can be approximated by a polynomial system mapping (19)
with the form of (15); and 3) Algorithm 1 converges. Then,
the policies u and d derived from Algorithm 1 are optimal
policies.

Proof: See Appendix C. �
2) Off-Policy IRL: Algorithm 1 learns the optimal solution

online with knowledge of the system dynamics (i.e., matrix B
and C). In addition, the on-policy learning algorithm requires
both control and disturbance policies to be adjustable to learn
the optimal solution.

In this section, we provide an off-policy IRL algorithm
and use three NNs, including critic NN, actor NN, and
disturbance NN, to learn the optimal solution online without
requiring to know the system dynamics, i.e., matrix B and C,
or manipulating the disturbance policies.

To this end, we introduce auxiliary variables u(s) and d(s),
and hence, the system dynamics described in (1) is further
written as

ẋ = A(a)x + Bu(s) + Cd(s) + B
(

u − u(s)
)

+ C
(

d − d(s)
)
(21)

where u and d are behavior policies applied to the system to
generate data for learning, and u(s) and d(s) are the desired
policies to be updated.

Algorithm 1 Policy Iteration Algorithm for Two-Player Zero-
Sum Game With Uncertain System Dynamics
1: Initialize the players with initial state x(0) and admissible

control and disturbance policies u(0) and d(0).
2: Apply the MPCM procedure [35, Section II] to select a set

of samples for the uncertain vector a(t).
3: For each iteration s, find the value of∫ t+T

t
r
(

x(τ ), u(s)(τ ), d(s)(τ )
)

dτ

+W(s+1)T
φ(x(t + T ))

at each MPCM sample.
4: Find the value function V (s)(x(t)) using the MPCM [35],

which is the mean output of the mapping GV (s)(·) subject
to uncertain parameters a(t),

GV (s)

(
x, u(s), d(s), a

)
= W(s+1)T

φ(x(t + T ))

+
∫ t+T

t
r
(
x(τ ), u(s)(τ ), d(s)(τ )

)
dτ. (19)

5: Update the value function weight vector W(s) according to
the estimated V (s)(x(t)).

W(s)T
φ(x(t)) = V (s)(x(t)).

6: Update the control and disturbance policies u(s+1) and
d(s+1) as

u(s+1) = −1

2
R−1BT ∂V (s)

∂x

d(s+1) = 1

2γ 2 CT ∂V (s)

∂x
. (20)

7: Repeat procedures 3−6.

Differentiating the value function V (s)(x(t)) of the sys-
tem (21), one has

V̇ (s)(x(t)) = E
[
V (s)T

X

(
A(a)x + Bu(s) + Cd(s)

)]
+V (s)T

X

(
B
(

u − u(s)
)

+ C
(

d − d(s)
))

= −
(

xTQx + u(s)T
Ru(s) − γ 2‖d(s)‖2

)
− 2u(s+1)T

R
(

u − u(s)
)

+ 2γ 2d(s+1)T
(

d − d(s)
)

. (22)

The second equality is obtained by combining the Hamiltonian
functions (10) and (20).

Integrating both sides in (22), one has

V (s)(x(t + T )) − V (s)(x(t))

= E

[∫ t+T

t

(
−xTQx − u(s)T

Ru(s) + γ 2‖d(s)‖2
)

dτ

]

+
∫ t+T

t

(
−2u(s+1)T

R
(

u − u(s)
)

+ 2γ 2d(s+1)T
(

d − d(s)
))

dτ. (23)
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Algorithm 2 Off-Policy IRL for Two-Player Zero-Sum Game
With Uncertain System Dynamics
1: Initialize the players with initial state x(0) and admissible

control and disturbance policies u(0) and d(0).
2: Apply the MPCM procedure [35, Section II] to select a set

of samples for the uncertain vector a(t).
3: For each iteration s, find the value of∫ t+T

t

(
xTQx + u(s)T

Ru(s) − γ 2‖d(s)‖2
)

dτ

+ V (s)(x(t + T )) (25)

at each MPCM sample.
4: Find the mean output of mapping Go

V (s) (·) subject to
uncertain parameters a(t) using the MPCM [35],

Go
V (s)

(
x, u(s), d(s), a

)
= V (s)(x(t + T ))

+
∫ t+T

t

(
xTQx + u(s)T

Ru(s) − γ 2‖d(s)‖2
)

dτ.

