Commun. Math. Phys. 386, 1-55 (2021) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04002-4 M ath emat i ca |

Physics
)]

Check for
updates

Braided Zesting and Its Applications

Colleen Delaney', César Galindo?, Julia Plavnik', Eric C. Rowell’®, Qing Zhang®

1 Department of Mathematics, Indiana University, Bloomington, USA.
E-mail: crdelane @iu.edu; jplavnik @iu.edu

2 Departamento de Matemdticas, Universidad de los Andes, Bogotd, Colombia.
E-mail: cn.galindo1116@uniandes.edu.co

3 Department of Mathematics, Purdue University, West Lafayette, IN, USA.
E-mail: rowell @math.tamu.edu; zhan4169 @purdue.edu

Received: 25 May 2020 / Accepted: 15 January 2021
Published online: 5 July 2021 — © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part
of Springer Nature 2021

Abstract: We give a rigorous development of the construction of new braided fusion
categories from a given category known as zesting. This method has been used in the
past to provide categorifications of new fusion rule algebras, modular data, and minimal
modular extensions of super-modular categories. Here we provide a complete obstruction
theory and parameterization approach to the construction and illustrate its utility with
several examples.

1. Introduction

Despite recent progress on the classification of braided fusion categories, the general
landscape remains largely unexplored. This is partly due to our lack of well-studied
examples. Most come from a few basic classes of fusion categories: subquotients of rep-
resentation categories of quantum groups at roots of unity, representations of quasi-Hopf
algebras, bimodule categories over finite index finite depth subfactors, planar algebras,
and near-group categories. There are a few inter-related tools for obtaining new fu-
sion categories from old such as the Drinfeld center construction, graded extensions
by finite groups G, G-equivariantization/G-de-equivariantization, symmetry gauging,
and Deligne products. In this paper, we develop another recent construction known as
zesting.
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Zesting of braided fusion categories first explicitly appeared as a construction tech-
nique in [5] for the purpose of categorifying a mysterious rank 10, dimension 36 fusion
rule algebra, with fusion rules reminiscent of, but distinct from, those of SU (3)3. It was
recognized that the fusion rules could be obtained from those of SU (3)3 by rearranging
them slightly, via a twisting of the tensor product. This new (zested) fusion category was
expected to admit a modular structure, but no proof was available until now.

The basic goal of zesting is to define new (possibly braided, ribbon) fusion categories
from a given A-graded (braided, ribbon) fusion category C = €, 4 Ca by defining a

new tensor product X, é) Y, = (X, ® Yp) ® A(a,b), where X, € C, and Y}, € Cp
are simple objects in their corresponding graded components and A(a, b) € C, is an
invertible object in the trivial component.

Zesting fits into the more general context of graded extensions found in [16]—as
a fusion category a zesting of an A-graded braided fusion category C is an A-graded
extension of the trivial component C,. As one expects from the results of loc. cit., there

are obstructions to (C, é), 1) admitting the structure of a monoidal category for a given
choiceof A : Ax A — C,;NC,. Thatis, it is not immediate that associativity morphisms
satisfying pentagons exist, and when these obstructions vanish there are inequivalent
choices of associativity morphisms. Fixing a particular such associative zesting one
can further investigate whether the category admits a braiding, which leads to more
obstructions and choices. Such a braided structure is called a braided zesting. Finally,
for a fixed braided zesting of a ribbon fusion category we may look for a balancing
structure, which we call a twist zesting in general and a ribbon zesting in the case the
twist has the ribbon property.

We hasten to point out that our associativity, braiding and twist choices for a zesting
are assumed to only depend on the grading group A, the pointed subcategory of the
trivial component, and the structures already present in C. It follows that the trivial
component of C and that of any zesting of C are equivalent as fusion categories so that
a zesting is always an extension (in the sense of [17]) of the trivial component by the
group A. Moreover, at each step, some of these extensions may fail to be realized by our
construction. For example, the Ising categories and the pointed modular categories with
fusion rules like Z /4 are braided 7Z /2-extensions of the category of super-vector spaces;
however it is not possible to use zesting to construct one from the other, since any zesting
of a pointed fusion category remains pointed. On the other hand, we can explicitly obtain
both new fusion categories that do not admit braidings and new ribbon braided fusion
categories with explicit formulas of their modular data from our approach.

There are two related constructions found in the literature that should be mentioned.
The first is gauging [8]: one begins with a modular category B that admits an action
of a finite group G by braided tensor autoquivalences, and constructs, assuming certain
cohomological obstructions vanish, new modular categories C. The first step is to con-
struct the G-crossed braided categories D with B as the trivial component (using [17]),
and the second takes the G-equivariantization, which will be modular. In some cases
zestings can be placed in this framework. If C is modular and C,; N C, = Rep(G) is
Tannakian with G abelian, we may set B = (C,)¢ the G-de-equivariantization of the
trivial component. Then any modular zesting C will be a G-gauging of B. The second
construction is related: if C,; NC. = Rep(G) as above, we may construct new categories
as tensor products over G by condensing the diagonal algebra in C X Rep(D®G).

While both of these constructions have the advantage of providing various structures
from general arguments, zesting has several key features that these do not: 1) one has the
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fusion rules at the outset, 2) we produce new categories that are not necessarily modular
or even braided, 3) it depends only on essentially cohomological choices, and 4) in the
case that the resulting category is modular we have explicit formulas for the modular
data.

In a bit more detail, the construction goes as follows. For a fixed A-graded ribbon
category C where A = U (C) is the universal grading group:

(1) Fix a normalized 2-cocycle A € Z2(A, Inv(C,)).

(2) Find a 3-cochain A € C3(A, k*) satisfying the associative zesting constraint, if
possible (see Fig. 2). The set of all associative zestings form a torsor over H 3(A, k%)
for the chosen 2-cocycle.

(3) For a fixed associative zesting, a braided zesting is determined by a cochain ¢ €
C%(A,k*) such that ¢(a, b) := c(a, b) idy(a,p) satisfies the two braided zesting
constraints (see Figs. 7 and 8). For a fixed such c(a, b) the set of all braided
zestings forms a torsor over the group of bicharacters of A.

(4) For a fixed braided zesting of a braided fusion category C with a twist 6, we may
determine all braided twist (ribbon) zestings in terms of a function f : A — k*,
as in Corollary 5.4, and all twist (ribbon) zestings form a torsor over the characters
of A/2A.

More general situations can be considered as well, for example, we may choose a
different grading group B for C (i.e., a quotient of U(C)) and the above is still true
provided the image of A € Z2(A, Inv(C,)) centralizes the trivial component C, with
respect to the grading B. Failing this, we may still develop a theory of zesting, but there
are several subtleties that must be addressed in the form of additional choices and more
elaborate constraints. Moreover, the general definition of associative zesting does not
require a braiding—one may apply it to any fusion category by passing to the relative
centralizer.

Zesting supersedes several known constructions as special cases. If one chooses the
trivial 2-cocycle in step (1), the second step is the well-known associativity twist (see,
e.g. [22]). If one makes the trivial choice of 2-cocycle and 3-cochain in steps (1) and
(2), then the braided zestings are simply modifying the braiding by a bicharacter, which
is also well-known. Finally, if one takes the trivial choice in each of steps (1), (2), and
(3) for a braided fusion category with a twist then the last step is a change of pivotal
structure on the underlying braided fusion category.

Here is a more detailed explanation of the contents of this article. In Sect. 2, we lay
out the basic definitions and general results from the literature that we use in the sequel.
Section 3.2 contains the general definition of associative zesting and the rigidity structure,
the notational conventions for diagrams and the obstruction theory. Section 4 details
braided zesting, in which we study the braided structures on associative zestings and the
attendant obstruction theory. Section 5 studies the twist and ribbon twist structures on a
braided zesting and the corresponding categorical trace and modular data. We illustrate
our techniques with several examples coming from quantum groups of type A in Sect. 6.
After submitting our paper a related manuscript [9] was posted which has some overlap
with our results, which we address in Sect. 7.

2. Preliminaries

2.1. Group cohomology. To fix notation, we will recall the basic definitions of the
standard cocycle description of group cohomology, for more details, see [27].
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Let G be a group and M a G-module. We will denote by (C" (G, M), 8) the cochain
complex

0— Cc%G, M) - CcY(G, M) > C*(G, M) > - — C"(G, M) —> -+,

where C%(G, M) = M, C"(G, M) is the abelian group of all maps from G*" to M and
§: C"(G, M) — C"™1(G, M) is given by

5 ()1 s gne1) =81 (820 gue) + D (=D f(g1. ... 8i8is1s - &ns1)

i=1
+ (D" f(g1, .., gn) 2.1)

The group cohomology of G with coefficients in M is defined as the cohomology of
the cochain complex (2.1), that is, H" (G, M) = ker(é")/ Im(8"1). As usual, we will
denote by Z"(G, M) = ker(8") the group of n-cocycles and by B"(G, M) = Im(8"~)
the n-coboundaries.

2.2. Basic definitions on fusion and modular categories. In this section, we recall some
basic definitions and standard notions from [15], mainly in order to fix notation.

By a monoidal category we mean a tuple (C, ®, «, 1, A, p), where C is a category,
® : C x C — Cis a bifunctor, a natural isomorphism

axyz: XQY)®Z - XQ (Y ®Z),
called the associator, natural isomorphisms
Ax 1®X — X, Px  X®1—-> X

called the right and left unitors, respectively. This data must satisfy the well known
pentagon and triangle axioms [15]. Hereafter we suppress the associators and unitors
and denote a monoidal category by the tuple (C, ®, 1). Throughout this paper, we will
always assume that the monoidal unit is simple (as it is the case for fusion categories).
A monoidal category has duals if for every X € C there is an object X* € C and
morphismey : X*® X — 1, §x : 1 > X ® X* satisfying the zig-zag axioms:

(idx ®ex) o ax x+x o (6x ®idx) = idx
(€x ®idx+) 0y y yu 0 (idx+ ®8x) = idxs .

A monoidal category with duals is called rigid if for every X € C there is *X € C such
that (*X)* = X.

We will denote by k an algebraically closed field of characteristic zero. By a fusion
category, we mean a semisimple k-linear abelian rigid monoidal category (C, ®, 1) such
that the unit object 1 of C is simple and there are finite many isomorphism classes of
simple objects. The set of isomorphism classes of simple objects of C is denoted by
Irr (C). By a fusion subcategory of a fusion category, we mean a full monoidal abelian
subcategory.

For a fusion category C, we will denote by Cp the full fusion subcategory generated
by ®-invertible objects. We will denote by Inv(C) the group of isomorphism classes of
®-invertible objects of C under the tensor product. A fusion category is called pointed
if every simple object is ®-invertible.
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Example 2.1. (Pointed fusion categories). Let G be a finite group. A (normalized) 3-
cocycle w € Z3(G,k*)isamapw : G x G x G — k* such that

w(ab,c,d)w(a,b,cd) = w(a, b, c)w(a, bc,d)w (b, c,d), w(a,1,b) =1,

foralla, b, c,d € G.

Let us recall the description of the pointed fusion category Vecg,. The objects of Vec(,
are G-graded finite dimensional vector spaces V = €5 ¢eG Vg- Morphisms are G-linear
G-homogeneous maps. The tensor product of V = @gegVe and W = Poeq Wy is
V ® W as vector space, with G-grading

(VO W), =D Vi® W1,
heG

For objects V, W, Z € Vecg, the associativity constraint is defined by

avwz: (VAIW)I®Z >V WRZ)
(vg ® wp) ® 2k > w(g, h, K)ve(wp & zk)

forall g,h, k € G,vg € Vy, w, € Wy, 2k € Zi. The unit objects is k., the vector space
k graded only by the identity element e € G.

For V € Vecg, the dual object is V* = Homg(V, k), with G-grading Vg* =
Homg (V,-1, k) and

ev: V'@V >k, Sy ke > VQV*
an ®vg > (g, g, ) anlvy), LY 5@

where g, h € G, v, € V; and o € V)¥, and 8y is the usual coevaluation map of finite
dimensional vector spaces.

2.3. Pivotal and spherical fusion categories. If C is a monoidal category with duals, we
can define a monoidal functor (—)* : C — C°P, where CP is the opposite category with
tensor product X®°PY := Y ® X. Here, for a morphism f : X — Y, we have that
f*:Y* > X*isgiven by (ey ® idy+) o (idy* ® f ® idx+) o (idy* ®3x).

A pivotal structure on a rigid monoidal category is monoidal natural isomorphism
¥ : Id¢ — (—)**. The left and right pivotal traces of an endomorphism f : X — X are
given by

Tro(f) = ex o (idy+ ®f) o (idy+ @Yy ') o Sx+
Trr(f) = ex* o (Yx ®idx+) o (f ® idx+) o 5x.

A rigid monoidal category with a pivotal structure is called pivotal monoidal category.

A spherical fusion category is a pivotal fusion category such that the left and right
traces of every endomorphism coincide. For spherical fusion categories the left and right
trace of an endomorphism f will be denoted simply by Tr( f). The quantum dimension
or just the dimension of an object X € Cis dim(X) = Tr(idx).
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Example 2.2. The pointed fusion category Vec{ has a canonical pivotal structure given
by

v =o' g g idy,.

geG

Any other pivotal structure differs from the canonical one by a linear character x : G —
k>, given by

Ui =P x@o . g.g7idy,. (2.2)

geG

The pivotal structure 1//& is spherical if and only if x (g) € {1, —1}.

2.4. Premodular and modular tensor categories. A braiding for a monoidal category B
is a natural isomorphism

cxy X®Y > Y ®X, X.YeB

satisfying the two well known hexagon axioms. A braided fusion category is a fusion
category with a braiding. A braided category is called symmetric if cy lY = cy, x for all
X, Y € B. The centralizer of a set of objects S is the subcategory with objects

CS(B) = {X eB: Cy,x ocx,y = idxg,y, Y e S}

An object Y is called transparent if C(yy(B) = B, so that every object is transparent in
a symmetric category.

In[10], Deligne establishes that every symmetric fusion category is braided equivalent
to one of the following:

e Tannakian categories. These take the form Rep(G) of finite dimensional represen-
tations of a finite group G, with the standard braiding cx y(x ® y) ==y ® x.

o Super-Tannakian categories. These are categories of finite-dimensional represen-
tations of finite super-groups, denoted by Rep(G, z). A finite super-group is a pair
(G, z), where G is a finite group and z is a central element of order two. As fusion
categories they can be understood as Rep(G) but with a non-standard braiding c*:

An irreducible representation of G is called odd if z acts as the scalar —1, and even if z
acts as the identity. If the degree of a simple object X is denoted by | X| € {0, 1}, then a
braiding on Rep(G) is given by c%yy(x ®y) = (=D¥y@xforx e Xandy € Y,
where X and Y are simple representations.

