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Abstract Mining patterns of temporal sequence data is an important problem across many
disciplines. Under appropriate pre-processing procedures, a structured temporal sequence
can be organized into a probability measure or a time-series representation, which grants a
potential to reveal distinctive temporal pattern characteristics. In this paper, we propose a
two-stage nested clustering method that integrates optimal transport and the dynamic time
warping distances to learn the distributional and dynamic shape-based dissimilarity at the re-
spective stage. The proposed clustering algorithm preserves both the distribution and shape
patterns present in the data, which are critical for the datasets composed of structured tem-
poral sequences. The effectiveness of the method is tested against existing Agglomerative
and K-shape based clustering algorithms on Monte-Carlo simulated synthetic datasets, and
the performance is compared through various cluster validation metrics. Furthermore, we
apply the developed method to real-world datasets from three domains: temporal dietary
records, online retail sales, and smart meter energy profiles. The expressiveness of the clus-
ter and sub-cluster centroid patterns shows significant promise of our method for structured
temporal sequence data mining.
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1 Introduction

Clustering has become a ubiquitous data mining tool employed to group a set of objects
based on their similarities to potentially reveal any underlying structure in the given dataset.
Owing to its application across diverse scientific domains such as engineering, medicine,
and business applications, several clustering algorithms such as partitional clustering [? ],
hierarchical clustering [? ] and density based clustering [? ], etc, have been proposed in the
literature. These clustering methods have been applied not only to organize static datasets
but also to analyze dynamic datasets, such as the time-series data in which each sample
consists of discrete data points in time order.

Designing clustering algorithms is challenging because the true dissimilarity measure
(distance metric) for the underlying sample space is often impossible to know a priori.
Oftentimes, there exist multiple dissimilarity measures with which a given dataset can be
clustered and in general, the dissimilarity measure is tweaked to improve the clustering
performance [? ]. Especially, for time-series datasets, the data sequences are often distorted
in some way and the dissimilarity measure need to satisfy a number of invariances such as
scaling, translation, shift, occlusion and complexity invariances, to compare the sequences
in a meaningful way [? ]. In this context, several metric learning algorithms have been
proposed to directly identify a suitable metric (with appropriate invariances) [? ], which
can then be used in the clustering algorithm. A brief summary of different categories of
existing clustering algorithms and their properties along with related references are provided
in Table. 1.

On the other hand, in some cases, the time-series data may inherently contain some
structure. These can be local structures such as periodic/recurrent activity in Electroen-
cephalogram (EEG), Electrocardiography (ECG) data, or global structures such as activities
distributed over time as in temporal dietary records [? ], retail product sales [? ], and smart
meter energy profile. Effective clustering of such datasets by explicitly accounting for the
structural information can help organize the data efficiently and make informed decisions
using the insights gained from the resulting clusters. For example, clusters from the daily
dietary records can reveal healthy eating behavior in relation to disease outcome, clusters
from retail product sales enable products bundled procurement, and clusters from electricity
load measurements of smart home appliances can aid in utility contract design. These spe-
cial time-series datasets, which consist of structural activities distributed over a fixed period
of time besides local features, are referred in this paper as the structured temporal sequence
data. In order to effectively cluster such structured temporal sequence data, developing a
clustering algorithm that exploits the distribution structure in the data is critical. To the best
of our knowledge, time-series clustering algorithms that explicitly incorporate such distri-
bution structures with a time-series based dissimilarity measure are not reported and we aim
to fill this gap.

To this end, in this paper, we propose a nested two-stage clustering approach that explic-
itly exploits the distribution structure (over a given time period) of the structured temporal
sequence data. Specifically, we propose an optimal transport (OT) and dynamic time warp-
ing (DTW) distance based nested two-stage clustering method. The discrete distribution
representation of the temporal sequence data, after normalization, fits well into the frame-
work of the OT distance of two empirical discrete distributions. We propose to cluster the
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structured temporal sequence data based on: a) the OT distance, which delineates the distri-
butional similarity, and b) the DTW distance, which delineates the dynamic shape dissim-
ilarity, between structured temporal sequences in a nested hierarchy. In doing so, both the
distribution patterns and the shape patterns in data are preserved by the clustering algorithm.
Additionally, we propose a variant of the OT based clustering by replacing the discrete dis-
tribution representation of the data with a continuous probability measure (referred as OTC),
and present an efficient pre-processing and data representation strategy for all the cases (OT
for discrete probability measure, OTC for continuous probability measure, and DTW for
time-series representation). As a net result, with the proposed two-stage clustering approach
and the pre-processing steps, the scale, translation, shift, distribution, and occlusion invari-
ances are effectively captured without having to learn and identify a sophisticated distance
metric.

To validate the efficacy of the proposed method, we present examples using Monte
Carlo simulated synthetic datasets, and a comparative analysis with other algorithms such
as DTW-DTW, MDTW-MDTW [? ], OT-OT, OTC-DTW and Euclidean-Euclidean based
K-means clustering. Further, the proposed algorithm is tested on real-world datasets such as
the temporal dietary record, online retail data, and smart meter energy profile [? ? ]. It is ob-
served that the resulting cluster centroids provide relevant insights into the dietary energy,
product sales and energy consumption patterns, conforming to each application’s domain
knowledge. Additionally, we include discussions on the ordering of the distance metrics and
the other potential candidates (in place of OT and DTW distances) for the two stages of the
proposed algorithm.

In summary, the contributions of the paper include the development of a nested two-
stage clustering framework and the design of OT-DTW and OTC-DTW algorithms for struc-
tured temporal sequence data. We show that the proposed clustering method effectively cap-
tures the (macroscopic) distribution and (microscopic) shape patterns present in the consid-
ered structured temporal sequence data by using several examples with both synthetic and
real-world datasets. We further demonstrate the broader applicability of the proposed algo-
rithms in identifying synchronization clusters in oscillatory networks. The organization of
the paper is as follows: in Section 2, we first provide a motivational example, and then review
some of the related works on distance-based clustering using OT/OTC distance and DTW
distance. In Section 3, the pre-processing step to achieve the discrete/continuous probability
measure and time-series representation are introduced. Section 4 is devoted to introducing
algorithm details of our two-stage clustering framework OT-DTW and OTC-DTW. All the
experimental results with comparative analysis on synthetic data are presented in Section 5,
and application to real-world datasets are presented in Section 6.

2 Motivation

To motivate the problem of clustering structured temporal sequence data, we present the
following example. Three typical cases corresponding to the energy intake ratio by three
individuals in a 24 hour period are recorded (see Fig. 1). The raw data shown in this figure
for the three cases are typical examples of the temporal sequence data considered in this
paper. In this example, Case I illustrates a three-meal dietary pattern with a gradual increase
of energy portion from breakfast to dinner while Case II shows the same three-meal pattern,
but with a shift of one hour for each meal. The temporal dietary pattern for Case III shares a
similar energy distribution with patterns in Case I and Case II, but with more eating hours.
The pairwise dissimilarity of these three cases under Euclidean distance, OT distance, and
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Table 1: A brief summary of clustering models.