(26)

5: Solve the following equation for V (s)(x), u(s+1), and d(s+1)

simultaneously.

E
[
Go

V (s)

(
x, u(s), d(s), a

)]
= V (s)(x(t)) −

∫ t+T

t

(
2u(s+1)T

R
(

u − u(s)
)

−2γ 2d(s+1)T
(

d − d(s)
))

dτ. (27)

6: Repeat procedures 3−5.

Note that for any fixed admissible control and disturbance
behavior policies u and d, (23) can be solved for the value
function V (s) and the optimal control and disturbance polices
u(s+1) and d(s+1) simultaneously using the following NNs:

V (s)(x) = W(s)T
φ(x)

u(s+1)(x) = W(s+1)T

u φu(x)

d(s+1)(x) = W(s+1)T

d φd(x). (24)

The off-policy IRL and the MPCM is described in
Algorithm 2.

Theorem 3: Consider the stochastic two-player zero-sum
game shown in (1)–(4). The uncertainties in the system
dynamics ap follow time-invariant pdfs fAp (ap). Assume the
following: 1) VFA in (24) holds; 2) the relation between the
value function V (x(t)) and the uncertain parameters a(t) can
be approximated by a polynomial system mapping (26) with
the form of (15); and 3) Algorithm 2 converges. Then, the poli-
cies derived from off-policy IRL described in Algorithm 2 are
optimal policies.

Proof: See Appendix D. �
Remark 1: In both algorithms, the disturbance needs to

be measurable. For the off-policy algorithm, the disturbance
policy is not required to be adjustable. In particular, in the
off-policy algorithm, the control and disturbance policies u

and d that are applied to the system can be different from
the control and disturbance policies u(s) and d(s) that are
evaluated and updated. As such, in contrast to the on-policy
IRL, the applied disturbance input d in the off-policy IRL can
be the actual external disturbance that is not adjustable.

Remark 2: Note that the admissible control and disturbance
policies initialize the first step in Algorithm 2. They refer to
control and disturbance policies that can make the system
stable. In the off-policy IRL, the exact system dynamics B
and C are unknown. However, the ranges of parameters in
the system dynamics are often available due to the system’s
physical properties to obtain an estimated range of admissible
control policies to initialize the off-policy IRL algorithm. It is
also, often, of practice to first try a PID controller for an
unknown system, which gives a range of admissible control
policies for the initialization step.

Remark 3: Algorithms 1 and 2 integrate IRL and MPCM,
for the first time in the literature, to solve the stochastic
two-player zero-sum game. The uncertainty evaluation in such
stochastic optimal control problems is typically solved by MC
method and its variants, which is time-consuming to use for
online solutions. The proposed algorithms find the optimal
solutions accurately with computational efficiency, as indicated
in Lemma 3 and Theorems 2 and 3. The potential applications
of the two algorithms include the pursuit–evasion games and
H∞ design for disturbance attenuation in real environments
modulated by uncertain parameters.

IV. MULTIPLAYER NONZERO-SUM GAME

This section studies the stochastic N-player nonzero-sum
game. Each player aims to find its optimal control policy to
minimize its own cost function. The properties and optimal
solution of this game are analyzed in Section IV-A, and online
learning algorithms are provided in Section IV-B.

