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Abstract— This paper studies a multi-player H∞ differential
game for systems of general linear dynamics. In this game,
multiple players design their control inputs to minimize their
cost functions in the presence of worst-case disturbances. We
first derive the optimal control and disturbance policies using
the solutions to Hamilton-Jacobi-Isaacs (HJI) equations. We
then prove that the derived optimal policies stabilize the
system and constitute a Nash equilibrium solution. Two integral
reinforcement learning (IRL) -based algorithms, including the
policy iteration IRL and off-policy IRL, are developed to solve
the differential game online. We show that the off-policy IRL
can solve the multi-player H∞ differential game online without
using any system dynamics information. Simulation studies are
conducted to validate the theoretical analysis and demonstrate
the effectiveness of the developed learning algorithms.

I. INTRODUCTION

Differential games [1]–[4] have attracted increasing atten-
tions in the control community due to their wide applications
in multi-robot systems [5], [6]. Differential games provide a
formal mathematical framework to study the coordination,
conflict and control of dynamical systems that involve mul-
tiple decision-makers (or players) [1]–[4], [7]. Two types of
differential games, including the two-player zero-sum games
and multi-player nonzero-sum games, have been studied [1],
[4]. The two-player zero-sum games can be used to solve
the pursuit-evasion type of problems, i.e., there is a single
performance index that one player tries to minimize while
the other tries to maximize [2], [8]. The two-player zero-
sum games have also been used to solve the H∞ control
of systems subject to additive external disturbances [1], [8].
The other type of differential games, i.e., the multi-player
nonzero-sum games, have been developed to solve the leader-
follower optimal tracking type of problems, where there can
generally exist more than two players and each player tries to
minimize its individual performance index [3]. In this paper,
we study a new type of differential game, called the multi-
player H∞ differential game, which takes features of the two
differential games aforementioned. In the multi-player H∞
game, each player seeks to minimize its performance index in
the presence of a worst-case disturbance. This game provides
a theoretical framework for optimal controller design of
multi-player systems subject to external disturbances. Per
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the knowledge of the authors, there are very limited studies
till now that study the multi-player H∞ differential game
[9], [10]. Properties of such systems, e.g., stability and Nash
equilibrium have not been thoroughly analyzed.

Finding Nash equilibrium solutions to differential games
is not an easy task [3]. In particular, solving zero-sum
differential games relies on solving Hamilton-Jacobi-Isaacs
(HJI) equations, and solving nonzero-sum differential games
relies on solving Hamilton-Jacobi-Bellman (HJB) equations.
It has been shown that solving these equations directly in an
analytical way is extremely difficult [11]. In addition, solving
these equations also requires the information of system
dynamics, which is not always available in real applications.

Reinforcement learning (RL) has emerged as an efficient
numerical tool for solving optimal control problems online.
The use of RL in control theory is documented in [12]
for continuous-time linear systems, [13], [14] for discrete-
time linear systems, [15], [16] for continuous-time nonlinear
systems, and [17] for discrete-time nonlinear systems. Of
our interests, RL-based algorithms have also been developed
for differential games. Interested readers please refer to [8],
[18]–[20] for two-player zero-sum games, and [21], [22] for
multi-player nonzero-sum games. In particular, an off-policy
integral RL (IRL) was developed in [22] to solve the multi-
player nonzero-sum games without requiring any information
of the system dynamics. In this paper, we study both on-
policy and off-policy IRL solutions to the new multi-player
H∞ differential game.

The contributions of this paper are three-fold. First, we
formulate the multi-player H∞ differential game subject to
the worst-case external disturbance, and show that the solu-
tion to the game stabilizes the system and constitutes a Nash
equilibrium. Second, we develop a policy iteration-based
learning algorithm to solve the game online, using partial
system dynamics information. Third, we further develop an
off-policy IRL algorithm that requires no information of the
system dynamics.

The remainder of the paper is structured as follows. Sec-
tion II formulates the multi-player H∞ differential game and
provides preliminaries to facilitate the analysis. In Section
III, properties of the multi-player H∞ game are studied, and
two IRL-based algorithms are developed to find the optimal
solutions online. Section IV presents simulation studies and
Section V concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate the multi-player H∞ differ-
ential game for a system of general linear dynamics. We then
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provide preliminaries to facilitate the analysis in Section III.

