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Abstract: We give a rigorous development of the construction of new braided fusion
categories from a given category known as zesting. This method has been used in the
past to provide categorifications of new fusion rule algebras, modular data, and minimal
modular extensions of super-modular categories.Hereweprovide a complete obstruction
theory and parameterization approach to the construction and illustrate its utility with
several examples.

1. Introduction

Despite recent progress on the classification of braided fusion categories, the general
landscape remains largely unexplored. This is partly due to our lack of well-studied
examples. Most come from a few basic classes of fusion categories: subquotients of rep-
resentation categories of quantum groups at roots of unity, representations of quasi-Hopf
algebras, bimodule categories over finite index finite depth subfactors, planar algebras,
and near-group categories. There are a few inter-related tools for obtaining new fu-
sion categories from old such as the Drinfeld center construction, graded extensions
by finite groups G, G-equivariantization/G-de-equivariantization, symmetry gauging,
and Deligne products. In this paper, we develop another recent construction known as
zesting.

The authors gratefully acknowledge the support of the American Institute of Mathematics, where this col-
laboration was initiated. C.G would like to thank the hospitality and excellent working conditions of the
Department of Mathematics at the University of Hamburg, where he carried out this research as a Fellow of
the Humboldt Foundation. C.G. is partially supported by Faculty of Science of Universidad de los Andes,
Convocatoria para la Financiación de Programas de Investigación, proyecto “Condiciones de frontera para
TQFT equivariantes”. J.P was partially supported by US NSF Grants DMS-1802503 and DMS-1917319.
E.C.R. was partially supported by US NSF Grant DMS-1664359, a Simons Foundation Fellowship (Grant
No. 614735), and a Texas A&M Presidential Impact Fellowship. Part of this research was carried out while
CD, JP, ER and QZ participated in a semester-long program at MSRI, which is partially supported by NSF
Grant DMS-1440140. We thank Richard Ng for useful discussions.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04002-4&domain=pdf
http://orcid.org/0000-0002-2338-9819


2 C. Delaney, C. Galindo, J. Plavnik, E. C. Rowell, Q. Zhang

Zesting of braided fusion categories first explicitly appeared as a construction tech-
nique in [5] for the purpose of categorifying a mysterious rank 10, dimension 36 fusion
rule algebra, with fusion rules reminiscent of, but distinct from, those of SU (3)3. It was
recognized that the fusion rules could be obtained from those of SU (3)3 by rearranging
them slightly, via a twisting of the tensor product. This new (zested) fusion category was
expected to admit a modular structure, but no proof was available until now.

The basic goal of zesting is to define new (possibly braided, ribbon) fusion categories
from a given A-graded (braided, ribbon) fusion category C = ⊕

a∈A Ca by defining a

new tensor product Xa
λ⊗ Yb := (Xa ⊗ Yb) ⊗ λ(a, b), where Xa ∈ Ca and Yb ∈ Cb

are simple objects in their corresponding graded components and λ(a, b) ∈ Ce is an
invertible object in the trivial component.

Zesting fits into the more general context of graded extensions found in [16]—as
a fusion category a zesting of an A-graded braided fusion category C is an A-graded
extension of the trivial component Ce. As one expects from the results of loc. cit., there

are obstructions to (C, λ⊗, 1) admitting the structure of a monoidal category for a given
choice of λ : A× A → Cpt ∩Ce. That is, it is not immediate that associativity morphisms
satisfying pentagons exist, and when these obstructions vanish there are inequivalent
choices of associativity morphisms. Fixing a particular such associative zesting one
can further investigate whether the category admits a braiding, which leads to more
obstructions and choices. Such a braided structure is called a braided zesting. Finally,
for a fixed braided zesting of a ribbon fusion category we may look for a balancing
structure, which we call a twist zesting in general and a ribbon zesting in the case the
twist has the ribbon property.

We hasten to point out that our associativity, braiding and twist choices for a zesting
are assumed to only depend on the grading group A, the pointed subcategory of the
trivial component, and the structures already present in C. It follows that the trivial
component of C and that of any zesting of C are equivalent as fusion categories so that
a zesting is always an extension (in the sense of [17]) of the trivial component by the
group A. Moreover, at each step, some of these extensions may fail to be realized by our
construction. For example, the Ising categories and the pointed modular categories with
fusion rules like Z/4 are braided Z/2-extensions of the category of super-vector spaces;
however it is not possible to use zesting to construct one from the other, since any zesting
of a pointed fusion category remains pointed. On the other hand, we can explicitly obtain
both new fusion categories that do not admit braidings and new ribbon braided fusion
categories with explicit formulas of their modular data from our approach.

There are two related constructions found in the literature that should be mentioned.
The first is gauging [8]: one begins with a modular category B that admits an action
of a finite group G by braided tensor autoquivalences, and constructs, assuming certain
cohomological obstructions vanish, new modular categories C. The first step is to con-
struct the G-crossed braided categories D with B as the trivial component (using [17]),
and the second takes the G-equivariantization, which will be modular. In some cases
zestings can be placed in this framework. If C is modular and Cpt ∩ Ce ∼= Rep(G) is
Tannakian with G abelian, we may set B = (Ce)G the G-de-equivariantization of the
trivial component. Then any modular zesting C̃ will be a G-gauging of B. The second
construction is related: if Cpt ∩Ce ∼= Rep(G) as above, we may construct new categories
as tensor products over G by condensing the diagonal algebra in C � Rep(DωG).

While both of these constructions have the advantage of providing various structures
from general arguments, zesting has several key features that these do not: 1) one has the
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fusion rules at the outset, 2) we produce new categories that are not necessarily modular
or even braided, 3) it depends only on essentially cohomological choices, and 4) in the
case that the resulting category is modular we have explicit formulas for the modular
data.

In a bit more detail, the construction goes as follows. For a fixed A-graded ribbon
category C where A = U (C) is the universal grading group:

(1) Fix a normalized 2-cocycle λ ∈ Z2(A, Inv(Ce)).
(2) Find a 3-cochain λ ∈ C3(A, k

×) satisfying the associative zesting constraint, if
possible (seeFig. 2). The set of all associative zestings forma torsor over H3(A, k

×)

for the chosen 2-cocycle.
(3) For a fixed associative zesting, a braided zesting is determined by a cochain c ∈

C2(A, k
×) such that t (a, b) := c(a, b) idλ(a,b) satisfies the two braided zesting

constraints (see Figs. 7 and 8). For a fixed such c(a, b) the set of all braided
zestings forms a torsor over the group of bicharacters of A.

(4) For a fixed braided zesting of a braided fusion category C with a twist θ , we may
determine all braided twist (ribbon) zestings in terms of a function f : A → k

×,
as in Corollary 5.4, and all twist (ribbon) zestings form a torsor over the characters
of A/2A.

More general situations can be considered as well, for example, we may choose a
different grading group B for C (i.e., a quotient of U (C)) and the above is still true
provided the image of λ ∈ Z2(A, Inv(Ce)) centralizes the trivial component Ce with
respect to the grading B. Failing this, we may still develop a theory of zesting, but there
are several subtleties that must be addressed in the form of additional choices and more
elaborate constraints. Moreover, the general definition of associative zesting does not
require a braiding—one may apply it to any fusion category by passing to the relative
centralizer.

Zesting supersedes several known constructions as special cases. If one chooses the
trivial 2-cocycle in step (1), the second step is the well-known associativity twist (see,
e.g. [22]). If one makes the trivial choice of 2-cocycle and 3-cochain in steps (1) and
(2), then the braided zestings are simply modifying the braiding by a bicharacter, which
is also well-known. Finally, if one takes the trivial choice in each of steps (1), (2), and
(3) for a braided fusion category with a twist then the last step is a change of pivotal
structure on the underlying braided fusion category.

Here is a more detailed explanation of the contents of this article. In Sect. 2, we lay
out the basic definitions and general results from the literature that we use in the sequel.
Section 3.2 contains the general definition of associative zesting and the rigidity structure,
the notational conventions for diagrams and the obstruction theory. Section 4 details
braided zesting, in which we study the braided structures on associative zestings and the
attendant obstruction theory. Section 5 studies the twist and ribbon twist structures on a
braided zesting and the corresponding categorical trace and modular data. We illustrate
our techniques with several examples coming from quantum groups of type A in Sect. 6.
After submitting our paper a related manuscript [9] was posted which has some overlap
with our results, which we address in Sect. 7.

2. Preliminaries

2.1. Group cohomology. To fix notation, we will recall the basic definitions of the
standard cocycle description of group cohomology, for more details, see [27].
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Let G be a group and M a G-module. We will denote by
(
Cn(G, M), δ

)
the cochain

complex

0 → C0(G, M) → C1(G, M) → C2(G, M) → · · · → Cn(G, M) → · · · ,

where C0(G, M) = M , Cn(G, M) is the abelian group of all maps from G×n to M and
δ : Cn(G, M) → Cn+1(G, M) is given by

δn( f )(g1, . . . , gn+1) = g1 f (g2, . . . , gn+1) +
n∑

i=1

(−1)i f (g1, . . . , gi gi+1, . . . , gn+1)

+ (−1)n+1 f (g1, . . . , gn). (2.1)

The group cohomology of G with coefficients in M is defined as the cohomology of
the cochain complex (2.1), that is, Hn(G, M) = ker(δn)/ Im(δn−1). As usual, we will
denote by Zn(G, M) = ker(δn) the group of n-cocycles and by Bn(G, M) = Im(δn−1)

the n-coboundaries.

2.2. Basic definitions on fusion and modular categories. In this section, we recall some
basic definitions and standard notions from [15], mainly in order to fix notation.

By a monoidal category we mean a tuple (C,⊗, α, 1, λ, ρ), where C is a category,
⊗ : C × C → C is a bifunctor, a natural isomorphism

αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z),

called the associator, natural isomorphisms

λX : 1 ⊗ X → X, ρX : X ⊗ 1 → X

called the right and left unitors, respectively. This data must satisfy the well known
pentagon and triangle axioms [15]. Hereafter we suppress the associators and unitors
and denote a monoidal category by the tuple (C,⊗, 1). Throughout this paper, we will
always assume that the monoidal unit is simple (as it is the case for fusion categories).

A monoidal category has duals if for every X ∈ C there is an object X∗ ∈ C and
morphism εX : X∗ ⊗ X → 1, δX : 1 → X ⊗ X∗ satisfying the zig-zag axioms:

(idX ⊗εX ) ◦ αX,X∗,X ◦ (δX ⊗ idX ) = idX

(εX ⊗ idX∗) ◦ α−1
X∗,X,X∗ ◦ (idX∗ ⊗δX ) = idX∗ .

A monoidal category with duals is called rigid if for every X ∈ C there is ∗X ∈ C such
that (∗X)∗ ∼= X .

We will denote by k an algebraically closed field of characteristic zero. By a fusion
category, we mean a semisimple k-linear abelian rigid monoidal category (C,⊗, 1) such
that the unit object 1 of C is simple and there are finite many isomorphism classes of
simple objects. The set of isomorphism classes of simple objects of C is denoted by
Irr(C). By a fusion subcategory of a fusion category, we mean a full monoidal abelian
subcategory.

For a fusion category C, we will denote by Cpt the full fusion subcategory generated
by ⊗-invertible objects. We will denote by Inv(C) the group of isomorphism classes of
⊗-invertible objects of C under the tensor product. A fusion category is called pointed
if every simple object is ⊗-invertible.
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Example 2.1. (Pointed fusion categories). Let G be a finite group. A (normalized) 3-
cocycle ω ∈ Z3(G, k

×) is a map ω : G × G × G → k
× such that

ω(ab, c, d)ω(a, b, cd) = ω(a, b, c)ω(a, bc, d)ω(b, c, d), ω(a, 1, b) = 1,

for all a, b, c, d ∈ G.

Let us recall the description of the pointed fusion category Vecω
G . The objects of Vec

ω
G

are G-graded finite dimensional vector spaces V = ⊕
g∈G Vg . Morphisms are G-linear

G-homogeneous maps. The tensor product of V = ⊕g∈GVg and W = ⊕g∈GWg is
V ⊗ W as vector space, with G-grading

(V ⊗ W )g =
⊕

h∈G
Vh ⊗ Wh−1g.

For objects V,W, Z ∈ Vecω
G the associativity constraint is defined by

aV,W,Z : (V ⊗ W ) ⊗ Z → V ⊗ (W ⊗ Z)

(vg ⊗ wh) ⊗ zk 
→ ω(g, h, k)vg⊗(wh ⊗ zk)

for all g, h, k ∈ G, vg ∈ Vg, wh ∈ Wh, zk ∈ Zk . The unit objects is ke, the vector space
k graded only by the identity element e ∈ G.

For V ∈ Vecω
G , the dual object is V ∗ = Homk(V, k), with G-grading V ∗

g =
Homk(Vg−1 , k) and

εV : V ∗ ⊗ V → ke, δV : ke → V ⊗ V ∗

αh ⊗ vg 
→ ω(g, g−1, g)−1αh(vg), 1 
→
∑

vi ⊗ vi

where g, h ∈ G, vg ∈ V ∗
g and αh ∈ V ∗

h , and δV is the usual coevaluation map of finite
dimensional vector spaces.

2.3. Pivotal and spherical fusion categories. If C is a monoidal category with duals, we
can define a monoidal functor (−)∗ : C → Cop, where Cop is the opposite category with
tensor product X⊗opY := Y ⊗ X . Here, for a morphism f : X → Y , we have that
f ∗ : Y ∗ → X∗ is given by (εY ⊗ idX∗) ◦ (idY ∗ ⊗ f ⊗ idX∗) ◦ (idY ∗ ⊗δX ).

A pivotal structure on a rigid monoidal category is monoidal natural isomorphism
ψ : IdC → (−)∗∗. The left and right pivotal traces of an endomorphism f : X → X are
given by

TrL( f ) = εX ◦ (idX∗ ⊗ f ) ◦ (idX∗ ⊗ψ−1
X ) ◦ δX∗

TrR( f ) = εX∗ ◦ (ψX ⊗ idX∗) ◦ ( f ⊗ idX∗) ◦ δX .

Arigidmonoidal categorywith a pivotal structure is called pivotalmonoidal category.
A spherical fusion category is a pivotal fusion category such that the left and right

traces of every endomorphism coincide. For spherical fusion categories the left and right
trace of an endomorphism f will be denoted simply by Tr( f ). The quantum dimension
or just the dimension of an object X ∈ C is dim(X) = Tr(idX ).
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Example 2.2. The pointed fusion category Vecω
G has a canonical pivotal structure given

by

ψV =
⊕

g∈G
ω(g−1, g, g−1) idVg .

Any other pivotal structure differs from the canonical one by a linear character χ : G →
k

×, given by

ψ
χ
V =

⊕

g∈G
χ(g)ω(g−1, g, g−1) idVg . (2.2)

The pivotal structure ψ
χ
V is spherical if and only if χ(g) ∈ {1,−1}.

2.4. Premodular and modular tensor categories. A braiding for a monoidal category B
is a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗ X, X,Y ∈ B
satisfying the two well known hexagon axioms. A braided fusion category is a fusion
category with a braiding. A braided category is called symmetric if c−1

X,Y = cY,X for all
X,Y ∈ B. The centralizer of a set of objects S is the subcategory with objects

CS(B) := {X ∈ B : cY,X ◦ cX,Y = idX⊗Y ,Y ∈ S}.
An object Y is called transparent if C{Y }(B) = B, so that every object is transparent in
a symmetric category.

In [10],Deligne establishes that every symmetric fusion category is braided equivalent
to one of the following:

• Tannakian categories. These take the form Rep(G) of finite dimensional represen-
tations of a finite group G, with the standard braiding cX,Y (x ⊗ y) := y ⊗ x .

• Super-Tannakian categories. These are categories of finite-dimensional represen-
tations of finite super-groups, denoted by Rep(G, z). A finite super-group is a pair
(G, z), where G is a finite group and z is a central element of order two. As fusion
categories they can be understood as Rep(G) but with a non-standard braiding cz :

An irreducible representation of G is called odd if z acts as the scalar −1, and even if z
acts as the identity. If the degree of a simple object X is denoted by |X | ∈ {0, 1}, then a
braiding on Rep(G) is given by czX,Y (x ⊗ y) := (−1)|x ||y|y ⊗ x for x ∈ X and y ∈ Y ,
where X and Y are simple representations.

A twist for a braided category is a natural isomorphism of the identity

θX : X → X

such that

θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY ),

for all X,Y ∈ C. It is well-known (see e.g. [7]) that pivotal structures on a braided
fusion category are in bijective correspondence with twists. A twist on a braided fusion
category is called a ribbon twist if θX∗ = θ∗

X for all X ∈ C, and ribbon twists correspond
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to spherical pivotal structures under the pivotal/twist correspondence. We will recall this
correspondence briefly for more details, see [20, Appendix A.2].