Clustering
Approach Models Comments References

Statistical

Bayesian non-parametric models - Need uniform sampling [? ]
ARMA - High sampling frequency [? ]
ARIMA - Estimate correlations or transition probabilities [? ]
Gaussian mixture models on which the clusters are defined. [? ]
- Hidden Markov models [? ]

Dynamical
system

Nonlinear finite impulse
response models (NFIR)

- Choices of nonlinear mapping and regression
vector are paramount [? ]

Nonlinear auto regressive with
exogenous input (NARX) models

- Input sequence selection is important
- High sampling frequency

Nonlinear output error (NOE) models - Model identified can be used for prediction
Nonlinear Box–Jenkins (NBJ) models

Feature

Structural characteristics - Rely on extracting features [? ]
Sparsity-density entropy based on the domain knowledge

- Dissimilarity measures are often customized
- Domain specific; hard to generalize

Segmentation Matrix profile - Identify local abnormalities or repeated patterns
- Requires a user-defined sliding window [? ]

DTW distance are recorded in Table 2 (detailed explanation for calculating OT distance and
DTW distance is provided in Section 4).
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Fig. 1: (Top) Three donut charts illustrating three different eating patterns. The tilted donuts
on Case II and Case III describe the shifts in the intake time for breakfast, lunch, and dinner
compared to Case I. (Bottom) Three dietary temporal sequence data with x-axis representing
hour of the day and y-axis representing energy intake ratio of each hour. The raw data (for all
the three cases) represent the typical structured temporal sequence considered in this paper
and this data posses a meaningful distributional structure, i.e., the energy intake distribution
over a 24-hour cycle.
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The insights gained from this example are as follows: The results recorded in Table 2
indicate that the Euclidean distance is sensitive to dynamic shifts yielding large distance
values for all the three pairs (especially, between Cases I and II), and the OT distance well
captures the distributional difference among these three samples, yielding relatively small
values for all pairwise distances. However, the outputs from the OT suggests a smaller dis-
tance between Cases I and III than between Cases I and II, which creates ambiguity when
the eating frequency (the number of total eating hours) is of interest. In addition, the out-
puts based on the DTW distance reveal no difference between Cases I and II. This is due
to the (time warped) shape-invariant nature of the DTW distance, which also yields sim-
ilar distances between Cases I and III and Cases II and III. In the context of the dietary
data considered, these findings indicate that the DTW distance lacks of ability to distinguish
the energy intake distributional difference between samples when the eating hours are not
identical (see Case I and Case II).

Hence, the DTW distance is not equipped to detect high-level distributional dissimilar-
ity in the data while the OT distance is incapable of detecting the dynamic shape similarity.
Since the two key criteria to distinguish temporal dietary patterns are the energy distribution
and the eating frequency, mining temporal distribution patterns using a single distance met-
ric, evidently, does not provide desirable results, and the underlying reason for this difficulty
is the unknown geometrical structure of the space from which the data is generated. Specif-
ically, the dynamic shape and distributional differences are not simultaneously captured by
the commonly used distance metrics such as OT and DTW. Therefore, explicitly accounting
for the special distributional structure in the data along with its dynamic shape similarity
while clustering is essential.

Table 2: Pairwise distances of the three cases in Fig. 1.

Pairwise Distance Case I & II Case I & III Case II & III
Euclidean 0.8718 0.4899 0.6782

OT 0.0022 0.0014 0.0047
DTW 0 0.4 0.4

Motivated by this example, in this paper, we consider the structured temporal sequence
data, and propose a nested two-stage clustering algorithm. The proposed algorithm can be
categorized as an extension of the traditional hierarchical clustering algorithm [? ]. However,
in contrast to the traditional hierarchical algorithms (top-down or bottom-up), wherein the
same distance metric persists at different stages, we propose to employ carefully designed
distinct distance metrics in the two stages of our algorithm for distinct representations of the
same structured temporal sequence data. We find that the difficulty in capturing the distri-
bution and shape differences by a single metric, as shown in the aforementioned example, is
mitigated with the proposed nested two-stage clustering algorithm.

Next, we develop the pre-processing steps to produce the discrete and continuous prob-
ability measure representations that are compatible with clustering using OT, and steps to
produce the time-series representation for clustering using DTW.

3 Representations of Structured Temporal Sequences

In this section, we present the pre-processing steps required for the proposed clustering algo-
rithm. We first discuss the details of two formulations of probability measure (both contin-
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uous and discrete probability measures) to facilitate discrimination of temporal distribution
pattern. Then we introduce the time-series representation and its importance for dynamic
shape comparison with an appropriate time-series distance metric. In practice, the differ-
ences in the length of the time sequences in a given dataset and the differences in the scale
of the data can be an impediment for clustering structured temporal sequence data. To con-
quer these difficulties, we design a pre-processing strategy including uniform interval-based
aggregation and normalization with the sum as follows.

We consider the structured temporal sequence composed of real-valued data points in-
dexed by time denoting their position in the sequence. Specifically, we call the raw data
considered in this paper as the structured temporal sequence data. Such data are time-series
data that possess a meaningful distributional structure. In contrast, when the distributional
structure is not explicitly considered (as in Sec. 3.3), we call it a time-series. The main reason
for this distinction is to highlight the fact that not all time-series data can have a valid dis-
tributional representation. Since we use OT distance as one of the distance metrics, for ease
of exposition, we assume that the data points are re-scaled such that they are non-negative
real numbers. For example, consider the ith sample in the dataset. The temporal sequence, si,
corresponding to this ith sample is denoted as si = {(ti,1,xi,1), . . . ,(ti,a ,xi,a), . . . ,(ti,Mi ,xi,Mi)}
where ti,a 2 [0,Tmax] is the time of the a th record, xi,a � 0 is the value of the a th record,
Tmax is the upper limit of time for all samples, and Mi is the length of si. We further assume
that the xi,a values are summable. Most recorded discrete random event data, such as tem-
poral dietary record, retail sales data, and smart meter energy profile [? ? ], satisfy these
properties.

For pre-processing, we assume that the entire time length, [0,Tmax], is partitioned into a
uniform set of contiguous, disjoint n intervals (bins) I = {I1, . . . , In}, where I j = [I j, I j), I1 =

0 and In = Tmax. The ith sample, si, is then transformed into a vector of tuples {(I1,Xi,1), . . . ,
(I j,Xi, j), . . . ,(In,Xi,n)}, where Xi, j = Âti,a2I j xi,a . This aggregation can serve as a noise-
reducing step when the data collection is in minuscule time scale, and it is unnecessary
to study temporal patterns at such scale. Additionally, this uniform binning automatically
equalizes the sequences with different number of events to the length n.

In practice, the bin size can be adjusted according to the requirement, such as temporal
patterns at hourly scale, or daily scale, etc. To accommodate the temporal pattern’s invari-
ance to the scale of x, we further normalize each Xi, j using Ân

j=1 Xi, j for each data sample
and denote the normalized value as pi, j =

Xi, j
Ân

j=1 Xi, j
. So the processed ith sample becomes

{(I1, pi,1), . . . ,(I j, pi, j), . . . ,(In, pi,n)}. Viewpoints of the tuple (I j, pi, j) play an important
role in designing a dissimilarity measure for an unsupervised clustering of structured tem-
poral sequence task.

This motivates us to treat the processed sample as a discrete probability measure or
a histogram of continuous probability measure, with the underlying space time-ordered.
Alternatively, from a different perspective, the processed sequence of values {pi, j} is still
a sequence of data points indexed by time, though the normalization process (in the pre-
processing step) is different from the traditional z-score approach [? ]. We introduce the
details to construct these three representations in the following subsections.

3.1 Discrete Probability Measure Representation

For the ith data sample, define pi = [pi,1, . . . , pi,n]T . The vector pi denotes a probability vector
as it satisfies the axiom of probability. Then, each pi belongs to the probability simplex Sn
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Fig. 2: An illustration plot of the histogram Yi. pi, j represents the height of bin I j for Yi.

where

Sn :=

(
q = [q1, . . . ,qn]

T 2 Rn
+ :

n

Â
j=1

q j = 1

)
.

To transform {(I1, pi,1), . . . ,(I j, pi, j), . . . ,(In, pi,n)} to a discrete probability measure, we use
a singleton, {Tj}, to represent the interval I j such that Tj = j for j = {1, . . . ,n}. Then for the
discrete probability measure ni, ni({Tj}) = pi, j. The singleton {Tj} is called an atom of ni
[? ]. With this constructed discrete probability measure notation, the problem of calculating
dissimilarity measure between two temporal sequences s1 and s2 is transformed to a problem
of calculating a distance between two discrete probability measures n1 and n2.