A twist for a braided category is a natural isomorphism of the identity
Ox: X > X
such that
Oxey = cy,x ocx,y o (6x ® by),

for all X,Y € C. It is well-known (see e.g. [7]) that pivotal structures on a braided
fusion category are in bijective correspondence with twists. A twist on a braided fusion
category is called a ribbon twist if Ox+ = 0% for all X € C, and ribbon twists correspond
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to spherical pivotal structures under the pivotal/twist correspondence. We will recall this
correspondence briefly for more details, see [20, Appendix A.2].

Let C be a rigid braided monoidal category. The Drinfeld isomorphism is a natural
isomorphism u : Id — (—)** given by

ux = (ex ®idy=) o (idx+ ®C§L,X) o by ®idx) : X — X™.

X

X**
Given a twist 6, the natural isomorphism

lﬁx =uy o0y, XelC
is a pivotal structure. Conversely, if ¥ x : X — X™** is a pivotal structure then
Ox = uy' o ¥, Xec,

is twist.

A braided fusion category with a spherical pivotal structure (or equivalently a ribbon
twist) is called a premodular tensor category.

Following [1], we define the modular data of a premodular category as the following
pair of matrices with respect to the a basis given by a fixed ordering of Irr(B):

(1) S-matrix. Sx.y = Tr(cy= x ocx,y*),
(i1) T-matrix. Txy = 0x8x.y.

Notice that the categorical dimension of a simple object X is dim(X) = Sx 1. A
premodular tensor category is called modular if S is invertible. Any modular tensor
category defines a projective representation of the modular group SL(2, Z) as follows:

the matrices
(0 -1 . 1 1
=\t o) =lo 1

generates SL(2, Z) and by [1] the assignment

!
- s,
S JaGmB)

defines a projective representation, where dim(B) =}y cpy ) dim(X )2

t—T



8 C. Delaney, C. Galindo, J. Plavnik, E. C. Rowell, Q. Zhang

Remark 2.3. In [15] the S-matrix and T-matrix are defined by
S;(,Y =Tr(cy,x ocx,y), T)/(,Y =9§15X,Y'

the (§’,T’) and (S, T) are directly related by 7/ = T—!' and &' = S~!, see [15,
Proposition 8.14.2].

Example 2.4. (Pointed braided fusion categories). Let Vecg, be a pointed fusion category,
with G abelian. A braiding on Vec¢, is defined by a function ¢ : G x G — k™ as

Cv7le®W—>W®V
Ve @ wy > (g, hHwy @ vg.

The function ¢ must satisfy the following equations:

c(g. hk)  w(g h ko k g)
(g, We(g, k) w(h, g, k)
o(gh. 1) (g k) forall g, h, k € G, (2.3)

(g, bcth, k)~ w(g, h, ok, g h)’

These equations correspond to the hexagon axioms. A pair (w, c¢) satisfying (2.3) is
called an abelian 3-cocycle. Following [13,14] we denote by Zsb(G, k*) the abelian
group of all abelian 3-cocycles (w, ¢).

An abelian 3-cocycle (w, ¢) € Z 2 »(G, k) is called an abelian 3-coboundary if there

isa : G*2 — kX, such that

a(g, ha(gh, k)

(g h k)= ——"——=
J (g, hk)a(h, k) forall g,h,k € G. 2.4
a(g’h) s Ity
c(g, h) = ’
ah, g)

Bsb(G, k*) denotes the subgroup of Z?;b(G’ k*) of abelian 3-coboundaries. The quo-
tient group H;b(G, k*) = Zgh(G, k> )/ng(G, k*) is called the third group of abelian
cohomology of G.

Under the correspondence between pivotal structures and twist, we have that pivotal
structure ¥ X in (2.2) corresponds to the twist

05 = P x(2)cg. g)idy, .
geG

2.5. Graded fusion categories and tensor natural isomorphisms of the identity functor.
Let G be a finite group. A fusion category C is G-graded if there is a decomposition

c=pc,
geG

of C into a direct sum of full abelian subcategories such that the tensor product of C maps
Cy x Cpp to Cqy, for all g, h € G. We will say that the G-grading is faithful if C, # O for
allg € G.
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X

N

/ |

X a X a

Fig. 1. Definition of x

Example 2.5. Let C be a fusion category and A = Allt/@,aic) the group of linear char-
acters of Autg (Idc), the abelian group of tensor automorphism of the identity functor.
Then C = @ye 4 Cy is faithfully A-graded, where

Cy ={XeC:px=y(p)idx, Vp € Autg(ldc)}.

It was proved in [19, Theorem 3.5] that any fusion category C is naturally graded by a
group U (C), called the universal grading group of C, and the adjoint fusion subcategory
Caa (tensor generated by all subobjects of X ® X* for all simple objects X) is the trivial
component of this grading. Additionally, any other faithful grading arises from a quotient
of U(C).

Definition 2.6. Let C be a faithfully G-graded fusion category. We will denote by
Autg (Id¢) the abelian group of all tensor natural isomorphisms of the identity ¢ €
Autg (Idc) such that ®x = idy forall X € C,.

Let C be a faithfully G-graded fusion category. It follows as in [19, Proposition 3.9]
that given y € G the assignment ®,, € Autg(Idc) given by

®,(X;) =y (s)idy,, X, € Gy,

defines a group homorphism from G to Autg (Ide).
The following result is a direct consequence of [19, Proposition 3.9].

Proposition 2.7. Let C be a faithfully G-graded fusion category. The The group homo-

morhism ® : G — Aut® (Id¢) is an isomorphism. In particular ® : U (C) Autg (Ide)
so that any ¥ € Autg(Ide) is constant on U (C)-graded components.

Let 53 be a braided monoidal category and a € B an invertible object. Then we can
define a natural isomorphism of the identity functor x, € Aut(Idg) by the equality
Xa(X) ®1d, = ¢4, x 0 cx.4 for X € Obj(B), see Fig. 1.

The following result is essentially the same as [15, Lemma 8.22.9]. Note that the
result does not use semisimplicity or finiteness.

Proposition 2.8. Let B be a braided tensor category and a € B an invertible object.
Then

(1) x4 is a monoidal natural isomorphism.
(i) The map x : Inv(B) — Autg(Idg) is a group morphism.
(iii) The kernel of x is the group of transparent invertible objects.
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Corollary 2.9. Let B be a braided fusion category. Then B is faithfully graded over the
group Inv(B)/ ker(x) (linear characters over Inv(B)/ ker(x)) as follows:

B, ={XeB: xa(X) =y(@idx, VYaelv(B)}, y € Inv(mr(x).

Proof. Since the induced map x : Inv(B)/ker(x) — Autg(Idg) is injective, then
the induced surjective map x* : Autg(Ildg) — Inv(B)/ker(x) defines a faithful
Inv(B)/ ker(x) grading by Example 2.5. 0O

2.6. Conventions and graphical calculus. In the following sections C is a fusion cate-
gory, which we may assume is strict without loss of generality by MacLane’s Strictness
and Coherence Theorems. In particular we can ignore associators and draw diagrams
modulo isotopy that preserves the order of objects, for example

Our diagrams are oriented top to bottom and left to right. Our convention for braiding
diagrams is that for positive braids the i + 1st strand passes over the ith strand.

3. Associative Zestings

Associative zesting may by regarded as a special case of G-graded extension [16]: given
a G-graded fusion category C we construct new G-graded fusion categories by twisting
the fusion rules on the graded components of C by an invertible object in the relative
centralizer of C. While explicitly constructing all G-graded extensions of a given cate-
gory can be a formidable task, associative zesting takes a particular extension as input.
This allows for a precise description of the new fusion categories and simplifies the
subsequent analysis of braiding and pivotal structures in terms similar to the obstruc-
tion/parameterization approach of loc. cit..

3.1. Relative centralizer of monoidal subcategories. Let C be a fusion category and
D C C afusion subcategory. The relative centralizer Rp(C) is the fusion subcategory of
the Drinfeld center Z(C) whose objects are pairs (X, ox,—) where X € D and

ox,—={oxv: X®V = V®Xlye
is a family of isomorphisms natural in V € C such that
ox,vew = (idy ®ox,w) o (ox,v @ idw). (3.1)

forall V, W e C.
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While C is not a priori braided, since Rp(C) is a subcategory of the braided Drinfeld
center Z(C) we can use crossings in our graphical calculus when objects of the relative
center are involved. For example, Eq. 3.1 becomes

I
[ \\

A morphism f : (X,o0x,—) = (¥,0y—) in Rp(C) is amorphism f : X — Y in D
such that (idy ® f) cox,v = oy,v o (f ®idy) forall V e C. In pictures,

\(
V V\Y

The isomorphism o will be called the relative half braiding. The category Rp(C) is
monoidal with tensor product given by

(X,0x-)® (Y, 0y,-) =(X®Y, (0x,— ®id) o (id Qoy,_)),
and unit object (1, id).

Remark 3.1. The notion of relative center was defined in [18]. This concept is closely
related to the one of relative centralizer introduced above. If C is a fusion category and
D c C a fusion subcategory, then the relative centralizer Rp(C) is a full fusion subcate-
gory of the relative center Zp(C) (see [18, Definition 2.1] for the precise definition). The
relative centralizer Rp(C) is also a full fusion subcategory of the Drinfeld centers Z(D)
and Z(C). In particular, Rp(C) is braided. In the case that C = D, the fusion category
Rc(C) coincides with the Drinfeld center Z(C).

3.2. Associative zesting.
Definition 3.2. Let G be a group and C = @zecC, be a faithfully G-graded fusion
category.

An associative G-zesting ) for C consists of the following data:

(1) A map

1:G x G — (Re,(©) (8, h) > (g, h)

pt’
where A(g, h) is simple.
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(1,2) (12,3) (123,4) (1,2) (12,3) (123,4)
1,2,3 12,3,4
1,23,4 = \/

A
2,3,4 1,2,34
(3,4) (2,34) (1,234) (3,4) (2,34) (1,234)

Fig. 2. Associative zesting constraint

(2) For each (g1, g2, g2) € G an isomorphism

heigr.gs t A(81, 82) ® A(g182, 83) — A(g2, 83) ® A (g1, 8283)
which we represent graphically by

(1,2) (12,3) rg1, 82) 18182, 83)
1,2,3 = Aei.g0.83
2,3) (1,23) r(g2, 83) Ar(g1, £283)

such that for any (g1, g2, 3, g4) € G** the equation in Fig. 2 holds (see Remark
3.3(1) for notation conventions).

Moreover, we impose the following normalization conditions:

e, g1) = A(g1,e) =1, (3.2)
)‘glyt’,gz = idk(gl,gz) . (3.3)

Remark 3.3.(1) The label 1, 2, 3 of the box on the right-hand side of Definition 3.2(2)
has enough information to recover the target and source of theisomorphism Ag, ¢, o5,
so we suppress the labels on the strands. For further notational convenience we
identify g; with the index i so that, for example g|g> becomes 12 in Fig. 2 and in
subsequent figures.



Braided Zesting and Its Applications 13

(2) Condition (2) of Definition 3.2 implies that A in (1) is a 2-cocycle in the sense
that (g1, g2) — [A(g1, g2)] satisfies the 2-cocycle condition, where we interpret
[A(g1, g2)] as an element of the group of isomorphism classes of invertible objects.

(3) It follows from the assumptions (3.2), (3.3), and the associative zesting condition
that we also have A ¢, 0, = CLi(g1,6) = 1da(gy,g2)> AN Agy .00 = Ch(gr 0001 =

idk(gl ,82)+

Proposition 3.4. Let G be a finite group and C a faithfully G-graded fusion category.
Given an associative G-zesting A, we can define a new faithfully G-graded fusion cate-

A A
gory cr = (C, ®, a*), where the tensor product ® is defined as

A
Vgl ® Wg2 = Vg] ® Wgz ® )"(glv 82),

T . A
the associativity constraint Ay, Wy .2 by

1 2 (1,2) 3 (12,3) Vo, We,  Maug2)  Zgs M9192,95)

. .
A N

1,2,3 A

1 2 3 (2v 3) (17 23) V!/l VVA& ng /\(927 93) /\(917 9293)
(3.4)

91,92,93

and the same unit object and unit constraint as C.

Proof. An associative zesting is a particular case of the construction of a faithfully
graded fusion category given in [16, Section 8]. For the convenience of the reader, we
will check the pentagon axiom. The pentagon axiom is equivalent to the equality in Fig.
3.

Using the graphical calculus is easy to check that the equality depicted in Fig. 3 is
equivalent to the one in Fig. 4. Now, the associative zesting condition of Fig. 2 implies
the equality in Fig. 4 and therefore the pentagon axiom in the zested category.

Finally, the fact that 1 is the unit object with the same unit constraints follows directly
from the definition of the tensor product of C* and the conditions (3.2)and (3.3). O

123 4
(12,3)

1 (123,4)

(123,4)
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12 (1,20 3 (123) 4 (123,4) 1 2 (1,2) 3 (12,3) 4 (123,4)

il

e ~

2,3,4

1,231

1 2 3 4 (3,4) (2,34)(1,234) 12 3 4 (3,4) (2,34)(1,234)

Fig. 3. Pentagon axiom that must be satisfied by the zested associators

1234 (1,2) (12,3) (123,4) 1234 (1,2) (12,3) (123,4)
12,34
- N~
1,234
1234 (3,4 (2,34) (1,234) 1234 (3,4 (2,34) (1,234)

Fig. 4. Equivalent formulation of the pentagon axiom from Fig. 3

Remark 3.5. Givenamap A : G x G — (Rce (C))p , there are at least three associated
bifunctors, namely

Ve®' Wy =V, ® Wy ® A(g. h),
Ve @2 Wy i=V, ® A(g,h) ® Wy,
Ve ® Wi :=1(g. 1) ® Vg ® Wy,

They are easily seen to be naturally isomorphic (proof supplied upon request), so our
choice of ®! is no loss of generality.

Example 3.6. As a special case of our construction we can recover some examples found
in [22] from the modular Z/ N -graded category SU (N ). In loc. cit. they classify fusion
categories with the same fusion rules as SU (N )y, showing that any such category is
obtained from SU(N); by either changing the quantum parameter ¢ or twisting the
associativity morphisms by a 3-cocycle, or both. If we choose the trivial 2-cocycle
A:Z/N xZ/N — Cp; NCyp, i.e., Ala, b) = 1 then the associative zesting constraint
(Fig. 2) is simply the condition that A, ;. is a (normalized) 3-cocycle on Z/N. Thus the
associative zestings of SU (N ) with trivial 2-cocycle are precisely the ones obtained in
[22] by twisting the associativity morphisms. We will study some cases with non-trivial
2-cocycle below.
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3.3. Rigidity of associative zesting.
Lemma 3.7. LetC be afusion categoryand X, Y € Csimple objects suchthatHom(I, X®
Y) #0.If

P YRX —>1, p:1—> XY

is a pair of non-zero morphisms, then the scalar z(¢, p) € k defined by

id
X z(¢,p) idx . X

p@idy | Tidx @0
XRY)@X X0 X @ (Y @ X)

is non-zero and the triple (Y, ¢, z(¢, p)p) is a dual of X. Moreover, given a non-zero
map ¢ : Y @ X — 1 the map z(¢, p)p does not depend in the choice of p, that is, if
p,0 1 — X QY are non-zero maps, then z(¢, p)p = z(¢, p))p’.