Let C be a rigid braided monoidal category. The Drinfeld isomorphism is a natural
isomorphism u : Id → (−)∗∗ given by

uX := (εX ⊗ idX∗∗) ◦ (idX∗ ⊗c−1
X∗∗,X ) ◦ (δX∗ ⊗ idX ) : X → X∗∗.

X∗∗

X

Given a twist θ , the natural isomorphism

ψX = uX ◦ θX , X ∈ C

is a pivotal structure. Conversely, if ψX : X → X∗∗ is a pivotal structure then

θX = u−1
X ◦ ψX , X ∈ C,

is twist.
A braided fusion category with a spherical pivotal structure (or equivalently a ribbon

twist) is called a premodular tensor category.
Following [1], we define themodular data of a premodular category as the following

pair of matrices with respect to the a basis given by a fixed ordering of Irr(B):

(i) S-matrix. SX,Y = Tr(cY ∗,X ◦ cX,Y ∗),
(ii) T -matrix. TX,Y = θXδX,Y .

Notice that the categorical dimension of a simple object X is dim(X) = SX,1. A
premodular tensor category is called modular if S is invertible. Any modular tensor
category defines a projective representation of the modular group SL(2, Z) as follows:
the matrices

s :=
(
0 −1
1 0

)

, t :=
(
1 1
0 1

)

generates SL(2, Z) and by [1] the assignment

s 
→ 1√
dim(B)

S, t 
→ T

defines a projective representation, where dim(B) = ∑
X∈Irr(B) dim(X)2.
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Remark 2.3. In [15] the S-matrix and T -matrix are defined by

S′
X,Y = Tr(cY,X ◦ cX,Y ), T ′

X,Y = θ−1
X δX,Y .

the (S′, T ′) and (S, T ) are directly related by T ′ = T−1 and S′ = S−1, see [15,
Proposition 8.14.2].

Example 2.4. (Pointed braided fusion categories). Let Vecω
G be a pointed fusion category,

with G abelian. A braiding on Vecω
G is defined by a function c : G × G → k

× as

cV,W : V ⊗ W → W ⊗ V

vg ⊗ wh 
→ c(g, h)wh ⊗ vg.

The function c must satisfy the following equations:

c(g, hk)

c(g, h)c(g, k)
= ω(g, h, k)ω(h, k, g)

ω(h, g, k)
c(gh, k)

c(g, k)c(h, k)
= ω(g, k, h)

ω(g, h, k)ω(k, g, h)
,

for all g, h, k ∈ G, (2.3)

These equations correspond to the hexagon axioms. A pair (ω, c) satisfying (2.3) is
called an abelian 3-cocycle. Following [13,14] we denote by Z3

ab(G, k
×) the abelian

group of all abelian 3-cocycles (ω, c).
An abelian 3-cocycle (ω, c) ∈ Z3

ab(G, k
×) is called an abelian 3-coboundary if there

is α : G×2 → k
×, such that

ω(g, h, k) = α(g, h)α(gh, k)

α(g, hk)α(h, k)

c(g, h) = α(g, h)

α(h, g)
,

for all g, h, k ∈ G. (2.4)

B3
ab(G, k

×) denotes the subgroup of Z3
ab(G, k

×) of abelian 3-coboundaries. The quo-
tient group H3

ab(G, k
×) := Z3

ab(G, k
×)/B3

ab(G, k
×) is called the third group of abelian

cohomology of G.
Under the correspondence between pivotal structures and twist, we have that pivotal

structure ψχ in (2.2) corresponds to the twist

θ
χ
V =

⊕

g∈G
χ(g)c(g, g) idVg .

2.5. Graded fusion categories and tensor natural isomorphisms of the identity functor.
Let G be a finite group. A fusion category C is G-graded if there is a decomposition

C =
⊕

g∈G
Cg

of C into a direct sum of full abelian subcategories such that the tensor product of Cmaps
Cg × Ch to Cgh for all g, h ∈ G. We will say that the G-grading is faithful if Cg 
= 0 for
all g ∈ G.
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Fig. 1. Definition of χ

Example 2.5. Let C be a fusion category and A = ̂Aut⊗(IdC) the group of linear char-
acters of Aut⊗(IdC), the abelian group of tensor automorphism of the identity functor.
Then C = ⊕

γ∈A Cγ is faithfully A-graded, where

Cγ = {X ∈ C : ρX = γ (ρ) idX , ∀ρ ∈ Aut⊗(IdC)}.
It was proved in [19, Theorem 3.5] that any fusion category C is naturally graded by a

groupU (C), called the universal grading group of C, and the adjoint fusion subcategory
Cad (tensor generated by all subobjects of X ⊗ X∗ for all simple objects X ) is the trivial
component of this grading. Additionally, any other faithful grading arises from a quotient
of U (C).
Definition 2.6. Let C be a faithfully G-graded fusion category. We will denote by
AutG⊗(IdC) the abelian group of all tensor natural isomorphisms of the identity � ∈
Aut⊗(IdC) such that �X = idX for all X ∈ Ce.

Let C be a faithfully G-graded fusion category. It follows as in [19, Proposition 3.9]
that given γ ∈ Ĝ the assignment �γ ∈ Aut⊗(IdC) given by

�γ (Xs) = γ (s) idXs , Xs ∈ Cs,
defines a group homorphism from Ĝ to AutG⊗(IdC).

The following result is a direct consequence of [19, Proposition 3.9].

Proposition 2.7. Let C be a faithfully G-graded fusion category. The group homo-
morhism � : Ĝ → AutG⊗(IdC) is an isomorphism. In particular � : Û (C) ∼= Aut⊗(IdC)
so that any ψ ∈ Aut⊗(IdC) is constant on U (C)-graded components.

Let B be a braided monoidal category and a ∈ B an invertible object. Then we can
define a natural isomorphism of the identity functor χa ∈ Aut(IdB) by the equality
χa(X) ⊗ ida = ca,X ◦ cX,a for X ∈ Obj(B), see Fig. 1.

The following result is essentially the same as [15, Lemma 8.22.9]. Note that the
result does not use semisimplicity or finiteness.

Proposition 2.8. Let B be a braided tensor category and a ∈ B an invertible object.
Then

(i) χa is a monoidal natural isomorphism.
(ii) The map χ : Inv(B) → Aut⊗(IdB) is a group morphism.
(iii) The kernel of χ is the group of transparent invertible objects.
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Corollary 2.9. Let B be a braided fusion category. Then B is faithfully graded over the
group ̂Inv(B)/ ker(χ) (linear characters over Inv(B)/ ker(χ)) as follows:

Bγ = {X ∈ B : χa(X) = γ (a) idX , ∀a ∈ Inv(B)}, γ ∈ ̂Inv(B)/ ker(χ).

Proof. Since the induced map χ : Inv(B)/ ker(χ) → Aut⊗(IdB) is injective, then
the induced surjective map χ∗ : ̂Aut⊗(IdB) → ̂Inv(B)/ ker(χ) defines a faithful

̂Inv(B)/ ker(χ) grading by Example 2.5. ��

2.6. Conventions and graphical calculus. In the following sections C is a fusion cate-
gory, which we may assume is strict without loss of generality by MacLane’s Strictness
and Coherence Theorems. In particular we can ignore associators and draw diagrams
modulo isotopy that preserves the order of objects, for example

= = .

Our diagrams are oriented top to bottom and left to right. Our convention for braiding
diagrams is that for positive braids the i + 1st strand passes over the i th strand.

3. Associative Zestings

Associative zesting may by regarded as a special case of G-graded extension [16]: given
a G-graded fusion category C we construct new G-graded fusion categories by twisting
the fusion rules on the graded components of C by an invertible object in the relative
centralizer of C. While explicitly constructing all G-graded extensions of a given cate-
gory can be a formidable task, associative zesting takes a particular extension as input.
This allows for a precise description of the new fusion categories and simplifies the
subsequent analysis of braiding and pivotal structures in terms similar to the obstruc-
tion/parameterization approach of loc. cit..

3.1. Relative centralizer of monoidal subcategories. Let C be a fusion category and
D ⊂ C a fusion subcategory. The relative centralizer RD(C) is the fusion subcategory of
the Drinfeld center Z(C) whose objects are pairs (X, σX,−) where X ∈ D and

σX,− = {σX,V : X ⊗ V → V ⊗ X}V∈C

is a family of isomorphisms natural in V ∈ C such that

σX,V⊗W = (idV ⊗σX,W ) ◦ (σX,V ⊗ idW ). (3.1)

for all V,W ∈ C.
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While C is not a priori braided, since RD(C) is a subcategory of the braided Drinfeld
center Z(C) we can use crossings in our graphical calculus when objects of the relative
center are involved. For example, Eq. 3.1 becomes

X

X

V

V

W

W

=

X

X

V

V

W

W

.

A morphism f : (X, σX,−) → (Y, σY,−) in RD(C) is a morphism f : X → Y in D
such that (idV ⊗ f ) ◦ σX,V = σY,V ◦ ( f ⊗ idV ) for all V ∈ C. In pictures,

X

V

V

Y

f

=

YV

VX

f

.

The isomorphism σ will be called the relative half braiding. The category RD(C) is
monoidal with tensor product given by

(X, σX,−) ⊗ (Y, σY,−) = (X ⊗ Y, (σX,− ⊗ id) ◦ (id⊗σY,−)),

and unit object (1, id).

Remark 3.1. The notion of relative center was defined in [18]. This concept is closely
related to the one of relative centralizer introduced above. If C is a fusion category and
D ⊂ C a fusion subcategory, then the relative centralizer RD(C) is a full fusion subcate-
gory of the relative centerZD(C) (see [18, Definition 2.1] for the precise definition). The
relative centralizer RD(C) is also a full fusion subcategory of the Drinfeld centers Z(D)

and Z(C). In particular, RD(C) is braided. In the case that C = D, the fusion category
RC(C) coincides with the Drinfeld center Z(C).

3.2. Associative zesting.

Definition 3.2. Let G be a group and C = ⊕g∈GCg be a faithfully G-graded fusion
category.

An associative G-zesting λ for C consists of the following data:

(1) A map

λ : G × G → (
RCe(C)

)
pt , (g, h) 
→ λ(g, h)

where λ(g, h) is simple.
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Fig. 2. Associative zesting constraint

(2) For each (g1, g2, g2) ∈ G×3 an isomorphism

λg1,g2,g3 : λ(g1, g2) ⊗ λ(g1g2, g3) → λ(g2, g3) ⊗ λ(g1, g2g3)

which we represent graphically by

(2, 3) (1, 23)

(1, 2) (12, 3)

1, 2, 3 :=

λ(g2, g3) λ(g1, g2g3)

λ(g1, g2) λ(g1g2, g3)

λg1,g2,g3

such that for any (g1, g2, g3, g4) ∈ G×4 the equation in Fig. 2 holds (see Remark
3.3(1) for notation conventions).

Moreover, we impose the following normalization conditions:

λ(e, g1) = λ(g1, e) = 1, (3.2)

λg1,e,g2 = idλ(g1,g2) . (3.3)

Remark 3.3. (1) The label 1, 2, 3 of the box on the right-hand side of Definition 3.2(2)
has enough information to recover the target and sourceof the isomorphismλg1,g2,g3 ,
so we suppress the labels on the strands. For further notational convenience we
identify gi with the index i so that, for example g1g2 becomes 12 in Fig. 2 and in
subsequent figures.
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(2) Condition (2) of Definition 3.2 implies that λ in (1) is a 2-cocycle in the sense
that (g1, g2) 
→ [λ(g1, g2)] satisfies the 2-cocycle condition, where we interpret
[λ(g1, g2)] as an element of the group of isomorphism classes of invertible objects.

(3) It follows from the assumptions (3.2), (3.3), and the associative zesting condition
that we also have λe,g1,g2 = c1,λ(g1,g2) = idλ(g1,g2), and λg1,e,g2 = cλ(g1,g2),1 =
idλ(g1,g2).

Proposition 3.4. Let G be a finite group and C a faithfully G-graded fusion category.
Given an associative G-zesting λ, we can define a new faithfully G-graded fusion cate-

gory Cλ := (C, λ⊗, aλ), where the tensor product
λ⊗ is defined as

Vg1
λ⊗ Wg2 := Vg1 ⊗ Wg2 ⊗ λ(g1, g2),

the associativity constraint aλ
Vg1 ,Wg2 ,Zg3

by

1, 2, 3

1 2 3 (2, 3) (1, 23)

1 2 (1, 2) 3 (12, 3)

:=

λg1,g2,g3

Vg1 Wg2 Zg3 λ(g2, g3)λ(g1, g2g3)

Vg1 Wg2 λ(g1, g2) Zg3 λ(g1g2, g3)

(3.4)

and the same unit object and unit constraint as C.
Proof. An associative zesting is a particular case of the construction of a faithfully
graded fusion category given in [16, Section 8]. For the convenience of the reader, we
will check the pentagon axiom. The pentagon axiom is equivalent to the equality in Fig.
3.

Using the graphical calculus is easy to check that the equality depicted in Fig. 3 is
equivalent to the one in Fig. 4. Now, the associative zesting condition of Fig. 2 implies
the equality in Fig. 4 and therefore the pentagon axiom in the zested category.

Finally, the fact that 1 is the unit object with the same unit constraints follows directly
from the definition of the tensor product of Cλ and the conditions (3.2) and (3.3). ��
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Fig. 3. Pentagon axiom that must be satisfied by the zested associators

Fig. 4. Equivalent formulation of the pentagon axiom from Fig. 3

Remark 3.5. Given a map λ : G × G → (
RCe (C)

)
pt there are at least three associated

bifunctors, namely

Vg ⊗1 Wh := Vg ⊗ Wh ⊗ λ(g, h),

Vg ⊗2 Wh := Vg ⊗ λ(g, h) ⊗ Wh

Vg ⊗3 Wh := λ(g, h) ⊗ Vg ⊗ Wh .

They are easily seen to be naturally isomorphic (proof supplied upon request), so our
choice of ⊗1 is no loss of generality.

Example 3.6. As a special case of our construction we can recover some examples found
in [22] from the modular Z/N -graded category SU (N )k . In loc. cit. they classify fusion
categories with the same fusion rules as SU (N )k , showing that any such category is
obtained from SU (N )k by either changing the quantum parameter q or twisting the
associativity morphisms by a 3-cocycle, or both. If we choose the trivial 2-cocycle
λ : Z/N × Z/N → Cpt ∩ C0, i.e., λ(a, b) = 1 then the associative zesting constraint
(Fig. 2) is simply the condition that λa,b,c is a (normalized) 3-cocycle on Z/N . Thus the
associative zestings of SU (N )k with trivial 2-cocycle are precisely the ones obtained in
[22] by twisting the associativity morphisms. We will study some cases with non-trivial
2-cocycle below.



Braided Zesting and Its Applications 15

3.3. Rigidity of associative zesting.

Lemma 3.7. LetCbea fusion categoryand X,Y ∈ C simple objects such thatHom(1, X⊗
Y ) 
= 0. If

φ : Y ⊗ X → 1, ρ : 1 → X ⊗ Y

is a pair of non-zero morphisms, then the scalar z(φ, ρ) ∈ k defined by

X X

(X ⊗ Y ) ⊗ X X ⊗ (Y ⊗ X)

ρ⊗idX

z(φ,ρ) idX

αX,Y,X

idX ⊗φ

is non-zero and the triple (Y, φ, z(φ, ρ)ρ) is a dual of X. Moreover, given a non-zero
map φ : Y ⊗ X → 1 the map z(φ, ρ)ρ does not depend in the choice of ρ, that is, if
ρ, ρ′ : 1 → X ⊗ Y are non-zero maps, then z(φ, ρ)ρ = z(φ, ρ′)ρ′.

Proof. In a fusion categorywehave that, for simple objects X andY , Hom(1, X⊗Y ) 
= 0
if and only if Y ∼= X∗. Moreover, since in that case, Hom(1, X ⊗Y ) is one dimensional,
there are non-zero scalars c1, c2 ∈ k

× such that εX = c1φ and δX = c2ρ where (δX , εX )

defines a dual for X . Clearly z(φ, ρ) = c1c2, thus z(φ, ρ) is non-zero. Moreover, we
have that (φ, z(φ, ρ)ρ) = (c−1

1 εX , c1δX ). Hence (φ, z(φ, ρ)ρ) also defines a dual for
X .