A. Stability and Global Nash Equilibrium

Consider the value function described in (7), and the differ-
ential Bellman equation can be found by taking derivative of
Vi (x(t)) with respect to time t

ri (x, ui , u−i ) + E

⎡
⎣∂V T

i

∂x

⎛
⎝A(a)x +

N∑
j=1

Bu j

⎞
⎠
⎤
⎦ = 0. (28)

The Hamiltonian function is

Hi

(
x, ui , u−i ,

∂V T
i

∂x

)

= ri (x, ui , u−i ) + E

⎡
⎣∂V T

i

∂x

⎛
⎝A(a)x +

N∑
j=1

Bu j

⎞
⎠
⎤
⎦ . (29)

The optimal control policy u∗
i is derived by employing the

stationary condition in the Hamiltonian function

∂ Hi

∂ui
= 0 → u∗

i = −1

2
R−1

ii BT ∂V ∗
i

∂x
. (30)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2021 at 15:52:05 UTC from IEEE Xplore.  Restrictions apply. 



5528 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Substituting (30) into the Bellman equation (28), the fol-
lowing HJB equation is obtained:

xTQi x + E

⎡
⎣1

4

N∑
j=1

∂V ∗T
j

∂x
BR−T

j j Ri j R−1
j j BT

∂V ∗
j

∂x

+∂V ∗T
i

∂x

⎛
⎝A(a)x − 1

2

N∑
j=1

BR−1
j j BT

∂V ∗
j

∂x

⎞
⎠
⎤
⎦ = 0.

(31)

Lemma 4: For any admissible control policy ui , let Vi ≥ 0
be the corresponding solution to the Bellman equation (28),
and then, the following equation holds:

Hi

(
x, ui , u−i ,

∂V T
i

∂x

)

= Hi

(
x, u∗

i , u∗−i ,
∂V T

i

∂x

)
+

N∑
j=1

(
u j − u∗

j

) TRi j
(
u j − u∗

j

)

+∂V T
i

∂x

N∑
j=1

B
(
u j − u∗

j

)+ 2
N∑

j=1

(
u∗

j

) TRi j
(
u j − u∗

j

)
.

Proof: See Appendix E. �
Theorem 4: Let Vi be a smooth function satisfying the HJB

equation (31), and then, the following statements hold.
1) The system (5) is asymptotically stable in the mean with

the control policy u∗
i described in (30).

2) The control policies [u∗
1, u∗

2, . . . , u∗
N ] derived in (30) are

global Nash equilibrium policies.
Proof: See Appendix F. �

B. Approximate Solutions Using On-Policy and
Off-Policy IRL and MPCM

The IRL Bellman equation for each player is given as [6]

Vi (x(t))

= E

[∫ t+T

t
ri (x(τ ), ui (τ ), u−i (τ ))dτ + Vi (x(t + T ))

]
(32)

where T is the time interval.
Assume there exists a weight Wi for each player i , such

that the value function Vi (x) can be approximated as

Vi (x) = WT
i φi (x) (33)

where φi (x) is the polynomial basis function vector for
player i . Then, based on this VFA, the optimal control policy
for each player can be learned iteratively from the online
learning algorithms by integrating IRL and the MPCM.

1) On-policy IRL: Define a system mapping
GVi (t)(x, ui , u−i , a) = ∫ t+T

t ri (x, ui , u−i )dτ + Vi (x(t + T )).
Then, given any admissible control policies ui and
u−i , the value function described in (32) can be
approximated by the expected output of GVi (t)(x, ui , u−i , a),
i.e., Vi (x) = E

[
GVi (t)(x, ui , u−i , a)

]
using the MPCM

Vi (x(t)) = E
[
GVi (t)(x, ui , u−i , a)

]
= E
[
G′

Vi (t)(x, ui , u−i , a)
]

(34)

Algorithm 3 Policy Iteration for Multiplayer Nonzero-Sum
Game With Uncertain System Dynamics
1: Initialize each player with initial state x(0) and admissible

control policy ui (0), i = 1, 2, . . . , N .
2: Apply the MPCM procedure [35, Section II] to select a set

of samples for the uncertain vector a(t).
3: For each iteration s, find the value of∫ t+T

t
ri

(
x(τ ), u(s)

i (τ ), u(s)
−i (τ )

)
dτ

+W(s+1)T

i φi (x(t + T )) (35)

at each MPCM sample.
4: Find the value function V (s)

i (x(t)) using the MPCM [35],
which is the mean output of the mapping G

V (s)
i

(·) subject
to uncertain parameters a(t),

G
V (s)

i

(
x, u(s)

i , u(s)
−i , a
)

=
∫ t+T

t
ri

(
x(τ ), u(s)

i (τ ), u(s)
−i (τ )

)
dτ

+W(s+1)T

i φi (x(t + T )). (36)

5: Update the value function weight vector W(s)
i according to

the estimated V (s)
i (x(t)).