Proof. Inafusion category we have that, for simple objects X and ¥, Hom(1, X®Y) # 0
if and only if ¥ = X*. Moreover, since in that case, Hom(1, X ® Y) is one dimensional,
there are non-zero scalars ¢y, ¢; € k* suchthateyxy = ¢j¢ and 8x = ¢ p where (8x, €x)
defines a dual for X. Clearly z(¢, p) = cicz, thus z(¢, p) is non-zero. Moreover, we
have that (¢, z(¢, p)p) = (cl_lex, c18x). Hence (¢, z(¢, p)p) also defines a dual for
X.

For the uniqueness, note that z(¢, p)p = c1c20 = ¢18x. Since ¢ only depends on
¢ then z(¢, p)p only depends on ¢. O

Let C be a faithfully G-graded fusion category and X an associative zesting. Given a
simple object X, € C, we will denote by X; € Cy-1 the dual object with respect to the
tensor product ®. Then

Xe=X:®xrg. g7 e C§_1

is also a simple object and X; @ X, = Yg é X,. Hence Hom(1, X é) X,) #0,
and we will use Lemma 3.7 to find specific formulas for the evaluation and coevaluation
maps of X, in C*.

We are assuming that A(e, g) = A(g,e) = 1for all g € G. Hence we have isomor-
phisms

A= dg o1 o 1 MG, g H—>xrg 9, ge€G.

As we notice in Example 2.1 any pointed fusion category has a spherical structure.
Then for any invertible objects a € C in addition to the maps

€:a"®@a— 1, 8:1—= a®a*,
we have maps
€,:a®a’ —>1, 81— a*®a, (3.5)

such that
dim(a) = e‘/l 08, =€40 5& e k*. (3.6)
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— A
Using these maps, we define ¢x, : Xg ® Xg — 1 via the following pictures,

Xg r(g)* X, ag™h

¢x, = \ =1 37
oy, = m m 48)

Xg Xy AMQ* A

‘We obtain the scalar
2(px,. px,) = dim(r(g. g~ N7

Hence for any X, € Cg (not necessarily simple) the data

Xg = X; @8 8" ¢x,. dim(A(g. g~ )N px,) (3.9)

define a dual in C*, where

. _ Mg e
dim(A(g, g ") = Q = €3(g-1) © ai(g,g)' (3.10)

3.4. Obstruction to associative zestings. Let G be a finite group and C a G-graded fusion
category. Recall that R¢, (C) is a braided fusion category. We will denote by B the abelian
group Inv(Re, (C)) of isomorphism classes of invertible objects in R¢, (C). Recall (see
Remark 3.3(2)) that A(g, h) is a simple object in R¢,(C) and (g, h) +— [A(g, h)] is a
2-cocycle.

Definition 3.8. (1) We will say that a 2-cocycle 8 € Z2(G, B) has a lifting if there is
a G-zesting A of C such that 8(g, h) = [A(g, h)] forall g, h € G.

(2) Two liftings A and A’ are called equivalent if there are isomorphisms f,, o, :
A(g1, &2) — (g1, g2) such that

(f22.85 ® fe1.9283) © Ag1.g2.83 = Mgy 0005 © (f2r.00 ® fer0.93)5
forall g1, 82,83 € G.

Note that inequivalent liftings may yield equivalent fusion categories. Moreover, coho-
mologically distinct 2-cocycles can even give equivalent fusion categories, as we will
see in the examples in Sect. 6.

Since every invertible object X is simple, we have that Autg(X) = {cidy : ¢ € k*}.
Hence, we can canonically identify Autg(X) with k* for any invertible object.

Let B € Z%(G, B). Take A(g1, g2) € Rc,(C) such that the isomorphism class of
r(g1, g2) is B(g1, g2) and isomorphisms

Agi.ga.gs - M81, 82) ® A(g182, g3) — A(g2, 83) ® A(g1, 8283),
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(1,2)  (12,3) (123,4)

[ 1,234 |

\| 1,234 |

A\ 5
[ 12,34 |

(1,2)  (12,3) (123,4)

Fig. 5. 4-cocycle obstruction

forall g1, 82,83 € G.
Define a map v, : G** — k*, where vy (g1, g2, 83, 84) € k* is given by the
automorphism of A(g1, g2) ® L(g182, 83) ® L(g18283, g4) defined in Fig. 5.

Proposition 3.9. ([16]).

() vy € Z¥*(G, kX).
(ii) The cohomology class of v, only depends on the cohomology class of .
(iii) The map v induces a map PW : H2(G, Inv(B)) — H*(G,k>).
(iv) The 2-cocycle B admits a lifting if and only if PW(B8) = 0.
) If PW(B) = O, the set of equivalence classes of liftings is a torsor over H3 (G, k*).

Proof. The first three items of the proposition correspond to [16, Proposition 8.10]. Item
(iv) is consequence of [16, Theorem 8.9] and item (v) is [16, Proposition 8.15] O

Remark 3.10. If G is cyclic then H*(G, k*) = 0 so any 8 admits a lifting.

4. Braided Zesting

Recall that if ¢ is a braiding for a monoidal category B, then c’X’Y = c;lx is also a
braiding for BB. The category BB with the braiding ¢’ is denoted B™".
If B is a braided monoidal category and D C B is a monoidal subcategory, the
functors
F:D— Cp(B), X — (X, {cx,v}ven), 4.1
G: D - Cp(B), X — (X, {cy y}ven) 4.2)
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(1,2) A(g1, 92)

(2,1) A(g2,91)

Fig. 6. Diagram for the isomorphisms #(g1, g2)

are braided faithful functors.

Definition 4.1. Let B be a braided faithfully A-graded fusion category, where A is an
abelian group. A braided zesting consists of a triple (A, j, t), where

(i) X isan associative zesting such that the relative half braiding of A (a, b) is {c;( ab).V ven
foralla,b € A.
(ii) For any pair g1, g2 € A there is an isomorphism (see Fig. 6)

1(g1, 82) 1 Mg1, g&2) — A(g2, g1),

(iii) A function j : A — Autg(Idg), where Autg (Idg) is the abelian group of all tensor
natural isomorphisms of the identity.

The triple (A, j, t), must satisfy the following conditions:
(BZ1) Forany a,b € A,

®(a,b) = Xaa.b) © Jab © ji ' 0 j, ' € Autd(Idp) = 4,

where x was defined in Fig. 1. We will denote w(a, b)(¢) := w(a, b; ¢) € k*.
(BZ2) The equality in Figs. 7 and 8 holds, for any (g1, g2, g3) € A> and objects X e €
By, Yg, € By, Zgy € By.

Moreover, we impose the following normalization conditions:

(a) t(e, g) =t(g, e) = idy (Recall that for a normalized associative zesting A(e, g) =
1)

(b) j. = Id (The identity natural transformation.)

(¢) jg(1) =1idy forall g € A.

Remark 4.2. (1) Condition (BZ1) is equivalent to the condition

Jab
Xga,bylB, = ( Ja )5,

ab

foralla, b € B.
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(1,2) (12,3) (1,2) (12,3)
1,2,3 1,2
i Q@ - [ 213
2.3.1 @
(3,1) (31,2) (3,1) (31,2)
Fig. 7. First braided zesting condition
(2.3) (1,23) (2,1) (1,23)
—1
1,2,3 2,3

w(1,2;3) - @B _

1
3.1.2 @

(3,1) (31,2) (3,1) (31,2)

Fig. 8. Second braided zesting condition

1,3,2

(2) The choice of the half braiding in braided zesting is compatible with the braidings
used in the graphical calculus in the discussion of the relative centralizer from
Sect. 3.1 and Definition 3.2 of associative zesting.

(3) Since the two braided zesting conditions are isomorphisms of invertible simple
objects, they can be expressed as scalar equations which take the form
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1 2 (1,2) Var W g1, g2)
o
(4.5) - /
Jgi
(2,1) Wo Vo Mgz g1)

Fig. 9. Braiding for B*

J1(A(82, 83)) Agi.00,03 (81, 8283) Agyg3,01 = (81, 82) Agy,g1,05 1(81, 83) (4.3)

o(1,2:3) A5 0y 0 1(8182. 83) Ag)' gy oy = 1(82.83) Ay, gy 0r 1(81. 83)-

4.4

Lemma 4.3. For a fixed ) and j, both (A, j,t) and (7, j, 1) are braided A-zestings of B
ifand only ifr(a, b) := ;,((’;i)) is a bicharacter on A. In particular, such braided zestings
form a torsor over the group of bicharacters of A.

Proof. From the form of Eqgs. (4.3) and (4.4) we see that r(a, b + ¢) = r(a, b)r(a, ¢)
andr(a+b,c) =r(a,c)r(b,c). 0O

Proposition 4.4. Let A be an abelian group and B a faithfully A-graded braided fusion
category. Given a braided zesting (1, j, t), the fusion category B* defined in Proposition
3.4 is braided with braiding C%’,Jv,vth) given by the natural isomorphisms defined in Fig. 9.
Proof. The two hexagon equations that must be satisfied by the zested braiding and
associators take the form of the equations depicted in Figs. 10 and 11. That the equations
in Figs. 10 and 11 are equivalent to the hexagons can be readily checked in the graphical
calculus using that the j,’s are monoidal and by applying the definition of x, from Fig. 1,
respectively. These equations are then satisfied by the conditions found in Figs. 7 and 8.

O

Remark 4.5. Notice that a braided zesting does not recover all braidings that may exist
on a given associative zesting. For example with the trivial associative zesting (i.e.
A(i, j) = 1and A(i, j, k) = 1) on a braided fusion category we might not recover the
reverse braiding, as in general this changes the braiding on the trivial component, while
braided zesting does not.

4.1. Equivalence of braided zestings. Let A be an abelian group and B a faithfully A-
graded fusion category. A bicharacter v : A x A — k will be called alternating if
v(a,a) = 1foralla € A.
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1 2 (1,2) 3 (12,3)

J1
( 2,1,3 ]
J1
l
2 3 1 (3,1) (2,13) 2 3 1 (3,1) (2,13)
Fig. 10. First Hexagon condition
12 3 (23) (1,23) 12 3 (23) (1,23

123 |

3.2 ]!

<

3 1 (3,1) 2 (31,2 3 1 A3,1) 2 (13,2)

Fig. 11. Second Hexagon condition
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Definition 4.6. (i) We will say that two braided zestings (A, j, ) and (A, j',t") are
similar if they define the same braiding on /3%, that is

G G
Xa Yy = CXuYp

foralla,be A, X, € B, Y, € By.

(ii) We will say that two braided zestings (A, j, 1) and (A, j/, t') are braided equivalent
if there an alternating character v : A x A — k> such that (%, j, t) is similar to
(&, j',vt").

Note that again, braided inequivalent zestings may yield equivalent braided fusion
categories—for example one could have a braided automorphism which permutes the
simple objects. Let A be an associative A-zesting of a braided fusion category 5. We
define the abelian group

8(K)a,p € Autg (Idp)
I(a, b)l(a,
k(A(a, b)) = %
H; = { (k,]) € CY(A, Autg(Idg)) x C*(A,k*): I(Z,er i)
S(K)a,b(c) = m
Ya,b,c € A

(4.6)

where § is defined in equation (2.1), that is, (k). = k(b) — k(a +b) — k(a). We also
define the abelian subgroups

H = {(K, 1) e Hy : ky(Xp) = 1(a.b)"" Va.b e A, X € Bb} 4.7

Hy ={(x,]) € H), : k, = id,Va € A, and [ is an alternating bicharacter} 4.8)

Proposition 4.7. Let A be an associative A-zesting of a braided fusion category B.

(1) The set of all braided A-zestings of the form (A, j, t) with A fixed is a torsor over
the abelian group H, defined in (4.6).
(i) The set of all braided A-zestings similar to (7, j, t) is a torsor over the abelian
group Hj defined in (4.7).
(iii) The set of equivalence classes of braided A-zestings of the form (A, j,t) with A
fixed, under the relation of being braided equivalent as in Definition 4.6(ii), is a
torsor over H, /| H| Hy, where Hy was defined in (4.8).

Proof. Let (A, j,t) and (X, j', ') be braided A-zestings of B. Then «, := j,/j, and
I(a,b) =1t'(a,b)/t(a,b)foralla, b € A define an element in (k, [) € H; . In fact, con-
dition (BZ1) implies that §(«),,p = KaK‘;bl Kp € Autg(ldg) for all a, b € A, condition
(BZ2) implies «, (A (b, ¢)) = %, and §(k)4.p(c) = % foralla, b, c € A.

Foritem (ii),notethatifcgggf)l,b = Cgfj(;tl;l), then [ja o j‘;_l(Xb)] ® [t’(a, b~ lota, b)]
=idx,euap) foralla,b € A, X;, € Bp. Then if («, 1) € H, such that j = j'«x, t =1tl,
then k,(Xp) = [(a, b)~! foralla,b € A and X}, € By.

Item (iii) follows immediately from (i) and (ii). O
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Corollary 4.8. Let B be an A-graded braided fusion category. A braided A-zesting
(A, j, 1) is similar to an A-braided zesting of the form (A, 1dg, t') if and only if

Xo(a,py B, =1dp,, JalB, = 1dp, 4.9

foralla,b € A. In particular, if A is the universal grading group, every braided zesting
is similar to a braided zesting of the form (A, Idp, t).

Proof. A braided A-zesting (A, j, t) is similar to one of the form (1, id, ¢’) if and only
if =1,1;) € Hy, where lj(a, b) = j,(Xp)~"! with X}, € By. Hence

Ja € Autf(1dp), Va € A, (4.10)

and (4.10) imply that x; 4.») € Autg (Idg) orequivalently xx (4,55, = Idp,. Conversely,
if conditions (4.10) holds, then it is is easy to see that (j !, lj) € Hy.

Now, if A is the universal grading group it follows from Propositions 2.7 and 2.8 that
any braided zesting satisfies the condition in (4.9). O

4.2. Obstructions to braided zestings. Let B be a braided fusion category. From now
on, using Proposition 2.7 we will identify the abelian groups Autfg‘, (Idg) and A. Recall

that in particular, Autg(Idg) = lT(E)

First, we will describe obstructions to the existence of a function j : A — Autg (Idg)
satisfying (BZ1).