A. Problem Formulation

Consider a general N -player linear time-invariant dynam-
ical system given by

ẋ = Ax+
N∑
j=1

Bjuj +
N∑
j=1

Cjdj , (1)

where x = x(t) ∈ Rn is the state vector, uj = uj(t) ∈ Rm

is the control input for player j, and the dj = dj(t) ∈ Rq is
the adversarial disturbance input for player j. A, Bj , and Cj

are the drift, control input, and disturbance input dynamics,
respectively. It is assumed that the system (1) is stabilizable.
Many engineering systems are governed by dynamics (1), for
example, the aircraft launching, where x is the aircraft speed,
uj and dj are the control thrust force and the disturbance
force of the controller j, respectively.

Define the cost function to be optimized for player i (i =
1, 2, · · · , N ) as

Ji(x(0),ui,u−i,di,d−i)

=

∫ ∞
0

ri(x,ui,u−i,di,d−i)dt

=

∫ ∞
0

x
T
Qix+

N∑
j=1

uj
TRijuj − γ2

N∑
j=1

‖dj‖2
 dt,

(2)

where u−i and d−i are the sets of control and disturbance
policies for all players other than player i. Qi and Rij (i 6=
j) are positive semi-definite matrices, and Rii are positive
definite matrices.

The value function of player i is defined as

Vi(x(t))

=

∫ ∞
t

ri(x,ui,u−i,di,d−i)dτ

=

∫ ∞
t

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2
 dτ.

(3)

Define the multi-player H∞ differential game as

V ∗i (x(0)) = min
ui

max
di

Ji(x(0),ui,u−i,di,d−i), (4)

where V ∗i (x(0)) is the optimal value for player i. In the
multi-player H∞ game, each player tries to minimize its
cost function by choosing a control policy ui, while the
disturbance di seeks to maximize this cost. Each player has
access to the full state of the system.

The problem is to find the optimal control and disturbance
policies u∗i and d∗i such that

u∗i = argmin
ui

Ji(x(0),ui,u−i,di,d−i),

d∗i = argmax
di

Ji(x(0),ui,u−i,di,d−i).

B. Preliminaries

Definition 1. [11] The system (1) is said to have L2-gain less
than or equal to γ if the following disturbance attenuation
condition is satisfied for all dj ∈ L2[0,∞) with x(0) = 0:∫∞

t
‖z(τ)‖2dτ∫∞

t

(∑N
j=1 ‖dj‖2

)
dτ
≤ γ2,

where ‖z(t)‖2 = x
T
Qix +

∑N
j=1 uj

TRijuj , dj(t) is the
disturbance input, and γ is the amount of attenuation.

It is assumed that γ in (2) satisfies γ ≥ γ∗, where γ∗ is
the smallest γ, also know as H∞ gain for system (1) [1],
which satisfies the disturbance attenuation condition.

Definition 2. [1] Policies {u∗1,d∗1,u∗2,d∗2, · · · ,u∗N ,d∗N} are
said to constitute a Nash equilibrium solution to the N -player
H∞ game if the following inequality holds:

Ji(x(0),u
∗
i ,u
∗
−i,di,d

∗
−i)

≤ J∗i (x(0),u∗i ,u∗−i,d∗i ,d∗−i)
≤ Ji(x(0),ui,u

∗
−i,d

∗
i ,d
∗
−i), ∀ui, ∀di, ∀i.

(5)

III. MULTI-PLAYER H∞ DIFFERENTIAL GAME

This section derives the optimal solution to the N -player
H∞ differential game. Section III-A studies the stability and
Nash equilibrium of the game. Two IRL-based algorithms
are then developed in Section III-B to solve the differential
game online.

A. Stability and Nash Equilibrium

Differentiating the value function Vi(x(t)) defined in (3),
one can obtain the Bellman equation as follows,

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2

+∇V
T

i

Ax+
N∑
j=1

Bjuj +
N∑
j=1

Cjdj

 = 0,

(6)

where ∇Vi = ∂Vi/∂x . The boundary condition for this
partial differential equation is Vi(0) = 0. A solution to (6)
is the value function Vi(x) for the feedback control policy
ui = ui(Vi(x)) and disturbance policy di = di(Vi(x)).