W(s)T

i φi (x(t)) = V (s)
i (x(t)).

6: Update the control policy ui using

u(s+1)
i = −1

2
R−1

ii BT ∂V (s)
i

∂x
. (37)

7: Repeat procedures 3−6.

where G′
Vi (t)

(x, ui , u−i , a) is the reduced-order mapping
derived from the MPCM procedure [35]. The detailed algo-
rithm is described in Algorithm 3.

Theorem 5: Consider the stochastic multiplayer nonzero-
sum game shown in (5)–(8). The uncertainties in the system
dynamics ap follow time-invariant pdfs fAp (ap). Assume the
following: 1) VFA in (33) holds; 2) the relation between
the value function Vi (x(t)) and the uncertain parameters a(t)
can be approximated by a polynomial system mapping (36)
with the form of (15); and 3) Algorithm 3 converges. Then,
the solution found from Algorithm 3 is the optimal control
solution.

Proof: See Appendix G. �
2) Off-Policy IRL: We introduce auxiliary variable u(s)

j
for the player j , ( j = 1, 2, . . . , N) and rewrite the system
dynamics described in (5) as

ẋ = A(a)x +
N∑

j=1

Bu(s)
j +

N∑
j=1

B
(

u j − u(s)
j

)
(38)

where u j is the behavior policy applied to the system to
generate the data for learning, and u(s)

j is the desired policy
to be updated for the player j .
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Differentiating the value function V (s)
i (x(t)) for the

system (38), one has

V̇ (s)
i (x(t))

= E

⎡
⎣∂V (s)T

i

∂x

⎛
⎝A(a)x+

N∑
j=1

Bu(s)
j +

N∑
j=1

B
(

u j − u(s)
j

)⎞⎠
⎤
⎦

= −xTQi x −
N∑

j=1

u(s)T

j Ri j u(s)
j

−
N∑

j=1

2u(s+1)T

i Rii

(
u j − u(s)

j

)
. (39)

The second equality is obtained by combining the Hamiltonian
functions (29) and (37).

Integrating both sides in (39), one has

V (s)
i (x(t + T )) − V (s)

i (x(t))

= E

⎡
⎣∫ t+T

t
−
⎛
⎝xTQi x +

N∑
j=1

u(s)T

j Ri j u j

⎞
⎠dτ

⎤
⎦

−
∫ t+T

t

⎛
⎝ N∑

j=1

2u(s+1)T

i Rii

(
u j − u(s)

j

)⎞⎠dτ. (40)

For any fixed admissible behavior control policy u j ( j =
1, 2, . . . , N), (40) can be solved for the value function V (s)

i
and the optimal control policy u(s+1)

i simultaneously, using
the following NNs:

V (s)
i (x) = W(s)T

i φi (x)

u(s+1)
i (x) = W(s+1)T

u,i φu,i(x). (41)

The detailed algorithm that integrates off-policy IRL and the
MPCM for the multiplayer nonzero-sum game is described in
Algorithm 4.

Theorem 6: Consider the stochastic multiplayer
nonzero-sum game shown in (5)–(8). The uncertainties
in the system dynamics ap follow time-invariant pdfs
fAp (ap). Assume the following: 1) VFA in (41) holds; 2) the
relation between the value function Vi (x(t)) and the uncertain
parameters a(t) can be approximated by a polynomial system
mapping (42) with the form of (15); and 3) Algorithm 4
converges. Then, the solution found from off-policy IRL
described in Algorithm 4 is the optimal solution.