For the uniqueness, note that z(φ, ρ)ρ = c1c2ρ = c1δX . Since c1 only depends on
φ then z(φ, ρ)ρ only depends on φ. ��

Let C be a faithfully G-graded fusion category and λ an associative zesting. Given a
simple object Xg ∈ Cg we will denote by X∗

g ∈ Cg−1 the dual object with respect to the
tensor product ⊗. Then

Xg := X∗
g ⊗ λ(g, g−1)∗ ∈ Cλ

g−1

is also a simple object and X∗
g ⊗ Xg ∼= Xg

λ⊗ Xg. Hence Hom(1, X∗
g

λ⊗ Xg) 
= 0,
and we will use Lemma 3.7 to find specific formulas for the evaluation and coevaluation
maps of Xg in Cλ.

We are assuming that λ(e, g) = λ(g, e) = 1 for all g ∈ G. Hence we have isomor-
phisms

λg := λg,g−1,g : λ(g, g−1) → λ(g−1, g), g ∈ G.

As we notice in Example 2.1 any pointed fusion category has a spherical structure.
Then for any invertible objects a ∈ C in addition to the maps

εa : a∗ ⊗ a → 1, δa : 1 → a ⊗ a∗,

we have maps

ε′
a : a ⊗ a∗ → 1, δ′

a : 1 → a∗ ⊗ a, (3.5)

such that
dim(a) = ε′

a ◦ δa = εa ◦ δ′
a ∈ k

×. (3.6)
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Using these maps, we define φXg : Xg
λ⊗ Xg → 1 via the following pictures,

φXg =
λ(g)∗ λ(g−1)X∗

g Xg

λg
−1 (3.7)

ρXg =
Xg X∗

g λ(g)∗ λ(g−1)

(3.8)

We obtain the scalar

z(φXg , ρXg ) = dim(λ(g, g−1))−1.

Hence for any Xg ∈ Cλ
g (not necessarily simple) the data

(Xg = X∗
g ⊗ λ(g, g−1)∗, φXg , dim(λ(g, g−1))−1ρXg ) (3.9)

define a dual in Cλ, where

dim(λ(g, g−1)) = λ(g, g−1) = ελ(g,g−1) ◦ δ′
λ(g,g). (3.10)

3.4. Obstruction to associative zestings. LetG be a finite group and C aG-graded fusion
category. Recall that RCe (C) is a braided fusion category.Wewill denote by B the abelian
group Inv(RCe (C)) of isomorphism classes of invertible objects in RCe (C). Recall (see
Remark 3.3(2)) that λ(g, h) is a simple object in RCe (C) and (g, h) 
→ [λ(g, h)] is a
2-cocycle.

Definition 3.8. (1) We will say that a 2-cocycle β ∈ Z2(G, B) has a lifting if there is
a G-zesting λ of C such that β(g, h) = [λ(g, h)] for all g, h ∈ G.

(2) Two liftings λ and λ′ are called equivalent if there are isomorphisms fg1,g2 :
λ(g1, g2) → λ′(g1, g2) such that

( fg2,g3 ⊗ fg1,g2g3) ◦ λg1,g2,g3 = λ′
g1,g2,g3 ◦ ( fg1,g2 ⊗ fg1g2,g3),

for all g1, g2, g3 ∈ G.

Note that inequivalent liftings may yield equivalent fusion categories. Moreover, coho-
mologically distinct 2-cocycles can even give equivalent fusion categories, as we will
see in the examples in Sect. 6.

Since every invertible object X is simple, we have that AutB(X) = {c idX : c ∈ k
×}.

Hence, we can canonically identify AutB(X) with k
× for any invertible object.

Let β ∈ Z2(G, B). Take λ(g1, g2) ∈ RCe (C) such that the isomorphism class of
λ(g1, g2) is β(g1, g2) and isomorphisms

λg1,g2,g3 : λ(g1, g2) ⊗ λ(g1g2, g3) → λ(g2, g3) ⊗ λ(g1, g2g3),
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Fig. 5. 4-cocycle obstruction

for all g1, g2, g3 ∈ G.
Define a map νλ : G×4 → k

×, where νλ(g1, g2, g3, g4) ∈ k
× is given by the

automorphism of λ(g1, g2) ⊗ λ(g1g2, g3) ⊗ λ(g1g2g3, g4) defined in Fig. 5.

Proposition 3.9. ([16]).

(i) νλ ∈ Z4(G, k
×).

(ii) The cohomology class of νλ only depends on the cohomology class of β.
(iii) The map ν induces a map PW : H2(G, Inv(B)) → H4(G, k

×).
(iv) The 2-cocycle β admits a lifting if and only if PW (β) = 0.
(v) If PW (β) = 0, the set of equivalence classes of liftings is a torsor over H3(G, k

×).

Proof. The first three items of the proposition correspond to [16, Proposition 8.10]. Item
(iv) is consequence of [16, Theorem 8.9] and item (v) is [16, Proposition 8.15] ��
Remark 3.10. If G is cyclic then H4(G, k

×) = 0 so any β admits a lifting.

4. Braided Zesting

Recall that if c is a braiding for a monoidal category B, then c′
X,Y := c−1

Y,X is also a
braiding for B. The category B with the braiding c′ is denoted Brev.

If B is a braided monoidal category and D ⊂ B is a monoidal subcategory, the
functors

F : D → CD(B), X 
→ (X, {cX,V }V∈B), (4.1)

G : Drev → CD(B), X 
→ (X, {c′
X,V }V∈B) (4.2)
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Fig. 6. Diagram for the isomorphisms t (g1, g2)

are braided faithful functors.

Definition 4.1. Let B be a braided faithfully A-graded fusion category, where A is an
abelian group. A braided zesting consists of a triple (λ, j, t), where

(i) λ is an associative zesting such that the relative half braidingofλ(a, b) is {c′
λ(a,b),V }V∈B

for all a, b ∈ A.
(ii) For any pair g1, g2 ∈ A there is an isomorphism (see Fig. 6)

t (g1, g2) : λ(g1, g2) → λ(g2, g1),

(iii) A function j : A → Aut⊗(IdB), where Aut⊗(IdB) is the abelian group of all tensor
natural isomorphisms of the identity.

The triple (λ, j, t), must satisfy the following conditions:

(BZ1) For any a, b ∈ A,

ω(a, b) := χλ(a,b) ◦ jab ◦ j−1
a ◦ j−1

b ∈ AutA⊗(IdB) ∼= Â,

where χ was defined in Fig. 1. We will denote ω(a, b)(c) := ω(a, b; c) ∈ k
×.

(BZ2) The equality in Figs. 7 and 8 holds, for any (g1, g2, g3) ∈ A3 and objects Xg1 ∈
Bg1 ,Yg2 ∈ Bg2 , Zg3 ∈ Bg3 .

Moreover, we impose the following normalization conditions:

(a) t (e, g) = t (g, e) = id1 (Recall that for a normalized associative zesting λ(e, g) =
1.)

(b) je = Id (The identity natural transformation.)
(c) jg(1) = id1 for all g ∈ A.

Remark 4.2. (1) Condition (BZ1) is equivalent to the condition

χλ(a,b)|Be = (
ja jb
jab

)
Be

for all a, b ∈ B.
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Fig. 7. First braided zesting condition

Fig. 8. Second braided zesting condition

(2) The choice of the half braiding in braided zesting is compatible with the braidings
used in the graphical calculus in the discussion of the relative centralizer from
Sect. 3.1 and Definition 3.2 of associative zesting.

(3) Since the two braided zesting conditions are isomorphisms of invertible simple
objects, they can be expressed as scalar equations which take the form
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Fig. 9. Braiding for Bλ

j1 (λ(g2, g3)) λg1,g2,g3 t (g1, g2g3) λg2,g3,g1 = t (g1, g2) λg2,g1,g3 t (g1, g3) (4.3)

ω(1, 2; 3) λ−1
g1,g2,g3 t (g1g2, g3) λ−1

g3,g1,g2 = t (g2, g3) λ−1
g1,g3,g2 t (g1, g3).

(4.4)

Lemma 4.3. For a fixed λ and j , both (λ, j, t) and (λ, j, t ′) are braided A-zestings of B
if and only if r(a, b) := t (a,b)

t ′(a,b) is a bicharacter on A. In particular, such braided zestings
form a torsor over the group of bicharacters of A.

Proof. From the form of Eqs. (4.3) and (4.4) we see that r(a, b + c) = r(a, b)r(a, c)
and r(a + b, c) = r(a, c)r(b, c). ��
Proposition 4.4. Let A be an abelian group and B a faithfully A-graded braided fusion
category. Given a braided zesting (λ, j, t), the fusion categoryBλ defined in Proposition
3.4 is braided with braiding c(λ, j,t)

Vg,Wh
given by the natural isomorphisms defined in Fig. 9.

Proof. The two hexagon equations that must be satisfied by the zested braiding and
associators take the form of the equations depicted in Figs. 10 and 11. That the equations
in Figs. 10 and 11 are equivalent to the hexagons can be readily checked in the graphical
calculus using that the jg’s aremonoidal and by applying the definition ofχa from Fig. 1,
respectively. These equations are then satisfied by the conditions found in Figs. 7 and 8.

��

Remark 4.5. Notice that a braided zesting does not recover all braidings that may exist
on a given associative zesting. For example with the trivial associative zesting (i.e.
λ(i, j) = 1 and λ(i, j, k) = 1) on a braided fusion category we might not recover the
reverse braiding, as in general this changes the braiding on the trivial component, while
braided zesting does not.

4.1. Equivalence of braided zestings. Let A be an abelian group and B a faithfully A-
graded fusion category. A bicharacter ν : A × A → k will be called alternating if
ν(a, a) = 1 for all a ∈ A.
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Fig. 10. First Hexagon condition

Fig. 11. Second Hexagon condition
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Definition 4.6. (i) We will say that two braided zestings (λ, j, t) and (λ, j ′, t ′) are
similar if they define the same braiding on Bλ, that is

c( j,t)
Xa ,Yb

= c( j ′,t ′)
Xa ,Yb

,

for all a, b ∈ A, Xa ∈ Ba,Yb ∈ Bb.
(ii) We will say that two braided zestings (λ, j, t) and (λ, j ′, t ′) are braided equivalent

if there an alternating character ν : A × A → k
× such that (λ, j, t) is similar to

(λ, j ′, νt ′).

Note that again, braided inequivalent zestings may yield equivalent braided fusion
categories–for example one could have a braided automorphism which permutes the
simple objects. Let λ be an associative A-zesting of a braided fusion category B. We
define the abelian group

Hλ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(κ, l) ∈ C1(A,Aut⊗(IdB)) × C2(A, k
×) :

δ(κ)a,b ∈ AutA⊗(IdB)

κ(λ(a, b)) = l(a, b)l(a, c)

l(a, b + c)

δ(κ)a,b(c) = l(a + b, c)

l(a, c)l(b, c)
∀a, b, c ∈ A

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

where δ is defined in equation (2.1), that is, δ(κ)a,b = κ(b) − κ(a + b) − κ(a). We also
define the abelian subgroups

H1 =
{
(κ, l) ∈ Hλ : κa(Xb) = l(a, b)−1,∀a, b ∈ A, Xb ∈ Bb

}
(4.7)

H2 = {(κ, l) ∈ Hλ : κa = id,∀a ∈ A, and l is an alternating bicharacter} (4.8)

Proposition 4.7. Let λ be an associative A-zesting of a braided fusion category B.
(i) The set of all braided A-zestings of the form (λ, j, t) with λ fixed is a torsor over

the abelian group Hλ defined in (4.6).
(ii) The set of all braided A-zestings similar to (λ, j, t) is a torsor over the abelian

group H1 defined in (4.7).
(iii) The set of equivalence classes of braided A-zestings of the form (λ, j, t) with λ

fixed, under the relation of being braided equivalent as in Definition 4.6(ii), is a
torsor over Hλ/H1H2, where H2 was defined in (4.8).

Proof. Let (λ, j, t) and (λ, j ′, t ′) be braided A-zestings of B. Then κa := j ′a/ja and
l(a, b) = t ′(a, b)/t (a, b) for all a, b ∈ A define an element in (κ, l) ∈ Hλ. In fact, con-
dition (BZ1) implies that δ(κ)a,b = κaκ

−1
ab κb ∈ AutA⊗(IdB) for all a, b ∈ A, condition

(BZ2) implies κa(λ(b, c)) = l(a,b)l(a,c)
l(a,b+c) , and δ(κ)a,b(c) = l(ab,c)

l(a,c)l(b,c) for all a, b, c ∈ A.

For item (ii), note that if c( j,t)
Xa ,Yb

= c( j ′,t ′)
Xa ,Yb

then
[
ja ◦ j ′−1

a (Xb)
]⊗ [

t ′(a, b)−1 ◦ t (a, b)
]

= idXb⊗λ(a,b) for all a, b ∈ A, Xb ∈ Bb. Then if (κ, l) ∈ Hλ such that j = j ′κ, t = tl,
then κa(Xb) = l(a, b)−1 for all a, b ∈ A and Xb ∈ Bb.

Item (iii) follows immediately from (i) and (ii). ��
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Corollary 4.8. Let B be an A-graded braided fusion category. A braided A-zesting
(λ, j, t) is similar to an A-braided zesting of the form (λ, IdB, t ′) if and only if

χλ(a,b)|Be = IdBe , ja |Be = IdBe (4.9)

for all a, b ∈ A. In particular, if A is the universal grading group, every braided zesting
is similar to a braided zesting of the form (λ, IdB, t).

Proof. A braided A-zesting (λ, j, t) is similar to one of the form (λ, id, t ′) if and only
if ( j−1, l j ) ∈ H1, where l j (a, b) = ja(Xb)

−1 with Xb ∈ Bb. Hence

ja ∈ AutA⊗(IdB), ∀a ∈ A, (4.10)

and (4.10) imply thatχλ(a,b) ∈ AutA⊗(IdB) or equivalentlyχλ(a,b)|Be = IdBe . Conversely,
if conditions (4.10) holds, then it is is easy to see that ( j−1, l j ) ∈ H1.

Now, if A is the universal grading group it follows from Propositions 2.7 and 2.8 that
any braided zesting satisfies the condition in (4.9). ��

4.2. Obstructions to braided zestings. Let B be a braided fusion category. From now
on, using Proposition 2.7 we will identify the abelian groups AutA⊗(IdB) and Â. Recall

that in particular, Aut⊗(IdB) ∼= Û (B).
First, we will describe obstructions to the existence of a function j : A → Aut⊗(IdB)

satisfying (BZ1).
Let B be a braided fusion category graded by a finite abelian group A. Let U (B)

be the universal grading group of B and π1 : U (B) → A the group epimorphism that
defines the A-grading on B. By restriction of the U (B)-grading, the fusion subcategory
Be is ker(π1)-graded with (Be)e = Bad. Then this grading defines a group epimorphism

π2 : U (Be) → ker(π1). (4.11)

Proposition 4.9. A tensor natural isomorphism j ∈ Aut⊗(IdBe )
∼= Û (Be) has an ex-

tension to an element in Aut⊗(IdB) ∼= Û (B) if and only if j ∈ Autker(π1)⊗ (IdBe ). The set
of extensions of j is a torsor over Â.

Proof. We have the exact sequence of abelian groups

0 → ker(π2) → U (Be)
π2→ ker(π1) → U (B)

π1→ A → 0

and dualizing

0 → Â
π∗
1→ Û (B) → k̂er(π1)

π∗
2→ Û (Be) → k̂er(π2) → 0.

Hence the image of the restriction map Û (B) → Û (Be) is exactly k̂er(π1), or equiva-
lently all γ ∈ U (Be) such that γ |ker(π2) ≡ 1. ��

It follows from Proposition 4.9 that a first partial obstruction to the existence of a
function j : A → Aut⊗(IdB) satisfying (BZ1) is that

χλ(a,b)|Be ∈ Autker(π1)⊗ (IdBe )
∼= k̂er(π1), ∀a, b ∈ A. (4.12)
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Proposition 2.7 says that condition (4.12) is equivalent to

χλ(a,b)(X) = idX , for all X ∈ (Be)g where g ∈ ker(π2) ⊂ U (Be), (4.13)

where π2 was defined in (4.11).
It follows by condition (BZ1) that

χλ(a,b)|Be =
(
ja ◦ jb ◦ j−1

ab

)

Be
,

where j’s are in Autker(π1)⊗ (IdBe ). Hence a second partial obstruction for the existence
of j is that the cohomology class of

χλ(−,−)|Be ∈ H2(A,Autker(π1)⊗ (IdBe)) = H2(A, k̂er(π1)), (4.14)

must be trivial.