Define the Hamiltonian function associated with the value
function (3) as

Hi(x,∇Vi,ui,u−i,di,d−i)

= ri(x,ui,u−i,di,d−i)

+∇V
T

i

(
Ax+

N∑
j=1

Bjuj +
N∑
j=1

Cjdj

)

= x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2

+∇V
T

i

Ax+
N∑
j=1

Bjuj +
N∑
j=1

Cjdj

 .

(7)
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At the equilibrium point, applying the stationary conditions

∂Hi

∂ui
= 0 and

∂Hi

∂di
= 0

yields the optimal control and disturbance policies as func-
tions of Vi(x):

u∗i = u∗i (Vi(x)) = −
1

2
R−1ii B

T

i∇Vi, (8)

d∗i = d∗i (Vi(x)) =
1

2γ2
C

T

i∇Vi. (9)

Therefore, the value function Vi(x) in (3) is only a func-
tion of the state x(t). Moreover, the Hamiltonian function
Hi attains a saddle point at the stationary point since
∂2Hi

/
∂u2

i = 2Rii > 0 and ∂2Hi

/
∂d2

i = −2γ2 < 0.
Substituting (8) and (9) into the Bellman Equation (6), the

following Hamilton-Jacobi-Isaacs (HJI) equation is obtained:

x
T
Qix+

1

4

N∑
j=1

∇V
T

j BjR
−1
jj RijR

−1
jj B

T

j∇Vj

− 1

4γ2

N∑
j=1

∇V
T

j CjC
T

j∇Vj +∇V
T

i

(
Ax

− 1

2

N∑
j=1

BjR
−1
jj B

T

j∇Vj +
1

2γ2

N∑
j=1

CjC
T

j∇Vj

)
= 0.

(10)

Since the attenuation condition in Definition 1 is satisfied,
the HJI equation (10) has a positive semi-definite solution
V ∗i (x(t)) [1].

Note that for the optimal policies u∗i , d∗i and the corre-
sponding V ∗i , the HJI equation satisfies

Hi(x,∇V ∗i ,u∗i ,u∗−i,d∗i ,d∗−i) = 0. (11)

Theorem 1. Assume the control and disturbance policies
are optimal for all players other than player i. Then for any
admissible policies ui(x) and di(x), and any positive semi-
definite value function Vi(x), one has the following equation:

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i)
+ (ui − u∗i )

TRii(ui − u∗i )− γ2(di − d∗i )
T(di − d∗i ).

(12)

Proof: Taking u−i = u∗−i and d−i = d∗−i, the
Hamiltonian function in (7) can be written as

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= x
T
Qix+

∑
j 6=i

u∗
T

j Riju
∗
j + u

T

iRiiui

− γ2
∑
j 6=i

‖d∗j‖2 − γ2d
T

idi

+∇V
T

i

(
Ax+

∑
j 6=i

Bju
∗
j +Biui +

∑
j 6=i

Cjd
∗
j +Cidi

)

= x
T
Qix+

∑
j

u∗
T

j Riju
∗
j − γ2

∑
j

‖d∗j‖2

+∇V
T

i

(
Ax+

∑
j

Bju
∗
j +

∑
j

Cjd
∗
j

)
+ u

T

iRiiui − u∗
T

i Riiu
∗
i − γ2d

T

idi + γ2d∗
T

i d∗i

+∇V
T

i (Biui −Biu
∗
i +Cidi −Cd∗i )

= Hi(x,∇Vi,u
∗
i ,u
∗
−i,d

∗
i ,d
∗
−i) + u

T

iRiiui − u∗
T

i Riiu
∗
i

− γ2d
T

idi + γ2d∗
T

i d∗i + (ui − u∗i )
T
B

T

i∇Vi

+ (di − d∗i )
T
C

T

i∇Vi.
(13)

According to (8) and (9), one has

B
T

i∇Vi = −2Riiu
∗
i and C

T

i∇Vi = 2γ2d∗i .

As such, (13) can be further rewritten as

Hi(x,∇Vi,ui,u
∗
−i,di,d

∗
−i)

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i) + u
T

iRiiui

− u∗
T

i Riiu
∗
i − γ2d

T

idi + γ2d∗
T

i d∗i

− 2(ui − u∗i )
T
Riiu

∗
i + 2γ2(di − d∗i )

T
d∗i

= Hi(x,∇Vi,u∗i ,u∗−i,d∗i ,d∗−i)

+ (ui − u∗i )
T
Rii(ui − u∗i )− γ2(di − d∗i )

T
(di − d∗i ).