3.2 Continuous Probability Measure Representation

In this section, we consider another feasible distribution representation of the temporal se-
quence, i.e., as a histogram of continuous probability measure which is assumed to be uni-
formly distributed within each interval I j. In contrast to the traditional approach for con-
structing the histogram [? ], we propose an alternative strategy, in which the histogram Yi
for si is directly constructed from {(I1, pi,1), . . . ,(I j, pi, j), . . . ,(In, pi,n)}, where pi, j becomes
the height of bin I j. The illustration is plotted in Figure 2.

Given the histogram Yi, we can further define the continuous probability measure fi as
follows. For each bin I j, the distribution value pi, j can be treated as an integral from an
uniform probability measure on I j. So fi can represent a probability distribution on [0,Tmax]
with uniform measure on each bin I j, j 2 {1, . . . ,n}. To numerically compute Fi, the em-
pirical CDF (cumulative distribution function) of the continuous probability measure, fi,
from Yi, we start by calculating the cumulative weights of pi, j at each bin boundary. Let the
cumulative weights wi, j at the right boundary of the bin I j be calculated as

wi, j =
j

Â
l=1

pi,l 8 j = 1, ...,n. (1)

Adopting the uniform distribution assumption within each I j, Fi(t) becomes

Fi(t) = wi, j�1 +
t � I j

I j � I j
(wi, j �wi, j�1), 8t 2 [I j, I j]. (2)
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Then the quantile function (inverse CDF) is a piecewise function defined as follows

F�1
i (w) = I j +

w�wi, j�1

wi, j �wi, j�1
(I j � I j), 8w 2 [wi, j�1,wi, j]. (3)

Given the assumption of uniform density over all pre-defined bins I j 2 I, the corre-
sponding relationship between Fi and Yi is one-to-one. In Section 4, the calculations for OT
distance metric between Fi1 and Fi2 using F�1

i1 (w) and F�1
i2 (w) will be detailed.

3.3 Time-series Representation

For the comparison of time-series using DTW in the second stage, the order of values is
more significant than the underlying metric space of time as in the OT based first stage.
From Section 3.1, not only can pi represent a probability vector, but it can also be treated as a
time-series and the processed time-series representation of all structured temporal sequence
samples have the same length n. The normalization in the pre-processing step automatically
guarantees the time-series values are all at the same scale ([0,1]) and saves the additional
z-score normalization step [? ].

We devote the next section to design the appropriate dissimilarity measure for all the
above three representations, and introduce the distance-based clustering algorithms.

4 The Nested Two-stage Clustering

Our proposed nested clustering framework is a novel approach to explicitly capture both
the distributional difference and the dynamic shape difference between structured temporal
sequences. As mentioned in Section 1, instead of customizing either the OT distance or the
DTW distance to achieve an ideal dissimilarity measure, we choose to keep the simplicity of
both distance metrics and tackle the structural temporal difference one at a time in a nested
hierarchy. In this section, we first present the algorithms employed in our proposed nested
two-stage clustering framework, and then, discussions on the choice of distance metrics, and
their ordering in the two stages are presented.

4.1 Clustering of Discrete Probability Measure

4.1.1 Optimal Transport

Before presenting the algorithm used in our work, we briefly point out the original formu-
lation of the problem of finding the optimal transport distance on discrete measures. The
Kantorovich’s formulation [? ] of OT on discrete measures is a linear programming problem
(P0):

(P0) LC(n1,n2) = min
P2U(n1,n2)

hP ,Ci= min
P2U(n1,n2)

n

Â
j1=1

n

Â
j2=1

c j1, j2 p j1, j2 , (4)

s.t.
n

Â
j2=1

p j1, j2 = p1, j1 ,
n

Â
j1=1

p j1, j2 = p2, j2 ,8 j1, j2 2 {1, ...,n}, p j1, j2 � 0. (5)
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In this program, U(n1,n2) is called the transport polytope defined by constraints (5), and
P = {p j1, j2}, as a doubly stochastic transport matrix, consists values of a joint probability
distribution with marginals p1 and p2. Here hP ,Ci denotes the Hadamard product between
P and C, C = {c j1, j2} is the pairwise ground distance matrix and c j1, j2 = ||Tj1 �Tj2 ||

p
2 is

the pth power of the Euclidean distance. Then, the p-Wasserstein distance is Wp(n1,n2) :=
LC(n1,n2)1/p, where LC(n1,n2) is the solution of (P0) [? ].

The formulation in (P0) is a classical problem in linear programming and can be solved
using the simplex method or the interior point method. However, the high computational
complexity (O(n3 log(n))) prohibits its application for large-scale problems. Therefore, the
OT distance calculation in our approach is in line with the entropic regularized approxima-
tion, utilizing Sinkhorn’s algorithm [? ].

4.1.2 Entropic Regularized OT Distance

Let the discrete entropy of P be defined as

H(P) =�
n

Â
j1=1

n

Â
j2=1

[p j1, j2 log(p j1, j2)]. (6)

Then, the entropic regularized OT problem is given as

(P1) Le
C(n1,n2) = min

P2U(n1,n2)
hP ,Ci� eH(P), (7)

with the constraints (5) and e > 0. The convergence of the solution from (P1) towards the
optimal solution of (P0) has been shown in [? ]. The regularized OT distance can then
be calculated from equation (7) such that W 2

2 (n1,n2)⇡ hP e⇤,Ci� eH(P e⇤). This entropic
regularization brings significant numerical advantage for the calculation of OT distance be-
tween discrete measures due to the linear convergence rate of Sinkhorn’s algorithm [? ].

After computing the distance using OT, the samples are clustered using a variant of the
K- means algorithm which is presented next.

4.1.3 Extension of Lloyd’s Algorithm for OT Distance

The key to implementing a K-means type clustering algorithm is an iterative assignment and
refinement procedure for all samples given initial cluster centroids. We denote N samples of
processed discrete probability measure as {ni : i = 1, ...,N}. Then, the Lloyd’s algorithm is
a heuristic algorithm to minimize the following optimization objective

J =
K

Â
k=1

Â
i:g(i)=k

W 2
2 (µk,ni). (8)

where g is a mapping from sample to cluster index, µk is the centroid of cluster k, and
W 2

2 (µk,ni) is analogous to the within-cluster variance notation in the Euclidean K-means
case. However, in the iterative refinement step, the centroid of the cluster is not a simple
arithmetic mean of samples anymore. It turns out that when members of cluster k (k 2
{1,2...,K}) are given, the calculation of the cluster centroid is essentially a Wasserstein
barycenter (see Appendix for definition) calculation problem.

Note that [? ] considers the general case with non-negative weights li (Âi li = 1) in front
of each distance W 2

2 (µ,ni). We only consider uniform averaging as li =
1
N here because
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we do not assume any prior knowledge about the weights of different samples. For the
numerical calculation of Wasserstein barycenter on the strictly positive probability simplex
Sn (because of the entropic regularization term), we add a small positive shift (d = 10�6)
to all elements of the probability vector pi and renormalize them to sum to 1. For practical
clustering purposes, the effects of this small shift can be ignored.

4.2 Clustering of Time-series

Although DTW is not a true metric since it does not satisfy the triangle inequality, it is
still the most popular time-series dissimilarity measure owing to its robustness to shift and
dilation variance [? ? ]. Analogous to OT-means, DTW-means shares the same objective
format as in (8) with W (·, ·) replaced by E(·, ·), such that

J =
K

Â
k=1

Â
i:g(i)=k

E2(hk,pi). (9)

where hk is the DTW barycenter of cluster k (see Appendix for the definition of DTW
barycenter). Then, hk is calculated according to (14) using all samples {pi : g(i) = k}.