Let B be a braided fusion category graded by a finite abelian group A. Let U (B)
be the universal grading group of B and 7; : U(B) — A the group epimorphism that
defines the A-grading on B. By restriction of the U (3)-grading, the fusion subcategory
Be is ker(r1)-graded with (53,), = Bad. Then this grading defines a group epimorphism

o U(B,) — ker(my). “4.11)
Proposition 4.9. A tensor natural isomorphism j € Autg(ldg,) = l@ has an ex-

tension to an element in Autg (Idg) = U/(E) ifandonly if j € Autgr(m)(ld&). The set
of extensions of j is a torsor over A.

Proof. We have the exact sequence of abelian groups
0 — ker(m) — U(B,) it ker(m) — U(B) A0

and dualizing

—

0— A3 UB) — ker(m) 3 UB) — ker(mz) — 0.

Hence the image of the restriction map U/(E) — U/(lz) is exactly k;(rr\l), or equiva-
lently all y € U(B,) such that y [ker(ry) = 1. O

It follows from Proposition 4.9 that a first partial obstruction to the existence of a
function j : A — Autg(Idp) satisfying (BZ1) is that

Xetap|B, € AU (Idp, ) = ker (), Va,b € A. (4.12)
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Proposition 2.7 says that condition (4.12) is equivalent to
Xo(a,b)(X) = idy, forall X € (B,), where g € ker(m) C U(B,), (4.13)
where 7, was defined in (4.11).

It follows by condition (BZ1) that

. . 1
Xo(a,b) B, = (Ja © Jb © ju )B ;

where j’s are in Autgr(”‘)(ldge). Hence a second partial obstruction for the existence
of j is that the cohomology class of

Xn—olB, € H* (A, Autg™™ (1dg,)) = H*(A, Ker(m)), (4.14)
must be trivial.

Remark 4.10. When A is the universal grading the first and second partial obstructions
automatically vanish. If A is the universal grading and 5 is modular then ker(m;) =
U (B.). Since my is trivial, the grading on B, is trivial, so (B.)g = B, = Buq. Therefore
Aa, b) € Bp; centralizes B,, xx(,»)(X) = idyx, and the first partial obstruction vanishes.
The triviality of ker(;r1) implies that the second partial obstruction vanishes.

4.2.1. Shuffle identities In this section we collect some notation and identities that will
be useful later.
We use the following notation, where A is a group:

(a) AP|AT ={x|y = (x1, ..., Xp|y1, ..., ¥g), xi, ¥j € A}, p,g > 0.
(b) Shuff(p, q) is the set of (p, g)-shuffles, i.e. elements A in the symmetric group
Sp+q such that A(i) < A(j) whenever 1 <i < j<porp+1<i<j=<p+gq.

Now let A and N be abelian groups. We define a double complex by D7'9(A, N) =0
if p or g is zero and

DP9(A, N) := Maps(A?|A?; N), p,q >0
with horizontal and vertical differentials the standard differentials, that is,
8n: DP1(A, N) = CP(A, Ci(A, N)) — DP*19(A, N) = CP*1 (A, CY(A, N))
and
8y : DPY(A, N) = C1(A, CP(A, N)) — DP1*1(A, N) = CI*' (A, CP(A, N))

defined by the equations

©GnF)(g1s---» 8p+l1 k1, ..., kq) =F(g,..-, 8p+l1 lkt, ..., kq)

p
+ D (=DIF1L . 8igints o gprt ki, - ky)

i=1

+ (=P F(gy, ..., gplki, ..., ky)
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©GuF)(g1, .-, gp|k1 ~~~~~ kq+]) =F(g,..., gp|k2 ~~~~~ kq+l)

q
+ D (=DIF 1, gplki . kikjars o kger)
j=1

+ (=D F(g, ..., gplki, ..., ky).-

For any « € C"(A, N), forany 1 < p < n — 1 we define the p-th shuffle o), €
Maps(AP|A"P  N) as

aplar, ... aplapsr, .. a) = Y (=D Palaqy, .. arm).
7 eShuft (p,n—p)

Proposition 4.11. [21, Proposition 2, page 123] Let « € C" (A, N) then
(ba)p = Splop—1) + (=P8, (ap). (4.15)

forall 1 < p < n, where by notation oy = o0, = 0, and § is the standard differential
2.1).

4.2.2. General obstructions Now let us consider the more general obstruction theory.
Fix an associative zesting A of B (i.e., a 2-cocycle A € H 2(A, Inv(B,)) and isomor-
phisms A satisfying Definition 3.2) such that the first and second partial obstructions
vanish.
In order to solve the equation in Fig. 7 we fix an arbitrary family of isomorphisms
{v(a, b) : Ma, b) = A(b,a)}qpes (see Fig. 12) and amap j : A — Auty' ™ (Idp,)
suchthat (a0 |8, = faofbof[;f.Thenwedeﬁneamap O1(x, v, f) € Maps(A2|A, k*),

01()L,1),]~'):A><AxA—>]1<gX
(a1, a2, a3) — Oy(aylaz, as)

by Fig. 13.

Lemma 4.12. (i) For any a € A the function O1(\, v, f)(a|—, —-):Ax A — k*
defines a 2-cocycle.
(ii) The cohomology class O1(A, v, f) (a|—, —) does not depend on the choice of the
family v or j, and we will be denoted by O1(\)(a|—, —).
(iii) There is a choice of isomorphisms v that satisfies the equation in Fig. 7 if and only
if the cohomology class of O1(\)(a|—, —) € H*(A, k*) vanishes for each a € A.

Proof. To simplify the arguments and notation we will assume without serious loss of
generality that
May, a2)®A(a1az, az) = Aaz, a3)®@A(azas, ay)
May, az) = Maz, a1), Mai,a2) @ Aas, ag) = A(az, as) @ A(ay, az)
for all ay, ap, az, as € A. Hence the isomorphisms A(ai, az, az) and v(aj, ay) are de-

fined by cochains A € C 3(A, k%), v € C2(A, k*) and the associative zesting constraint
can be written as

JA) = (A Uy A), (4.16)
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Mg, h) (9,h)
Ah, g) (h,9)

Fig. 12. Diagram for the isomorphisms v(g, )

(1,2) (12,3)

1,2.3

O A

[ 231 |

1,2

(1,2) (12,3)

Fig. 13. Obstruction to Fig. 7



Braided Zesting and Its Applications 27

where (A Uy A) (a1, az, a3, ag) € k* is defined by

. -1
()‘- Uer )\.)(Cl] ,az, as, 614) 1d}»(a1,a2)®)»(a3,a4) = ck(a3,a4),k(a1,a2)'
(i) We have that

v(ai, ax + az) AMay, az, az)A(az, a3, ay)
v(ai, ax)v(ai, az) Maz, a1, az)
= ja (Maz, a3)) x 8,(v" " (ailaz, az)ri(a1laz, az)

O1(a; az, az) = ja, (Maz, a3)) x

for all aj, ap, a3 € A, where we have been using the notation introduced in Sect. 4.2.1.
Note that the 2-cochains (a2, a2) — jq, (A(az, a3)) and (a2, az) — 8,(v)(ailaz, az)
are 2-cocycles. Hence, to prove that O1(a; —, —) is a 2-cocycle we only need to check
that

Sy(A)(arlaz, a3, a4) =1 Yai,ay, a3, a4 € A.

It follows from Proposition 4.11 that

S alaz, az,a)™ = [ 8 (@rqy, ... az@) ™
weShuff(1,3)

(AU M)(ar, a2, a3, a4)(A U ) (az, az, as, ay)
(AU M) (az, a1, a3, a4)(A U M) (az, a3, ay, aq)
=1,

where the last equality follows because A(a, b) = A(b, a) forall a, b € A.

(i) Recall that every symmetric 2-cocycle in Z 2(A, k) isa coboundary (since k*
is divisible). Then &, (v~1)(a1|—, —) and fal (A(—, —)) contributes with a 2-coboundary
to O1(A, v, t)(a1|—, —). Hence the cohomology class O1(aj|—, —) only depends on X.

(iii) If there is h € C%(A, k*) such that 8,(h) = O1(A, v, f'), then taking v’ = vi ™!
we have that O;(, V', f) =1. 0O
Remark 4.13. In practice we can take A(a, b) = A(b, a) for all a, b € A. Since A(a, b)
is invertible we have that every isomorphism v : A(a, b) — A(b, a) is a multiple of the

identity. Hence in order to compute Oj(A), we can start with v(a, b) = idy ) for all
a,b e A.

Assuming that the cohomology classes of Oj(}) vanish, we can find isomorphisms
v : A(a,b) — A(b,a) such that O (A, v, j)(ailaz,az) = 1 forall aj,az,a3 € A. We
define the map O, (A, u, j)(alb, c) € k* by Fig. 14.

Lemma 4.14. Letf A — Autgr(m)(ld[g) be map such that 8(]') (a,b) = Xra.b)B,

foralla,b € A andletv : AMa, b) — A(b, a) be a family of isomorphisms such that
0100, v, Patlaz, az3) = 1, Yai,az, a3 € A.

Then
(i) O2(A,v)(—|a,b) € A foralla,b € A.
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(2,3) (1,23)

-1

AN

1,2,3

(2,3) (1,23)

Fig. 14. Diagrammatic definition of the second obstruction to braided zesting

(ii) The 2-cochain

Oz(k,v):AxA—>X
(a,b) — [c — Oy(A)(cla, b)]

defines a 2-cocycle O2(k, v) € Z*(A, X). The cohomology class of O, (A, v) does
not depend on the choice of the v (under the hypothesis that the O1(A,v) = 1),
and will be denoted by O, (A).

Proof. As in the proof of Lemma 4.12, we will assume that A(a, b, ¢) and v(a, b) are
defined by cochains A € C3(A,k*), v € C*(A, k*).
The condition O (X, v, j) = 1 can be written as

8y()(ailaz, a3) = Ai(ailaz, az) ja, (Maz., a3)), Vai, az, a3 € A. (4.17)
(i) We need to check that §, (O, (A, v, f))(al, azlas, ag) = 1, where
02, v, (a1, azlaz) = 8, (v)(a1, azlaz)rz(ar, azlas). (4.18)
First we have that

Su(8n () (a1, azlaz, as) =6,(8y(v)) (a1, azlas, as)
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=8n(M1)(ar, a21as, aa) jay o, vy Jay (M(a3, a))
=dén(M1)(a1, azlas, as) Xi(ay,ar) (A (a3, aq)).
and
8,(02(1, v, N))(a1, azlaz, as) = 8,(8,(1))8y(A2) (a1, azlas, as)
= (8n(A1)8y(A2)) (a1, azlaz, as) xo(ay.ax) (M(a3, as)).

Using Proposition 4.11 we have

Sn(A)(ar, aalaz, a)dy () (ar, azlaz,as) =[] 8 (@xqy. - an(a) ™
weShuff(2,2)

=1 Uy Mar, az, a3, as)X Uy A(as, as, ai, az)
AUy Mas, ar, az, as)A U Aay, az, az, as)
A Up Maz, ar, as,a2) ™A U Mar, a3, ag, a2) ™!
=1 Uy Mar, az, az, as)X Uy A(as, as, ay, az)

:X)t_(clzltaz)()\(a&azt)).
Then
8,(02(A, v, D)(ar, azlaz, az) = 1,

as we wanted to check.
(ii) The 2-cocycle condition in this case is

81(02(A, v, 1)) = 8n(r2) = 1.

Using again Proposition 4.11 we have

s =[] M@ az@) ™
meShuff(3,1)

=AUy Aar, az, a3, ag)A Uy A(as, ay, az, az)
AUy Mat, as, az, a3) " 'A Uy May, az, as, az) ™!
=1.

Finally, if v’ is another 2-cochain such that O (A, v/ J) =1, then Sy(v/V) =1, that is
vV € cl(A, A) and then O,(A, V' ] )—Sh(v/v)Oz()t v, ] ), thatis O>(A, V', ] )
and O>(A, v, j,) are cohomologous in H>(A, A) m|

The short exact sequence
O—>K—>l7(§)—>k§in\1)—>0,
induces a long exact sequence in cohomology
. = Hom(A, Ker(m1)) & H2(A, A) — HX(A, UB)) — - -- (4.19)
The set

={j: A - Au" ™ 1dg )18 () = xals)
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is a torsor over the abelian group Hom(A, ke/r(;)). It follows from Proposition 4.9 that
for each j € S, thereis j : A — Autg(ldpg) such that j, = (j,)|g, for eacha € A.
Hence the natural isomorphisms

j(@,b) = Ya@p © Jg ' ©J; ' o jab € Autg(Idp)
define a 2-cocycle w; € Z%(A, X), and again by Proposition 4.9 the cohomology class
of w; only depend on f, and we will denote by

w; € H%(A, A). (4.20)

Note that if j', j € Sy, then w5 5, = di (j/Jj"), where d is defined in (4.19).
As a result of the Lemmas 4.12, 4.14 and the previous discussion, we obtain the
following result.

Theorem 4.15. Let A be an associative zesting. Then there is a braided zesting associated
if and only if the cohomology classes of O1(A\)(a, —, —) € H*(A, k) vanish for all
a € A, and there exist j € S, such that Oy(A) = w; € H%*(A,A). O

Corollary 4.16. Let A be an associative zesting such that x;a.p)l, = ldp, for all
a,b € A. Then there is a braided zesting of the form (1d, t) if and only if the cohomology
classes of O1(AM)(a, —, —) € H?(A, k) vanish for all a € A, and O,(X) = [x,] €
H2(A, A). O

5. Twist Zesting and Its Modular Data

Given a premodular tensor category B and a braided zesting (%, j, t) we will denote by
(B*, 1) the corresponding braided fusion category as constructed in Proposition 4.4, sup-
pressing the dependence on j. We would like to provide (3*, t) with a ribbon structure.
In a customary abuse of notation we denote by 6y both the automorphism in Autg(X)
and the scalar by which it acts when X is a simple object. Similarly, we will denote the
scalar by which y, acts on a simple object X € Bby x,(X) as well.

Proposition 5.1. Let A be a finite abelian group, BB be a faithfully A-graded braided
tensor category with twist 6 and (X, j, t) a braided zesting. We will denote by

DA xA— kX

the symmetric function defined by t (b, a) ot (a, b) =: tD(a, b) idy(a,p) foralla,b € A.
Let f : A — k™ be a function and consider the natural isomorphism

0y = f(a)fx,, a€A Xq€Ba,

then
(i) 6/ is a twist for (B, t) if and only if

F@+b)Xa) (Xa) Xnta0) Y6)iiapy) = £(@) f(B) ja(¥p) jp(X)tP(a, b),  f(0) =1, (5.1)

foralla,be A, X, € By, Yy, € Bp.



