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Abstract—The influence model (IM) is a discrete-
time stochastic automaton that captures spatiotemporal
network dynamics. It constitutes a reduced-order represen-
tation of networked Markov chains and has found broad
stochastic network applications. Parameter estimation from
observation data is critical for utilizing IM in real appli-
cations. The master Markov chain approach used in the
literature incurs significant computational cost. In this let-
ter, we develop an efficient estimation algorithm for a
special class of IM, named the uniform completely con-
nected homogeneous influence model (UCC-HIM), through
exploiting its special network topology. Specially, we intro-
duce a reduced-order Markov chain representation for the
UCC-HIM, analyze its relationship with the master Markov
chain, based on which an efficient estimation algorithm
is developed. Two simulation studies verify the accuracy
and computation reduction of the proposed estimation
approach.

Index Terms—Stochastic automaton, spatiotempo-
ral processes, influence model, parameter estimation,
reduced-order analysis.

|. INTRODUCTION

HE INFLUENCE model (IM) is a discrete-time
Tstochastic model that captures spatiotemporal network
dynamics [1], [2]. It constitutes a reduced-order representation
of networked Markov chains through abstracting network-
level interactions and local-level update rules. IM has been
used in diverse stochastic network applications, such as
power networks, social networks, virus spreads, and weather
evolution [3]-]6].

In order to use IM in stochastic network applications,
one critical step is to estimate underlying model parameters
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from observation data. Identifiability deals with the unique-
ness of IM estimates. In [7], the identifiability conditions for
homogeneous IM were recently provided. Through exploiting
the mapping structure between IM and its equivalent mas-
ter Markov chain, the identifiability analysis led to a linear
algebra-based estimator. This letter also developed a baseline
maximum likelihood estimator (MLE) for comparison. Several
other MLE based estimators have been developed in the liter-
ature [4], [8]. Of our interest, [9] developed an IM estimation
algorithm based on its corresponding first-order representation,
i.e., the influence matrix. All of these existing estimation algo-
rithms have limitations of some sorts in their performance. The
computation of the linear algebra-based approach grows expo-
nentially with the increase of network size. The performance
of the MLE is sensitive to initial guesses, and local optima are
difficult to avoid. Furthermore, obtaining the influence matrix
from data is complex and prone to errors due to the coupling
effect of network- and local- level interactions. To overcome
these challenges, we here develop an IM estimation algorithm
that is both accurate and computationally effective, including
for large networks.

In this letter, we take a structural approach to study reduced-
computation IM estimation methods for IM. Network topology
plays an important role in network dynamics, and topology-
based approaches have been widely used in studies such as
network identification, state estimation, network design and
control [10]-[12]. As a first step, we here focus on a canonical
class of IM, named the uniform completely connected homo-
geneous influence model (UCC-HIM). In UCC-HIM, all sites
are fully connected with common mutual influence and local
status update rules. Stochastic networks of such a topology
capture agent interactions in close proximity and has been used
in studies in a wide range of applications, including, e.g., bank-
ing systems, the emergence of social norms, wireless sensor
networks and protein interaction networks [13]-[16].

For this UCC-HIM, we develop an efficient estimation
algorithm that exploits its symmetric topological property.
Compared to the MLE and linear algebra-based estimators
developed for general IMs, the proposed algorithm signifi-
cantly reduces the computational complexity while maintains
accuracy.

The rest of this letter is structured as follows. The funda-
mentals of the IM and the UCC-HIM problem formulation
are introduced in Section II. In Section III, a reduced-order
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Markov chain is introduced to facilitate the analysis for
UCC-HIM based on its special network topology. Then an
efficient parameter estimation algorithm is developed through
exploiting structures of the reduced-order Markov chain. In
Section IV, two simulation studies are conducted to verify
effectiveness of the proposed estimation algorithm. Section V
concludes this letter.

Il. PRELIMINARIES OF THE INFLUENCE MODEL
A. The influence Model (IM)

An IM is composed of N interacting sites. Each site i has
M; possible statuses, where i € {1, 2, ..., N}. A scalar s;[k]
{1,2,...,M;} indexes the status of site i at time k. S;[k], a
row vector of length M;, also denotes site i’s status at time
k, where all entries are filled with ‘0’s except a ‘1’ at the
location corresponding to the status index s;[k]. For example,
Si[k]1 =[10 --- O] when s;[k] = 1.