The change of distance metric from OT distance to DTW distance leads to a different
solution approach for the centroid calculation. Since our goal in this paper is not to develop
and compare DTW barycenter varieties, we adopt the classical DBA [? ] approach in our
experiments. Further discussions on the ordering and choice of algorithms in the two-stages
are included at the end of this section.It is worth mentioning that the distributional charac-
teristic at the first stage not only can be captured by the entropic regularized OT distance
on discrete probability measures, but can also be studied using OT distance on continuous
probability measures. Therefore, next, we present a computational approach for the clus-
tering of the structured temporal sequence based on OT distance of continuous probability
measures.

4.3 Clustering of Continuous Probability Measure

4.3.1 OT Distance for 1-D Continuous Measures

The main advantage of a 1-D continuous probability measure representation over a discrete
probability measure representation boils down to a simpler expression for the 2-Wasserstein
distance [? ] using quantile functions. The 2-Wasserstein distance, D2, for continuous mea-
sures is defined as

D2(F1,F2) =

s
Z 1

0
[F�1

1 (w)�F�1
2 (w)]2dw. (10)

This optimal transportation cost expression is true for any convex, nonnegative, sym-
metric ground cost function between continuous probability measures on the real line R
(Theorem 2.18 of [? ]). In this case, compared with the linear programming modeling for
discrete measures, we get a simpler mathematical form as in (10) since all we need is the
construction of the quantile function F�1

i (w) for each sample i in the given dataset.
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4.3.2 Clustering Under Continuous OT Distance

Similar to the case for discrete probability measures in Section IV.A, we consider a K-means
clustering framework with 1-D continuous OT distance D2. Given N samples of histogram
representation {Yi : i = 1, . . . ,N} and the corresponding calculated {Fi : i = 1, . . . ,N}, the
minimization objective is

J =
K

Â
k=1

Â
i:g(i)=k

D2
2(Fk,Fi), (11)

where the Wasserstein barycenter, Fk, of cluster k is defined as in Remark 1 in the Appendix.
This simple closed-form expression for Wasserstein barycenter of 1-D continuous mea-

sures greatly simplifies the theoretical analysis of barycenter properties [? ], and the OT
distance and Wasserstein barycenter of 1-D continuous measures are more succinct than
that of discrete measures (P0). However, whether this simple mathematical form also brings
numerical accuracy or computational efficiency advantage over entropic regularized OT dis-
tance on discrete measures (P1) is still in question. We further investigate the performance
difference of these two approaches in the numerical results section.

4.4 Choice of Distance Metrics

While DTW distance is a popular choice to find the dynamic shape difference between
time-series, there are many feasible distance metrics for probability measures, such as f -
divergence based distance [? ], Jensen-Shannon divergence [? ], etc. However, these dis-
tances only measure the distribution difference corresponding to the same atom (for discrete
probability measure) or the same bin (for continuous measure). This translates to high sen-
sitivity to the choice of bin size and shift in the p j values in time. In contrast, the optimal
transport distance naturally compares distribution values including the cross-atom (Tj1 to
Tj2 , j1 6= j2) or cross-bin (I j1 to I j2 , j1 6= j2) and yields intuitive geometrical meaning. So
we considered the OT distance as the primary choice for calculating the distributional dif-
ference between temporal sequences for both discrete and continuous probability measure
representations.

The proposed clustering framework holds a nested hierarchical structure, namely the
second stage DTW-means is implemented within the cluster outputs of the first stage OT-
means. The rationale for this ordering is the intrinsic higher hierarchy of the distribution
invariance than the translation or shift invariance. To better visualize the difference of the
two barycenters under OT and DTW distance, we include a plot of comparison of DTW
barycenter and OT barycenter for Case I & II of Fig. 1 in Fig. 3. For the two samples with
similar distribution value but a shift of one hour in the underlying support space, the DTW
barycenter keeps the dynamic shape of the samples well (actually in this case, it is exactly
equal to the sample 2), while the Wasserstein barycenter summarizes the distributional aver-
age of the two with three smoothed peaks of increasing height over time. The observations
of Fig. 3 inspired the choice of distance metric for each hierarchy in the nested two-stage
algorithm, which adopts OT-means or OTC-means to cluster the rough distributional struc-
ture at the first stage and then, utilizes DTW-means to cluster the finer shape structure such
as the number of peaks, relative peak heights in the second stage. If instead, we switch the
order of OT and DTW, and implement DTW at the first stage, the distribution invariance
at the second stage would be interfered because DTW cluster outputs separate very similar
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Fig. 3: (a) DTW barycenter, which preserves the shape of the averaged samples. (b) OT
barycenter, which disperses the peak value keeping only the rough shape.

distribution patterns with local shape difference into different clusters. Hence, characteriza-
tion of distribution variance within these outputs become inconsistent. Empirically, we test
this conjecture in the numerical experiments of synthetic dataset. Another practical merit of
the current approach is that if we only care about temporal distributional pattern, the inter-
mediate OT-means or OTC-means output can serve the needs. On the other hand, if we want
a more delicate structural pattern analysis, the output of the second-stage DTW-means can
provide the desired results.

In terms of the design choice of the clustering algorithms in both the stages, the main
concern is scalability. Spectral clustering and hierarchical clustering methods require pre-
computing of the whole pairwise distance matrix, which is not scalable with the size of the
data sample N. On the contrary, due to the developments of computational methods for the
barycenter under OT and DTW geometry, we apply the K-means type clustering algorithm
(Lloyd’s algorithm, to be exact) with adapted OT or DTW distance, which significantly
saves the computation time by calculating the distance from each sample to the cluster cen-
troids only (K ⌧ N). The other benefit of a K-means type algorithm is the representation of
the cluster using the cluster centroid which can further be used for nearest neighbor based
classification. The cluster centroids out of the two stages of our algorithm can provide both
visual discrimination and nearest neighbor based classification capabilities when additional
samples are added after clustering.

5 Experimental Results

In this section, we evaluate the performance of our two-stage clustering method using two
synthetic datasets with known class labels. We compare the clustering results obtained using
the proposed algorithms with four additional distance-based K-means type clustering algo-
rithms, which are OT-OT, DTW-DTW, MDTW-MDTW [? ], and Euclidean-Euclidean. In
these four algorithms, both of the two stages share the same distance metric as the name sug-
gests. We also present a comparison based on the numerical performance of OT-DTW and
OTC-DTW. In addition, we evaluate the performance of existing algorithms, including the
popular agglomerative hierarchical cluster tree [? ] with the aforementioned four distances,
as well as a well-developed time-series clustering algorithm k-Shape with shape-based dis-
tance (SBD) and DTW-based distance [? ]. All algorithms were implemented in MATLAB
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2018a and tested on a desktop configured with Intel i7-5820k and 32GB of memory1. A
comprehensive performance comparison is shown in the following subsections.

5.1 Synthetic Data Generation

In what follows, we describe how synthetic data were generated in both examples.

Example 1. The synthetic data for this example is generated through a Monte Carlo exper-
iment, which has six known clusters each with 27 unique samples of length 24 (i.e., K = 6,
Nk = 27, n = 24). Of the six clusters (see Fig. 4), three clusters are designed such that each
of the 27 samples in them is chosen with 3 nonzero bins. Each bin index in the sequence
is picked randomly from three sets {6,7,8}, {11,12,13}, and {17,18,19} respectively, and
the values are a permutation of {0.6,0.3,0.1}. The remaining three clusters are with sam-
ples chosen with six nonzero bins whose bin index are picked from the same three sets (two
from each set), and whose values are a permutation of {0.3,0.3,0.15,0.15,0.05,0.05}. For
example, for clusters (a), (c) and (e), we uniformly sample one bin index from each of the
three sets and assign a distribution value from {0.6,0.3,0.1} and the remaining 21 bins in
the sequence are assigned zero. For clusters (b), (d) and (f), we uniformly sample two points
within each set and assign, for both points, a value from {0.3,0.15,0.05}. Thus, the dataset
is defined such that Tj 2 {6,7,8,11,12,13,17,18,19} and pi, j 2 {0.6,0.3,0.1,0.3,0.3,0.15,
0.15,0.05,0.05}. Among the six clusters, the three pairs (clusters (a) and (b), clusters (c) and
(d), and clusters (e) and (f)) share the same distribution pattern, and within each pair, sam-
ples in the second cluster is composed of twice the number of positive values as the first
one. In this example, pi for each sample is restricted to take values from {0.6,0.3,0.1} or
{0.3,0.3,0.15,0.15,0.05,0.05}, which is relaxed in the next example.