This result is next employed to show that the optimal
policies given by (8) and (9) in terms of coupled HJI solution
V ∗i (x) constitute a Nash equilibrium solution.

Theorem 2. Suppose V ∗i (x) are smooth continuous positive
semi-definite functions that solve the HJI equations (10). The
control and disturbance policies u∗i and d∗i are given by (8)
and (9). Then the following two statements (a) and (b) hold.

(a). The closed-loop system

ẋ = Ax+
N∑
j=1

Bju
∗
j +

N∑
j=1

Cjd
∗
j

= Ax− 1

2

N∑
j=1

BjR
−1
jj B

T
j∇V ∗j +

1

2γ2

N∑
j=1

CjC
T
j∇V ∗j

(14)

is asymptotically stable.
(b). Policies {u∗i , d∗i } constitute a Nash solution.

Proof:
(a). With γ satisfying the attenuation condition, one has

Vi(x)

=

∫ ∞
t

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2
 dτ ≥ 0,

where Vi(x) = 0 if and only if x = 0.
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Select Vi(x) as the Lyapunov function candidates. Differ-
entiating Vi(x) yields

V̇i(x) = (∇Vi)
T

Ax+
N∑
j=1

Bjuj +
N∑
j=1

Cjdj


= −

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2
 ≤ 0,

where V̇i(x) = 0 if and only if x = 0. Therefore, Vi(x) are
Lynapunov functions and the system (14) is asymptotically
stable.

(b). Since the system (14) is asymptotically stable, one has
x(t)→ 0, and thus Vi(x(t))→ 0, as time t→∞. The cost
function (2) can be rewritten as

Ji(x(0),ui,u−i,di,d−i)

=

∫ ∞
0

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2
 dt

+

∫ ∞
0

V̇i dt− Vi(x(∞)) + Vi(x(0))

=

∫ ∞
0

x
T
Qix+

N∑
j=1

u
T

jRijuj − γ2
N∑
j=1

‖dj‖2
 dt

+

∫ ∞
0

∇V
T

i

Ax+
N∑
j=1

Bjuj +
N∑
j=1

Cjdj

 dt

+ Vi(x(0))

=

∫ ∞
0

Hi(x,∇Vi,ui,u−i,di,d−i)dt+ Vi(x(0)).

Now let Vi(x) = V ∗i (x) satisfy the HJI equation (10), and
u−i, d−i choose the optimal policies. By Theorem 1 one
has

Ji(x(0),ui,u
∗
−i,di,d

∗
−i)

=

∫ ∞
0

Hi(x,∇V ∗i ,ui,u
∗
−i,di,d

∗
−i)dt+ V ∗i (x(0))

=

∫ ∞
0

(
(ui − u∗i )

T
Rii(ui − u∗i )− γ2(di − d∗i )

T

(di − d∗i )

)
dt+ V ∗i (x(0)),

which implies that (5) is satisfied and hence the system is in
Nash equilibrium.

B. Approximated Solutions Using IRL

In Section III-A, we develop the optimal policies for the
multi-player H∞ differential game. As one may notice, the
key to finding the policies is solving V ∗i (x) from the HJI
Equation (10), which is, however, extremely difficult analyt-
ically [3]. As such, we propose two IRL-based algorithms to
solve the HJI equation numerically.

1) On-Policy IRL: The value function (3) can be written
as

Vi(x(t))

=

∫ t+T

t

ri(x(τ),ui(τ),u−i(τ),di(τ),u−i(τ))dτ

+ Vi(x(t+ T )),

(15)

where T is the time interval. Assume that there exits a weight
vector Wi such that the value function can be approximated
as

Vi(x) = W
T

iφi(x), (16)

where φi(x) is the basis function vector.
With the approximated value function, the optimal control

and disturbance policies can then be determined using RL,
in particular, the Policy Iteration (PI) algorithm [1, Page
474]. The PI algorithm constitutes two iterative steps: Policy
Evaluation step, to evaluate the value function by (15) and
(16), and Policy Improvement step, to find the optimal
policies based on current value function by (8) and (9). This
PI algorithm for the multi-player H∞ differential game is
summarized in Algorithm 1.

Algorithm 1 Policy iteration algorithm for multi-player
H∞ differential game

1: Initialize each player with admissible policies u
(1)
i and

d
(1)
i , ∀i ∈ N .