At each time step, site i updates its status based on the
network influence matrix D € R¥*V and local Markov chain
transition matrix A; € RM>*Mi where j € {1,2,...,N}. D
and Aj; are row stochastic matrices. The 4-step update rule is
summarized as follows.

1) Choose site j as site i’s determining site with proba-
bility d;j, where d;; is the element of D denoting the
probability that 7 is influenced by j.

2) Calculate p;[k + 1] € R'*Mi_ the probability of site i’s
next status, based on the current status of site j as p;;[k+
11 = Sj[k]Aji, where each element a,,, of Aj; is the
conditional probability for site i’s next status to be n
given that site j’s current status is m.

3) Determine P;[k+1] € R!*Mi  the probability mass func-
tion of site i’s next status by considering the influence
of all sites on site i as

N N
Plk+11=" d;jpjlk+ 11=")_ d;;SjlkIA;. (1)
=1 j=1
4) Si[k + 1] is then obtained by realizing P;[k + 1], i.e.,
sampling random numbers according to the distribution
Pilk +1].
Cascading S;[k] and P;[k + 1] into row vectors SH[k] and
PH[k + 1] of length Z‘;V:l M;, we have

SHIK] = [Si[k]  Slk] Snlk1], )
Pllk+ 11 = [Pilk+ 11 Polk+1] Pylk+11]. (3)
Then the above 4-step update rule leads to the IM dynamics
succinctly captured by the two following iterative equations,
PHlk + 1] = SH[KIH, @)
SH[k + 11 = MultiRealize(P7 [k + 17), (5)
where SH[k + 1] is obt.}rined b); realizing each Pi[k + 1]
respectively, and H € RZi=1 Mi*Xiz1 Mi s the influence matrix

defined as:
di1A11 dn1AIN
Sl : ©)
d1,NAN dn NANN

If all sites have the same number of statuses, M, and A;; =
A for all i and j, the IM is referred to as the homogeneous

ﬁlwo rk
™
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Fig 1. An example of UCC-HIM of 3 sites and 2 statuses at each site.
influence model (HIM), with the state vector x> [£] of length
MN. The dimension of state grows linearly with network size.
A state matrix S°[k] € RY*M g further introduced to capture
the HIM state in its matrix form

SOl = [SilkY" SalkY SnIkI']. ™

The corresponding influence matrix in (6) is then simplified
to H2 D' ® A, where ® is the Kronecker product, and the
superscript * denotes the transpose operation.

In this letter, we focus on the HIM with a canonical network
topology, referred to as the uniform completely connected
homogeneous influence model (UCC-HIM). In UCC-HIM, all
sites are fully connected with the same mutual influence, i.e.,
dij = ]]V Vije({l 2, ...,N}. An example of UCC-HIM is
shown in Figure 1. The UCC-HIM has practical values, e.g.,
it captures the voting behaviors in leaderless social networks
and other types of network interactions in close proximity.

B. The Master Markov Chain Representation of IM

The dynamics of IM can also be captured by its equiv-
alent master Markov chain [1]. As the name suggests, the
master Markov chain representation uses the Markov prop-
erties of IM and constructs a big Markov chain with states
as the combination of all site statuses. There are a total of
MY states in the master Markov chain representation. A scalar
s8kl € {1,2,.. .,MN} is adopted to index the states based on
the statuses of all sites, i.e., s;[k] Vie {1,2,...,N} as

N
ST =) (silkl — DMV 4 1. ®)

i=1

The event matrix B € RM" *MN captures all states of the mas-
ter Markov chain [1]. The gth row of B is the state vector
SH corresponding to s8¢ = q. For example, for the UCC-HIM
network in Figure | with 3 sites and 2 statuses for each site,
i.e., N =3 and M = 2, there are 8 states in the Markov chain
in total. The state s = 4 corresponds to s; = 1, 5 = 2 and
53 = 2, and hence §1 =[1 0], S =[0 1], S3 = [0 1], to form
S —[10010 1] in the 4th row of B,

101010
101001
100110

g_|1 00101

“lo 11010
011001
010110
(001 01 0 1]
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The master Markov chain is characterized by its state tran-
sition matrix G € RM" "MN, which gives the conditional
probability of its next state s[k + 1] given its current state
s5[k]. Let Sg [k] and Sf [k + 1] denote the state matrices cor-
responding to s4[k] = p and s%[k + 1] = q, respectively. The
elements of G can be obtained in a succinct form as:

N M
8a=PC'lk+11=gis*ll=p) =[] [[ z2m: ©®

n=1 m=1

where z, , is the nth row and mth column element of matrix
S

Zpq = (DSC1i24) 7" (10)
The superscript o denotes the element-wise exponential oper-
ator. In particular, for two matrices X and Y with the same
dimension, the mth row and nth column element of the
outcome of X°Y, (X°V),, ,, is calculated as X, ,'™~. Let
PS[k + 1] = DSS[k]A, the ith row of PC[k + 1] indicates
Pilk + 1] with i € {1,..., N} according to (1). Z,, is con-
structed to obtain the probabilities of all sites at the local
statuses captured in .S’f [k + 1]. gp 4 is obtained by multiply-
ing these probabilities since the statuses of all sites evolve
independently. More details can be found in [7].

The comparison between the influence model dynamics (4)
and its Master Markov chain representation (9) clearly shows
the effectiveness of the influence model. The HIM of MN
states captures the dynamics of its equivalent master Markov
chain of MY states.

C. Problem Formulation

Despite the tractability of the influence model due to its
reduced-order formulation, model estimation cannot easily be
achieved in an effective way. The master Markov chain G has
been used as a step for the estimation of the IM [7]. However,
as expected, the computation involved in the master Markov
chain-based estimation approach increases exponentially with
the network size. The large computational cost of G limits its
practical use, especially for large networks.

In this letter, we take a structural approach to study a class of
IM, namely, the UCC-HIM, and provide an efficient parameter
estimation algorithm. The problem is formulated as follows.

Problem: Consider a UCC-HIM of N sites with M statuses
for each site. Given L independent observation sequences O =
{01,0,,...,01} with 0; = [SF[1);, S¥[2);, ..., SHIK],
where the initial network state S [1]; can be arbitrary, estimate
the underlying local transition matrix A with L, K — oo.

I1l. PARAMETER ESTIMATION FOR THE UNIFORM
COMPLETELY CONNECTED HOMOGENEOUS
INFLUENCE MODEL (UCC-HIM)

In this section, we develop an efficient parameter estimation
algorithm for the UCC-HIM. We first study the identifiabil-
ity. Then we construct a reduced-order Markov chain through
exploiting the symmetric network topology of the UCC-
HIM. The mapping relationship between the reduced-order
Markov chain and the master Markov chain is illustrated next.
The analysis of the reduced-order Markov chain leads to an
efficient and accurate estimation algorithm.

A. The Identifiability of the UCC-HIM

Lemma 1 [7]: The influence model is identifiable from the
observation sequences O with L, K — oo, if and only if the
underlying parameters A and D can be uniquely determined
from the master Markov chain G.

Lemma 2 [7]: A can be uniquely determined from G as

(11)

M= \’?’32?’:.(m—l)MN—f+1.Eff”:u(n—lwf“—m'

where ap, , is the mth row and nth column entry of A and
Z‘?;l (m—1)MN~' 11 is the master Markov chain’s state with
all sites in the same local status m.

Based on the above lemmas, we prove the identifiability of
the UCC-HIM in Theorem 1.

Theorem 1: Any UCC-HIM is identifiable.

Proof: For a UCC-HIM of N sites, D is determined and
takes the form of d;; = # Vije({l 2,...,N}. Because A
can be determined uniquely from G according to Lemma 2,
the theorem is proved naturally according to Lemma 1. W

B. The Reduced-Order Markov Chain R

From (11), we see that the transition matrix of the master
Markov chain G is needed to obtain A. The dimension of G
is MN, making the estimation computation grow exponentially
with network size. To efficiently estimate A, we introduce a
reduced-order Markov chain R by first showing its states and
then the transition matrix.

The reduced-order Markov chain records the number of
sites in each status. We adopt a length-M vector SR[k] =
[r1 -+ rm ry] to denote the state of the reduced-
order Markov chain R at time k, where r,, is the number of
sites whose local statuses are m. Hence 0 < r,, < N and
Zg=l rm = N. In other words, SR[k] = Zi\;] Si[k]. By count-
ing all the possible 5 [k], the reduced-order Markov chain R
has r states, where

(MY _ (M+N—1\_ (M+N—1)
r_((N))_( N )_ M—1DIN!

The notation ((-)) and (-) denote the multiset and combination

operations, respectively. r is the number of ways to assign M

statuses to the N sites, with repetitions allowed and ordering

disregarded. See [17, p. 71], for the details of this multiset

operation. To index the r states SR[k], we introduce a scalar

skl € {1,2,...,r}. Given SR[k], s"[k] is calculated as
M_1N=1-Y i 7m

M—d 4 —1
FiEl=3, 3, ( ’;_r} )+1. (13)
i=1 j=0

Note that in the summation, if a term’s upper bound is less
than the lower bound, the term is zero [18].