Example 2. The synthetic data generation process for Example 2 is similar to Example 1,
but with different distributions for each of the six clusters. Here, for the six clusters of Ex-
ample 2, we modify the samples in cluster (b), (d) and (f) of Example 1 to have three pairs
of positive values sampled from {0.25,0.25,0.15,0.15,0.1,0.1}, and modify the distribu-
tion values in cluster (a) from {0.6,0.3,0.1} to {0.7,0.2,0.1} and the distribution values in
cluster (c) changed from {0.1,0.3,0.6} to {0.2,0.3,0.5} (cluster (e) unchanged). This new
synthetic dataset also has six known clusters with 27 samples each, and representatives of
each cluster are shown Figure 5. For both examples, 100 runs of experiments with random
initializations using the six different distance-based clustering algorithms are run and the
results are summarized next.

5.2 Performance on Synthetic Data

With known class labels in the synthetic data, we evaluate different algorithms using popular
external validation metrics, including the adjusted rand index (ARI) [? ], the Mirkin index
(MI) [? ], the Hubert index (HI) [? ], the Normalized Mutual Index (NMI) [? ], the Jaccard
index (Jaccard) [? ], and the Fowlkes-Mallows index (FM) [? ] as the performance quan-
tification criteria for the comparison of different clustering methods. All of the clustering
validation metrics have range [0,1], and yield better performance when the value is closer to
1, except for the MI which yields better performance when the value is smaller.
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Fig. 4: The representative sample for the six clusters in Example 1. Each plot from (a) to
(f) represents a randomly chosen sample from cluster (a) to (f). The remaining 26 samples
within the same cluster only have time-shift difference with the representative. As the plots
show, each pair in the same row denote the same distribution pattern, but the right plots
always have double the number of positive values.

Across all experiments, we assign the number of clusters, K1 = 3 in the first stage and
K2,1 =K2,2 =K2,3 = 2 in the second stage, based on the prior knowledge of data. The OT-OT
and DTW-DTW algorithm results are included, and for MDTW-MDTW, we implement the
kernelized DTW-means [? ] with DBA as the barycenter calculation method. The Euc-Euc
is serving only as a baseline since Euclidean geometry is known not to be working well
for these structured temporal sequences. The difference of OTC-DTW and OT-DTW exists
only at the first stage and DTW-means is applied at the second stage for both methods. Also
DTW-OT is tested on both examples to verify the importance of the order of two distance
metrics.

1 All the source codes have been made public on https://github.com/AML-wustl/OT-DTW
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Fig. 5: The representative sample for the six clusters in Example 2. Each plot from (a) to
(f) represents a randomly chosen sample from cluster (a) to (f). The remaining 26 samples
within the same cluster only have time-shift difference with the representative. Compared
with Fig. 4, each pair in the same row denote similar, but not the same distribution pattern
anymore.

The mean values of the validation metrics out of 100 runs of experiments with random
initializations using the seven different distance-based clustering algorithms for Example 1
and Example 2 are recorded in Table 3 and Table 4, respectively. In both tables, one-stage
clustering algorithms generally show inferior performance. In two-stage algorithms, Euc-
Euc yields the worst performance as expected, because it takes into account neither the dis-
tribution nor dynamic shape difference in the structured temporal sequence data. It is also
observed that the MDTW-MDTW [? ] results are not always better than the DTW-DTW,
as the performance of MDTW depends on the choice of hyper-parameter (the additional
penalty term corresponding to the time difference in the local distance). It is worth noting
that although the OTC-DTW runtime is only about one third of OT-DTW runtime, the aver-
age performance is not as good as that of OT-DTW. A further investigation of the first stage
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Table 3: (Example 1) mean values of six clustering validation metrics and runtime over 100
runs with different distance-based clustering methods and random initializations.

Clustering
validation metrics

Clustering method
(metrics)

k-means Agglomerative K-Shape

OT-OT DTW
-DTW

MDTW
-MDTW

EUC
-EUC

DTW
-OT

OTC
-DTW

OT
-DTW OT DTW MDTW EUC SBD DTW

ARI 0.41 0.69 0.73 0.20 0.74 0.73 1 0.56 0.59 0.83 0.61 0.31 0.24
MIa 0.17 0.09 0.08 0.26 0.08 0.09 0 0.17 0.12 0.05 0.13 0.23 0.21
HI 0.67 0.82 0.83 0.48 0.84 0.83 1 0.67 0.75 0.90 0.74 0.53 0.58

NMI 0.62 0.81 0.84 0.37 0.87 0.86 1 0.76 0.77 0.92 0.81 0.54 0.41
Jaccard 0.34 0.60 0.63 0.21 0.65 0.65 1 0.48 0.50 0.75 0.52 0.29 0.23

FM 0.95 0.91 0.93 0.84 0.91 0.89 1 0.71 0.87 0.93 0.80 0.80 0.97
runtime(s) 1.65 0.99 1.15 0.01 1.19 0.50 1.33 7.02 0.62 0.66 0.01 0.26 1.76

a MI index shows better performance when the value is closer to 0.

Table 4: (Example 2) mean values of six clustering validation metrics and runtime over 100
runs with different distance-based clustering methods and random initializations.

Clustering
validation metrics

Clustering method
(metrics)

k-means Agglomerative K-Shape

OT-OT DTW
-DTW

MDTW
-MDTW

EUC
-EUC

DTW
-OT

OTC
-DTW

OT
-DTW OT DTW MDTW EUC SBD DTW

ARI 0.65 0.72 0.69 0.08 0.73 0.68 0.96 0.46 0.70 0.84 0.39 0.34 0.19
MIa 0.01 0.09 0.10 0.36 0.09 0.11 0.01 0.22 0.09 0.04 0.24 0.23 0.32
HI 0.80 0.83 0.80 0.27 0.83 0.78 0.98 0.56 0.83 0.91 0.52 0.55 0.36

NMI 0.80 0.85 0.84 0.27 0.88 0.85 0.98 0.72 0.85 0.92 0.66 0.58 0.35
Jaccard 0.56 0.64 0.61 0.16 0.64 0.60 0.96 0.41 0.61 0.75 0.35 0.31 0.23

FM 0.94 0.89 0.88 0.84 0.88 0.83 0.98 0.66 0.90 0.95 0.68 0.78 0.71
runtime(s) 2.16 1.22 1.65 0.01 1.43 2.99 1.77 9.62 0.52 0.53 0.01 0.37 1.65

a MI index shows better performance when the value is closer to 0.

clustering output revealed that the OTC-means is highly sensitive with the random initial-
ization of cluster centroids, and with good initialization in some of the 100 runs (which are
not shown here) we can achieve comparable performance in that of OT-DTW. The inferior
performance on DTW-OT, compared with OT-DTW and other one-stage algorithms, con-
firms our findings that the order of distance metric in this nested framework indeed matters.
In summary, in both examples, OT-DTW yields the best performance validation metrics
among all distance-based clustering methods and its performance is not vulnerable to the
random initialization of cluster centroids.