Braided Zesting and Its Applications 31

(ii) If 0 is a ribbon twist for B then 67 is a ribbon twist for (B*, t) if additionally to
Eq. 5.1 we have
fa) = f(=a)xra,—a)(Xa)Ora,~a) (5.2)
foralla € A, X, € B,.
(iti) If f', f + A — k* is a pair of functions satisfying (5.1), then f/f': A — kX isa
character. Moreover, the set of all functions satisfying (5.1) is a torsor over A and
the set of all functions satisfying (5.1) and (5.2) is a torsor over W

Proof. Let X, € B, and Y, € B}, simple objects. Then we have that

A
(6f, ®6])och, x. ok, v, = F(@FB)ja¥)jp(X)® (@, b)bx,0v, ® idi@.b).

and

6’; - = f(a+b)xr@.b)(Xa) Xr(a,b) Yb)Or(a,0)0x .07, 1da(a,b) -
a® b

Hence, (5.1) holds if and only if
foA N o A f
(6%, ®6y,) ocy, x,°x,p, =0,
Xu®Yh
that is, if 6/ is a twist.
For the ribbon condition, we have that
9‘;‘1 = f(=a)Xi(a.—a)(Xa)O0x205.(a,—a)* 1dx*a@1(a,—a)*
= f(_a)X)»(a,fa)(Xa)eXaek(a,fa) idfﬂ

and
6 = f(a)bx, idx,

for all simple objects X, € B,. Hence (9){“)* = 0% if and only if (5.2) holds.
For (iii), let f and f’ both satisfy the conditions in (5.1) and set n(a) = f(a)/f’(a).

Since f(a) f(b)/f(a+b) = f'(a) f' (b)/f (a+Db) we find that n(a +b) = n(a)n(b). A
similar argument implies that if f, f’ satisfy the condition (5.2) then n(a) = n(—a), so

n2a) =1, thatisn € A/2A. O

Definition 5.2. A quadruple (A, j, ¢, f) where (A, j, t) is abraided zestingand f : A —
k> is a function satisfying equations (5.1) and (5.2) is called a ribbon zesting.

We will denote by B, 1, f) the twist (ribbon) zesting obtained from (X, j, ¢, f).

Remark 5.3. We do not know if twists or ribbons for braided zesting always exists.
However, in practice, the following condition gives you an easy to check requirement
for the existence of them. If a twist exists the symmetric function

s:AxA—=k*
Xo(a,b) (Xa) Xaa,6) Yp)Oh(a,b)
Ja(Yp) jp(Xa)t @ (a, b)

should be independent of the choice of X, € B,,Y, € Bp. If the function s is a
2-cocycle, (an easy condition to check) since s symmetric we can find a function f
satisfying condition (5.1).

(a,b) —
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When zesting with respect to the universal grading, the scalars y;(, j)(Xy) only
depend on the graded component of the simple object X; € Bi, so we may denote it
X, j)(k), and take j, = id. In this case the conditions (5.1) and (5.2) for twist zesting
reduce to a simpler form:

Corollary 5.4. Suppose B is a braided fusion category with a twist and (B, 1) is a
braided A-zesting where A = U (B) is the universal grading group. Then for 0 €
Aut(Idg) defined in Proposition 5 we have:

(a) if f(a+b)xya.p(@a+Db)bap = fla)fb) 1D (a, b), then 6f defines a twist on
(B)‘, t) and

(b) if 0 is a ribbon twist on B and f(a) = X,—a)(@)0r(a,—a) [ (—a) then 0f defines
a ribbon twist on (B, 1).

5.1. Modular data of a ribbon zesting.

Proposition 5.5. Let (A, j, t, f) be a a ribbon zesting, then quantum trace of an endo-
morphism of s : Xq — X4 in (B t, ) forae A, X, € B, is

f(a)
dim(A(—a, a))t(a, a)

T/ (s) = Tr(j,  (Xa) 09).

Proof. In this proof, without loss of generality, we will assume that 5 is a strict pivotal
category, which means that the natural isomorphism between an object and its double
dual is the identity morphism and also the pivotal structure is trivial.

The trace in (BA, t, f) is given by the formula

Tr/ (s) = ! i & id 2 id
r (S)—mpxgo(l//@l )o (s ®id) o ¢x,,

where ¥ is the pivotal structure in (8%, ¢, f) and p and ¢ denote the evaluation and
coevaluation maps in (B)\, t, f) described in Sect. 3.3. So, in order to compute Tr/ (s),
we need to compute the pivotal structure V first. To do this, we can consider the Drinfeld
isomporhism i in (8%, ¢, f) which is related to the twist and pivotal structure by ¥ =
iob/.

The general formula of the Drinfeld isomorphism i is given by

1 X Py X
T — id idys ® ¢yl - ®idy ).
“ 7 Gim((—a, @) (0x, ®idx,) o (idx; ® cy, x,) © (Px; @ 1dx,)
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Applying this formula in our case, and assuming strict pivotality of B, we get that &
can be written in terms of the data of the original category B and the zesting structure as

1
~ dim(A(—a, a))

Ux

(5.3)

rMa,—a) X, M(—a,a)

where A := X, _4.4 as was defined in Sect. 3.3, Applying the standard yoga of graphical
calculus and using that j, is a tensor autoequivalence and B being strict pivotal, i.e.

u = 60~!, we get the following expression for the Drinfeld isomorphism of (B, 7, f).

Xa

1
. 5.4
a dim(A(—a, a))t(a, a) oY

—1
)La
Ma, —a) Xq AM—a, a)
A gk - A . A
(D78 U 00x,) ®idi—aay) © (Ex,i-aa) ® Idia.a) 0 (idx, ® Pi-a.a) (5.5)

dim(A(—a, a))t(a, a)

Notice that here, if we weren’t assuming B is strict pivotal, we would get the Drinfeld
isomorphism u of B instead of 6! in Equality (5.4).

From this, assuming strict pivotality of B we get that the pivotal structure v/ in
(B, 1, f) s
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/

dim(A(—a, a))t(a, a) 24 Ja

ol ko ko B . ) A
(A7 ® j, ®idy—a,a)*) 0 (Cx,1(—a,a) B idj(—a,a)) © (dx, ® Pi(=a,a))
(5.6)

U=

@
" dim(A(—a, a))t(a, a)

In this way, we get that the trace Tr/ in (B, 1, f) of amorphism s € Hom(X,, X,) can
be expressed in the graphical calculus by

f(a)
dim(A(a, —a))? t(a, a)

Tr/ (s) =

(5.7)

After expressing the closed loop involving morphisms on X, in terms of the trace in B,
we get

fi@) Tr(j; ' (Xa) 0 5)

Feoy —
) = @ —a? 1@ s—a

(5.8)
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Finally, we apply the associative zesting condition of Fig. 2 with 1 = 3 = a and

2 =4 = —a and standard graphical calculus to get the equation
f@) 1
Tr/ (s) = T X
)= St —at @ TUa Xa)os) . (59

f(a) .1
= T X
dmna, —ani@.a) e Xaos) o
Lemma 5.6. Let A = (A, j, t, f) be a a ribbon zesting. Then

dim(A(a + b, —a — b)) dim(r(a, b))t@(a, b) f(a + b)
t(@a+b,a+0b)
Xm(j,XA,Yb)TI‘(Cy’XOCX,y) (510)

o Ay
Tr' (ey, x, © €X,.v,) =

where ) )
Ja(Yp) jb(Xa)

Jab (Xa)jah(Yh)jah()“(aa b)) ’
foralla,b e A, X, € Irr(By), Yp € Irr(Bp).

Proof. Let X, € Irr(B,), Y € Irr(By), where a, b € A. We have that

m(j, Xa, Yp) = (5.11)

J}Z,l ° Clkzb,xa ° C)}(a,y,, =m(j, X, Yp)t® (a, b)(cy,,x, © CXavy) ® idia,b)

for all pairs of simple objects X, Yp.
Then using Proposition 5.5 we have

dim(A(@a+b, —a —b))f(a+b) .
feot A _
Tr (CYb,Xa och,Yb) = (@+b.a+h) m(j, Xa, Yp)

X t(z)(a, b) Tr ((cYa,X” o ch,ya) ® idk(a,b)>

AMa+a, —a — a)dim(A(a, b)) f(a +Db)
- t(a+b,a+b)

x 1P (a, b) Tl (¢}, x ocx,.v,)-

m(j, Xa,Yp)

O

Recall that the modular data of a premodular category B is the following pair of
matrices indexed over Irr(B3):

(1) S-matrix. Sx.y = Tr(cy= x ocx,y*),
(i1) T-matrix. Txy = 0x8x.y.
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Theorem 5.7. Let . = (X, j, t, f) be a a ribbon zesting. The T -matrix and S-matrix of
(B*, t, f) are given by the following formulas

T, x, = f@Tx,.x, (5.12)
@ dim(A(a — b, —a + b)) dim(r(a, —=b))t P (a, —b) f(a — b)
Xa-Ys ta—b,a—b)
x m(j, Xq, i @ M(b, —b)*) dim(X,) "' Sx, v, Sx, 1(b.—b) (5.13)

foralla,be A, X, € By, Yy € Bp.

Proof. The formula for T* is a direct consequence of the definition of 6/ -
For the S-matrix of (BA, t, f) we use Lemma 5.6 and the fact that X, = X ®
Aa, —a)*

& dim(A(a — b, —a + b)) dim(A(a, —b))tP (a, —b) f (a — b)
Xa, Vb t(a—b,a—b)
x m(j, Xa, Yy @ A(b, —=b)")Sx, »b.—b)® Y,
_ dim(A\(a — b, —a + b)) dim(.(a, —=b))t® (a, —b) f (a — b)
t(a—b,a—>b)

x dim(Xo) " Sx,.v, Sx, 16, —b)s

m(j, Xa, Yy ® A(b, —b)")

where we used in the last equality that dim(X)Sx yea = Sx,y Sx.q for every invertible
object, see [15, Proposition 8.13.10]. O

Remark 5.8. The formula (5.13) of the S-matrix does not look symmetric immediately.
For a clearly symmetric formula, we can take the matrix Sy, y, = Tr/ (c);b’ X, © C§(a,Y1;)

with formula given in equation (5.10) of Lemma 5.6. Now, the S-matrix and the S-matrix
are related in the sense that S is invertible if and only if S is invertible and in that case
S =281 gee [15, Proposition 8.14.2.].

5.2. Miiger center. We want to describe the Miiger center Zz(([j’)‘, 1) = {X, € B,|

vy x, 0Cx,y, =id . VY, € By, b € A} of the zesting (B, 1) of B. We have that
Xa®yb

Z((B*, 1) = {Xa € Bal ey, x, © cxavy = Ja(¥p) " jn(Xa) "'t %(a, b) idx,0v,, VY5 € By, b € A}.

This means that X, € C, is in the Miiger center of (", 1) if X, projectively centralizes
Y, (and the corresponding scalar is ja(Yb)_ljb(Xa)_lt_z(a, b)),forallY, € By,b € A.
Recall from [15] that for D C C the centralizer of D in C is denoted C¢(D).

Lemma 5.9. Assume that j is trivial. Consider a premodular A-graded fusion category
B and a braided zesting (B*, t). If Cp(Baa) < By then the Miiger center of the zested
category

Ox, 0
Z2((B". 1) = (Xq € Ba N Bpi|1*(a.b) = 2 VY, € By, b € A).

Xa®Yp
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Proof. Recall that ¢ is trivial when one of the inputs lives in the trivial component of the
A-grading. Now, since j is trivial, if X, € Zz((lS”\, t)) thency,, x, ocx,.v, = idx, ey, for
all Yo € Bp. This means that X, € C(Bo) € Cp(Baa) S B);. Therefore Z,((B", 1)) C
Bp:-

Moreover, since X, € Z,((B*, 1)) C By, we have that xx, (Yp) = t=2(a, b). From

(%
the fact that xx, (Yp) = 9};“2:”
a’rp

Z5((B, 1)) of the zested category. O

, we get the desired characterization of the Miiger center

Remark 5.10. Notice that if /3 is modular or super-modular (i.e. Z>(18) = Vec or sVec),
we have that Z,((B*, 1)) € Cz(Bui) € B pi. If B is pointed the condition is trivially
satisfied too.

The following example shows that zesting a non-degenerate category may yield a de-
generate one, and conversely, so that Miiger centers are not zesting invariant.

Example 5.11. The pointed modular category C(Z/3, Q) with quadratic form Q(a) =
Q2aPTi/3 6, is naturally Z/3-graded. If we take the trivial associative Z/3-zesting (i.e.
trivial 2- and 3-cocycles A(a, b) = 1and A(a, b, ¢) = 1) then the braided zestings corre-
spond to a choice of a bicharacter ¢ : Z/3 x Z/3 — k*. We can take ¢ (a, b) = e>7140/3
so that 12(a, b) = Q(a)Q(b)/Q(a + b) = e~ ?"14P/3 which implies (C(Z/3, Q)*, 1) is
symmetric.

The converse is also possible: for the symmetric pointed category C(Z/3, P) with
P(a) = 1 again take the trivial associative zesting. Now a non-trivial braided zesting
corresponds to a non-trivial bicharacter ¢, which yields a non-degenerate braiding.

On the other hand, if we zest with respect to a group A that generates a symmetric
pointed subcategory and A does not contain any transparent objects then the Miiger
center does not change:

Proposition 5.12. Let B a braided fusion category and A C Inv(B) a subgroup such
that x, # id for all a € A — {0}. Consider the A-grading

B, ={X € B: xo(X) = y(a)idx, Va e A}, y € A.

For any A-braided zesting (A, j, t), such that

(i) the category generated by A is symmetric,

(ii) j, =id forall y € A,
the Miiger center of B and (B*, 1) coincide. In particular, B is non-degenerate if and
only if (B*, t) is non-degenerate.
Proof. Since By = {X : cx.q 0 cax = idagx, Ya € A}, we have that Z,(B) C B;.

A
: _ A

Hence, if X € Z,(B)andY, € B,,then X ® ¥, = X ® Y, and Xy, = CX.Y,- Hence

Z(B) C Z5((B*, 1)).
Conversely, since the category generated by A is symmetric, we have thata € B for
alla € A If
X, € Z((B*, )N By, yeA
then

: A A
lde®a = Ca,Xy OCnya = Ca’XV OCXV’a’ Yaec A



38 C. Delaney, C. Galindo, J. Plavnik, E. C. Rowell, Q. Zhang

hence y = 1. Then,
¥ 2
Cx,y = ¢X.Y» Cyx =CrXx

for all X € Z,((B*,1)) and Y € B. This implies that Z,((B", 1)) C Z»(B), and then
Z((B*, 1) = Z(B). O

Corollary 5.13. Let B be a non-degenerate braided fusion category such that Bp; is
symmetric. Then any braided U (B)-zesting of B is non-degenerate. 0O

Remark 5.14. The pointed subcategory B, is symmetric for any non-degenerate braided
fusion category with By, € Bga.