For the example of N = 3 and M = 2 in Figure 1, the states
of R, SR[k], are [3 0], [2 1], [1 2] and [0 3]. r = GH5pr =4
in this case. The state S®[k] = [1 2] is indexed with s"[k] = 3.

The transition matrix R € R™ of the reduced-order Markov
chain indicates the conditional probability mass functions
(PMFs) of its next state given its current state. Let Sg[k] and
Sf; [k 4 1] denote the state vectors corresponding to s"[k] = p
and s"[k + 1] = g, respectively. R can be obtained according
to the following theorem.

(12)
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R
Theorem 2: For a UCC-HIM with the network influence N —Sglk + 1les (Piolk + l]ez)(sg[kﬂlez)
matrix D and local transition matrix A, each element of the Sg [k+ 1]ez 9a
reduced-order Markov chain R is calculated as M—1
R
M N — E (Sq [k + I]EI) e )(Sg[k“]e“)
r r T 1
Ryq =P Tk+ 11 =q|s'Tkl =p) = G, ]_[l(que,,,), (14) SRk + ey ilp M
m=
where 1 < p,q < r, C; is the gth entry of length r column M N — Z (SR[k.|_ l]e;) -
vector C, X, is a length M row vector, and e, is a length M = 1_[ ( =1 )(Pin[k 4 1]em)(Sq[ +1]em)
column vector of zeros, except a single ‘1’ at its mth entry. Ay SR [k + 1lep
N! M 1w oSATk+1]
Co= ; as - ( [k]A) e
[T (51K + e i I(SR[H ooy 11 !
1 oS§[k+]]
Xpq = (ﬁsﬁ[m) : (16) =C, H(quem). (18)
m=1

Proof: To obtain the conditional probability of s"[k+1] = g
given s'[k] = p, we start with the conditional probability of
individual sites’ next statuses given s"[k] = p. Let P;jp[k + 1]
denote the conditional PMF of site i’s next status given s'[k] =
p and Sg [kle,, indicates the mth entry of S§ [k]. According to
the influence model’s 4-step update rule in Section II-A, at
time k, site i chooses a site in status m as its determining
site with probability N, where m € {1,...,M}. Then, the
probability of its next status in n based on the status of the
determining site can be calculated as N.amM With SR [klen
sites in status m and m < {1, ..., M}, the probability of 31te i’s
next status 1n n, P(silk+ 1] = n|s’[k] p), can be calculated

SRke
as Zm_l k] —apm n. Hence we have

[ P(silk+11= 1|5kl =p) 7’
P(silk + 1] = 2|s"[k] = p)

Piplk+1]1 = :
| P(si[k + 1] = M|s"[k] = p)
:!f_ S [k]emam]
[k]em
-”w— 1
= T = ESﬁ[k]A. a7n

-‘iE [k] m
_Z:Ll Ne amM
Because of the symmetric network topology of the UCC-HIM,
i.e., all the elements in D are identical, each site i shares the
same conditional PMF of their next status given s"[k] = p,
which is P;,[k + 1].

Because the statuses of all sites evolve mdependently,
can be obtained as follows. First, choose Sq [k + 1]eq 51tcs
from N sites and assign them local status 1 with probability
P(sitk + 1] = 1|5kl = p)Sale+lle) Next, choose SRk +
1]er sites from N — SR[k + 1]e; sites and assign them local
status 2 with probability P(si[k + 1] = 2|s"[k] = p)©alk+1le2)
This process continues, and eventually, choose SR [k + 1lem
sites from the rest sites and assign them local status M with

probability P(s;[k + 11 = M|s"[k] = p)(s Ue-en)  Hence we
have

Rpq = P(s"[k+ 1] = q|s"[k] = p)

)(Pi|p[k+ l]e])(s§{k+1]eu)

. N
— \SRk + 11e

Benultimate equality is established based on the fact
that 3 )C SR[k—l—l]e,- Nand (N-N)!=0!'=1. [ ]

C. The Mapping Relationship Between R and G

In this section, we show the mapping relationship between
R and its corresponding master Markov chain G. We start
with constructing the state-transfer vector T which captures
the relationship between the states of R and G, and then show
that R and G have a one-to-one mapping relationship.