Next, we discuss the choice of optimal K for both stages of our OT-DTW method when
the data generation process is unknown because K is the key parameter in the K-means
type clustering algorithm. Since we do not assume any prior knowledge of the number of
clusters in the real-world dataset, no external truth for validation as in the synthetic data
case is available. Therefore, the best K has to be determined with the help of cluster validity
index, which measures the relative dispersion of clusters for a given K. Here, we choose two
indices, the Davies-Bouldin (DB) index and the Calinski-Harabasz (CH) index to find an
optimal choice of K at each stage. The smaller the value of DB index, the better the value
of K. On the other hand, the larger the value of CH index, the better the value of K (see
Appendix A for the definitions of the two indices).

In addition to choosing K, another parameter to choose in the clustering algorithm is
the initialization of cluster centroids. In the simplest case, Lloyd’s algorithm begins with
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Fig. 6: A flowchart of the proposed OT-DTW algorithm.

K arbitrary centroids sampled uniformly from all samples. However, there is no guarantee
that this random initialization would converge to a good local minimum. Therefore, here
we choose the K-means++ [? ] for our experiments, and extend all the sampling weights
calculation using W2 or D2, instead of the original Euclidean distance due to the O(logK)-
optimal clustering guarantee in expectation for K-means++.

6 Application on Real-world Datasets

In this section, we demonstrate the performance of the proposed OT-DTW two-stage clus-
tering method to retrieve the underlying patterns in structured temporal sequence dataset
in three application domains: temporal dietary record, retail product sales, and smart meter
energy profile [? ? ]. All of our three applications follow the flowchart in Fig. 6.
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6.1 Temporal Dietary Data

Temporal dietary pattern analysis has emerged as a multifaceted approach to examine the
relationship between diet and the risk of chronic diseases. Compared with singular nutrient
or dietary component approaches, it incorporates a more comprehensive picture of both the
quantity and time of dietary intake. In the next sections, we first briefly describe the format
of the temporal dietary record dataset and then demonstrate the OT-DTW clustering results
compared with the other distance-based clustering algorithms used in the synthetic data case.

6.1.1 Data Description

The temporal dietary record data consists of dietary intake events in a 24-hour period from
1021 participants. It is collected from an “Interactive Diet and Activity Tracking in AARP
(IDATA)” study [? ], in which participants who were older than 50 years old and living in
Pittsburgh, PA reported their diet activity using ASA24 (Automated Self-Administered 24-
hour recall). The data records were anonymized due to privacy protection reasons. For each
participant, the number of recalls varied from 4 to 6 over the course of a year. Nevertheless,
to focus on the illustration of our method, we ignore the modeling for the averaging of
multiple recalls and only use his/her first recall as the representative pattern. All dietary
intake events were reported with an accuracy of minutes, and we aggregate them in hours
using the pre-processing step. The validity is owing to the number of eating events for each
person ranging from 1 to 9, and discussing the temporal dietary pattern in the time-scale of
minutes is unnecessary in practice.

6.1.2 Empirical Performance of First-stage OT-means

First, we varied the K value from 2 to 10 and calculated both the DB index and CH index
(see Figure 18 in the Appendix), and K = 4 and K = 8 seem to be good candidates for the
number of clusters. The cluster centroids of first-stage OT-means for K = 4 are plotted in
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Fig. 7: First-stage OT-means cluster centroids on temporal dietary dataset. The number in
the legend represent the number of samples in each cluster C1-C4.

Figure 7. The different clusters are labeled C1-C4 with different colors and the cluster size is
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shown in the legend. In the following, we further discuss these centroids’ possible suggested
dietary distribution patterns, which serve as the representative of the corresponding clusters.
Cluster C3 and C4, as the largest two clusters, represent the dinner-dominated type of eating
pattern, which match US population’s common eating habit with a large dinner. Compared
with C3, C4 has a higher energy ratio in the night and also a higher chance to skip the
breakfast in the morning. Nevertheless, cluster C2 leans towards eating patterns with intake
events happening equally as likely during the day time. Cluster C1, as the smallest cluster,
represents a rare pattern that energy intake distribute mainly in periods before afternoon.
Because this dataset consists mostly of people older than 60 years old, one possible reason
for the emergence of this cluster could be some early risers with aging who start their day
early. A reminder is that OT-means centroids here only tell a rough distributional average
and dots in Figure 7 do not directly correspond to dietary intake events. These distributional
clusters will serve as a pre-conditioning mask for the second-stage DTW-means clustering
and the more delicate temporal dietary patterns should be determined from the second-stage
clustering outputs.

6.1.3 Empirical Performance of Second-stage DTW-means

In this subsection, we further apply DTW-means clustering to cluster outputs from the first-
stage OT-means clustering. The K value in the second-stage DTW-clustering is also deter-
mined with the assistance of DB and CH index, as in Table 5 (in Appendix C). If the optimal
choice of K are not consistent between the two indices, we choose the smaller value (all the
chosen K are in bold font in Table 5 in Appendix C). In Figure 8, the sub-cluster centroids
of each of the four cluster outputs are plotted, with the sub-cluster sample number shown
in the legend. The shape of sub-cluster centroids match with our preliminary observations
of DTW barycenter of two samples in Figure 3. As illustrated in the previous subsection,
the OT barycenter only tells the rough distribution of probability mass across time bins,
and sub-clusters within the same cluster could exhibit different time and frequency of eat-
ing behavior. For example for the smallest cluster C1, the five sub-cluster centroids show
totally different eating time and eating frequency. The 1st sub-cluster centroid shows one
dominating meal in the noon, while the 2nd sub-cluster centroid shows a three meal pattern
with the main energy intake in the lunch. However, it is clear that they are distinctive from
subclusters of the other three clusters because the majority of their energy is distributed in
the morning. The other three larger clusters can also be analyzed similarly using the corre-
sponding sub-cluster centroids for comparison of subtler eating patterns in terms of eating
frequency, eating time, etc. Overall, the aggregated view of sub-cluster centroids within the
same cluster all match well with the cluster centroids in Figure 7.

To better visualize the two-stage cluster outputs for practical use, we plot in Figure 9
using piechart and barchart to visualize the sample size distribution of clustering results, and
in Figure 10 using the mean energy ratio weighted time to visualize an averaged property
of clusters. Figure 9 reveals a rare energy distribution pattern, and it turns out that C1 is a
cluster corresponding to a rare pattern with majority of energy intake in the morning. And
for the smallest subcluster C25 in C2, when we check the centroids plot in Figure 8b, the
centroid pattern has only one major meal in the noon, which again is a rare pattern revealed
by the clusters. These results (Figure 9) demonstrate the potential of the proposed clustering
approach to help detect abnormality in temporal dietary patterns. In Figure 10, utilizing the
property of discrete probability representation, we can calculate the energy ratio weighted
average time for each sample, in other words, the expected value for the concentration of
energy, and the average expected time for each cluster. The clear difference of energy ratio
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Fig. 8: Second-stage DTW-means cluster centroids for OT-DTW on temporal dietary
dataset. The four subplots (a)-(d) correspond to the four clusters C1-C4 in Figure 7.

weighted average time across first-stage clusters confirms the distributional discrimination
power of our method.
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Fig. 9: The two-stage OT-DTW cluster output chart for Temporal Dietary Dataset. The
piechart shows the sample size of the four cluster outputs of the first-stage. The four bar
charts show the subcluster output sample size distribution of the second-stage.
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Fig. 10: The plot shows the mean energy ratio weighted average time for each OT-DTW clus-
ter of Temporal Dietary Dataset. And x-axis is the cluster index, denoted in digits, namely
‘11’ stands for subcluster 1 within cluster 1. Distinct first-stage clusters are colored in dis-
tinct colors.