Proof: See Appendix H. �
Remark 4: Algorithms 3 and 4 integrate IRL and the

MPCM to solve the multiplayer nonzero-sum game with
uncertain parameters in the system dynamics. These two algo-
rithms find the Nash solutions accurately with computational
efficiency. The potential applications of the two algorithms
include the control of transportation networks and the cooper-
ative control of multiple robots with individual goals, in real
environments modulated by uncertain parameters.

V. ILLUSTRATIVE EXAMPLES

In this section, we conduct simulation studies to illustrate
and verify the above-mentioned analysis.

Algorithm 4 Off-Policy IRL for Multiplayer Nonzero-Sum
Game With Uncertain System Dynamics
1: Initialize the players with initial state x(0) and admissible

control policies ui (0).
2: Apply the MPCM procedure [35, Section II] to select a set

of samples for the uncertain vector a(t).
3: For each iteration s, find the value of

∫ t+T

t

⎛
⎝xTQi x +

N∑
j=1

u(s)T

j Ri j u j

⎞
⎠dτ + V (s)

i (x(t + T ))

at each MPCM sample.
4: Find the mean output of mapping Go

V (s)
i

(·) subject to

uncertain parameters a(t) using the MPCM [35],

Go
V (s)

i

(
x, u(s)

i , u(s)
−i , a
)

= V (s)
i (x(t + T ))

+
∫ t+T

t

⎛
⎝xTQi x +

N∑
j=1

u(s)T

j Ri j u j

⎞
⎠dτ.

5: Solve the following equation for V (s)
i (x) and u(s+1)

i ,
respectively.

V (s)
i (x(t)) −

∫ t+T

t

⎛
⎝ N∑

j=1

2u(s+1)T

i Rii

(
u j − u(s)

j

)⎞⎠dτ

= E

[
Go

V (s)
i

(
x, u(s)

i , u(s)
−i , a
)]

. (42)

6: Repeat procedures 3−5.

Fig. 1. Solution of two-player zero-sum game derived from Algorithm 1.
(a) Evolution of system states. (b) Updates of value function weights.

A. Two-Player Zero-Sum Game

We first simulate the two-player zero-sum game with the
uncertain system dynamics described as follows:

ẋ =
[

a1(t) a2(t)
a3(t) a4(t)

]
x +
[

1
0

]
u +
[

1
0

]
d

where a1(t), a2(t), a3(t), and a4(t) are four random variables
with time-varying values. The four random variables follow
the uniform distributions: f (a1(t)) = 1/2, 0 < a1(t) < 2;
f (a2(t)) = 2, 0 < a2(t) < 0.5; f (a3(t)) = 1, 0.5 < a3(t) <
1.5; and f (a4(t)) = 1/2, −1 < a4(t) < 1. The parameters
in the value function are selected as Q = [ 1 0

0 1 ], R = 1, and
γ = 5. The basis function is φ = [x2

1 , x1x2, x2
2 ]T, with the

weight vector W = [W1, W2, W3]T. Fig. 1(a) and (b) shows the
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Fig. 2. Solution of two-player zero-sum game derived from Algorithm 2.
(a) Evolution of system states. (b) Updates of NN weights.

evolution of the system states and the derived value function
weights, respectively, using the on-policy PI algorithm (see
Algorithm 1). It can be seen that the system states converge
to 0 in the limit of large time with the derived control policies,
and the value function weights converge quickly with the
proposed algorithm.

We also conduct a comparative study to show the perfor-
mance improvement of Algorithm 1 over the MC method,
typically used to address uncertainty in decision. Here, the MC
method is used to evaluate the value function, i.e., the mean
value E[·] in (13), at each time step. The numbers of samples
used by the MPCM and the MC to estimate each value
function are 16 and 10000, respectively, to obtain a converged
mean value. The NN weight derived by the MPCM is W =
[3.29, 2.62, 2.00]T, which is close to W = [3.16, 2.61, 2.09]T

obtained using the MC method. The accurate estimation of the
value function and the significant reduction of computational
load demonstrate the value of using the proposed integrated
RL and the MPCM algorithm to facilitate decisions for this
game.