Lemma 3: The MY states in the master Markov chain G
and the r states in the reduced-order Markov chain R have
a many-t -to-one mapping, captured by the state-transfer vector
T e RM" %1 whose row index is s¢ while each entry indicates
the corresponding s". T can be obtained by calculating the
scalar index of each row in B, using (13) where

B, = B(IN ® Iy). 19)

Iy is an all-one column vector of length N, and [y is an
M-dimensional identity matrix.

= [B].,...,Bf,----,BNL
Bi =1y @Iy @ Iyn—i.

(20)
(2D

Proof: Each row of the event matrix B indicates one of the
MV states of the master Markov chain G. B, is constructed as
in (19) to store the number of sites at each local status for all
the rows in B, i.e., each row of B, indicates one of the r states
s [k] of the reduced-order Markov chain R with repetition.
Then the entries of T, s"[k], can be obtained using (13) given
each row of B,, SR[k]. |

Note that the number of repetitions of SR [£] in B, is cap-
tured by the length r column vector C in Theorem 2, named
as the state-count vector herein.

For example, in the N = 3 and M = 2 network shown

in Figure 1,
B_[32212110]’
==lo t 12312 2 3|
=1 5 8 IT,

and

r=[12 2 5 2 5 5 &
s8[k] = 2, 3, and 5 all correspond to s"[k] = 2.
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The dimensions of G and R

Fig. 2. The dimensions of G and R with different N and M.

Theorem 3: For a UCC-HIM with the network influence
matrix D and local transition matrix A, G and R have a one-
to-one mapping as:

R = WGV,
G = VRU,

(22)
(23)

where V € RM"*7 is constructed based on the state-transfer
vector T as

_[ =T N
Vit = [0 otherwise el e
W e R™M" s obtained by transposing V and then leaving

only the left ﬁrsl ‘1’ in each row and setting the rest ‘1’s to
‘0. U e RM i constructed based on V and the state-count
vector C by U = :

Proof: We show the proof by explaining the construction of
the auxiliary matrices V, W and U.

Because all elements of the network influence matrix D are
identical, we find that in the state-transfer vector T, the indices
of the identical elements indicate the column indexes and row
indexes with identical state transition probabilities in G. To
obtain R based on G, V is constructed to add up G’s columns
according to T. W is constructed to delete the repeated rows
of G according to T. Equation (22) is thus proven.

Reversely, the state transition probability in G can also be
uniquely determined by R because of the symmetric network
structure. To obtain G from R, V is constructed to duplicate
R’s rows according to T, and U is constructed to expand
the information in R’s columns according to T and the state-
count vector C. To reconstruct the columns of G, we only
need to divide the columns in R with corresponding states by
their numbers of repetitions in G which are recorded in C.
Therefore, we have (23). |

According to Theorem 3, R is a reduced-order represen-
tation of G for the UCC-HIM, obtained by discarding and
merging redundant information in G. Because G is uniquely
determined from the observation sequences, it also implies that
R is unique.

The dimension of the reduced Markov chain R is r =
%{—', which is far less than the dimension of master
Markov chain G, MY. Figure 2 shows a comparison between
the dimensions of the master Markov chain G and the reduced-
order Markov chain R. With the increase of network size N
and the number of statuses M, the dimension of G increases
dramatically, while the dimension growth of R is very slow,
indicating the significant dimension and computational cost
reduction using R.

D. The Estimation Algorithm for A Based on R

In this subsection, we develop an efficient estimation algo-
rithm for A from observation sequences of the UCC-HIM.

First, we show that the reduced-order Markov chain R can
be uniquely constructed from observation sequences by count-
ing the corresponding state transition frequencies based on the
law of large numbers [19]. Because G can be uniquely deter-
mined from the observation sequences, and G and R have a
one-to-one mapping, R can also be uniquely determined. This
result is summarized in the following lemma.

Lemma 4: Given the observation sequences of a UCC-HIM,
0, with L, K — oo, the reduced-order Markov chain R can be
uniquely constructed.

The next theorem shows the estimation for A based on the
reduced-order Markov chain R.