Remark 4.10. When A is the universal grading the first and second partial obstructions
automatically vanish. If A is the universal grading and B is modular then ker(π2) =
U (Be). Since π1 is trivial, the grading on Be is trivial, so (Be)g = Be = Bad . Therefore
λ(a, b) ∈ Bpt centralizesBe,χλ(a,b)(X) = idX , and the first partial obstruction vanishes.
The triviality of ker(π1) implies that the second partial obstruction vanishes.

4.2.1. Shuffle identities In this section we collect some notation and identities that will
be useful later.

We use the following notation, where A is a group:

(a) Ap|Aq = {x| y = (x1, . . . , xp|y1, . . . , yq), xi , y j ∈ A}, p, q ≥ 0.
(b) Shuff(p, q) is the set of (p, q)-shuffles, i.e. elements λ in the symmetric group

Sp+q such that λ(i) < λ( j) whenever 1 ≤ i < j ≤ p or p + 1 ≤ i < j ≤ p + q.

Now let A and N be abelian groups.We define a double complex by Dp,q(A, N ) = 0
if p or q is zero and

Dp,q(A, N ) := Maps(Ap|Aq; N ), p, q > 0

with horizontal and vertical differentials the standard differentials, that is,

δh : Dp,q(A, N ) = C p(A,Cq(A, N )) → Dp+1,q(A, N ) = C p+1(A,Cq(A, N ))

and

δv : Dp,q(A, N ) = Cq(A,C p(A, N )) → Dp,q+1(A, N ) = Cq+1(A,C p(A, N ))

defined by the equations

(δh F)(g1, . . . , gp+1|k1, . . . , kq ) = F(g2, . . . , gp+1|k1, . . . , kq )

+
p∑

i=1

(−1)i F(g1, . . . , gi gi+1, .., gp+1|k1, . . . , kq )

+ (−1)p+1F(g1, . . . , gp|k1, . . . , kq )
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(δvF)(g1, . . . , gp|k1, . . . , kq+1) = F(g1, . . . , gp|k2, . . . , kq+1)

+
q∑

j=1

(−1) j F(g1, . . . , gp|k1, . . . , k j k j+1, . . . , kq+1)

+ (−1)q+1F(g1, . . . , gp|k1, . . . , kq ).

For any α ∈ Cn(A, N ), for any 1 ≤ p ≤ n − 1 we define the p-th shuffle αp ∈
Maps(Ap|An−p, N ) as

αp(a1, . . . , ap|ap+1, . . . , an) =
∑

π∈Shuff(p,n−p)

(−1)ε(π)α(aπ(1), . . . , aπ(n)).

Proposition 4.11. [21, Proposition 2, page 123] Let α ∈ Cn(A, N ) then

(δα)p = δh(αp−1) + (−1)pδv(αp). (4.15)

for all 1 ≤ p ≤ n, where by notation α0 = αn = 0, and δ is the standard differential
(2.1).

4.2.2. General obstructions Now let us consider the more general obstruction theory.
Fix an associative zesting λ of B (i.e., a 2-cocycle λ ∈ H2(A, Inv(Be)) and isomor-

phisms λ satisfying Definition 3.2) such that the first and second partial obstructions
vanish.

In order to solve the equation in Fig. 7 we fix an arbitrary family of isomorphisms
{ν(a, b) : λ(a, b) → λ(b, a)}a,b∈A (see Fig. 12) and a map j̃ : A → Autker(π1)⊗ (IdBe )

such thatχλ(a,b)|Be = j̃a◦ j̃b◦ j̃−1
ab .Thenwedefine amapO1(λ, ν, j̃) ∈ Maps(A2|A, k

×),

O1(λ, ν, j̃) : A × A × A → k
×

(a1, a2, a3) 
→ O1(a1|a2, a3)
by Fig. 13.

Lemma 4.12. (i) For any a ∈ A the function O1(λ, ν, j̃)(a|−,−) : A × A → k
×

defines a 2-cocycle.
(ii) The cohomology class O1(λ, ν, j̃)(a|−,−) does not depend on the choice of the

family ν or j̃ , and we will be denoted by O1(λ)(a|−,−).
(iii) There is a choice of isomorphisms ν that satisfies the equation in Fig. 7 if and only

if the cohomology class of O1(λ)(a|−,−) ∈ H2(A, k
×) vanishes for each a ∈ A.

Proof. To simplify the arguments and notation we will assume without serious loss of
generality that

λ(a1, a2)⊗λ(a1a2, a3) = λ(a2, a3)⊗λ(a2a3, a1)

λ(a1, a2) = λ(a2, a1), λ(a1, a2) ⊗ λ(a3, a4) = λ(a3, a4) ⊗ λ(a1, a2)

for all a1, a2, a3, a4 ∈ A. Hence the isomorphisms λ(a1, a2, a3) and ν(a1, a2) are de-
fined by cochains λ ∈ C3(A, k

×), ν ∈ C2(A, k
×) and the associative zesting constraint

can be written as

δ(λ) = (λ ∪c′ λ), (4.16)
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Fig. 12. Diagram for the isomorphisms ν(g, h)

Fig. 13. Obstruction to Fig. 7
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where (λ ∪c′ λ)(a1, a2, a3, a4) ∈ k
× is defined by

(λ ∪c′ λ)(a1, a2, a3, a4) idλ(a1,a2)⊗λ(a3,a4) = c−1
λ(a3,a4),λ(a1,a2)

.

(i) We have that

O1(a1; a2, a3) = j̃a1(λ(a2, a3)) × ν(a1, a2 + a3)

ν(a1, a2)ν(a1, a3)
× λ(a1, a2, a3)λ(a2, a3, a1)

λ(a2, a1, a3)

= j̃a1(λ(a2, a3)) × δv(ν
−1)(a1|a2, a3)λ1(a1|a2, a3)

for all a1, a2, a3 ∈ A, where we have been using the notation introduced in Sect. 4.2.1.
Note that the 2-cochains (a2, a2) 
→ j̃a1(λ(a2, a3)) and (a2, a3) 
→ δh(ν)(a1|a2, a3)
are 2-cocycles. Hence, to prove that O1(a1;−,−) is a 2-cocycle we only need to check
that

δv(λ1)(a1|a2, a3, a4) = 1 ∀a1, a2, a3, a4 ∈ A.

It follows from Proposition 4.11 that

δv(λ1)(a1|a2, a3, a4)−1 =
∏

π∈Shuff(1,3)
δ(λ)(aπ(1), . . . , aπ(4))

ε(π)

= (λ ∪c′ λ)(a1, a2, a3, a4)(λ ∪c′ λ)(a2, a3, a4, a1)

(λ ∪c′ λ)(a2, a1, a3, a4)(λ ∪c′ λ)(a2, a3, a1, a4)
= 1,

where the last equality follows because λ(a, b) = λ(b, a) for all a, b ∈ A.
(ii) Recall that every symmetric 2-cocycle in Z2(A, k

×) is a coboundary (since k
×

is divisible). Then δv(ν
−1)(a1|−,−) and j̃a1(λ(−,−)) contributes with a 2-coboundary

to O1(λ, ν, t)(a1|−,−). Hence the cohomology class O1(a1|−,−) only depends on λ.
(iii) If there is h ∈ C2(A, k

×) such that δv(h) = O1(λ, ν, j̃), then taking ν′ = νh−1

we have that O1(λ, ν′, j̃) = 1. ��
Remark 4.13. In practice we can take λ(a, b) = λ(b, a) for all a, b ∈ A. Since λ(a, b)
is invertible we have that every isomorphism ν : λ(a, b) → λ(b, a) is a multiple of the
identity. Hence in order to compute O1(λ), we can start with ν(a, b) = idλ(a,b) for all
a, b ∈ A.

Assuming that the cohomology classes of O1(λ) vanish, we can find isomorphisms
ν : λ(a, b) → λ(b, a) such that O1(λ, ν, j)(a1|a2, a3) = 1 for all a1, a2, a3 ∈ A. We
define the map O2(λ, μ, j)(a|b, c) ∈ k

× by Fig. 14.

Lemma 4.14. Let j̃ : A → Autker(π1)⊗ (IdB) be map such that δ( j̃)(a, b) = χλ(a,b)|Be

for all a, b ∈ A and let ν : λ(a, b) → λ(b, a) be a family of isomorphisms such that

O1(λ, ν, j̃)(a1|a2, a3) = 1, ∀a1, a2, a3 ∈ A.

Then

(i) O2(λ, ν)(−|a, b) ∈ Â for all a, b ∈ A.
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Fig. 14. Diagrammatic definition of the second obstruction to braided zesting

(ii) The 2-cochain

O2(λ, ν) : A × A → Â

(a, b) 
→ [c 
→ O2(λ)(c|a, b)]
defines a 2-cocycle O2(λ, ν) ∈ Z2(A, Â). The cohomology class of O2(λ, ν) does
not depend on the choice of the ν (under the hypothesis that the O1(λ, ν) = 1),
and will be denoted by O2(λ).

Proof. As in the proof of Lemma 4.12, we will assume that λ(a, b, c) and ν(a, b) are
defined by cochains λ ∈ C3(A, k

×), ν ∈ C2(A, k
×).

The condition O1(λ, ν, j̃) = 1 can be written as

δv(ν)(a1|a2, a3) = λ1(a1|a2, a3) j̃a1(λ(a2, a3)), ∀a1, a2, a3 ∈ A. (4.17)

(i) We need to check that δv(O2(λ, ν, j̃))(a1, a2|a3, a4) = 1, where

O2(λ, ν, j̃)(a1, a2|a3) = δh(ν)(a1, a2|a3)λ2(a1, a2|a3). (4.18)

First we have that

δv(δh(v))(a1, a2|a3, a4) = δh(δv(v))(a1, a2|a3, a4)
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= δh(λ1)(a1, a2|a3, a4) j̃a1 j̃−1
a1+a2 j̃a2(λ(a3, a4))

= δh(λ1)(a1, a2|a3, a4)χλ(a1,a2)(λ(a3, a4)).

and

δv(O2(λ, ν, j̃))(a1, a2|a3, a4) = δv(δh(v))δv(λ2)(a1, a2|a3, a4)
= (

δh(λ1)δv(λ2)
)
(a1, a2|a3, a4)χλ(a1,a2)(λ(a3, a4)).

Using Proposition 4.11 we have

δh(λ1)(a1, a2|a3, a4)δv(λ2)(a1, a2|a3, a4) =
∏

π∈Shuff(2,2)
δ(λ)(aπ(1), . . . , aπ(4))

ε(π)

= λ ∪c′ λ(a1, a2, a3, a4)λ ∪c′ λ(a3, a4, a1, a2)

λ ∪c′ λ(a3, a1, a2, a4)λ ∪c′ λ(a1, a3, a2, a4)

λ ∪c′ λ(a3, a1, a4, a2)
−1λ ∪c′ λ(a1, a3, a4, a2)

−1

= λ ∪c′ λ(a1, a2, a3, a4)λ ∪c′ λ(a3, a4, a1, a2)

= χ−1
λ(a1,a2)

(λ(a3, a4)).

Then

δv(O2(λ, ν, j̃))(a1, a2|a3, a4) = 1,

as we wanted to check.
(ii) The 2-cocycle condition in this case is

δh(O2(λ, ν, j̃)) = δh(λ2) = 1.

Using again Proposition 4.11 we have

δh(λ2) =
∏

π∈Shuff(3,1)
δ(γ )(aπ(1), . . . , aπ(4))

ε(π)

=λ ∪c′ λ(a1, a2, a3, a4)λ ∪c′ λ(a4, a1, a2, a3)

λ ∪c′ λ(a1, a4, a2, a3)
−1λ ∪c′ λ(a1, a2, a4, a3)

−1

=1.

Finally, if ν′ is another 2-cochain such that O1(λ, ν′, j̃) = 1, then δv(ν/ν′) = 1, that is
ν/ν′ ∈ C1(A, Â), and then O2(λ, ν′, j̃, ) = δh(ν/ν′)O2(λ, ν′, j̃, ), that is O2(λ, ν′, j̃, )
and O2(λ, ν, j̃, ) are cohomologous in H2(A, Â). ��

The short exact sequence

0 → Â → Û (B) → k̂er(π1) → 0,

induces a long exact sequence in cohomology

· · · → Hom(A, k̂er(π1))
d1→ H2(A, Â) → H2(A, Û (B)) → · · · (4.19)

The set

Sχ := { j̃ : A → Autker(π1)⊗ (IdBe )|δ( j̃) = χλ|B}
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is a torsor over the abelian group Hom(A, k̂er(π1)). It follows from Proposition 4.9 that
for each j̃ ∈ Sχ there is j : A → Aut⊗(IdB) such that j̃a = ( ja)|Be for each a ∈ A.
Hence the natural isomorphisms

ω j (a, b) := χλ(a,b) ◦ j−1
a ◦ j−1

b ◦ jab ∈ AutA⊗(IdB)

define a 2-cocycle ω j ∈ Z2(A, Â), and again by Proposition 4.9 the cohomology class
of ω j only depend on j̃ , and we will denote by

ω j̃ ∈ H2(A, Â). (4.20)

Note that if j ′, j ′′ ∈ Sχ , then ω j̃/ j̃ ′′ = d1( j̃/ j̃ ′′), where d1 is defined in (4.19).
As a result of the Lemmas 4.12, 4.14 and the previous discussion, we obtain the

following result.

Theorem 4.15. Letλbe anassociative zesting. Then there is a braided zesting associated
if and only if the cohomology classes of O1(λ)(a,−,−) ∈ H2(A, k

×) vanish for all
a ∈ A, and there exist j̃ ∈ Sλ such that O2(λ) = ω j̃ ∈ H2(A, Â). ��
Corollary 4.16. Let λ be an associative zesting such that χλ(a,b)|Be = IdBe for all
a, b ∈ A. Then there is a braided zesting of the form (Id, t) if and only if the cohomology
classes of O1(λ)(a,−,−) ∈ H2(A, k

×) vanish for all a ∈ A, and O2(λ) = [χλ] ∈
H2(A, Â). ��

5. Twist Zesting and Its Modular Data

Given a premodular tensor category B and a braided zesting (λ, j, t) we will denote by
(Bλ, t) the corresponding braided fusion category as constructed in Proposition 4.4, sup-
pressing the dependence on j . We would like to provide (Bλ, t) with a ribbon structure.
In a customary abuse of notation we denote by θX both the automorphism in AutB(X)

and the scalar by which it acts when X is a simple object. Similarly, we will denote the
scalar by which χa acts on a simple object X ∈ B by χa(X) as well.

Proposition 5.1. Let A be a finite abelian group, B be a faithfully A-graded braided
tensor category with twist θ and (λ, j, t) a braided zesting. We will denote by

t (2) : A × A → k
×

the symmetric function defined by t (b, a) ◦ t (a, b) =: t (2)(a, b) idλ(a,b) for all a, b ∈ A.
Let f : A → k

× be a function and consider the natural isomorphism

θ
f
Xa

:= f (a)θXa , a ∈ A, Xa ∈ Ba,

then

(i) θ f is a twist for (Bλ, t) if and only if

f (a + b)χλ(a,b)(Xa)χλ(a,b)(Yb)θλ(a,b) = f (a) f (b) ja(Yb) jb(Xa)t
(2)(a, b), f (0) = 1, (5.1)

for all a, b ∈ A, Xa ∈ Ba,Yb ∈ Bb.
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(ii) If θ is a ribbon twist for B then θ f is a ribbon twist for (Bλ, t) if additionally to
Eq. 5.1 we have

f (a) = f (−a)χλ(a,−a)(Xa)θλ(a,−a) (5.2)

for all a ∈ A, Xa ∈ Ba.
(iii) If f ′, f : A → k

× is a pair of functions satisfying (5.1), then f/ f ′ : A → k
× is a

character. Moreover, the set of all functions satisfying (5.1) is a torsor over Â and
the set of all functions satisfying (5.1) and (5.2) is a torsor over Â/2A.

Proof. Let Xa ∈ Ba and Yb ∈ Bb simple objects. Then we have that

(
θ
f
Xa

λ⊗ θ
f
Yb

) ◦ cλ
Ya ,Xa

◦ cλ
Xa ,Yb = f (a) f (b) ja(Yb) jb(Xa)t

(2)(a, b)θXa⊗Yb ⊗ idλ(a,b),

and

θ
f

Xa
λ⊗Yb

= f (a + b)χλ(a,b)(Xa)χλ(a,b)(Yb)θλ(a,b)θXa⊗Yb idλ(a,b) .