6.1.4 Results From Other Methods

We implement OT-OT and DTW-DTW to plot the centroids as a comparison. In Figure 11,
given the four cluster outputs from 1st-stage OT-means, we further apply OT-means with
the optimal choice of K to get subclusters. We observe many overlaps owing to distribution
similarities from these subcluster centroids, especially in (c) and (d). This demonstrates that
the objective to distinguish dynamic shape difference cannot be achieved by hierarchically
increasing the number of clusters under OT distance.

In Figure 12 and Figure 13, we plot the first stage and second stage cluster outputs of
DTW-DTW, respectively. Although the four cluster centroids in Figure 12 seem different in
terms of distribution, but compared with Figure 7, those samples with dominating energy
distribution in the morning or the noon are missing. If instead, we try to interpret first stage
results as dynamic shape difference only, subclusters in each of them as shown in Figure
13 cannot clearly tell the distribution difference. Above all, DTW-DTW cannot achieve the
desired simultaneous discrimination of structural distribution and dynamic shape difference.

6.2 Online Retail Data

This online retail data is from the UCI Machine Learning Repository [? ] and contains all
the transactions occuring between 01/12/2010 and 09/12/2011 for a UK-based and registered
non-store online retailer. The company mainly sells unique all-occasion gifts to wholesalers.
We organize the sales quantity by StockCode (Product code) and aggregate it in month to get
a sales quantity sequence of length 12 for each product (We only consider 12 entire months
and ignore the sales in December of 2011). After cleaning the products with negative values
for sales quantity, we finally have a monthly sales dataset for 3202 unique products. The
goal is then to apply our OT-DTW algorithm to cluster these products to discover interesting
sales pattern, and further optimize the bundled procurement decision.
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Fig. 11: Second-stage OT-means cluster centroids for OT-OT on temporal dietary dataset.
The four subplots (a)-(d) correspond to the four clusters C1-C4 in Figure 7.
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Fig. 12: First-stage DTW-means cluster centroids for DTW-DTW on temporal dietary
dataset. The number in the legend represent the number of samples in each cluster.

6.2.1 Empirical Performance of First-stage OT-means

Here again, we varied the K value from 2 to 10 and calculated both the DB index and
CH index first, and found that K = 6 is a good candidate for the number of clusters (see
Figure 19 in the Appendix). We plot the cluster centroids of the first-stage OT-means for
K = 6 in Figure 14. The different clusters are labeled C1-C6 with different colors and the
cluster size is shown in the legend. The difference across products’ seasonal sales pattern
can be observed from the plot, where C1 and C4 tend to represent product clusters with
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Fig. 13: Second-stage DTW-means cluster centroids for DTW-DTW on temporal dietary
dataset. The four subplots (a)-(d) correspond to the four cluster C1-C4 in Figure 12.
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Fig. 14: First-stage OT-means cluster centroids on online retail dataset. The number in the
legend represent the number of samples in each cluster. The six cluster centroids show six
distinctive sales patterns over 12 months of the year.

more sales in the spring, C2 and C3 tend to represent product clusters with more sales in
the winter, C6 is the summer major sales product cluster, and finally C5’s sales is the most
stable throughout the year. A further sample exploration confirms these product clusters’
composition. For example, C6 contains “paper pocket travelling fan” and “sandlewood fan”
and C2 contains “first class holiday purse” and “set 10 cards christmas tree”. Analogous to
the case for temporal dietary data, we investigate details of the dynamic shape difference
from the time-series perspective in the following second-stage DTW means.
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Fig. 15: Second-stage DTW-means cluster centroids for OT-DTW on online retail dataset.
The six subplots (a)-(f) correspond to the six clusters C1-C6 in Figure 14.

6.2.2 Empirical Performance of Second-stage DTW-means

In this subsection, we further apply DTW-means clustering to cluster outputs from the first-
stage clustering. The K value in the second-stage DTW-clustering is also determined with
the assistance of DB and CH index, as in Table 6 (see Appendix C). For cluster 6, we further
check K values from 11 to 15 and K = 10 is indeed the local minimum for DB6. In Figure
15, the sub-cluster centroids of each of the four cluster outputs are plotted in color, with the
subcluster sample number shown in the legend. The subcluster centroids’s dynamic shape
difference is reflected in the peak number and relative height, etc. Nevertheless, the aggre-
gated view of subcluster centroids within the same cluster all match well with the cluster
centroids in Figure 14. Similar to the results on temporal dietary dataset, the visualization
of the two-stage clustering results for online retail dataset is recorded in Figure 21, and the
comparison of the mean energy ratio weighted average time in Figure 20 (included in the
Appendix).
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6.3 Smart Meter Energy Consumption Data

This smart meter energy consumption data is collected from London Households that took
part in the UK Power Networks led Low Carbon London project between November 2011
and February 20142. All the readings were taken at half hourly intervals and the customers
in the trial were recruited as a balanced sample representing the Greater London population.
We processed the data according to the pre-processing step introduced in Section 3 and
obtain a sample of 5084 households with a temporal sequence of length 48. The cluster
number K at both stages are also determined using the DB and CH index as in the previous
examples. The plots of the first stage OT-means cluster centroids are presented in Figure 16,
and the plots of the second stage DTW-means subcluster centroids are recorded in Figure
17. The resulting cluster results on smart meter energy consumption dataset in Figure 23,
and the comparison of the mean energy ratio weighted average time in Figure 22 validates
that the proposed algorithm preserves distributional and shape patterns, and reveals valuable
insights on the energy consumption patterns (see Appendix).
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Fig. 16: First-stage OT-means cluster centroids on smart meter energy consumption dataset.
The number in the legend represents the number of samples in each cluster.

6.4 Discussions

The results on the three real-world datasets all successfully reveal the hierarchical distribu-
tional and dynamic shape-based cluster of patterns in each application. Depending on the
goal of the data mining exploration, the revealed clusters can be used for outlier detection,
or reveal patterns valuable for crucial decision making process.

6.4.1 Limitation and Extension

The proposed algorithm has some limitations at its present form, and extensions can be
made in the furture work to accomodate these constraints. One is concerned with the ne-

2 The data is publicly available at https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-
london-households.
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Fig. 17: Second-stage DTW-means cluster centroids for OT-DTW on smart meter energy
consumption dataset. The five subplots (a)-(e) correspond to the five clusters C1-C5 in Fig-
ure

glect of absolute input values before normalization of the temporal patterns learned using
our method. For example, in the temporal dietary data case, two persons with the same
energy intake ratio of 60% at 6pm could yield absolute intake of 500 calories and 2000
calories, respectively. The daily energy intake standard is known to be correlated with the
person’s body weight, food preference, and health condition, etc. Thus, one way to further
extend our method is to add a parametric model component to the dissimilarity measure
incorporating all these factors. Another restriction of our method is the inability to deal with
multi-dimensional structured temporal sequences. For example, in the smart meter energy
profile data, each household may have multiple days of observations of energy usage. How
to find a valid way to combine these multiple observations of the same household, and then
define the dissimilarity measure is a viable future extension.



A Nested Two-Stage Clustering Method for Structured Temporal Sequence Data 27

6.4.2 Broader Applications

Apart from the temporal pattern discovery in the applications discussed in Section 6, the
proposed clustering algorithm appears to possess some desirable properties which would
extend its use in the synchronization detection application in an oscillator network [? ] (see
Appendix B). Traditionally, this problem requires pre-processing of the data by peak-finding
or Hilbert transform (to extract phase information from the measured data), and further,
clustering according to the phase difference [? ]. Our method can save the expensive phase
processing step, and directly work with the raw recordings to achieve very similar results
with the phase difference based approach (see Appendix B for preliminary results). We
conjecture that the distributional difference and the dynamic shape difference in the time
domain have some intrinsic correlation with the phase synchronization and plan to pursue
this direction further.