2: For each iteration k, find the value function V (k)
i (t) by

V
(k)
i (x(t)) =

∫ t+T

t

ri

(
x,u

(k)
i ,u

(k)
−i ,d

(k)
i ,d

(k)
−i

)
dτ

+W
(k−1)

T

i φi(x(t+ T )).
(17)

3: Update the weight vector W
(k)
i according to the esti-

mated V (k)
i (x(t)) using the least-squares method,

W
(k)

T

i φi(x(t)) = V
(k)
i (x(t)). (18)

4: Update the policies u
(k+1)
i and d

(k+1)
i for all players as

u
(k+1)
i = −1

2
R−1ii B

T

i

∂V
(k)
i

∂x
,

d
(k+1)
i =

1

2γ2
C

T

i

∂V
(k)
i

∂x
.

(19)

5: Repeat procedures 2− 4 until convergence.

2) Off-policy IRL: The on-policy algorithm requires the
knowledge of the system dynamics, i.e., matrices Bi and Ci,
for learning the optimal policies. In addition, the behavior
policies ui and di are required to be adjustable at every
policy improvement step.

This subsection develops an off-policy IRL algorithm to
learn the optimal policies without any information of the
system dynamics. The off-policy IRL learns the optimal
policies of the game online while the game is being played
based on fixed behavior policies ui and di, which are used
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to generate system data [11]. This result is developed for the
case when players have identical dynamics, i.e., Bj = B
and Cj = C, for all j = 1, 2, · · · , N .

We write the system dynamics in the following form:

ẋ =Ax+
N∑
j=1

Bu
(k)
j +

N∑
j=1

Cd
(k)
j

+
N∑
j=1

B
(
uj − u

(k)
j

)
+

N∑
j=1

C
(
dj − d

(k)
j

)
,

(20)

where u
(k)
j and d

(k)
j are the policies to be updated for the

optimal solutions.
Differentiation the value V (k)

i (x(t)) along with the system
dynamics (20) and using (6), (19) yield

V̇
(k)
i (x(t))

= ∇V (k)
T

i

Ax+
N∑
j=1

Bu
(k)
j +

N∑
j=1

Cd
(k)
j


+∇V (k)

T

i

 N∑
j=1

B
(
uj − u

(k)
j

)
+

N∑
j=1

C
(
dj − d

(k)
j

)
= −

x
T
Qix+

N∑
j=1

u
(k)

T

j Riju
(k)
j − γ2

N∑
j=1

‖d(k)
j ‖

2


− 2u

(k+1)
T

i Rii

N∑
j=1

(
uj − u

(k)
j

)
+ 2γ2d

(k+1)
T

i

N∑
j=1

(
dj − d

(k)
j

)
.

(21)

Integrating (21) from both sides gives the following off-
policy IRL Bellman equation:

V
(k)
i (x(t+ T ))− V (k)

i (x(t))

=

∫ t+T

t

(
− x

T
Qix−

N∑
j=1

u
(k)

T

j Riju
(k)
j

+ γ2
N∑
j=1

‖d(k)
j ‖

2

)
dτ

+

∫ t+T

t

(
− 2u

(k+1)
T

i Rii

N∑
j=1

(
uj − u

(k)
j

)
+ 2γ2d

(k+1)
T

i

N∑
j=1

(
dj − d

(k)
j

))
dτ.

(22)

Note that for any fixed admissible control and disturbance
policies ui and di, (22) can be solved for value function V (k)

i

and the updated policies u
(k+1)
i and d

(k+1)
i simultaneously.

To this end, three neural networks (NNs), i.e., the critic
NN, the actor NN, and the disturber NN, are used here for

approximating the value function and the updated control
and disturbance policies respectively:

V
(k)
i (x) = W

(k)
T

i φi(x),

u
(k+1)
i (x) = W

(k+1)
T

u,i σi(x), (23)

d
(k+1)
i (x) = W

(k+1)
T

d,i ψi(x),

where φi(x), σi(x) and ψi(x) provide suitable basis function
vectors, and W

(k)
i , W(k+1)

u,i and W
(k+1)
d,i are weight matrices

with proper dimensions.
The implementation of the off-policy IRL algorithm is

described in Algorithm 2.

Algorithm 2 Off-policy IRL algorithm for multi-player
H∞ differential game

1: Initialize each player with admissible policies u
(1)
i and

d
(1)
i , ∀i.