Hence, (5.1) holds if and only if

(
θ
f
Xa

λ⊗ θ
f
Yb

) ◦ cλ
Ya ,Xa

◦ cλ
Xa ,Yb = θ

f

Xa
λ⊗Yb

,

that is, if θ f is a twist.
For the ribbon condition, we have that

θ
f
Xa

= f (−a)χλ(a,−a)(Xa)θX∗
a
θλ(a,−a)∗ idX∗a⊗λ(a,−a)∗

= f (−a)χλ(a,−a)(Xa)θXaθλ(a,−a) idXa

and

θ
f
Xa

= f (a)θXa idXa

for all simple objects Xa ∈ Ba . Hence (θ
f
Xa

)∗ = θ
f
Xa

if and only if (5.2) holds.

For (iii), let f and f ′ both satisfy the conditions in (5.1) and set η(a) = f (a)/ f ′(a).
Since f (a) f (b)/ f (a + b) = f ′(a) f ′(b)/ f ′(a + b) we find that η(a + b) = η(a)η(b). A
similar argument implies that if f, f ′ satisfy the condition (5.2) then η(a) = η(−a), so
η(2a) = 1, that is η ∈ Â/2A. ��
Definition 5.2. Aquadruple (λ, j, t, f )where (λ, j, t) is a braided zesting and f : A →
k

× is a function satisfying equations (5.1) and (5.2) is called a ribbon zesting.

We will denote by (Bλ, t, f ) the twist (ribbon) zesting obtained from (λ, j, t, f ).

Remark 5.3. We do not know if twists or ribbons for braided zesting always exists.
However, in practice, the following condition gives you an easy to check requirement
for the existence of them. If a twist exists the symmetric function

s : A × A →k
×

(a, b) 
→χλ(a,b)(Xa)χλ(a,b)(Yb)θλ(a,b)

ja(Yb) jb(Xa)t (2)(a, b)
,

should be independent of the choice of Xa ∈ Ba,Yb ∈ Bb. If the function s is a
2-cocycle, (an easy condition to check) since s symmetric we can find a function f
satisfying condition (5.1).
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When zesting with respect to the universal grading, the scalars χλ(i, j)(Xk) only
depend on the graded component of the simple object Xk ∈ Bk , so we may denote it
χλ(i, j)(k), and take ja = id. In this case the conditions (5.1) and (5.2) for twist zesting
reduce to a simpler form:

Corollary 5.4. Suppose B is a braided fusion category with a twist and (Bλ, t) is a
braided A-zesting where A = U (B) is the universal grading group. Then for θ f ∈
Aut(IdB) defined in Proposition 5 we have:

(a) if f (a + b)χλ(a,b)(a + b)θλ(a,b) = f (a) f (b) t (2)(a, b), then θ f defines a twist on
(Bλ, t) and

(b) if θ is a ribbon twist on B and f (a) = χλ(a,−a)(a)θλ(a,−a) f (−a) then θ f defines
a ribbon twist on (Bλ, t).

5.1. Modular data of a ribbon zesting.

Proposition 5.5. Let (λ, j, t, f ) be a a ribbon zesting, then quantum trace of an endo-
morphism of s : Xa → Xa in (Bλ, t, f ), for a ∈ A, Xa ∈ Ba is

Tr f (s) = f (a)

dim(λ(−a, a))t (a, a)
Tr( j−1

a (Xa) ◦ s).

Proof. In this proof, without loss of generality, we will assume that B is a strict pivotal
category, which means that the natural isomorphism between an object and its double
dual is the identity morphism and also the pivotal structure is trivial.

The trace in (Bλ, t, f ) is given by the formula

Tr f (s) = 1

dim(λ(−a, a))
ρX∗

a
◦ (ψ̃

λ⊗ id) ◦ (s
λ⊗ id) ◦ φXa ,

where ψ̃ is the pivotal structure in (Bλ, t, f ) and ρ and φ denote the evaluation and
coevaluation maps in (Bλ, t, f ) described in Sect. 3.3. So, in order to compute Tr f (s),
we need to compute the pivotal structure ψ̃ first. To do this, we can consider the Drinfeld
isomporhism ũ in (Bλ, t, f ) which is related to the twist and pivotal structure by ψ̃ =
ũ ◦ θ̃ f .

The general formula of the Drinfeld isomorphism ũ is given by

ũ = 1

dim(λ(−a, a))
(ρXa

λ⊗ idXa ) ◦ (idX∗
a

λ⊗ c̃−1
Xa ,Xa

) ◦ (φX∗
a

λ⊗ idXa ).
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Applying this formula in our case, and assuming strict pivotality of B, we get that ũ
can be written in terms of the data of the original category B and the zesting structure as

ũx = 1

dim(λ(−a, a))

−a, a, a

a, a
−1

−a, a, a

Xa

ja
−1

−1

−1

λ(a,−a) Xa λ(−a, a)

λa
−1

(5.3)

where λa := λa,−a,a as was defined in Sect. 3.3, Applying the standard yoga of graphical
calculus and using that jg is a tensor autoequivalence and B being strict pivotal, i.e.
u = θ−1, we get the following expression for the Drinfeld isomorphism of (Bλ, t, f ).

ũx = 1

dim(λ(−a, a))t (a, a)

λ(a,−a) λ(−a, a)

λa
−1

Xa

ja

Xa

θa

−1

−1

(5.4)

= ((λa)−1
λ⊗ ( j−1

a ◦ θ−1
Xa

)
λ⊗ idλ(−a,a)∗ ) ◦ (c̃Xa ,λ(−a,a)

λ⊗ idλ(−a,a)∗ ) ◦ (idXa

λ⊗ ρλ(−a,a))

dim(λ(−a, a))t (a, a)
(5.5)

Notice that here, if we weren’t assuming B is strict pivotal, we would get the Drinfeld
isomorphism u of B instead of θ−1 in Equality (5.4).

From this, assuming strict pivotality of B we get that the pivotal structure ψ̃ in
(Bλ, t, f ) is
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ψ̃ = f (a)

dim(λ(−a, a))t (a, a) λa
−1

ja
−1

= f (a)

dim(λ(−a, a))t (a, a)
((λa)−1 λ⊗ j−1

a

λ⊗ idλ(−a,a)∗ ) ◦ (c̃Xa ,λ(−a,a)

λ⊗ idλ(−a,a)∗ ) ◦ (idXa

λ⊗ ρλ(−a,a))

(5.6)

In this way, we get that the trace Tr f in (Bλ, t, f ) of a morphism s ∈ Hom(Xa, Xa) can
be expressed in the graphical calculus by

Tr f (s) = f (a)

dim(λ(a,−a))2 t (a, a) λa

−1

ja
−1

λ−a

−1

s

.

(5.7)

After expressing the closed loop involving morphisms on Xa in terms of the trace in B,
we get

Tr f (s) = f (a)

dim(λ(a,−a))2 t (a, a)
Tr( j−1

a (Xa) ◦ s)

λa
−1

λ−a
−1 (5.8)
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Finally, we apply the associative zesting condition of Fig. 2 with 1 = 3 = a and
2 = 4 = −a and standard graphical calculus to get the equation

Tr f (s) = f (a)

dim(λ(a,−a))2 t (a, a)
Tr( j−1

a (Xa) ◦ s)

= f (a)

dim(λ(a,−a)) t (a, a)
Tr( j−1

a (Xa) ◦ s)

. (5.9)

��
Lemma 5.6. Let λ = (λ, j, t, f ) be a a ribbon zesting. Then

Tr f (cλ
Yb,Xa

◦ cλ
Xa ,Yb ) =dim(λ(a + b,−a − b)) dim(λ(a, b))t (2)(a, b) f (a + b)

t (a + b, a + b)
× m( j, XA,Yb)Tr(cY,X ◦ cX,Y ) (5.10)

where

m( j, Xa,Yb) = ja(Yb) jb(Xa)

jab(Xa) jab(Yb) jab(λ(a, b))
, (5.11)

for all a, b ∈ A, Xa ∈ Irr(Ba),Yb ∈ Irr(Bb).

Proof. Let Xa ∈ Irr(Ba),Yb ∈ Irr(Bb), where a, b ∈ A. We have that

j−1
ab ◦ cλ

Yb,Xa
◦ cλ

Xa ,Yb = m( j, Xa,Yb)t
(2)(a, b)

(
cYb,Xa ◦ cXa ,Yb

) ⊗ idλ(a,b)

for all pairs of simple objects Xa,Yb.
Then using Proposition 5.5 we have

Tr f (cλ
Yb,Xa

◦ cλ
Xa ,Yb ) = dim(λ(a + b,−a − b)) f (a + b)

t (a + b, a + b)
m( j, XA,Yb)

× t (2)(a, b)Tr
((
cYa ,Xa ◦ cXa ,Ya

) ⊗ idλ(a,b)

)

= λ(a + a,−a − a) dim(λ(a, b)) f (a + b)

t (a + b, a + b)
m( j, XA,Yb)

× t (2)(a, b)Tr f (cλ
Ya ,Xa

◦ cXa ,Ya ).

��
Recall that the modular data of a premodular category B is the following pair of

matrices indexed over Irr(B):

(i) S-matrix. SX,Y = Tr(cY ∗,X ◦ cX,Y ∗),
(ii) T -matrix. TX,Y = θXδX,Y .
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Theorem 5.7. Let λ = (λ, j, t, f ) be a a ribbon zesting. The T -matrix and S-matrix of
(Bλ, t, f ) are given by the following formulas

T λ
Xa ,Xa

= f (a)TXa ,Xa (5.12)

Sλ
Xa ,Yb = dim(λ(a − b,−a + b)) dim(λ(a,−b))t (2)(a,−b) f (a − b)

t (a − b, a − b)

× m( j, Xa,Y
∗
b ⊗ λ(b,−b)∗) dim(Xa)

−1SXa ,Yb SXa ,λ(b,−b) (5.13)

for all a, b ∈ A, Xa ∈ Ba,Yb ∈ Bb.

Proof. The formula for T λ is a direct consequence of the definition of θ f .
For the S-matrix of (Bλ, t, f ) we use Lemma 5.6 and the fact that Xa = X∗

a ⊗
λ(a,−a)∗

Sλ
Xa ,Yb = dim(λ(a − b,−a + b)) dim(λ(a,−b))t (2)(a,−b) f (a − b)

t (a − b, a − b)

× m( j, Xa, Y
∗
b ⊗ λ(b,−b)∗)SXa ,λ(b,−b)⊗Yb

= dim(λ(a − b,−a + b)) dim(λ(a,−b))t (2)(a,−b) f (a − b)

t (a − b, a − b)
m( j, Xa, Y

∗
b ⊗ λ(b,−b)∗)

× dim(Xa)
−1SXa ,Yb SXa ,λ(b,−b),

where we used in the last equality that dim(X)SX,Y⊗a = SX,Y SX,a for every invertible
object, see [15, Proposition 8.13.10]. ��
Remark 5.8. The formula (5.13) of the S-matrix does not look symmetric immediately.
For a clearly symmetric formula, we can take the matrix S̃Xa ,Ya = Tr f (cλ

Yb,Xa
◦ cλ

Xa ,Yb
)

with formula given in equation (5.10) of Lemma 5.6. Now, the S-matrix and the S̃-matrix
are related in the sense that S is invertible if and only if S̃ is invertible and in that case
S = S̃−1, see [15, Proposition 8.14.2.].

5.2. Müger center. We want to describe the Müger center Z2((Bλ, t)) = {Xa ∈ Ba |
c̃Yb,Xa ◦ c̃Xa ,Yb = id

Xa
λ⊗Yb

∀Yb ∈ Bb, b ∈ A} of the zesting (Bλ, t) of B. We have that

Z2((Bλ, t)) = {Xa ∈ Ba | cYb,Xa ◦ cXa ,Yb = ja(Yb)
−1 jb(Xa)

−1t−2(a, b) idXa⊗Yb ,∀ Yb ∈ Bb, b ∈ A}.

This means that Xa ∈ Ca is in the Müger center of (Bλ, t) if Xa projectively centralizes
Yb (and the corresponding scalar is ja(Yb)−1 jb(Xa)

−1t−2(a, b)), for all Yb ∈ Bb, b ∈ A.
Recall from [15] that for D ⊂ C the centralizer of D in C is denoted CC(D).

Lemma 5.9. Assume that j is trivial. Consider a premodular A-graded fusion category
B and a braided zesting (Bλ, t). If CB(Bad) ⊆ Bpt then the Müger center of the zested
category

Z2((Bλ, t)) = {Xa ∈ Ba ∩ Bpt | t2(a, b) = θXaθYb

θXa⊗Yb
,∀Yb ∈ Bb, b ∈ A}.
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Proof. Recall that t is trivial when one of the inputs lives in the trivial component of the
A-grading. Now, since j is trivial, if Xa ∈ Z2((Bλ, t)) then cY0,Xa ◦cXa ,Y0 = idXa⊗Y0 for
all Y0 ∈ B0. This means that Xa ∈ CB(B0) ⊆ CB(Bad) ⊆ Bpt . ThereforeZ2((Bλ, t)) ⊆
Bpt .

Moreover, since Xa ∈ Z2((Bλ, t)) ⊆ Bpt , we have that χXa (Yb) = t−2(a, b). From

the fact that χXa (Yb) = θXa⊗Yb
θXa θYb

, we get the desired characterization of the Müger center

Z2((Bλ, t)) of the zested category. ��
Remark 5.10. Notice that if B is modular or super-modular (i.e. Z2(B) = Vec or sVec),
we have that Z2((Bλ, t)) ⊆ CB(Bad) ⊆ Bpt . If B is pointed the condition is trivially
satisfied too.

The following example shows that zesting a non-degenerate category may yield a de-
generate one, and conversely, so that Müger centers are not zesting invariant.

Example 5.11. The pointed modular category C(Z/3, Q) with quadratic form Q(a) =
e2a

2π i/3 = θa is naturally Z/3-graded. If we take the trivial associative Z/3-zesting (i.e.
trivial 2- and 3-cocycles λ(a, b) = 1 and λ(a, b, c) = 1) then the braided zestings corre-
spond to a choice of a bicharacter t : Z/3× Z/3 → k

×. We can take t (a, b) = e2π iab/3

so that t2(a, b) = Q(a)Q(b)/Q(a + b) = e−2π iab/3, which implies (C(Z/3, Q)λ, t) is
symmetric.

The converse is also possible: for the symmetric pointed category C(Z/3, P) with
P(a) = 1 again take the trivial associative zesting. Now a non-trivial braided zesting
corresponds to a non-trivial bicharacter t , which yields a non-degenerate braiding.

On the other hand, if we zest with respect to a group A that generates a symmetric
pointed subcategory and A does not contain any transparent objects then the Müger
center does not change:

Proposition 5.12. Let B a braided fusion category and A ⊂ Inv(B) a subgroup such
that χa 
= id for all a ∈ A − {0}. Consider the Â-grading

Bγ = {X ∈ B : χa(X) = γ (a) idX , ∀a ∈ A}, γ ∈ Â.

For any Â-braided zesting (λ, j, t), such that

(i) the category generated by A is symmetric,
(ii) jγ = id for all γ ∈ Â,

the Müger center of B and (Bλ, t) coincide. In particular, B is non-degenerate if and
only if (Bλ, t) is non-degenerate.

Proof. Since B1 = {X : cX,a ◦ ca,X = ida⊗X ,∀a ∈ A}, we have that Z2(B) ⊂ B1.

Hence, if X ∈ Z2(B) and Yγ ∈ Bγ , then X
λ⊗ Yγ = X ⊗ Yγ and cλ

X,Yγ
= cX,Yγ . Hence

Z2(B) ⊂ Z2((Bλ, t)).
Conversely, since the category generated by A is symmetric, we have that a ∈ B1 for

all a ∈ A. If

Xγ ∈ Z2((Bλ, t)) ∩ Bγ , γ ∈ Â

then

idXγ ⊗a = cλ
a,Xγ

◦ cλ
Xγ ,a = ca,Xγ ◦ cXγ ,a, ∀a ∈ A
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hence γ = 1. Then,

cγ

X,Y = cX,Y , cλ
Y,X = cY,X

for all X ∈ Z2((Bλ, t)) and Y ∈ B. This implies that Z2((Bλ, t)) ⊂ Z2(B), and then
Z2((Bλ, t)) = Z2(B). ��

Corollary 5.13. Let B be a non-degenerate braided fusion category such that Bpt is
symmetric. Then any braided U (B)-zesting of B is non-degenerate. ��

Remark 5.14. The pointed subcategoryBpt is symmetric for any non-degenerate braided
fusion category with Bpt ⊆ Bad .