We then simulate the off-policy IRL algorithm described
in Algorithm 2. Fig. 2(a) and (b) shows the evolution of
system states and NN weights, respectively. Note that in the
off-policy IRL, three NNs, including critic NN, actor NN,
and disturbance NN, are utilized. The critic NN is W =
[W1, W2, W3]T with the basis function φ = [x2

1 , x1x2, x2
2 ]T,

the actor NN is Wu = [Wu1, Wu2]T with the basis function
φu = [x1, x2]T, and the disturbance NN is Wd = [Wd1, Wd2]
with the basis function φd = [x1, x2]T. It can be seen
that the system states converge to 0 in the limit of large
time with the proposed off-policy IRL algorithm. In addition,
the derived value function weight vector [W1, W2, W3] of the
two algorithms are identical, which validates Theorem 3.

B. Multiplayer Nonzero-Sum Game

We then simulate the multiplayer nonzero-sum game dis-
cussed in Section IV, where the number of players N = 3.
The system dynamic is described as follows:

ẋ =
[

a1(t) a2(t)
a3(t) a4(t)

]
x +
[

1.3
0

]
u1 +

[
1.3
0

]
u2 +

[
1.3
0

]
u3

where a1(t), a2(t), a3(t), and a4(t) are four randomly
time-varying variables with the same pdfs described in
Section V-A. The parameters in the value function are selected
as Q1 = Q2 = Q3 =

[
1 0
0 1

]
, R12 = R13 = R21 =

R23 = R31 = R32 = 1, R11 = 2, R22 = 3, and R33 = 5.

Fig. 3. Solution of multiplayer nonzero-sum game derived from Algorithm 3.
(a) Evolution of system states. (b) Updates of value function weights.

Fig. 4. Solution of multiplayer nonzero-sum game derived from Algorithm 4.
(a) Evolution of system states. (b) Updates of NN weights.

The value function weight vectors for the three players are
W1 = [W11, W12, W13]T, W2 = [W21, W22, W23]T, and W3 =
[W31, W32, W33]T, respectively. Fig. 3(a) shows the evolution
of system states, and Fig. 3(b) shows the learned value function
weights.

We also simulate the off-policy IRL algorithm described
in Algorithm 4. Fig. 4(a) and (b) shows the evolution of
system states and NN weights, respectively. Note that in the
off-policy algorithm, each player has two NNs: one for the
critic NN and the other for the actor NN. It can be seen
from Fig. 4(a) and (b) that the off-policy IRL algorithm works
well for the multiplayer nonzero-sum game. The system states
converge to 0 in the limit of large time, and the derived value
function weights are the same with the on-policy algorithm,
validating Theorem 6.

VI. CONCLUSION

This article studies multiplayer differential games for sys-
tems with randomly time-varying parameters. Two games,
including two-player zero-sum and multiplayer nonzero-sum
games, are formulated, respectively, with general uncertain lin-
ear dynamics. The optimal control policies for the two games
are obtained from the corresponding Hamiltonian functions.
The system properties, including the stability and the Nash
equilibrium, are analyzed. In addition, we develop IRL-based
online learning algorithms for each game to find optimal con-
trol solutions in real time. To evaluate the value functions with
multidimensional uncertainties, an efficient uncertainty evalu-
ation method, called the MPCM, is utilized to significantly
reduce the computational cost. We integrate the MPCM with
both on-policy and off-policy IRLs for each game and prove
that the proposed algorithms find the correct Nash equilibrium
solutions. Moreover, we show that the solutions derived from
the on-policy and off-policy algorithms are identical under
general uncertain linear system dynamics. This study provides
new effective online learning methods to solve differential
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games of general uncertain linear systems. The solution can
be widely applied to stochastic systems, where uncertain
player intentions or environmental factors modulate the system
dynamics in a complicated fashion. In the future work, we will
generalize the current work to heterogeneous players and
study dynamical graphical games with stochastic dynamics.
We will also thoroughly implement the proposed algorithms
in real-world applications, such as UAV traffic management
and autonomous driving in uncertain environments.