5.3. Braid group image. LetB,, denote the braid group on 7 strands and o its generators.
Given an object X in a braided fusion category B we will denote the associated braid
group representation by

,o,f 1B, — Autg(X®")

oir>alo (id§171 Qcx,x ® id%'%lil) oa,

where a denotes the appropriate composition of associativity constraints in B. Note that
the fact that this morphism is group homomorphism follows from the hexagon axioms
of B and Mac Lane’s coherence theorem. The category B is said to have property F if
p,f( has finite image for all #» and all objects X [24].

Consider a braided fusion category B with an A-grading and A = (A, J, t) a braided
A-zesting. Here we study how the image of the braid group is modified under the zesting
operation.

For any X, € B,,Y, € By, Z. € B, and a, b, c € A, we have an algebra isomor-
phism

s s
VX, vy 7. - End(X,®Y»®Z,) — Endp (X4 @ Yp) @ Zc)
[ v (f®idiahei@sbeo )w

where w = idx,gy, ®Cir(,p),z.® 1d)@a+p,c)- For X, € Bﬁ and n € Z-, we define
inductively the algebra isomorphism

r
YXe : Endp(X$") — Endg (X&) (5.14)



Braided Zesting and Its Applications 39

Xo A A Aoy X )
by ¥, ¢ = (¥, ®idx, ) oy . , where X®" = X®"~1 @ X. Graphically,
X&' Xa X

given for f € Endg(X2"), we have that w,f( “(f) is given by

a a (a,a) a 2a, a) a oo (m—=2)a,a) a ((n—Da,a)

\

(

a a (a,a) a 2a, a) a crr (m—2)a,a) a ((n—1Da,a)

Theorem 5.15. Let B be a braided fusion category and A = (A, j, t) abraided A-zesting.
Then for alln > 0 and X, € B, simple homogeneous object, we have

Pr(01) = ja(Xa)t (@, ) (pn(07)), 1<i<n,

where p» is the braid group representation associated to (B*, t), ¥, was definedin 5.14,
and j,(X,), t(a,a) € kK™ are the scalars associated with the braid cé}a X,

Proof. 1If X, € B, is a simple object, we have that cg\(mxa = ju(Xo)t(a,a)cx, x,®
idj(a,q)- A simple graphical computation shows that

A
A A —1 . A A
05 (On—1) =(a”, )" o (id P ®CX“,X“)°a N
X" Xa. Xa xen X$"2 Xa. Xa
. X -1 _ . Py
=ja(Xa)t(a,a)(a", )" o(d R ®CX,. X, ®1dy(gn-1 ) 0@”,
X322, Xa, Xa xen= X272 X, X,

=Jja(Xa)t(a, a)Yn(on(on-1))-

Fori < n — 1, we have

1) = Pl (o) ®id
ni I X®(n—(i+1)

— (Xt (@ a)¥is1 (pia1 (01)) ® id
= Ju(X)1 @, @)V (P (o).

A
®n—1-i)

O

Corollary 5.16. A premodular category B has property F if and only if any of its ribbon
zestings (B*, t) has property F.

Proof. Any premodular category can be included in a modular category, e.g., in its
Drinfeld center. Then, it follows from Vafa’s theorem [1, Theorem 3.1.19], [26] that the
double braiding in any premodular category has finite order. Then j,(X,)t(a, a) is a
root of unity, and p}* has finite image if and only if p, has finite image. O
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6. Applications

We now apply the theory of zesting to a number of familiar examples.

6.1. Braided zesting of modular tensor categories. We will apply the obstruction de-
veloped in the last section to our main case of interest. Let B be a modular category
and A = U(B) the universal grading group. The maximal pointed fusion category in
Baa = B, is centralized by the subcategory B, generated by invertible objects [15,
Corollary 8.22.7]. In particular B,q N B, is a symmetric pointed fusion category.

Recall that every symmetric pointed fusion category has the form Vec, where S is
an abelian group, v : § — Z/2 is an additive group homomorphism and the braiding is
given by

cla, by = (=1)"@"Pid, g, .
In particular, Vecy is super-Tannakian in general, and Tannakian if v is trivial.

Proposition 6.1. Let B be a braided fusion category graded by A. If Vec, C (Be) pr

then for every A € Z*(A, S) the obstruction to the existence of an associative zesting is
given by

Ouar, @, a3, az) = (A Uy M)(a1, az, a3, ag) = (=)’ Here)vasa),
In particular, if S has odd order the obstruction automatically vanishes.

Remark 6.2. In practice, we overcome this obstruction by finding a A € C3(A, k*)
so that §(A)(ay, az, az, as) = O4(ay, az, az, ag). If |S| is odd O4(a;, az, az,as) = 1
and we may choose any 3-cocycle A (e.g. A = 1), whereas if this obstruction does not
vanish identically we must solve the linear system coming from § () (ay, a2, a3, as) =
Og4(ay, az, az, as). Here the 3-cochain A corresponds to the scalar associated with the
map Aqyap,a3 - Mai, az)A(araz, az) — Aai, axaz)i(az, az).

6.2. Cyclic zesting.

6.2.1. Cohomology of cyclic groups Let C = (g) be acyclic group of order N and M an
abelian group. We will identify C with Z/N, via the isomorphism Z/N — C,a — g°.
We define some cochains associated with any v € M that will be useful later.

Bv(i) =iv, (6.1)
. 0 ifi+j<N
= 6.2
w(, J) {v ifitvi> N (6.2)
. 0 ifi+j<N
A k) = 6.3
l)(lv]» ) {kv lfl+] zN ’ ( )

where 0 < i, j, k < N. By a straightforward computation by cases, we have that

3(Bv) = YN (6.4)
d(n) =0 (6.5)
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Nv ifi+j,k+l>N,

S(A), j kD) = .
() (@, J ) 0 otherwise.

(6.6)

Hence, y, € Z*(Z/N, M), and yy, € B*(Z/N, M). Moreover for all v € My :=
{m € M : Nm = 0} we have A, € Z3(Z/N, M). It is well known that the induced
group homomorphisms

y :M/NM — H*(Z/N, M), A:My — H*Z/N, M) (6.7)

are in fact group isomorphisms, see for more details [27].

6.2.2. Braided pointed fusion categories from cyclic groups Let C(C, ®) be a braided
pointed fusion category with Inv(5) = (g) = C a cyclic group of order N and ribbon
structure ®(g) such that dim(a) = 1 for all @ € C. We have that Inv(Z,(C(C, ®))) =
(¢"™), where m = Ord(©}), and

(i) C(C, ®) is modular if and only if @5 € k* has order N.
(i1) C(C, ®) is symmetric if and only if ®§, = 1, and this case
(a) C(C, ®) is Tannakian if and only if ®, =1
(b) C(C, ©) is super-Tannakian if and only if ©, = —

In the symmetric case the ribbon is a character (trivial in the Tannakian case), and the
braiding can be described as

_idg1®g2’ if@gl = ®g2 =-1,

6.8
idg @ otherwise. (08)

Cgr.820 =

6.2.3. Cyclic braided zestings In this section we fix BB a braided fusion category and
C C Inv(B) a cyclic group of order N such that x : C — Autg(Idp) is injective
(equivalently, C contains no non-trivial transparent objects). By Corollary 2.9, B has a
faithful C-grading

B, ={X : xa(X) = y(@)idx, Va € C}, y e C. (6.9)

Then
BiNC =ker(xc.c) = CL, (6.10)

where 1 € C is the trivial character and ker(xc.c) ={a € C : x,(b) = 1,Vb € C}.
Notice that while we usually denote the trivial component of our grading by B,, here
the grading is by the dual group C of characters so we denote the trivial component by
By to emphasize this. We are interested in describing the braided C- -zesting induced by
elements in H 2(C ch.

Let g € C be a generator. Thus C can canonically be identified with {x € k™ : =
1}, via y — y(g). Hence, in order fix a generator of C, from now we ﬁx a pnmltlve
Nth root of unity ¢ € k*. Under the isomorphism Z/N — C.am— [g” — %], we
have that B is Z/N-graded with

By ={X : xo(X) = q“idx}, ae€Z/N. (6.11)

Let N
h = glt:C] (6.12)

be a generator of C+ and ® : C+ — k* be the canonical ribbon twist.
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6.2.4. Associative zestings With the aim of unifying our results and formulas we define
€ € {1, 0} depending on an integer @ € Z and ® € {£1} as

1 if@pu =—1.
- 6.13
“To ifOu =1. 6.13)

Additionally, we fix ¢ € k* a primitive root of unity of order 2N such that 2 = g.
In the next proposition we will follows the notation introduced in Sect. 6.2.3.

Proposition 6.3. Let B a braided fusion category and C = (g) C Inv(B) a cyclic
group of order N such that x : C — Autg(Idp) is injective. The equivalence classes
of associative zestlngs of B with respect of the grading given in (6.9) and associated
2-cocycle in Z* (C C1) are parametrized by 7)m x ZJN. The associative zesting
corresponding to a pair (a,b) € Z/m x Z/N is given by

|1 i <N
Aa(z,J)—{ha fivisN (6.14)

.. 1 ifi+j<N
(i, j, k) = [gk(ﬁzb) fitisN (6.15)
where 0 <1i,j,k <N, Ct was defined in (6.10), m = |CJ-|, {2 =q,h= g[C:CL], and
€ is defined in (6.13).

Proof. Since C has order m, the 2-cocycles A, with a € Z/m form a set of represen-
tatives of HZ(Z/N, ch.

If ®), = 1, we have that C~ is Tannakian and then the 4-cocycle obstruction O4(A,)
automatically vanishes. Hence associative zestings are parametrized by pair (a, b) €
Z/m x Z/N, with corresponding zesting

.. 1 ifi+j<N
Aai, ) = {h” ifidj> N (6.16)

1 ifi+j<N
A, j,o k) = L 6.17
b(, J, k) {qkb ifi+j>N ( )
where 0 < i, j,k < N.
If ©;, = —1, we have that C* is super-Tannakian. In particular C- has even order,
and let v : C+ — 7Z/2 the non-trivial group homomorphism. The 4-cocycle obstruction
04(),) is given by

04(i, j, k, 1) = (_1)v(}»a(i,j))v()»a(k,l))
_)=D? ifi+jk+l =N
T otherwise.

Note that the set of all solutions to the equation Q" = —1 can be parametrized as ¢ '+,

with b € Z/N. Hence, for a odd using (6.6) we have that the associative zestings is
parametrized by pairs (a, b) € Z/m x Z/N, with

. 1 ifi+j<N
ka(z,J)—{ha i N (6.18)
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. 1 ifi+j<N
ol k) = ck+2b) iy j> N (©.19)

where 0 < i, j,k < N. O

6.2.5. Braided zestings

Proposition 6.4. Let (a,b) € Z/m x Z/N and (7q, Ap) the associative zesting con-
structed in Proposition 6.3. Then
(1) (Mg, Ap) admits a braided zesting with j = id if and only ifa% =€+2b mod N.
(ii) Ifa, b satisfy the conditions in (i), there are N different braided zestings, parametrized
by a choice of an element in {s € k* : sV = ¢~(€+20)},
(iii) Explicitly, the braided zesting associated with s as in (ii) is given by j, = Idg for
ally € Z/N and

153, j) = sV idy, ), 0<i,j<N.

Proof. In order to compute the 2-cocycles Oj1(Ap), we can take initially (i, j) =
id)m @, j)- Then

Ao (i, J, K)Ap (), ks 0)

O1(Ap)(ilj, k) = — =M (J, k, 1)
A (js i, k)
Since H2(Z/N, k*) = 0, we can redefine the isomorphisms
t(i, j) =13, j)idyg,j). 1, j) € k™. i,j €Z/N,

to that satisfy the equation in Fig. 7. We need to choose s so that s = ¢ ~*?») Then
define N

IG, j)=s"" (6.20)
where 0 < i, j, k < N. In fact, by (6.4)

L, k)], k) koo 1
LA UL S L) =M, g k)T 6.21
) (Bs)" (0, J) = Ap(i, J, k) (6.21)
and since [(i, j) = [(j, i), we have that

w =M (j, ki) = O1(Ap)(ElJ, k).

1, j+k)
Now,
. G, IG. k), .
02(b, $)(, jlk) = ———2""2 2, (i, j, k
2(b, s)(i, jlk) ) b, j, k)
=p(i, j, k)?

Finally, since xj«(Xy) = q“%k, we get that
- 1 ifi+j<N 6.2
Xoai, ) (x1) O2(has Ap) (@, jI1) = G iy s N (6.22)
that is [x1,/02] = aX — (e +2b) € Z/N = HX(Z/N,Z/N). Then if a # ¢ +2b
mod N the associative zesting (A4, Ap) does not admits a braided zesting with j = id
and if a% =€+2b mod N, [O2(M)] = [xa], so jr = id and #;(i, j) = s~ idx, (i, )
define a braided zesting. 0O
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6.2.6. Ribbon zesting and its modular data

Proposition 6.5. Let (A4, Ay, id, t5) be a braided zesting constructed in Proposition 6.4.
If B has a ribbon twist 0 such that Opa = @Opa then a ribbon zesting f : Z/N — k> is
defined by

fG) =77, 0<i<N, (6.23)

and its modular data is given by
i x, =7 Txoxis 0<i<N,X;eB, (6.24)
kv, =77 Sx, v, 0<i,j<N,X;€BiYeBj. (6.25)

Proof. Equation (5.1) is
N ere el o s 0 o 52t ifi+j<N
FOLG+ )T FG) =5 xaap + Oi.j) = S2ijqa%(i+j)9ha ifi+j>N.
Let0<i,j<N-—-1.Ifi+j < N, then

FOLG+ DTG =577 s @070 = 2,

Ifi+j>N,theni+j=1[+j]+N where0 < [i +j] < N,and(i+j)2 =
P2+ j242ij —2N(i + j) + N2, thus

FO G+ )T () = PN DN
— 20 g (€x2b) i) (_q)yes2b
_ (_l)eqa%(nj)szij
_ ghaqa%(i+j)s2ij.
Equation (5.2) forO <i < N — 1 < is

FOFN =)™ = 30 D6 = ¢“7 e,
and
FOFIN =iy =57 sN-D?
— g 2Ni NP _ (—1)éqer2bli
:9haq”%i.