2: For each iteration k, solve (22) for V (k)
i , u

(k+1)
i , and

d
(k+1)
i simultaneously.

3: Update W
(k)
i , W

(k+1)
u,i and W

(k+1)
d,i according to the

derived V
(k)
i , u

(k+1)
i , d

(k+1)
i by (23) using the least-

squares method.
4: Repeat procedures 2− 3 until convergence.

IV. ILLUSTRATIVE EXAMPLES

In this section, the two proposed algorithms are applied to
a linear system example to validate the theoretical analysis.

Consider a three-player H∞ game with a linear system
described by the following dynamics:

ẋ =

[
1 0.25
1 0

]
x+

3∑
j

[
1.3
0

]
uj +

3∑
j

[
1.3
0

]
dj , (24)

where x = [x1, x2]
T
.

The parameters in the value function (3) are selected as:

Q1 = Q2 = Q3 =

[
1 0
0 1

]
, R12 = R13 = R21 = R23 =

R31 = R32 = 1, R11 = 2, R22 = 3, R33 = 5, and γ = 5.
The reinforcement learning interval T is chosen to be 0.1.

The on-policy PI algorithm (Algorithm 1) is implemented
first. We select the basis function φi = [x21, x1x2, x

2
2]

T
with

weight vector Wi = [Wi1,Wi2,Wi3]
T
, where i = 1, 2, 3.

Figure 1(a) and 1(b) show the evolution of the system states
and value function weights.

Figure 1(a) shows that the system states converge to 0
when the optimal policies are applied to the system (24).
Moreover, Figure 1(b) verifies the convergence of value
function weights, from which the optimal policies can be
derived.

Then we simulate the off-policy IRL algorithm (Algorithm
2). Here, three NNs are selected as follows: the critic
NN φi = [x21, x1x2, x

2
2]

T
with a weight vector Wi =

[Wi1,Wi2,Wi3]
T
; the actor NN σi = [x1, x2]

T
with a weight

vector Wu,i = [Wu,i1,Wu,i2]
T
; the disturber NN ψi =

[x1, x2]
T

with a weight vector Wd,i = [Wd,i1,Wd,i2]
T
, where

1141

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2021 at 15:53:51 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150
Time

-2

0

2

4

6
St

at
e

x1
x2

(a)

0 50 100 150
Time

1.2

1.4

1.6

1.8

2

W
ei

gh
t

W11
W12
W13

W21
W22
W23

W31
W32
W33

(b)

Fig. 1. Multi-player H∞ differential game using on-policy IRL. (a) The
evolution of the system states, and (b) the derived value function weights.

0 50 100 150 200
Time

-2

0

2

4

6

St
at

e

x1
x2

(a)

50 100 150 200
Time

-1

0

1

2

W
ei

gh
t W11

W12
W13
Wu,11
Wu,12
Wd,11
Wd,12

W21
W22
W23
Wu,21
Wu,22
Wd,21
Wd,22

W31
W32
W33
Wu,31
Wu,32
Wd,31
Wd,32

(b)

Fig. 2. Multi-player H∞ differential game using off-policy IRL. (a) The
evolution of the system states, and (b) the derived value function weights.

i = 1, 2, 3. The simulation results are shown in Figure 2(a)
and Figure 2(b).

Figure 2 shows that the value function weights converge
in limited time using the proposed off-policy IRL algorithm,
and the converged values are identical to the ones derived
from the on-policy algorithm. In addition, the system states
converge to 0, which validate the asymptotic stability of the
closed-loop system.In addition, we find that the HJI Equation
(10) holds after substituting the derived value function, which
verifies the correctness of the derived solutions (18), (19) and
(23).

V. CONCLUSION

This paper studies a new differential game that takes
features of two existing games, i.e., two-player zero-sum
and multi-player nonzero-sum games, to solve the optimal
control problems of multi-player systems subject to external
disturbances. We showed that the optimal solutions to this
differential game can be found by solving the HJI equation,
and the derived optimal solutions can make the system
asymptotically stable and in Nash equilibrium. Moreover,
to solve the differential games online, we designed two
IRL-based algorithms, including the policy iteration and off-
policy IRLs. In particular, the designed off-policy IRL can
find the Nash solutions without using any information of the
system dynamics. In the future, we will generalize the current
work to systems with general nonlinear dynamics, and apply
the designed algorithms in real-world applications.
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