Theorem 4: Given the reduced-order Markov chain R of the
UCC-HIM, the elements of A can be uniquely determined as

Ampn = \/Rr+l yMm Nkt (25)

SSIE Zk N+k 1)

Proof: According to (13), r+ 1 — Y 0" (N+k ") denotes
the state of the reduced-order Markov chain R where all sites
are in local status m, i.e., SR[k] =[0 --- N ... 0], with all
positions filled with ‘0O’s except an ‘N’ at the mth position.
According to (14), (16) and (15), we have

r+l MmNy g M (Nl
=lap -Gy Omu =a2£,,,- (26)
Therefore, (25) is derived. [ |

Note that the estimation of A from R has the same accuracy
as the estimation from G according to (11) and (25).

V. SIMULATION STUDIES

To demonstrate the results developed in Section III, two
simulation studies are conducted. Example 1 verifies the prac-
ticability and efficiency of the estimation algorithm. Example
2 is a real-world application that models the decision making
process in a social network using the UCC-HIM.

A. Example 1: Estimation of A in the UCC-HIM

To verify efficiency of the proposed estimation algorithm,
we compare the performance of our algorithm with the esti-
mation algorithm using the master Markov chain approach.
We consider a UCC-HIM with 5 sites and 3 statuses for
each sites. The network influence matrix D has element
dij = % Vi,j € {1,...,5)}. The local transition matrix A is

given as
036 032 032
A=(033 040 027
035 025 040

An observation sequence of length 400, 000 is generated.
Then G and R are computed by finding the state transi-
tion frequencies respectively. According to Theorem 4, the
estimated local transition matrix A through R is

. 0.3347 0.3395 0.3258
A =]03083 04106 0.2812],
0.3132 0.2538 0.4330
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which is identical to the estimation through G. The
mean squared errors (MSE) for A is 4.6860 x o
showing the accuracy of the estimation. The execution
time of our reduced-order algorithm based on R is
about half of that based on G, indicating the improved
efficiency.

B. Example 2: Support or Oppose?

In social network models, agents interact with each other
and update their opinions based on rules that capture the
influences from other agents [20]. When no individual takes
the role of opinion leaders and all individuals exert the same
influences to the whole team, the opinion propagation can be
captured as the UCC-HIM.

In a leaderless social network, discussion and voting are two
common steps in a decision-making process. In this example, a
group of 5 people meet to discuss whether to act on a problem.
There are two statuses for each person, support or oppose.
Their opinions may change during the discussion due to the
influences they receive from others. The mutual influences in
the group are identical. The ones who oppose have a greater
impact than those who support. After thorough discussions,
people vote for the final decision. We can model this process
using a UCC-HIM. For example, d;; = % Visj € 5omms5)

0.7 0.3
and A = [0.2 0.8

According to Theorem 2, the reduced-order Markov chain

R has 6 states and can be computed as

] due to the tendency to oppose.

0.1681 0.3602 0.3087 0.1323 0.0283 0.0024

0.0778 0.2592 0.3456 0.2304 0.0768 0.0102

R— 0.0313 0.1562 0.3125 0.3125 0.1562 0.0313

~—[0.0102 0.0768 0.2304 0.3456 0.2592 0.0078

0.0024 0.0283 0.1323 0.3087 0.3602 0.1681

0.0003 0.0064 0.0512 0.2048 0.4096 0.3277J
The state s” ranges from 1 to 6, with s — 1 denot-

ing the number of people who oppose. Using the reduced
Markov chain R, we can effectively predict the final vot-
ing result. The steady-state distribution of R is determined
by the left eigenvector of R associated with the eigenvalue
‘1°, which is [0.0217 0.0978 0.2162 0.2976 0.2565 0.1102].
Hence, the probability of 3 people opposing is the largest
(0.2976). The probability that more than 2 people oppose
is 0.6643, indicating that more than half of the people
are more likely to oppose this action eventually. According
to the majority rule, the final decision is more proba-
ble to be ‘oppose’. If using the master Markov chain
to obtain the steady-state results, the eigen-analysis of a
32 x 32 Markov chain is required, which incurs more
computation.

V. CONCLUSION

In this letter, we study the reduced-order estimation of
IM. For UCC-HIM, a canonical class of IM, we prove
that it is identifiable. Then we construct a reduced-order
Markov chain R to facilitate the estimation study. The dimen-
sion of R is far less than the master Markov chain G.
We find the one-to-one mapping between R and G. By
using R, an efficient parameter estimation algorithm for A is
developed. Compared with the master Markov chain approach,

the same accuracy is achieved but with significant reduction
of computational load. Simulation studies verify efficiency
of our proposed parameter estimation algorithm and demon-
strate its practical value in real applications. In the future,
we will explore reduced-computation solutions for more
general IMs.
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