The formulas for modular data follow from Theorem 5.7. In fact, the T—matrix follows
directly from the definition of 6/ . First note that since 6, = Oy, then dim(h’) = 1, in
particular dim(A, (i, j)) = 1 forall i, j € Z/N, second

SXi. 16, —al .
L 2 e a X* = a m t s O N,
dim(X) xne(X7) =¢q <i<

and third

sIN=D) = g g ex2b)i
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hence
v S = DD =) Sxoad,—i) .y
Xi.¥j ti—j,i—j) dimX,) Y
. Sy AGa—j)
:S_I(N_'/) AU, —) Sv. v.
dim(X,) XY
=s2ijSX,.’Yj.

O

Remark 6.6. If N is odd f (i) = s~ is the unique ribbon zesting and if N is even f (i)
and (—1)" f(i) are all the ribbon zestings. From the proof of the above we see that this
changes the S-matrix by a factor of (—1)'~/ on the (i, j)-graded block.

As a particular case of Proposition 6.4 we obtain the following result on fermion
zesting (cf. [4]):

Corollary 6.7. Let B be a braided fusion category and f € B a simple object such that

Ofef=1
(i) ®f = —1,
(ii) x s is not the identity.

Then B has eight different braided 7./2-settings parameterized with modular data
2 i
Tk x. =s " Tx,.x. Sk.v, =57 Sx..y, (6.26)

where s is a root of unity of order eight. O

6.3. Quantum group categories of type A. A large class of examples of modular cate-
gories satisfying the hypotheses of Sect. 6.2.2 can be obtained from quantum groups (see
[1, Section 3.3]). Of particular interest are the modular categories SU (N ) obtained from
quantum groups Ugsly for Q = e” i/(N+k) (eschewing ¢ to avoid notation clashes). Two
references for this construction are [3,22], where much of what follows can be found.
For any N, k, the category SU (N); has a (maximally) pointed subcategory P(N, k) with
fusion rules like Z/N. In particular SU (N )y is (universally) Z/N -graded with trivial
component PSU(N)y := [SU(N)i]e. Labelling the fundamental weights of the root
system of type Ay_1 by @w; fori = 1,..., N — 1 (we follow [2, Planches, Chapters
IV,V,VI] for notation), we find that the simple objects in P(N, k) correspond to weights
0 and ke, fori = 1,..., N — 1. For notational convenience we define § = X, SO
that g = 1 and g’ := X4, . In this notation we have g’ ® g/ = g'*/. To determine the
nature of this subcategory we must compute the twists 6; := 6, for which we employ
standard techniques (see [1,25], for example). The key computation is that the twist of
the simple object labeled by highest weight u is 6, = Q* where ¢ := (1 +2p, u). We
find:

0; = ¢l NP where roy = /N, (6.27)
Thus we may identify P(N, k) with the pointed ribbon fusion category C(Z/N, ) where
n is the quadratic form given by 1(j) = 6;.

By the twist equation we obtain the formula for the double braiding in P(N, k) as:

Os+1 —2st

Cot g5 O Cgs t———;
88 8,8 2N
056,

K idgser
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so that the Miiger center of P(N, k) is generated by g@%). In particular, P(N, k)
modular if and only if (k, N) = 1 in which case we have the factorization SU (N)
PSU(N)x X'P(N, k) as modular categories, and Inv(P SU (N)y) is trivial.

On the other hand if N | sk then g° centralizes P(N, k) and hence lies in the triv-
ial component By = PSU(N); (under the universal Z/N-grading). Thus P(N, k) N
PSU(N)i is a non-trivial symmetric pointed subcategory whenever (N, k) # 1. In-
deed, P(N, k) is symmetric if and only if N | k. Furthermore, by the form of the twists
calculated above we can determine when P(N, k) for k = aN is Tannakian or super-
Tannakian. If N is odd, we only have Tannakian categories, but if N is even, we have
that P(N, aN) is Tannakian if and only if « is even, and super-Tannakian otherwise.

The object X labelled by the highest weight o] is a tensor generator for SU (N ).
We will assume that X is in the 1-graded component of the universal Z/N-grading Bj.
Applying Proposition 2.8(iv) we first compute x : U(B) = Z/N — Z/N . Now xga
is determined by yga (1) since yga(m) = xoa(1)™, and xgea(1) = (xg(1))* since the

&

operation on Z/ N is pointwise. Thus we reduce to computing the scalar associated with
the double braiding cg x, ocx,,, where X1 = X5. As g ® X1 = X(k—1)w+a, 15 simple
we need only compute

Otk—1)ar 1+

-1
=<
610, N

Cg, X1 ©CX1,g =

where ¢y 1= ¢2™/N. Thus we see that xga(m) = ¢° where ¢ := ¢y'. In this way
the Z/N-grading is given by B; = {X : x,(X) = g'idx} as in (6.11). Notice that ¢
is determined once we declare that X1 € Bj and pick our generator g of U (B)—fixing
any two choices among the grading, ¢ and generator of U (B3) determine the third.

Now we may apply the results of Sect. 6.1 to SU (N),. We will consider several cases
to illustrate the subtleties:

(1) For SU (N)qn for N odd the pointed subcategory P(N, o N) is Tannakian. We will
zest with respect to the universal Z/N-grading so that m = N and € = 0 in the
notation of Proposition 6.3. Thus there are N 2 associative zestings (A4, Ap) Where
(a,b) € Z/N x Z/N. The N associative zestings for pairs (2b, b) each admit N
braided zestings, which in turn admit N twist braided zestings. Thus there are at
most a total of N2 distinct ribbon twist braided zestings, all of which are modular
by Proposition 5.12.

(2) For SU (N)yn with N even and « odd the pointed subcategory P(N, o N) is super-
Tannakian. We will zest with respect to the universal Z/N-grading so that m = N
in the notation of Proposition 6.3. Thus there are N2 distinct associative zestings
(g, Ap) where (a,b) € Z/N x Z/N. For a even we have ¢ = ( and the situation
is similar as above: the N associative zestings (Ag, Aq/2) and (Ag, Ag+n)/2) €ach
admit N braided zestings and N2 twist braided zestings. Among these 2N of them
are ribbon twist zestings, all of which are modular by Proposition 5.12. Now for a
odd we have € = 1 so that the N pairs (a, %) and (a, “_%”V ) admit N braided
zestings each. All told there are at most 4N ribbon braided zestings, each of which
is modular.

We hasten to point out that, in practice, there can be equivalences among braided
zestings. We will see some examples of this below.
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6.3.1. SU(3)3 Consider the non-group-theoretical [24] integral modular category SU (3)3
of rank 10 and dimension 36 (this example inspired the notion of zesting in [5]).
We define ¢ = e 27/3 and ¢ = **'/18, and order the simple objects as follows
[1,g,¢% Y, X1, X2, X3, Z1, Z3, Z3). In the correspondence with the SU(3) highest
weights we have X labeled by @ and g by 3@ as above. Then X, = g ® X1 and
X; = g’®X1,with Z; = X*inSU(3)3. Wehavedim(Y) = 3,dim(X;) = dim(Z;) =2
for all i, and the Z/3-grading is given by X; € B and Z; € B;. The twists of the simple
objects ordered as above are [1, 1, 1, —1, §4, {16, ;“10, 4“4, {16, ;10]. ‘We note that there
are two inequivalent sets of modular data (S, 7') (and hence, presumably, modular cat-
egories) with these fusion rules: the above and its complex conjugate. Notice that the
twists of the X; are primitive 9th roots of unity, so that there are 6 Galois conjugates.
However, the relabeling symmetry among the pairs (X;, Z;) allows us to recognize these
6 conjugates as belonging to just 2 inequivalent classes. The (unnormalized) modular

A B B
S-matrix has the block 3 x 3 form: S = | BT C D
B’ DT C
where
1 1 1 3 1 1 1
_fr 11 3 S LR G
3 3 3 -3 0 0 0
L o 2= 3= B4l
C=2|¢ —¢* ¢ |, and D=2~ B+ 2-¢°
—¢* ¢ B+er -0 =00

The 9 associative zestings of SU (3)3 are parameterized by (a, b) € Z/3 x Z/3 where

L. 1, i+j<3 L. 1, i+j<3
M, J) = {g“ iv>3 and Ap(i, j, k) = qbk ivi>3
The fusion rules for a = 2 and a = 0 are the isomorphic: reordering the simple objects
as [1, g2, g, X1, X3, Xo, Z3, Z», Z1] gives us the fusion rule isomorphism. By results
of [22] the 6 fusion categories corresponding to a = 0 and a = 2 are obtained from
SU (3)3 by changing the quantum parameter Q and/or changing the associativity by a

3-cocycle. On the other hand, fora = 1 we find that 1 ¢ X ‘1813 yet 1 ¢ X®3 for all
simple objects X € SU(3)3 so that these fusion rules are not isomorphic to those of
SU((3)3.!

Now for each pair (a,b) € {(0,0), (1, 2), (2, 1)} we obtain 3 braided zestings by
choosing an s so that s° = ¢, by Proposition 6.4. Moreover, by Proposition 6.5
these each have a unique ribbon zesting, given by multiplying the SU (3)3 twists in the
component B; by s~ 2, and all are modular with these choices. Thus there are at most
9 modular categories obtained from Z/3-zesting of SU (3)3. In fact, we will see that
there are only 3 inequivalent sets of modular data, and presumably only 3 inequivalent
modular categories (this is not immediate as modular data is not a complete invariant,
see [23].

1t seems to be the case that the trivial representation appears in X ;?N for any object X, € Rep(sly), but
we could not find a proof in the literature.
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For b = 0 we have s> = 1 and for b = 1 we have s° = ¢~! = ¢?7//3, The twist on
B1 and B3, are primitive 9th roots of unity {¢*, 10, 16}, so that rescaling by s ! = s
with s = ¢¥7"/3 simply permutes them. Similarly for the case b = 2 we have s = ¢ *2
for 0 < x < 2 so that rescaling these twists by s ! and s~ conjugates the set of values,
and permutes them in a way consistent with the fusion rule isomorphism above. Now
since the fusion rules and dimensions are the same, the S-matrices are determined by
the twist (via the balancing equation). Thus we obtain two sets of modular data from the
pairs (0, 0) and (1, 2): those of SU (3)3 and the complex conjugate. Indeed, it is easily
checked that adjusting the SU (3)3 S-matrix above by a factor of %/ onthe (i +1, j +1)
block has the effect of permuting the rows/columns and possibly complex conjugating
the entries.

Now for b = 2 we have 53 = g2 = ¢ 27/3 with solutions s = ¢~ O¥*27i/9 —
59_3"_1 for 0 < x < 2, where g 1= ¢271/9. Rescaling {¢% = 592, e §95, oo = 598}
by s~ = ¢3**! and s* = ¢J**** both yield {1, ¢, ¢!} for any x which is invariant
under complex conjugation. Again, the S-matrix is determined by the twists and the
fusion rules by the balancing equation so that we find that there is exactly one set of
modular data (S, T') corresponding to the modular zesting of SU (3)3 when a = 1. For
completeness we provide explicit modular data (S , T) (cf.[5, Section4.2]): taking x = 0,

A B B
the twists are given by T := [1,1,1, —l,q_l, 1,q,q,q_1, 1] and S=|BT C D
B' D' C
where A and B are the same as for SU (3)3 above and
;——3 4-3 -1 -1 ;—3 ;——3
c=2(¢ -1 ¢3), and D=2 3 -1
-1 C_3 ;—3 g——3 -1 §-3

Note that %3 = —g*! so that the entries of S lie in the field Q(q).

Let us compare the zesting of SU (3)3 to gauging constructions. Clearly SU (3)3, its
complex conjugate and its Grothendieck inequivalent zesting each contain Rep(Z/3) as
a Tannakian subcategory. If we take the corresponding Z/3-condensation [11] we obtain
amodular category £ of dimension 4 = 36/37 that has a gaugable symmetry ¢ : Z/3 —
Autg (£) [8]. It is not difficult to see that £ must be the so-called 3 fermion modular
category 3 F, with fusion rules like Z/2 x Z/2, and the Z /3 action cyclically permutes the
fermions. Thus we should be able to recover the three zestings of SU (3)3 by gauging this
symmetry. The obstructions to gauging vanish as they liein H3(Z/3, Z/2xZ/2) = 0 and
H*(Z/3,U(1)) = 0. The gaugings of 3F are parameterized by H>(Z/3, Z/2 x 7./2) =
Oand H3(Z /3, U(1)) = Z3. Thus we obtain 3 such gaugings, consistent with the zesting
calculation above.

6.3.2. SU(4)s The rank 35 modular category 5 := SU (4)4 has pointed subcategory
‘P(4, 4) with fusion rules like Z /4, but is non-Tannakian: the generator g of the group
Inv(B) has twist 0, = —1, and ¢y, = — idgz. We write

SUBs=CodC1®C2DC3

to decompose the category into its Z/4 universally-graded components, which have the
following ranks

Component Co Cy Cy C3
Rank 10 8 9 8
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Table 1. SU (4)4 ribbon zesting data: ¢ := e2T1/N and y4 =1

(a,b) X o1 s Central charge
©,0) yes y Cre

0,2) yes y - () ¢

(1,0) no y - (£32) —i- {16

(1,2) no ¥ (£32)° i1

.1 no y - (£32) —i- c}g‘
2,3) no y - (3)8 iCg

3.1 yes y - (@3 ~Zi6

(3,3) yes Y- (¢3)] {16

We set ¢ = e 27i/* 5o that xg(Xi) = g for X; € C;. Table 2 summarizes the last few
pages of analysis and records the parametrization of simple objects in SU (4)4 along
with their universal grading, quantum dimensions, and twists.

We first consider the Z/4-zestings. To conform with the notation of Propositions
6.3 and 6.4, we set £ = e 27/8 The associative Z/4-zestings are parameterized by
(a,b) € Z/4 x 7Z/4 as above. When a is odd we have ¢ = 1 and otherwise ¢ = 0.
Braided zestings exist for the 8 pairs

(a,b) € {(0,0),(0,2), (1,0),(1,2), (2, 1), (2,3), 3, 1), 3, 3)},

and are parameterized by solutions to s* = ¢~¢@=20 Each of these, in turn have a
unique ribbon structure that gives positive dimensions, and each of these are modular
by Lemma 5.13. Thus there are at most 32 distinct modular categories obtained as
Z./4-zestings of SU (4)4. For any triple (a, b, s) the central charge of the corresponding
modular categories are the same for any of the 4 choices of s, giving us (at least) 8 distinct
modular categories see Table 1. As can be seen from the data in Table 2, SU (4)4 has a
high degree of symmetry there are many objects of the same dimension giving rise to
labeling ambiguities. Moreover, [12] shows that the group of (not necessarily braided)
monoidal autoequivalences is isomorphic to Z/2 x Z/4. In particular, distinguishing or
identifying the the modular categories with the same underlying fusion category (i.e. the
same (a, b) but different s) is a subtle problem.