5.3. Braid group image. LetBn denote the braid group on n strands and σi its generators.
Given an object X in a braided fusion category B we will denote the associated braid
group representation by

ρX
n : Bn → AutB(X⊗n)

σi 
→ a−1 ◦ (id⊗i−1
X ⊗cX,X ⊗ id⊗n−i−1

X ) ◦ a,

where a denotes the appropriate composition of associativity constraints in B. Note that
the fact that this morphism is group homomorphism follows from the hexagon axioms
of B and Mac Lane’s coherence theorem. The category B is said to have property F if
ρX
n has finite image for all n and all objects X [24].
Consider a braided fusion category B with an A-grading and λ = (λ, j, t) a braided

A-zesting. Here we study how the image of the braid group is modified under the zesting
operation.

For any Xa ∈ Ba,Yb ∈ Bb, Zc ∈ Bc and a, b, c ∈ A, we have an algebra isomor-
phism

ψXa ,Yb,Zc : EndB(Xa⊗Yb⊗Zc) → EndBλ((Xa
λ⊗ Yb)

λ⊗ Zc)

f 
→ w−1( f ⊗ idλ(a,b)⊗λ(a+b,c)
)
w

where w = idXa⊗Yb ⊗cλ(a,b),Zc⊗ idλ(a+b,c). For Xa ∈ Bλ
a and n ∈ Z>0, we define

inductively the algebra isomorphism

ψ Xa
n : EndB(X⊗n

a ) → EndBλ(X
λ⊗n
a ) (5.14)
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by ψ
Xa
n = (

ψ
Xa
n−1

λ⊗ idXa

) ◦ ψ
X

λ⊗n−2
a ,Xa ,Xa

, where X
λ⊗n = X

λ⊗n−1
λ⊗ X . Graphically,

given for f ∈ EndB(X⊗n
a ), we have that ψ Xa

n ( f ) is given by

a

a

a

a

(a, a)

(a, a)

(2a, a)

(2a, a)

a

a

a

a

((n − 2)a, a)

((n − 2)a, a)

a

a

f

· · ·

· · ·

((n − 1)a, a)

((n − 1)a, a)

· · ·

· · ·

Theorem 5.15. LetB be a braided fusion category andλ = (λ, j, t) a braided A-zesting.
Then for all n > 0 and Xa ∈ Ba simple homogeneous object, we have

ρλ
n (σi ) = ja(Xa)t (a, a)ψn(ρn(σi )), 1 ≤ i < n,

where ρλ is the braid group representation associated to (Bλ, t),ψn was defined in 5.14,
and ja(Xa), t (a, a) ∈ k

× are the scalars associated with the braid cλ
Xa ,Xa

.

Proof. If Xa ∈ Ba is a simple object, we have that cλ
Xa ,Xa

= ja(Xa)t (a, a)cXa ,Xa⊗
idλ(a,a). A simple graphical computation shows that

ρλ
n (σn−1) =(aλ

X
λ⊗n−2
a ,Xa ,Xa

)−1 ◦ (id
X

λ⊗n−2

λ⊗ cλ
Xa ,Xa

) ◦ aλ

X
λ⊗n−2
a ,Xa ,Xa

= ja(Xa)t (a, a)(aλ

X
λ⊗n−2
a ,Xa ,Xa

)−1 ◦ (id
X

λ⊗n−2
⊗cXa ,Xa⊗ idλ(an−1,a)) ◦ aλ

X
λ⊗n−2
a ,Xa ,Xa

= ja(Xa)t (a, a)ψn(ρn(σn−1)).

For i < n − 1, we have

ρλ
n (σi ) = ρλ

i+1(σi )
λ⊗ id

X
λ⊗(n−(i+1))

= j (Xa)t (a, a)ψi+1(ρi+1(σi ))
λ⊗ id

X
λ⊗(n−1−i)

= ja(Xa)t (a, a)ψn(ρn(σi )).

��
Corollary 5.16. A premodular category B has property F if and only if any of its ribbon
zestings (Bλ, t) has property F.

Proof. Any premodular category can be included in a modular category, e.g., in its
Drinfeld center. Then, it follows from Vafa’s theorem [1, Theorem 3.1.19], [26] that the
double braiding in any premodular category has finite order. Then ja(Xa)t (a, a) is a
root of unity, and ρλ

n has finite image if and only if ρn has finite image. ��
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6. Applications

We now apply the theory of zesting to a number of familiar examples.

6.1. Braided zesting of modular tensor categories. We will apply the obstruction de-
veloped in the last section to our main case of interest. Let B be a modular category
and A = U (B) the universal grading group. The maximal pointed fusion category in
Bad = Be is centralized by the subcategory Bpt generated by invertible objects [15,
Corollary 8.22.7]. In particular Bad ∩ Bpt is a symmetric pointed fusion category.

Recall that every symmetric pointed fusion category has the form Vecν
S , where S is

an abelian group, ν : S → Z/2 is an additive group homomorphism and the braiding is
given by

c(a, b) = (−1)ν(a)ν(b) ida⊗b .

In particular, Vecν
S is super-Tannakian in general, and Tannakian if ν is trivial.

Proposition 6.1. Let B be a braided fusion category graded by A. If Vecν
S ⊂ (Be)pt ,

then for every λ ∈ Z2(A, S) the obstruction to the existence of an associative zesting is
given by

O4(a1, a2, a3, a4) = (λ ∪ν λ)(a1, a2, a3, a4) = (−1)ν(λ(a1,a2)ν(λ(a3,a4)).

In particular, if S has odd order the obstruction automatically vanishes.

Remark 6.2. In practice, we overcome this obstruction by finding a λ ∈ C3(A, k
×)

so that δ(λ)(a1, a2, a3, a4) = O4(a1, a2, a3, a4). If |S| is odd O4(a1, a2, a3, a4) ≡ 1
and we may choose any 3-cocycle λ (e.g. λ ≡ 1), whereas if this obstruction does not
vanish identically we must solve the linear system coming from δ(λ)(a1, a2, a3, a4) =
O4(a1, a2, a3, a4). Here the 3-cochain λ corresponds to the scalar associated with the
map λa1,a2,a3 : λ(a1, a2)λ(a1a2, a3) → λ(a1, a2a3)λ(a2, a3).

6.2. Cyclic zesting.

6.2.1. Cohomology of cyclic groups LetC = 〈g〉 be a cyclic group of order N and M an
abelian group. We will identify C with Z/N , via the isomorphism Z/N → C, a 
→ ga .
We define some cochains associated with any ν ∈ M that will be useful later.

βν(i) = iν, (6.1)

γν(i, j) =
{
0 if i + j < N
ν if i + j ≥ N

, (6.2)

λν(i, j, k) =
{
0 if i + j < N
kν if i + j ≥ N

, (6.3)

where 0 ≤ i, j, k ≤ N . By a straightforward computation by cases, we have that

δ(βν) = γNν (6.4)

δ(γν) = 0 (6.5)
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δ(λν)(i, j, k, l) =
{
Nν if i + j, k + l ≥ N ,

0 otherwise.
(6.6)

Hence, γν ∈ Z2(Z/N , M), and γNν ∈ B2(Z/N , M). Moreover for all ν ∈ MN :=
{m ∈ M : Nm = 0} we have λν ∈ Z3(Z/N , M). It is well known that the induced
group homomorphisms

γ : M/NM → H2(Z/N , M), λ : MN → H3(Z/N , M) (6.7)

are in fact group isomorphisms, see for more details [27].

6.2.2. Braided pointed fusion categories from cyclic groups Let C(C,�) be a braided
pointed fusion category with Inv(B) = 〈g〉 = C a cyclic group of order N and ribbon
structure �(g) such that dim(a) = 1 for all a ∈ C . We have that Inv(Z2(C(C,�))) =
〈gm〉, where m = Ord(�2

g), and

(i) C(C,�) is modular if and only if �2
g ∈ k

× has order N .
(ii) C(C,�) is symmetric if and only if �2

g = 1, and this case
(a) C(C,�) is Tannakian if and only if �g = 1
(b) C(C,�) is super-Tannakian if and only if �g = −1.

In the symmetric case the ribbon is a character (trivial in the Tannakian case), and the
braiding can be described as

cg1,g2 =
{

− idg1⊗g2 , if �g1 = �g2 = −1,
idg1⊗g2 , otherwise.

(6.8)

6.2.3. Cyclic braided zestings In this section we fix B a braided fusion category and
C ⊂ Inv(B) a cyclic group of order N such that χ : C → Aut⊗(IdB) is injective
(equivalently, C contains no non-trivial transparent objects). By Corollary 2.9, B has a
faithful Ĉ-grading

Bγ = {X : χa(X) = γ (a) idX , ∀a ∈ C}, γ ∈ Ĉ . (6.9)

Then
B1 ∩ C = ker(χC,C ) = C⊥, (6.10)

where 1 ∈ Ĉ is the trivial character and ker(χC,C ) = {a ∈ C : χa(b) = 1,∀b ∈ C}.
Notice that while we usually denote the trivial component of our grading by Be, here
the grading is by the dual group Ĉ of characters so we denote the trivial component by
B1 to emphasize this. We are interested in describing the braided Ĉ-zesting induced by
elements in H2(Ĉ,C⊥).

Let g ∈ C be a generator. Thus Ĉ can canonically be identified with {μ ∈ k
× : μN =

1}, via γ 
→ γ (g). Hence, in order fix a generator of Ĉ , from now we fix a primitive
N th root of unity q ∈ k

×. Under the isomorphism Z/N → Ĉ, a 
→ [gb 
→ qab], we
have that B is Z/N -graded with

Ba = {X : χg(X) = qa idX }, a ∈ Z/N . (6.11)

Let
h := g[C :C⊥] (6.12)

be a generator of C⊥ and � : C⊥ → k
× be the canonical ribbon twist.
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6.2.4. Associative zestings With the aim of unifying our results and formulas we define
ε ∈ {1, 0} depending on an integer a ∈ Z and �h ∈ {±1} as

ε =
{
1 if �ha = −1,
0 if �ha = 1.

(6.13)

Additionally, we fix ζ ∈ k
× a primitive root of unity of order 2N such that ζ 2 = q.

In the next proposition we will follows the notation introduced in Sect. 6.2.3.

Proposition 6.3. Let B a braided fusion category and C = 〈g〉 ⊂ Inv(B) a cyclic
group of order N such that χ : C → Aut⊗(IdB) is injective. The equivalence classes
of associative zestings of B with respect of the grading given in (6.9) and associated
2-cocycle in Z2(Ĉ,C⊥) are parametrized by Z/m × Z/N. The associative zesting
corresponding to a pair (a, b) ∈ Z/m × Z/N is given by

λa(i, j) =
{
1 if i + j < N
ha if i + j ≥ N

(6.14)

λb(i, j, k) =
{
1 if i + j < N
ζ k(ε+2b) if i + j ≥ N

(6.15)

where 0 ≤ i, j, k < N, C⊥ was defined in (6.10), m = |C⊥|, ζ 2 = q, h = g[C :C⊥], and
ε is defined in (6.13).

Proof. Since C⊥ has order m, the 2-cocycles λa with a ∈ Z/m form a set of represen-
tatives of H2(Z/N ,C⊥).

If �h = 1, we have that C⊥ is Tannakian and then the 4-cocycle obstruction O4(λa)

automatically vanishes. Hence associative zestings are parametrized by pair (a, b) ∈
Z/m × Z/N , with corresponding zesting

λa(i, j) =
{

1 if i + j < N
ha if i + j ≥ N

(6.16)

λb(i, j, k) =
{
1 if i + j < N
qkb if i + j ≥ N

(6.17)

where 0 ≤ i, j, k < N .
If �h = −1, we have that C⊥ is super-Tannakian. In particular C⊥ has even order,

and let v : C⊥ → Z/2 the non-trivial group homomorphism. The 4-cocycle obstruction
O4(λa) is given by

O4(i, j, k, l) = (−1)v(λa(i, j))v(λa(k,l))

=
{

(−1)a if i + j, k + l ≥ N
1 otherwise.

Note that the set of all solutions to the equation QN = −1 can be parametrized as ζ 1+2b,
with b ∈ Z/N . Hence, for a odd using (6.6) we have that the associative zestings is
parametrized by pairs (a, b) ∈ Z/m × Z/N , with

λa(i, j) =
{

1 if i + j < N
ha if i + j ≥ N

(6.18)
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λb(i, j, k) =
{
1 if i + j < N
ζ k(1+2b) if i + j ≥ N

(6.19)

where 0 ≤ i, j, k < N . ��
6.2.5. Braided zestings

Proposition 6.4. Let (a, b) ∈ Z/m × Z/N and (λa, λb) the associative zesting con-
structed in Proposition 6.3. Then

(i) (λa, λb) admits a braided zesting with j = id if and only if a N
m = ε + 2b mod N.

(ii) If a, b satisfy the conditions in (i), there are N different braided zestings, parametrized
by a choice of an element in {s ∈ k

× : sN = ζ−(ε+2b)}.
(iii) Explicitly, the braided zesting associated with s as in (ii) is given by jy = IdB for

all y ∈ Z/N and

ts(i, j) = s−i j idλa(i, j), 0 ≤ i, j < N .

Proof. In order to compute the 2-cocycles O1(λb), we can take initially t (i, j) =
idλa(i, j). Then

O1(λb)(i | j, k) = λb(i, j, k)λb( j, k, i)

λb( j, i, k)
= λb( j, k, i)

Since H2(Z/N , k
×) = 0, we can redefine the isomorphisms

t (i, j) = l(i, j) idλ(i, j), l(i, j) ∈ k
×. i, j ∈ Z/N ,

to that satisfy the equation in Fig. 7. We need to choose s so that sN = ζ−(ε+2b). Then
define

l(i, j) = s−i j (6.20)
where 0 ≤ i, j, k < N . In fact, by (6.4)

l(i, k)l( j, k)

l(i + j, k)
= δ(βs)

k(i, j) = λb(i, j, k)
−1, (6.21)

and since l(i, j) = l( j, i), we have that

l(i, k)l(i, j)

l(i, j + k)
= λb( j, k, i) = O1(λb)(i | j, k).

Now,

O2(b, s)(i, j |k) = l(i, k)l( j, k)

l(i + j, k)
λb(i, j, k)

= λb(i, j, k)
2

Finally, since χha (Xk) = qa
N
m k , we get that

χλa(i, j)(X1)O2(λa, λb)(i, j |1) =
{
1 if i + j < N

qa
N
m −(ε+2b) if i + j ≥ N ,

(6.22)

that is [χλa/O2] = a N
m − (ε + 2b) ∈ Z/N ∼= H2(Z/N , Ẑ/N ). Then if a N

m 
= ε + 2b
mod N the associative zesting (λa, λb) does not admits a braided zesting with j = id
and if a N

m = ε + 2b mod N , [O2(λ)] = [χλ], so jt = id and ts(i, j) = s−i j idλa(i, j)
define a braided zesting. ��
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6.2.6. Ribbon zesting and its modular data

Proposition 6.5. Let (λa, λb, id, ts) be a braided zesting constructed in Proposition 6.4.
If B has a ribbon twist θ such that θha = �ha then a ribbon zesting f : Z/N → k

× is
defined by

f (i) =s−i2 , 0 ≤ i < N , (6.23)

and its modular data is given by

T λ
Xi ,Xi

= s−i2TXi ,Xi , 0 ≤ i < N , Xi ∈ Bi , (6.24)

Sλ
Xi ,Y j

= s2i j SXi ,Y j , 0 ≤ i, j < N , Xi ∈ Bi ,Y j ∈ B j . (6.25)

Proof. Equation (5.1) is

f (i) f (i + j)−1 f ( j) = s2i jχλ(i, j)(i + j)θλ(i, j) =
{
s2i j if i + j < N

s2i j qa
N
m (i+ j)θha if i + j ≥ N .

Let 0 ≤ i, j < N − 1. If i + j < N , then

f (i) f (i + j)−1 f ( j) = s−i2s(i+ j)2s− j2 = s2i j .

If i + j ≥ N , then i + j = [i + j] + N where 0 ≤ [i + j] < N , and (i + j)2 =
i2 + j2 + 2i j − 2N (i + j) + N 2, thus

f (i) f (i + j)−1 f ( j) = s2i j−2N (i+ j)sN
2

= s2i j q(ε+2b)(i+ j)(−1)ε+2b

= (−1)εqa
N
m (i+ j)s2i j

= θhaq
a N
m (i+ j)s2i j .

Equation (5.2) for 0 < i < N − 1 < is

f (i) f (N − i)−1 = χha (i)θhi = qa
N
m iθha ,

and

f (i) f (N − i) = s−i2s(N−i)2

= s−2Ni sN
2 = (−1)εq(ε+2b)i

= θhaq
a N
m i .