APPENDIX

A. Proof of Lemma 2

Combining (10) and (11), the Hamiltonian function can be
further written as

H (x, u, d, VX)

= r(x, u, d) + E
[
V T

X (A(a)x + Bu + Cd)
]

= xTQx + E
[
V T

X (A(a)x)
]+ V T

X (Bu + Cd)

+uTRu − γ 2‖d‖2

= xTQx + E
[
V T

X (A(a)x)
]

+
(

1

2
V T

X BR−1 + uT
)

R
(

1

2
R−1BTVX + u

)

−γ 2
∥∥∥∥
(

d − 1

2γ 2 CTVX

)∥∥∥∥
2

−1

4
V T

X BR−1BTVX + 1

4γ 2 V T
X CCTVX

= H (x, u∗, d∗, VX ) + (u − u∗)TR(u − u∗)
−γ 2‖d − d∗‖2

which derives Lemma 2.

B. Proof of Theorem 1

1) Stability: Choose the Lyapunov function candidate as
Ṽ (x(t)) = ∫∞

t

(
xTQx + uTRu − γ 2‖d‖2

)
dτ . Since the

attenuation condition is satisfied, there always exists a positive
definite matrix P, such that Ṽ (x(t)) = xTPx [45, p. 337].
As such, one has

Ṽ (x(t)) =
∫ ∞

t

(
xTQx + uTRu − γ 2‖d‖2)dτ ≥ 0 (43)

and Ṽ (x(t)) = 0 if and only if x = 0. Denote the derivation
of Ṽ with respect to time t as ˙̃V , and then, the expectation of˙̃V is

E
[ ˙̃V (x(t))

]
= E

[
∂ Ṽ

∂x
ẋ

]

= E
[
VX (A(a)x + Bu + Cd)

]
= H (x, u, d, VX) −

(
xTQx + uTRu − γ 2‖d‖2

)
= H (x, u∗, d∗, VX ) + (u − u∗)TR(u − u∗)

−γ 2‖d − d∗‖2

−
(

xTQx + uTRu − γ 2‖d‖2
)
.

The last equality is obtained from Lemma 2. Selecting u = u∗
and d = d∗, one has

E
[ ˙̃V (x(t))

]
= −
(

xTQx + uTRu − γ 2‖d‖2
)

≤ 0

and E
[ ˙̃V (x(t))

]
= 0 if and only if x = 0. Therefore, Ṽ is a

Lyapunov function for x. According to Lemma 1, the system
described in (1) is asymptotically stable in the mean.

2) Nash Equilibrium: Since the system is asymptotically
stable in the mean, we have E{‖x(t)‖} = 0 holds when
t → ∞. Therefore, the cost function can be rewritten as

J (x(0), u, d)

= E

[∫ ∞

0

(
xTQx + uTRu − γ 2‖d‖2

)
dt

+ V (x(0)) +
∫ ∞

0
V̇ dt

]

= E

[∫ ∞

0

(
r(x, u, d) + V T

X (A(a)x + Bu + Cd)
)

dt

]
+ V (x(0))

= E

[∫ ∞

0

(
(u − u∗)TR(u − u∗) − γ 2‖d − d∗‖2)dt

]
+ V (x(0)). (44)

The last equality is obtained by combining (10) and
Lemma 2.

It can be seen from (44) that J (x(0), u∗, d) ≤
J (x(0), u∗, d∗) ≤ J (x(0), u, d∗), and thus, the Nash equilib-
rium is obtained.