We may also consider the Z/2-zestings. We can define a Z /2-gradingon B := SU (4)4
by By = Co @z and B1 = C; @3 where C; are the components of the universal grading
above. This corresponds to the grading by the subgroup Z/2 = (g%) < Inv(B). If we
choose a 2-cocycle A, € H?(Z/2, Inv(B)) with values in (g?) then Z,((g2)) = (g?)
so we may apply the results of Propositions 6.3 and 6.4 to obtain braided zestings and
ribbon twists as above.

On the other hand, we may define a 2-cocycle H 2(2/2, Inv(B)) by A(1,1) = g and
A(0, 1) = A(1, 0) = 1. The normalized 3-cochains A+ (1, 1, 1) = =i provide associative
zestings. We claim that these fusion categories do not admit braided zestings.

We have that x,|By = Idg, —Idg,. In particular yx, is not in Auté/ 2 (Idp), so that
Jja = id does not satisfy condition (BZ1). What is required is a function j : Z/2 —
Autg (Idg) such that

. - — 7.)2
Xx(a,b) © Jab © J4 o Jb Le Aut®/ (Idp).

In particular taking @ = b = 1 € Z/2 we seek a j; such that x; o j1_2 € Auté/z(ld[g).
This means that Xgojf2 must be the identity on By, so that jfz|c2 = —Id¢, and jleco =



50 C. Delaney, C. Galindo, J. Plavnik, E. C. Rowell, Q. Zhang

Table 2. Basic data for isomorphism classes of simple objects in SU (4)4

Label Grading Dimension Twist
1 0 1 1

g 0 1 —1
g2 0 1 1

g 0 1 -1

Y 0 2d — 1 -1
gy 0 2d — 1 1

g2 0 2d — 1 -1
2y 0 2d — 1 1

z 0 2d —2 —i
gZ 0 2d -2 i

X 1 V2d ¢
gX 1 V2d ;'Ej
g2x 1 V2d —;éf
22X 1 V2d —;(%41
X 1 V14d =38 —;%
gX 1 J14d =38 -t
$2X 1 14d — 8 ¢!
X 1 J14d =8 ;%}
X/ 2 d ;%6
gX’ 2 d Y3
gZX/ 2 d 4—56
2x/ 2 d ;1%6
X" 2 d —{16
gXx” 2 d —Z16
g2 X" 2 d —Z16
X7 2 d —Z16
w 2 4d — 4 —tfe
X 3 V2d &3
gX* 3 V2d -
2x* 3 V2 o)
g3X* 3 V2d §g4l
X* 3 14d — 8 N
gX* 3 14d — 8 o
g2 X* 3 14d — 8 ;274
g3 X+ 3 V14d =8 &

Hered = +/2+2 and {1 = e2mi/16, Cea = e27i/64 gre primitive 16th and 64th roots of unity, respectively

Idc,. But since j; € Autg(Idg) we see that ji(X) ® j1(Y) = jiI(X ® Y) = idxgy for
X,Y € Irr(Cy), and j1(X) = kidy and j{(Y) = kidy since j; must act by a constant
scalar on the simple objects in the universally-graded components. Thus k = +1. But
now j,- 2(X ) = k?idy = idy, contradicting j,~ 2|(;2 = —Idc,. Alternatively we see that
the second obstruction (4.14) implies that (a, b) — X(a,») should define a coboundary
7]2 x ]2 — ZE But in this case (1, 1) + 7/, where ¥z,2(1) = —1 is a non-
trivial character, and hence the corresponding cocycle is non-trivial. We conclude that
this associative zesting does not admit a braided zesting.

6.3.3. SU(4)> The metaplectic [6] Z/4-graded modular category B = SU(4), =
SO (6); has rank 10 and dimension 24, with pointed subcategory P(4, 2) = C(Z/4, n)
271ij2/4.

where n(j) = e As above we will denote the generator of Inv(B) by g and in
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this case h = g2 generates Inv(B,4). We set g = e~2mi/4 50 that the grading is of the
form By = {1, g%, Y1}, Bo = {g,g>, Y2}, Bi = {X1, X»} and Bz = {Z1, Z»} where
X is labeled by oy and Z; = X7. The dimensions are dim(¥;) = 2 and dim(X;) =
dim(Z;) = /3. We have two choices of zesting 2-cocycle A, € H*(Z/4,7/2) = 7,
given by A, (i, j) = h* = g?* fori + j > 4 and 1 otherwise, where ¢ = 0, 1. In the no-
tation of Propositions 6.3 and 6.4 we have m = 2 and € = 0, and N = 4 so that there are
8 associative zestings, taking Aj, € H3(Z/4,k*) as in Eq. (6.15). By Proposition 6.4(i)
the 4 pairs (A4, Ap) that admit braidings correspond to {(0, 0), (0, 2), (1, 1), (1,3)} so
that we have at most 16 braided zestings, depending on a, b and s with s* = g?. In
fact, we have one such braided zesting for each s = e27ix/16 since each 16th root of
unity appears. Each of these braided zestings admits 2 ribbon twists, one of which is
unitary. We will spare the reader the full details, but there are a few interesting things to
note:

(1) Whena = 0and b = 0, 2 the 8 unitary ribbon braided zestings are modular and in
fact remain metaplectic [6]. Since zesting leaves the trivial component unchanged,
and the 2 dimension object in the trivial component has twist ¢>*//3, we cannot
obtain the complex conjugate category by zesting. Indeed, we can check directly
that we get 2 distinct sets of twists among the 4 choices of s* = 1 (for b = 0)
and similarly for the 4 choices of s* = —1 (for b = 2). The central charges for
b = 0 are all the same, as are the central charges for b = 2, and they are complex
conjugates of each other (the cases b = 0 and b = 2).

(2) Fora = l and b = 1, 3 we see that g®;g = gQg®g% = 1, so that g is self-dual
in the zested theory 5(1, b). Moreover, s = qb = =i so that the twist of g in
B(1, b) is £1 and is thus a boson or fermion. Lemma 5.9 show that, in fact g is
in the Miiger center of B(1, b), so that B(1, b) = Rep(Z/2, z) X A where either
z =0orz = 1and A is a Galois conjugate of SU (2)4. In particular, B(1, b) is not
modular.

7. Zesting Obstructions and Eilenberg—-MacL.ane Cohomology

After we posted this paper A. Davydov and D. Nikshych posted [9] containing related
results. In [9] some particular braided zestings are interpreted as deformations of a
braided monoidal 2-functor and its obstruction as an element in an Eilenberg-MacLane
cohomology group.

In this section, we will briefly explain the connection between some of the results in
[9] and some of ours. Primarily, we want to analyze the apparent differences between
the obstructions in this paper and [9]. Essentially the differences come down to this: in
[9] the cohomology class in the Elinberg-MacLane cohomology H?(K (A, 2), k*) is
the obstruction for a symmetric 2-cocycle Zgym(A, Inv(B,)) to admit a braided zest-
ing, while our cohomological obstructions in Theorem 4.15 and Corollary 4.16 are the
obstructions that a fixed associative zesting admits a braided zesting. In practice, to com-
pute the EM-obstruction or to explicitly describe the braided zesting (assuming it exists)
one would need to go though the step-by-step process we have presented: describe the
associative zestings (a 3-cochain) and check that our braided zesting obstructions vanish.

In [9] it was proved that braided extensions of a braided fusion category B, by a finite
abelian group A correspond to braided monoidal 2-functors from A (seen as discrete
braided monoidal 2-category) to Picy, (B,) the braided 2-categorical Picard group of 3,
(consisting of invertible central 5,-module categories), see loc. cit. for details.
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Given a faithfully A-graded fusion category B = @, 4 Ba there is an associated
group homomorphism f : A — wo(Picy,(Be)), a — [B,].In[9, Section 8.6] braided A-
zestings of B with j = 1 are interpreted as liftings of f (called deformations of f in loc.
cit.), that is braided monoidal 2-functors F : A — Picp, (BB.) such that [F(a)] = [B,]
for all a. Since w1 (Picp,(B.)) = Inv(22(B.)), liftings of f : A — mwo(Picy,(Be))
are associated with elements in H2,_ (A, Inv(Z,(B.))) = Extz(A, Inv(Z,(B.))) (co-

sym
homology classes of symmetric 2-cocycles). Now, in [9, Proposition 8.32] they proved
that the obstruction to the existence of a braided zesting associated to an element in
A € Hyp (A, Inv(Z5(B,))) is given by an element PW3 (1) € H>(K (A, 2), k).

In order to describe P Wée (A) we recall the cocycle description of H S(K(A,2),k>)
for abelian groups A and M. Let Z° (K (A, 2), k*) be the abelian subgroup of C*(A, M)®
C3 (A, M) ® C*(A, M) = {a(—, =, =, =), a(—, —|=), a(=|—, —)} such that

a(xy,z, w,u) +a(x,y, zw,u) +a(x,y,z, w) =a(y,z, w,u) +alx, yz, w, u)
+a(x,y,z, wu), (7.1)
a(x|z, w) —a(xlyz, w) +a(xly, zw) — a(xly, z) =a(x,y,z, w) —a(y, x, z, w)
+a(y1Z7-x» w) _a(yvzs wv-x)
(7.2)
a(y, zlw) —a(xy, zlw) +alx, yzlw) —a(x, ylw) =a(x, y,z, w) —a(x, y, w, z)
+a(x,w,y,z) —a(w,x,y,2)
(7.3)
a(ylz, w) —a(xylz, w) +a(x|z, w)
+a(x, ylzw) —a(x, ylw) —a(x, ylz) = —a(x, y,z,w) +a(x, z, y, w)
+a(x,z,w,y) —a(z,x,y, w)
+a(z,w,x,y) —a(z,x,w,y)
(7.4)

a(x, y|lz) —a(y, x|z) = a(x|z, y) — a(x|y, 2), (7.5)
for all x,y,z,w,u € A. Let B3(K(A,2), M) C B>(K(A,2), M) the subgroup of
abelian cocycles of the form

a(-xs v, 2, w) Zb(y» r w) _b(x)” 2, w)+b(-x’ yz, w) _b(-xv Yy, ZU))+b(.X, Yy, Z)a
a(x, y|lz) =b(x|y) — b(x|yz) + b(x|z) — b(x, y,2) +b(y, x,2) — b(y, 2, x),
a(x|y,z) =b(y|z) — b(xy|z) + b(x|z) + b(x, y,2) — b(x,z,y) +b(z, X, y),

for some (b(—, —, —), b(—, —)) € C3(A, M)®C?(A, M). The group H> (K (A, 2), M)
is by definition Z>(K (A, 2), M)/ Z>(K (A, ?2), M). The elements in Z>(K (A, 2), M)
are called abelian cocycles.
The obstruction P Wée (L) € H3(K(A, 2), k*) is described as the cohomology class
of the abelian cocycle
PWE (M(x, ¥, 2, W) =Cagr.y) i)
PW5 (M)(x,ylz) =1

PWg, 0)(x]y, 2) = Xy(y. @),

where the number x;(, ;) (x) € k™ corresponds to [B,, A(y, 2)] L in [9].
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Recall that for a braided fusion category B3, we denote B"¢" the same fusion category
but with braiding c/X’Y = C;IX forall X, Y e B.

In the following proposition we prove that checking the vanishing of PWL%E (A) in
H>(K (A, 2),k*) is basically the same as checking the condition in Corollary 4.16.

Proposition 7.1. Let B = @, ., Ba be a graded fusion category and ) € 7?2
(A, Inv(Z,(B,))) a symmetric 2-cocycle. Then PWée (M) € H3(K(A, 2), k) vanishes
if and only if there is an associative zesting of B"Y corresponding to A for which the
conditions in Corollary 4.16 hold.

Proof. Since A takes values in the Miiger center of B, the cocycle v, defined in Fig. 5
for B¢ is exactly the (standard) 4-cocycle

(X, y, 2 w) = PW5 (DX, .2, W) = Curynicw) ¥X Y. 2w € A.

If the cohomology class of PWée (A)(—, —, —, —) is trivial, it follows that there is
A € C3(A, k) such that nge (L) € Z3(K (A, 2), k*) is cohomologous to

alx,y,z,w) =1

Ay, x,2)
ax,ylz) =
Ax, y, DAy, 2, X)
Ax,y, DAz, x,y) 4
a(xb’, Z) = )\.(.X',Z,y) X)L(y,z)(x)v
and (A(—, —), A(—, —, —)) is an associative zesting for B°".
Now, if follows from the equation (7.3) that a(—, —|z) € Z2(A,k*) forall z € A.
The cohomology classes of a(—, —|z) ™! correspond to the obstructions O (A)(a, —, —)

defined in Lemma 4.12. If this obstructions vanish there is b(—|—) € C2(A, k*) such
PWée € Z°(K (A, 2),k*) is cohomologous to

adx,y,z,w)=1 (7.6)
a'(x,ylz) =1 (7.7)
b(y|l2)b(x|z) AM(x,y, DAz, x,y)
'xly, 2) = : 7.8
a(xly,2) bayl2) A2 Xon(y.2) ) (7.8)
It follows from equations (7.5), (7.4), and (7.2) that @’(—|—, —) € Zszym (A, X) (sym-

metric 2-cocycles). Hence the cohomology of P Wée € Z3(K (A, 2), k*) vanishes if and
only if [)(y,0) ()] = [h(il(i);’l%m Mx’y’Z))‘(z’x’y)] in H2(A, A). Since the cohomology

Ax,z,y)

class of b(%‘é)fl%m ’\(x’;é);(i’)x’y) agree with O»(A, b)~! defined in Fig. 14, the condi-

tions in Corollary 4.16 holds for some associative zesting of B"*" if and only if P Wéﬁ
vanishes. O
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8. Conclusions and Future Directions

We have developed the general theory of associative zesting for fusion categories and a
further theory of braided, twist and ribbon zestings for categories with these additional
structures and properties. We have illustrated their utility with a few examples, notably
establishing the existence of a modular category of rank 10 and dimension 36 obtained
by zesting SU (3)3 that was conjectured in [S]. Moreover we have shown that braided
zesting preserves property F, and given explicit computations of the modular data for
braided zestings of modular categories. While zesting shares some similarities with
symmetry gauging, the explicit nature of zesting is a distinct advantage.

This work suggests several interesting directions for future applications. Note that we
have mostly applied our theory to zesting modular categories with respect to the universal
grading. While these are perhaps the most interesting and most transparent examples, it
would be interesting to apply associative zesting to fusion categories that do not admit a
braiding and braided zesting with respect to non-universal grading groups and non-cyclic
grading groups. Finally we point out that symmetry gauging has a physical interpretation
as phase transitions of topological phases of matter. We do not know if zesting has a
meaningful physical interpretation.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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