The formulas formodular data follow fromTheorem5.7. In fact, the T -matrix follows
directly from the definition of θ f . First note that since θh = �h , then dim(hi ) = 1, in
particular dim(λa(i, j)) = 1 for all i, j ∈ Z/N , second

SXi ,λ( j,− j)

dim(Xi )
= χha (X

∗
i ) = q−a N

m i , 0 < i < N ,

and third

s−i(N− j) = s2i j q(ε+2b)i ,
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hence

Sλ
Xi ,Y j

= f (i − j)t (2)(i,− j)

t (i − j, i − j)

SXi ,λ( j,− j)

dim(Xa)
SXi ,Y j

= s−i(N− j) SXi ,λ( j,− j)

dim(Xa)
SXi ,Y j

= s2i j SXi ,Y j . ��
Remark 6.6. If N is odd f (i) = s−i2 is the unique ribbon zesting and if N is even f (i)
and (−1)i f (i) are all the ribbon zestings. From the proof of the above we see that this
changes the S-matrix by a factor of (−1)i− j on the (i, j)-graded block.

As a particular case of Proposition 6.4 we obtain the following result on fermion
zesting (cf. [4]):

Corollary 6.7. Let B be a braided fusion category and f ∈ B a simple object such that

(i) f ⊗ f ∼= 1,
(ii) � f = −1,
(ii) χ f is not the identity.

Then B has eight different braided Z/2-settings parameterized with modular data

T λ
Xi ,Xi

= s−i2TXi ,Xi , Sλ
Xi ,Y j

= s2i j SXi ,Y j (6.26)

where s is a root of unity of order eight. ��

6.3. Quantum group categories of type A. A large class of examples of modular cate-
gories satisfying the hypotheses of Sect. 6.2.2 can be obtained from quantum groups (see
[1, Section 3.3]). Of particular interest are themodular categories SU (N )k obtained from
quantum groupsUQslN for Q = eπ i/(N+k) (eschewing q to avoid notation clashes). Two
references for this construction are [3,22], where much of what follows can be found.
For any N , k, the category SU (N )k has a (maximally) pointed subcategoryP(N , k)with
fusion rules like Z/N . In particular SU (N )k is (universally) Z/N -graded with trivial
component PSU (N )k := [SU (N )k]e. Labelling the fundamental weights of the root
system of type AN−1 by �i for i = 1, . . . , N − 1 (we follow [2, Planches, Chapters
IV,V,VI] for notation), we find that the simple objects in P(N , k) correspond to weights
0 and k�i for i = 1, . . . , N − 1. For notational convenience we define g = Xk�1 so
that g0 = 1 and gt := Xk�t . In this notation we have g

i ⊗ g j = gi+ j . To determine the
nature of this subcategory we must compute the twists θi := θgi , for which we employ
standard techniques (see [1,25], for example). The key computation is that the twist of
the simple object labeled by highest weight μ is θμ = Qcμ where c := 〈μ + 2ρ,μ〉. We
find:

θ j = ζ
k j (N− j)
2N , where ζ2N = eπ i/N . (6.27)

Thus wemay identifyP(N , k)with the pointed ribbon fusion category C(Z/N , η)where
η is the quadratic form given by η( j) = θ j .

By the twist equation we obtain the formula for the double braiding in P(N , k) as:

cgt ,gs ◦ cgs ,gt = θs+t

θsθt
= ζ−2stk

2N idgs+t
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so that the Müger center of P(N , k) is generated by g
N

(N ,k) . In particular, P(N , k) is
modular if and only if (k, N ) = 1 in which case we have the factorization SU (N )k ∼=
PSU (N )k � P(N , k) as modular categories, and Inv(PSU (N )k) is trivial.

On the other hand if N | sk then gs centralizes P(N , k) and hence lies in the triv-
ial component B0 = PSU (N )k (under the universal Z/N -grading). Thus P(N , k) ∩
PSU (N )k is a non-trivial symmetric pointed subcategory whenever (N , k) 
= 1. In-
deed, P(N , k) is symmetric if and only if N | k. Furthermore, by the form of the twists
calculated above we can determine when P(N , k) for k = αN is Tannakian or super-
Tannakian. If N is odd, we only have Tannakian categories, but if N is even, we have
that P(N , αN ) is Tannakian if and only if α is even, and super-Tannakian otherwise.

The object X1 labelled by the highest weight �1 is a tensor generator for SU (N )k .
We will assume that X1 is in the 1-graded component of the universal Z/N -grading B1.
Applying Proposition 2.8(iv) we first compute χ : U (B) = Z/N → Ẑ/N . Now χga

is determined by χga (1) since χga (m) = χga (1)m , and χga (1) = (χg(1))a since the

operation on Ẑ/N is pointwise. Thus we reduce to computing the scalar associated with
the double braiding cg,X1 ◦cX1,g where X1 = X�1 . As g⊗ X1 = X(k−1)�1+�2 is simple
we need only compute

cg,X1 ◦ cX1,g = θ(k−1)�1+�2

θ1θ�1

= ζ−1
N

where ζN := e2π i/N . Thus we see that χga (m) = qam where q := ζ−1
N . In this way

the Z/N -grading is given by Bi = {X : χg(X) = qi idX } as in (6.11). Notice that q
is determined once we declare that X1 ∈ B1 and pick our generator g of U (B)—fixing
any two choices among the grading, q and generator of U (B) determine the third.

Nowwemay apply the results of Sect. 6.1 to SU (N )k . We will consider several cases
to illustrate the subtleties:

(1) For SU (N )αN for N odd the pointed subcategoryP(N , αN ) is Tannakian. We will
zest with respect to the universal Z/N -grading so that m = N and ε = 0 in the
notation of Proposition 6.3. Thus there are N 2 associative zestings (λa, λb) where
(a, b) ∈ Z/N × Z/N . The N associative zestings for pairs (2b, b) each admit N
braided zestings, which in turn admit N twist braided zestings. Thus there are at
most a total of N 2 distinct ribbon twist braided zestings, all of which are modular
by Proposition 5.12.

(2) For SU (N )αN with N even and α odd the pointed subcategoryP(N , αN ) is super-
Tannakian. We will zest with respect to the universal Z/N -grading so that m = N
in the notation of Proposition 6.3. Thus there are N 2 distinct associative zestings
(λa, λb) where (a, b) ∈ Z/N × Z/N . For a even we have ε = 0 and the situation
is similar as above: the N associative zestings (λa, λa/2) and (λa, λ(a+N )/2) each
admit N braided zestings and N 2 twist braided zestings. Among these 2N of them
are ribbon twist zestings, all of which are modular by Proposition 5.12. Now for a
odd we have ε = 1 so that the N pairs (a, a−1

2 ) and (a, a−1+N
2 ) admit N braided

zestings each. All told there are at most 4N 2 ribbon braided zestings, each of which
is modular.

We hasten to point out that, in practice, there can be equivalences among braided
zestings. We will see some examples of this below.
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6.3.1. SU (3)3 Consider the non-group-theoretical [24] integralmodular category SU (3)3
of rank 10 and dimension 36 (this example inspired the notion of zesting in [5]).
We define q = e−2π i/3 and ζ = e2π i/18, and order the simple objects as follows
[1, g, g2,Y, X1, X2, X3, Z1, Z2, Z3]. In the correspondence with the SU (3) highest
weights we have X1 labeled by �1 and g by 3�1 as above. Then X2 = g ⊗ X1 and
X3 = g2⊗X1,with Zi = X∗

i in SU (3)3.Wehave dim(Y ) = 3, dim(Xi ) = dim(Zi ) = 2
for all i , and the Z/3-grading is given by Xi ∈ B1 and Zi ∈ B2. The twists of the simple
objects ordered as above are [1, 1, 1,−1, ζ 4, ζ 16, ζ 10, ζ 4, ζ 16, ζ 10]. We note that there
are two inequivalent sets of modular data (S, T ) (and hence, presumably, modular cat-
egories) with these fusion rules: the above and its complex conjugate. Notice that the
twists of the Xi are primitive 9th roots of unity, so that there are 6 Galois conjugates.
However, the relabeling symmetry among the pairs (Xi , Zi ) allows us to recognize these
6 conjugates as belonging to just 2 inequivalent classes. The (unnormalized) modular

S-matrix has the block 3 × 3 form: S =
⎛

⎝
A B B
BT C D

B
T
DT C

⎞

⎠

where

A =
⎛

⎜
⎝

1 1 1 3
1 1 1 3
1 1 1 3
3 3 3 −3

⎞

⎟
⎠ , B = 2

⎛

⎜
⎝

1 1 1
ζ 6 ζ 6 ζ 6

−ζ 6 −ζ 6 −ζ 6

0 0 0

⎞

⎟
⎠ ,

C = 2

⎛

⎝
ζ ζ 7 −ζ 4

ζ 7 −ζ 4 ζ

−ζ 4 ζ ζ 7

⎞

⎠ , and D = 2

⎛

⎝
ζ 2 − ζ 5 ζ 8 − ζ 5 ζ 8 + ζ 2

ζ 8 − ζ 5 ζ 8 + ζ 2 ζ 2 − ζ 5

ζ 8 + ζ 2 ζ 2 − ζ 5 ζ 8 − ζ 5

⎞

⎠ .

The 9 associative zestings of SU (3)3 are parameterized by (a, b) ∈ Z/3×Z/3where

λa(i, j) =
{

1, i + j < 3
ga i + j ≥ 3

and λb(i, j, k) =
{
1, i + j < 3
qbk i + j ≥ 3

.

The fusion rules for a = 2 and a = 0 are the isomorphic: reordering the simple objects
as [1, g2, g, X1, X3, X2, Z3, Z2, Z1] gives us the fusion rule isomorphism. By results
of [22] the 6 fusion categories corresponding to a = 0 and a = 2 are obtained from
SU (3)3 by changing the quantum parameter Q and/or changing the associativity by a
3-cocycle. On the other hand, for a = 1 we find that 1 
⊂ X⊗13

1 yet 1 ⊂ X⊗3 for all
simple objects X ∈ SU (3)3 so that these fusion rules are not isomorphic to those of
SU (3)3.1

Now for each pair (a, b) ∈ {(0, 0), (1, 2), (2, 1)} we obtain 3 braided zestings by
choosing an s so that s3 = q−b, by Proposition 6.4. Moreover, by Proposition 6.5
these each have a unique ribbon zesting, given by multiplying the SU (3)3 twists in the
component Bi by s−i2 , and all are modular with these choices. Thus there are at most
9 modular categories obtained from Z/3-zesting of SU (3)3. In fact, we will see that
there are only 3 inequivalent sets of modular data, and presumably only 3 inequivalent
modular categories (this is not immediate as modular data is not a complete invariant,
see [23].

1It seems to be the case that the trivial representation appears in X⊗N
μ for any object Xμ ∈ Rep(slN ), but

we could not find a proof in the literature.
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For b = 0 we have s3 = 1 and for b = 1 we have s3 = q−1 = e2π i/3. The twist on
B1 and B2 are primitive 9th roots of unity {ζ 4, ζ 10, ζ 16}, so that rescaling by s−1 = s−4

with s = e2π in/3 simply permutes them. Similarly for the case b = 2 we have s = ζ 6x+2

for 0 ≤ x ≤ 2 so that rescaling these twists by s−1 and s−4 conjugates the set of values,
and permutes them in a way consistent with the fusion rule isomorphism above. Now
since the fusion rules and dimensions are the same, the S-matrices are determined by
the twist (via the balancing equation). Thus we obtain two sets of modular data from the
pairs (0, 0) and (1, 2): those of SU (3)3 and the complex conjugate. Indeed, it is easily
checked that adjusting the SU (3)3 S-matrix above by a factor of s2i j on the (i +1, j +1)
block has the effect of permuting the rows/columns and possibly complex conjugating
the entries.

Now for b = 2 we have s3 = q−2 = e−2π i/3, with solutions s = e−(6x+2)π i/9 =
ζ−3x−1
9 for 0 ≤ x ≤ 2, where ζ9 := e2π i/9. Rescaling {ζ 4 = ζ 2

9 , ζ 10 = ζ 5
9 , ζ 16 = ζ 8

9 }
by s−1 = ζ 3x+1

9 and s−4 = ζ 12x+4
9 both yield {1, q, q−1} for any x which is invariant

under complex conjugation. Again, the S-matrix is determined by the twists and the
fusion rules by the balancing equation so that we find that there is exactly one set of
modular data (S, T ) corresponding to the modular zesting of SU (3)3 when a = 1. For
completenessweprovide explicitmodular data (S̃, T̃ ) (cf. [5, Section 4.2]): taking x = 0,

the twists are given by T̃ := [1, 1, 1,−1, q−1, 1, q, q, q−1, 1] and S̃ =
⎛

⎝
A B B
BT C̃ D̃

B
T
D̃T C̃

⎞

⎠

where A and B are the same as for SU (3)3 above and

C̃ = 2

⎛

⎝
ζ−3 ζ 3 −1
ζ 3 −1 ζ−3

−1 ζ−3 ζ 3

⎞

⎠ , and D̃ = 2

⎛

⎝
−1 ζ 3 ζ−3

ζ 3 ζ−3 −1
ζ−3 −1 ζ 3

⎞

⎠ .

Note that ζ±3 = −q±1 so that the entries of S̃ lie in the field Q(q).
Let us compare the zesting of SU (3)3 to gauging constructions. Clearly SU (3)3, its

complex conjugate and its Grothendieck inequivalent zesting each contain Rep(Z/3) as
a Tannakian subcategory. If we take the correspondingZ/3-condensation [11] we obtain
a modular categoryL of dimension 4 = 36/32 that has a gaugable symmetry φ : Z/3 →
Autbr⊗ (L) [8]. It is not difficult to see that L must be the so-called 3 fermion modular
category 3F , with fusion rules likeZ/2×Z/2, and theZ/3 action cyclically permutes the
fermions. Thus we should be able to recover the three zestings of SU (3)3 by gauging this
symmetry. Theobstructions to gaugingvanish as they lie in H3(Z/3, Z/2×Z/2) = 0 and
H4(Z/3,U (1)) = 0. The gaugings of 3F are parameterized by H2(Z/3, Z/2×Z/2) =
0 and H3(Z/3,U (1)) ∼= Z3. Thus we obtain 3 such gaugings, consistent with the zesting
calculation above.

6.3.2. SU (4)4 The rank 35 modular category B := SU (4)4 has pointed subcategory
P(4, 4) with fusion rules like Z/4, but is non-Tannakian: the generator g of the group
Inv(B) has twist θg = −1, and cg,g = − idg2 . We write

SU (4)4 = C0 ⊕ C1 ⊕ C2 ⊕ C3
to decompose the category into its Z/4 universally-graded components, which have the
following ranks

Component C0 C1 C2 C3
Rank 10 8 9 8
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Table 1. SU (4)4 ribbon zesting data: ζN := e2π i/N and γ 4 = 1

(a, b) X⊗4
1 ⊃ 1? s Central charge

(0, 0) yes γ ζ−1
16

(0, 2) yes γ · (ζ32)
4 −ζ−1

16
(1, 0) no γ · (ζ32) −i · ζ16
(1, 2) no γ · (ζ32)

5 i · ζ16
(2, 1) no γ · (ζ32)

2 −i · ζ−1
16

(2, 3) no γ · (ζ32)
6 i · ζ−1

16
(3, 1) yes γ · (ζ32)

3 −ζ16
(3, 3) yes γ · (ζ32)

7 ζ16

We set q = e−2π i/4 so that χg(Xi ) = qi for Xi ∈ Ci . Table 2 summarizes the last few
pages of analysis and records the parametrization of simple objects in SU (4)4 along
with their universal grading, quantum dimensions, and twists.

We first consider the Z/4-zestings. To conform with the notation of Propositions
6.3 and 6.4, we set ζ = e−2π i/8. The associative Z/4-zestings are parameterized by
(a, b) ∈ Z/4 × Z/4 as above. When a is odd we have ε = 1 and otherwise ε = 0.
Braided zestings exist for the 8 pairs

(a, b) ∈ {(0, 0), (0, 2), (1, 0), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)},
and are parameterized by solutions to s4 = ζ−ε(a)−2b. Each of these, in turn have a
unique ribbon structure that gives positive dimensions, and each of these are modular
by Lemma 5.13. Thus there are at most 32 distinct modular categories obtained as
Z/4-zestings of SU (4)4. For any triple (a, b, s) the central charge of the corresponding
modular categories are the same for any of the 4 choices of s, giving us (at least) 8 distinct
modular categories see Table 1. As can be seen from the data in Table 2, SU (4)4 has a
high degree of symmetry there are many objects of the same dimension giving rise to
labeling ambiguities. Moreover, [12] shows that the group of (not necessarily braided)
monoidal autoequivalences is isomorphic to Z/2× Z/4. In particular, distinguishing or
identifying the the modular categories with the same underlying fusion category (i.e. the
same (a, b) but different s) is a subtle problem.