C. Proof of Theorem 2

The control and disturbance policies derived by evaluat-
ing the original value function mapping GV (t)(x, u, d, a) is
optimal according to Theorem 1 and (17). As such, to prove
this theorem, we only need to show that the two optimal
solutions that are found by evaluating the reduced-order
mapping G′

V (t)(x, u, d, a) and the original value function
mapping GV (t)(x, u, d, a) are the same. Lemma 3 proved

that E
[
G′

V (t)(x, u, d, a)
]

= E
[
GV (t)(x, u, d, a)

]
, and hence,

the equivalence of the two optimal solutions can be proved
from a contradiction method following a similar argument,
as described in [37, Th. 1].

D. Proof of Theorem 3

It has been proven that for a deterministic system dynam-
ics, the solutions derived from the off-policy IRL and
on-policy IRL are identical for the two-player zero-sum
game [44]. As such, for each MPCM sample point Al , l =
1, 2, . . . ,

∏m
p=1 n p , the value functions and optimal solutions

derived from the on-policy and off-policy IRL algorithms
are identical. Note that the expected value function is the
weighted average of the value functions derived at each sample
point (see Lemma 3 and [35]). As such, the expected value
function derived from the two algorithms is identical, and
hence, the off-policy solution is the optimal control policy.

E. Proof of Lemma 4

Combining (29) and (30), Lemma 4 can be obtained natu-
rally following a similar procedure as described in Lemma 2.
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F. Proof of Theorem 4

1) Stability: Choose the Lyapunov function candidate for
player i as Ṽi = ∫∞

t

(
xTQi x +∑N

j=1 uT
j Ri j u j

)
dτ , and then,

one has

E
[
Ṽi

]
= E

⎡
⎣∫ ∞

t

⎛
⎝xTQi x+

N∑
j=1

uT
j Ri j u j

⎞
⎠ dτ

⎤
⎦ ≥ 0. (45)

The derivation of Ṽi with time t is derived as

E
[ ˙̃Vi

]
= E

[
∂ Ṽi

∂x
ẋ

]

= E

⎡
⎣VX

⎛
⎝A(a)x +

N∑
j=1

Bu j

⎞
⎠
⎤
⎦

= −xTQi x −
N∑

j=1

uT
j Ri j u j

≤ 0.

Therefore, Ṽi is a Lyapunov function for x, and the system
described in (5) is asymptotically stable in the mean [42].

2) Nash Equilibrium: Since the system is asymptotically
stable in the mean, we have E{‖x(t)‖} = 0 holds when
t → ∞. Therefore, the cost function can be rewritten as

Ji (x(0), ui , u−i )

= E

⎡
⎣∫ ∞

0

⎛
⎝xTQi x +

N∑
j=1

uT
i Ri j ui

⎞
⎠dt

⎤
⎦

+Vi (x(0)) + E

[∫ ∞

0
V̇i dt

]

= Vi (x(0)) + E

⎡
⎣∫ ∞

0

⎛
⎝ N∑

j=1

(
u j − u∗

j

)TRi j
(
u j − u∗

j

)

+ ∂V T
i

∂x

N∑
j=1

B
(
u j − u∗

j

)

+ 2
N∑

j=1

(
u∗

j

)TRi j
(
u j −u∗

j

)⎞⎠dt

⎤
⎦.

The second equality is obtained by combining (29) and
Lemma 1.

Assume that all other players’ control policies are optimal,
i.e., u−i = u∗−i , and then, we have

Ji (x(0), ui , u∗−i )

= Vi (x(0)) + E

[∫ ∞

0
(ui − u∗

i )
TRii (ui − u∗

i )dt

]
. (46)

It can be seen from (46) that Ji (x(0), u∗
i ,−u∗

i ) <
Ji (x(0), ui ,−u∗

i ) holds for every player i , which proves the
Nash equilibrium.

G. Proof of Theorem 5

This proof follows a similar procedure as described in
Theorem 2.

H. Proof of Theorem 6

For the multiplayer nonzero-sum game with deterministic
system dynamics, the solutions derived from the off-policy
IRL and on-policy IRL have been proved to be identical [12].
The proof for the game with uncertain system dynamics, then,
follows a similar argument, as described in Theorem 3.
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