7 Conclusions

Mining patterns from temporal sequence data is an important data mining problem with
broad applications. In this paper, we develop a nested OT-DTW distance-based clustering
method for one type of structured temporal sequence data. The first-stage OT-means cluster-
ing captures the macroscopic temporal distributional pattern, while the second-stage DTW-
means clustering produces subtle subclusters according to dynamic shape difference. At the
same time, we also investigate the data representation differences for OT-based clustering al-
gorithm from discrete probability measure to histogram of continuous probability measure.
The experiment results on the synthetic data confirm the clear performance edge of OT-DTW
over other popular distance-based clustering methods. Above all, the OT-DTW clustering re-
sults on the three real-world datasets, temporal dietary record, online retail data, and smart
meter energy profile all demonstrate distinct, satisfying cluster and subcluster centroids and
are easily accessible to further outlier detection or characteristics analysis.

For future work, we plan to further extend the current nested clustering framework with
two distinct distance metrics to a general number of n stages and with different combinations
of distances for specific unsupervised data exploration use. We believe this nested cluster-
ing structure with unique distance metric at each stage has more potential in data mining
problems than the current shown structured temporal sequence.

Appendix

Remark 1 The Wasserstein barycenter Fk of nk continuous distributions {F1, . . . ,Fnk} of
cluster k under the objective of Definition (13) satisfies

F�1
k (w) =

1
nk

Â
i:g(i)=k

F�1
i (w),8 w 2 [0,1]. (12)

Remark 2 (Wasserstein Barycenter, [? ]) A Wasserstein barycenter of N measures {ni : i =
1, ...,N} in P⇢ P(W) is a minimizer of f over P, where

µ⇤ := argmin
µ

f (µ) = argmin
µ

N

Â
i=1

liW 2
2 (µ,ni). (13)
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Remark 3 (DTW Barycenter) A DTW barycenter of N time-series P = {p1, . . . ,pN} in a
space E induced by DTW metric is a minimizer of the sum of squared distance to the set P,
where

h⇤ := argmin
h

1
N

N

Â
i=1

E2(h ,pi). (14)

A. Results

Based on the definition of DB and CH indices, we seek to find the local minimum of DB
index and the local maximum of CH index. From Figure 18b, the CH index strictly decreases
with increasing K and there is no clear kink point towards plateau, which provides little
information for the optimal choice of K. From Figure 18a, due to the relative smaller DB
index and clearer separation of cluster centroids, we set K = 4 in the current experiment
(Example of temporal dietary dataset). From Figure 19b, the CH index also strictly decreases
with increasing K and provides little information for the optimal choice of K. But from
Figure 19a, K = 6 becomes a good candidate for the number of clusters since the DB index
achieves local minimum then.
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Fig. 18: Cluster validity index DB and CH for experiments with K ranging from 2 to 10, to
determine the optimal choice of K for the first stage OT-means on temporal dietary dataset.
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Fig. 19: Cluster validity index DB and CH for experiments with K ranging from 2 to 10, to
determine the optimal choice of K for the first stage OT-means on Online Retail Dataset.
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K 2 3 4 5 6 7 8 9 10
DB1 0.91 1.11 1.09 0.84 0.94 0.97 0.95 0.92 0.86
CH1 82.1 51.0 41.6 47.0 39.6 39.3 37.0 36.1 36.0
DB2 1.20 1.55 1.74 1.58 1.49 1.42 1.49 1.43 1.42
CH2 177 142 111 99.3 103 98.6 91.6 86.4 84.0
DB3 1.39 1.46 1.53 1.43 1.33 1.40 1.31 1.42 1.44
CH3 198 163 135 138 119 105 98.0 89.5 85.8
DB4 1.29 1.19 1.29 1.14 1.23 1.16 1.14 1.27 1.32
CH4 133 152 99.0 132 107 92.1 85.9 84.7 81.8

Table 5: DB and CH index values of the second-stage DTW-means clustering for varying K
values. The subscript of DB and CH is the OT-means cluster number 1 to 4.

K 2 3 4 5 6 7 8 9 10
DB1 1.02 1.19 1.39 1.36 1.56 1.55 1.49 1.60 1.57
CH1 404 350 284 240 214 196 183 163 155
DB2 1.01 0.64 0.84 1.07 1.02 0.99 1.17 1.15 1.20
CH2 414 1245 973 968 944 898 829 819 785
DB3 1.16 1.12 1.48 1.18 1.40 1.29 1.55 1.56 1.55
CH3 278 260 213 248 213 204 166 157 148
DB4 1.25 0.81 1.04 1.07 1.11 1.41 1.16 1.26 1.12
CH4 121 219 212 204 181 162 162 140 151
DB5 1.26 1.30 1.55 1.70 1.51 1.50 1.60 1.55 1.63
CH5 402 374 284 256 242 220 201 193 184
DB6 0.74 1.01 1.29 1.36 1.48 1.52 1.49 1.45 1.41
CH6 496 420 323 295 257 227 207 193 180

Table 6: DB and CH index values of the second-stage DTW-means clustering for varying K
values. The subscript is the OT-means cluster number 1 to 6.
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Fig. 20: The plot shows the mean energy ratio weighted average time for each cluster of
Online Retail Dataset. Distinct first-stage clusters are colored in distinct colors.
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Fig. 21: The two-stage OT-DTW cluster output chart for Online Retail Dataset. The piechart
in the middle shows the sample size of the six cluster outputs of the first-stage. The six bar
charts show the subcluster output sample size distribution of the second-stage.

0

5

10

15

20

25

30

35

11 12 13 21 22 23 24 31 32 33 34 41 42 43 44 45 46 47 48 49 50 51 52 53 54

En
er

gy
 ra

tio
 w

ei
gh

te
d 

av
er

ag
e 

tim
e

Cluster Index

Fig. 22: The plot shows the mean energy ratio weighted average time for each cluster of
Smart Meter Energy Consumption Dataset. Distinct first-stage clusters are colored in distinct
colors.

B. Applications

Apart from the temporal pattern discovery in the applications discussed in Section 6, the pro-
posed clustering algorithm appears to posses some desirable properties which would extend
its use in synchronization detection application in an oscillator network [? ]. The synchro-
nization detection problem is defined as follows: in an oscillator network, each oscillator can
be treated as a node in the network, and the coupling between oscillators are the edges. Each
oscillator’s dynamics consists of two parts- its own intrinsic dynamics, and the coupling
functions from other oscillators. The network starts from an arbitrary initial condition, and
evolves over time (according to the oscillator dynamical equations). Given the time-series
measurement corresponding to the output of each oscillator, we aim to determine which
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Fig. 23: The two-stage OT-DTW cluster output chart for Smart Meter Energy Consumption
Dataset. The piechart in the middle shows the sample size of the five cluster outputs of the
first-stage. The five bar charts show the subcluster output sample size distribution of the
second-stage.

of the oscillators (nodes) are phase synchronized. Traditionally, this problem requires pre-
processing of the data by peak-finding or Hilbert transform (to extract phase information
from the measured data), and further, clustering according to the oscillator phase model [?
]. Our method saves the expensive phase processing step, and can directly work with the
recordings. For example, Figure 24 is an illustration of a synthetic oscillator network with
15 oscillators and cluster results from our OT-DTW method. The colored nodes in the left
network plot provide the synchronization clusters based on phase difference calculation. On
the right is our two-stage cluster outputs, and except oscillator 14, our cluster results match
very well with the phase based synchronization clusters (our results also separate oscillator
7, 12, and 13 into a separate cluster from oscillator 2, 3, 6, and 8). This leads to our conjec-
ture that the distributional difference and the dynamic shape difference in the time domain
have some intrinsic correlation with the phase synchronization and we plan to pursue this
direction in a future study.
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illustration of the cluster result using out OT-DTW method.
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