Wemayalso consider theZ/2-zestings.Wecandefine aZ/2-gradingonB := SU (4)4
byB0 = C0⊕C2 andB1 = C1⊕C3 where Ci are the components of the universal grading
above. This corresponds to the grading by the subgroup Z/2 ∼= 〈g2〉 < Inv(B). If we
choose a 2-cocycle λa ∈ H2(Z/2, Inv(B)) with values in 〈g2〉 then Z2(〈g2〉) = 〈g2〉
so we may apply the results of Propositions 6.3 and 6.4 to obtain braided zestings and
ribbon twists as above.

On the other hand, we may define a 2-cocycle H2(Z/2, Inv(B)) by λ(1, 1) = g and
λ(0, 1) = λ(1, 0) = 1. The normalized 3-cochains λ±(1, 1, 1) = ±i provide associative
zestings. We claim that these fusion categories do not admit braided zestings.

We have that χg|B0 = IdC0 − IdC2 . In particular χg is not in AutZ/2
⊗ (IdB), so that

ja = id does not satisfy condition (BZ1). What is required is a function j : Z/2 →
Aut⊗(IdB) such that

χλ(a,b) ◦ jab ◦ j−1
a ◦ j−1

b ∈ AutZ/2
⊗ (IdB).

In particular taking a = b = 1 ∈ Z/2 we seek a j1 such that χg ◦ j−2
1 ∈ AutZ/2

⊗ (IdB).
Thismeans thatχg◦ j−2

1 must be the identity onB0, so that j
−2
1 |C2 = − IdC2 and j−2

1 |C0 =
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Table 2. Basic data for isomorphism classes of simple objects in SU (4)4

Label Grading Dimension Twist
1 0 1 1
g 0 1 −1
g2 0 1 1
g3 0 1 −1
Y 0 2d − 1 −1
gY 0 2d − 1 1
g2 0 2d − 1 −1
g3Y 0 2d − 1 1
Z 0 2d − 2 −i
gZ 0 2d − 2 i
X 1

√
2d ζ 1564

gX 1
√
2d ζ 3164

g2X 1
√
2d −ζ 1564

g3X 1
√
2d −ζ 3164

X̃ 1
√
14d − 8 −ζ 764

gX̃ 1
√
14d − 8 −ζ 2364

g2 X̃ 1
√
14d − 8 ζ 764

g3 X̃ 1
√
14d − 8 ζ 2364

X ′ 2 d ζ 516
gX ′ 2 d ζ 516
g2X ′ 2 d ζ 516
g3X ′ 2 d ζ 516
X ′′ 2 d −ζ16
gX ′′ 2 d −ζ16
g2X ′′ 2 d −ζ16
g3X ′′ 2 d −ζ16
W 2 4d − 4 −ζ 716
X∗ 3

√
2d ζ 1564

gX∗ 3
√
2d −ζ 3164

g2X∗ 3
√
2d −ζ 1564

g3X∗ 3
√
2d ζ 3164

X̃∗ 3
√
14d − 8 −ζ 764

gX̃∗ 3
√
14d − 8 ζ 2364

g2 X̃∗ 3
√
14d − 8 ζ 764

g3 X̃∗ 3
√
14d − 8 −ζ 2364

Here d = √
2 + 2 and ζ16 = e2π i/16, ζ64 = e2π i/64 are primitive 16th and 64th roots of unity, respectively

IdC0 . But since j1 ∈ Aut⊗(IdB) we see that j1(X) ⊗ j1(Y ) = j1(X ⊗ Y ) = idX⊗Y for
X,Y ∈ Irr(C0), and j1(X) = k idX and j1(Y ) = k idY since j1 must act by a constant
scalar on the simple objects in the universally-graded components. Thus k = ±1. But
now j−2

1 (X) = k2 idX = idX , contradicting j−2
1 |C2 = − IdC2 . Alternatively we see that

the second obstruction (4.14) implies that (a, b) 
→ χλ(a,b) should define a coboundary

Z/2 × Z/2 → Ẑ/2. But in this case (1, 1) 
→ ψZ/2 where ψZ/2(1) = −1 is a non-
trivial character, and hence the corresponding cocycle is non-trivial. We conclude that
this associative zesting does not admit a braided zesting.

6.3.3. SU (4)2 The metaplectic [6] Z/4-graded modular category B = SU (4)2 ∼=
SO(6)2 has rank 10 and dimension 24, with pointed subcategory P(4, 2) ∼= C(Z/4, η)

where η( j) = e2π i j
2/4. As above we will denote the generator of Inv(B) by g and in
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this case h = g2 generates Inv(Bad). We set q = e−2π i/4 so that the grading is of the
form B0 = {1, g2,Y1}, B2 = {g, g3,Y2}, B1 = {X1, X2} and B3 = {Z1, Z2} where
X1 is labeled by �1 and Zi ∼= X∗

i . The dimensions are dim(Yi ) = 2 and dim(Xi ) =
dim(Zi ) = √

3. We have two choices of zesting 2-cocycle λa ∈ H2(Z/4, Z/2) ∼= Z2
given by λa(i, j) = ha = g2a for i + j ≥ 4 and 1 otherwise, where a = 0, 1. In the no-
tation of Propositions 6.3 and 6.4 we havem = 2 and ε = 0, and N = 4 so that there are
8 associative zestings, taking λb ∈ H3(Z/4, k

×) as in Eq. (6.15). By Proposition 6.4(i)
the 4 pairs (λa, λb) that admit braidings correspond to {(0, 0), (0, 2), (1, 1), (1, 3)} so
that we have at most 16 braided zestings, depending on a, b and s with s4 = q−b. In
fact, we have one such braided zesting for each s = e2π i x/16, since each 16th root of
unity appears. Each of these braided zestings admits 2 ribbon twists, one of which is
unitary. We will spare the reader the full details, but there are a few interesting things to
note:

(1) When a = 0 and b = 0, 2 the 8 unitary ribbon braided zestings are modular and in
fact remain metaplectic [6]. Since zesting leaves the trivial component unchanged,
and the 2 dimension object in the trivial component has twist e2π i/3, we cannot
obtain the complex conjugate category by zesting. Indeed, we can check directly
that we get 2 distinct sets of twists among the 4 choices of s4 = 1 (for b = 0)
and similarly for the 4 choices of s4 = −1 (for b = 2). The central charges for
b = 0 are all the same, as are the central charges for b = 2, and they are complex
conjugates of each other (the cases b = 0 and b = 2).

(2) For a = 1 and b = 1, 3 we see that g⊗1g = g⊗g⊗g2 = 1, so that g is self-dual
in the zested theory B(1, b). Moreover, s−4 = qb = ±i so that the twist of g in
B(1, b) is ±1 and is thus a boson or fermion. Lemma 5.9 show that, in fact g is
in the Müger center of B(1, b), so that B(1, b) ∼= Rep(Z/2, z) � A where either
z = 0 or z = 1 andA is a Galois conjugate of SU (2)4. In particular, B(1, b) is not
modular.

7. Zesting Obstructions and Eilenberg–MacLane Cohomology

After we posted this paper A. Davydov and D. Nikshych posted [9] containing related
results. In [9] some particular braided zestings are interpreted as deformations of a
braided monoidal 2-functor and its obstruction as an element in an Eilenberg-MacLane
cohomology group.

In this section, we will briefly explain the connection between some of the results in
[9] and some of ours. Primarily, we want to analyze the apparent differences between
the obstructions in this paper and [9]. Essentially the differences come down to this: in
[9] the cohomology class in the Elinberg-MacLane cohomology H2(K (A, 2), k

×) is
the obstruction for a symmetric 2-cocycle Z2

Sym(A, Inv(Be)) to admit a braided zest-
ing, while our cohomological obstructions in Theorem 4.15 and Corollary 4.16 are the
obstructions that a fixed associative zesting admits a braided zesting. In practice, to com-
pute the EM-obstruction or to explicitly describe the braided zesting (assuming it exists)
one would need to go though the step-by-step process we have presented: describe the
associative zestings (a 3-cochain) and check that our braided zesting obstructions vanish.

In [9] it was proved that braided extensions of a braided fusion category Be by a finite
abelian group A correspond to braided monoidal 2-functors from A (seen as discrete
braided monoidal 2-category) to Picbr (Be) the braided 2-categorical Picard group of Be
(consisting of invertible central Be-module categories), see loc. cit. for details.
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Given a faithfully A-graded fusion category B = ⊕
a∈A Ba there is an associated

grouphomomorphism f : A → π0(Picbr (Be)), a 
→ [Ba]. In [9, Section8.6] braided A-
zestings of Bwith j = 1 are interpreted as liftings of f (called deformations of f in loc.
cit.), that is braided monoidal 2-functors F : A → Picbr (Be) such that [F(a)] = [Ba]
for all a. Since π1(Picbr (Be)) = Inv(Z2(Be)), liftings of f : A → π0(Picbr (Be))

are associated with elements in H2
sym(A, Inv(Z2(Be))) = ExtZ(A, Inv(Z2(Be))) (co-

homology classes of symmetric 2-cocycles). Now, in [9, Proposition 8.32] they proved
that the obstruction to the existence of a braided zesting associated to an element in
λ ∈ H2

sym(A, Inv(Z2(Be))) is given by an element PW 2
Be

(λ) ∈ H5(K (A, 2), k
×).

In order to describe PW 2
Be

(λ) we recall the cocycle description of H5(K (A, 2), k
×)

for abeliangroups A andM . Let Z5(K (A, 2), k
×)be the abelian subgroupofC4(A, M)⊕

C3(A, M) ⊕ C3(A, M) = {a(−,−,−,−), a(−,−|−), a(−|−,−)} such that

a(xy, z, w, u) + a(x, y, zw, u) + a(x, y, z, w) = a(y, z, w, u) + a(x, yz, w, u)

+ a(x, y, z, wu), (7.1)

a(x |z, w) − a(x |yz, w) + a(x |y, zw) − a(x |y, z) = a(x, y, z, w) − a(y, x, z, w)

+ a(y, z, x, w) − a(y, z, w, x)
(7.2)

a(y, z|w) − a(xy, z|w) + a(x, yz|w) − a(x, y|w) = a(x, y, z, w) − a(x, y, w, z)

+ a(x, w, y, z) − a(w, x, y, z)
(7.3)

a(y|z, w) − a(xy|z, w) + a(x |z, w)

+a(x, y|zw) − a(x, y|w) − a(x, y|z) = − a(x, y, z, w) + a(x, z, y, w)

+ a(x, z, w, y) − a(z, x, y, w)

+ a(z, w, x, y) − a(z, x, w, y)
(7.4)

a(x, y|z) − a(y, x |z) = a(x |z, y) − a(x |y, z), (7.5)

for all x, y, z, w, u ∈ A. Let B5(K (A, 2), M) ⊂ B5(K (A, 2), M) the subgroup of
abelian cocycles of the form

a(x, y, z, w) = b(y, z, w) − b(xy, z, w) + b(x, yz, w) − b(x, y, zw) + b(x, y, z),

a(x, y|z) = b(x |y) − b(x |yz) + b(x |z) − b(x, y, z) + b(y, x, z) − b(y, z, x),

a(x |y, z) = b(y|z) − b(xy|z) + b(x |z) + b(x, y, z) − b(x, z, y) + b(z, x, y),

for some (b(−,−,−), b(−,−)) ∈ C3(A, M)⊕C2(A, M). The group H5(K (A, 2), M)

is by definition Z5(K (A, 2), M)/Z5(K (A, 2), M). The elements in Z5(K (A, 2), M)

are called abelian cocycles.
The obstruction PW 2

Be
(λ) ∈ H5(K (A, 2), k

×) is described as the cohomology class
of the abelian cocycle

PW 2
Be

(λ)(x, y, z, w) = cλ(x,y),λ(z,w)

PW 2
Be

(λ)(x, y|z) = 1

PW 2
Be

(λ)(x |y, z) = χ−1
λ(y,z)(x),

where the number χλ(y,z)(x) ∈ k
× corresponds to [Bx , λ(y, z)]−1 in [9].
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Recall that for a braided fusion category B, we denote Brev the same fusion category
but with braiding c′

X,Y := c−1
Y,X for all X,Y ∈ B.

In the following proposition we prove that checking the vanishing of PW 2
Be

(λ) in

H5(K (A, 2), k
×) is basically the same as checking the condition in Corollary 4.16.

Proposition 7.1. Let B = ⊕
a∈A Ba be a graded fusion category and λ ∈ Z2

(A, Inv(Z2(Be))) a symmetric 2-cocycle. Then PW 2
Be

(λ) ∈ H5(K (A, 2), k
×) vanishes

if and only if there is an associative zesting of Brev corresponding to λ for which the
conditions in Corollary 4.16 hold.

Proof. Since λ takes values in the Müger center of Be, the cocycle νλ defined in Fig. 5
for Brev is exactly the (standard) 4-cocycle

νλ(x, y, z, w) = PW 2
Be

(λ)(x, y, z, w) = cλ(x,y),λ(z,w) ∀x, y, z, w ∈ A.

If the cohomology class of PW 2
Be

(λ)(−,−,−,−) is trivial, it follows that there is

λ ∈ C3(A, k
×) such that PW 2

Be
(λ) ∈ Z5(K (A, 2), k

×) is cohomologous to

a(x, y, z, w) = 1

a(x, y|z) = λ(y, x, z)

λ(x, y, z)λ(y, z, x)

a(x |y, z) = λ(x, y, z)λ(z, x, y)

λ(x, z, y)
χ−1

λ(y,z)(x),

and (λ(−,−), λ(−,−,−)) is an associative zesting for Brev .
Now, if follows from the equation (7.3) that a(−,−|z) ∈ Z2(A, k

×) for all z ∈ A.
The cohomology classes of a(−,−|z)−1 correspond to the obstructions O1(λ)(a,−,−)

defined in Lemma 4.12. If this obstructions vanish there is b(−|−) ∈ C2(A, k
×) such

PW 2
Be

∈ Z5(K (A, 2), k
×) is cohomologous to

a′(x, y, z, w) = 1 (7.6)

a′(x, y|z) = 1 (7.7)

a′(x |y, z) = b(y|z)b(x |z)
b(xy|z)

λ(x, y, z)λ(z, x, y)

λ(x, z, y)
χ−1

λ(y,z)(x). (7.8)

It follows from equations (7.5), (7.4), and (7.2) that a′(−|−,−) ∈ Z2
sym(A, Â) (sym-

metric 2-cocycles). Hence the cohomology of PW 2
Be

∈ Z5(K (A, 2), k
×) vanishes if and

only if [χλ(y,z)(x)] =
[
b(y|z)b(x |z)

b(xy|z)
λ(x,y,z)λ(z,x,y)

λ(x,z,y)

]
in H2(A, Â). Since the cohomology

class of b(y|z)b(x |z)
b(xy|z)

λ(x,y,z)λ(z,x,y)
λ(x,z,y) agree with O2(λ, b)−1 defined in Fig. 14, the condi-

tions in Corollary 4.16 holds for some associative zesting of Brev if and only if PW 2
Be

vanishes. ��



54 C. Delaney, C. Galindo, J. Plavnik, E. C. Rowell, Q. Zhang

8. Conclusions and Future Directions

We have developed the general theory of associative zesting for fusion categories and a
further theory of braided, twist and ribbon zestings for categories with these additional
structures and properties. We have illustrated their utility with a few examples, notably
establishing the existence of a modular category of rank 10 and dimension 36 obtained
by zesting SU (3)3 that was conjectured in [5]. Moreover we have shown that braided
zesting preserves property F , and given explicit computations of the modular data for
braided zestings of modular categories. While zesting shares some similarities with
symmetry gauging, the explicit nature of zesting is a distinct advantage.

This work suggests several interesting directions for future applications. Note that we
havemostly applied our theory to zestingmodular categorieswith respect to the universal
grading. While these are perhaps the most interesting and most transparent examples, it
would be interesting to apply associative zesting to fusion categories that do not admit a
braiding and braided zestingwith respect to non-universal grading groups and non-cyclic
grading groups. Finally we point out that symmetry gauging has a physical interpretation
as phase transitions of topological phases of matter. We do not know if zesting has a
meaningful physical interpretation.
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