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Abstract
This article presents a rigorous formulation for the pursuit-evasion (PE) game
when velocity constraints are imposed on agents of the game or players. The
game is formulated as an infinite-horizon problem using a non-quadratic func-
tional, then sufficient conditions are derived to prove capture in a finite-time.
A novel tracking Hamilton–Jacobi–Isaacs (HJI) equation associated with the
non-quadratic value function is employed, which is solved for Nash equilibrium
velocity policies for each agent with arbitrary nonlinear dynamics. In contrast
to the existing remedies for proof of capture in PE game, the proposed method
does not assume players are moving with their maximum velocities and consid-
ers the velocity constraints a priori. Attaining the optimal actions requires the
solution of HJI equations online and in real-time. We overcome this problem
by presenting the on-policy iteration of integral reinforcement learning (IRL)
technique. The persistence of excitation for IRL to work is satisfied inherently
until capture occurs, at which time the game ends. Furthermore, a nonlinear
backstepping control method is proposed to track desired optimal velocity tra-
jectories for players with generalized Newtonian dynamics. Simulation results
are provided to show the validity of the proposed methods.
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1 INTRODUCTION

Inspired by the animal behaviors in hunting scenarios, the pursuit-evasion (PE) games have drawn great attention due
to their applicability in areas such as missile guidance,1 collision avoidance systems2 and controller designs.3 The game
of this kind is defined as a sub-category of differential game theory and provides the correct framework for the analysis
of intercept problem and the choice of optimal policies for the agents involved in the two-player zero-sum (ZS) game.

Isaacs,4 founder of the differential game theory, initiated the development of strategic policies for both pursuer and
evader in a PE problem. In Isaacs,5 the homicidal chauffeur game was analyzed in detail regarding players’ speed and
maneuverability capabilities. Bryson6 introduced optimal feedback laws and demonstrated intercept strategies for players,
by using the fixed final-time value function. Lewis et al.7 made an extension of the Bellman equation, known as the
Hamilton-Jacobi-Isaacs (HJI) equations to designH∞ control, by employing the ZS games solutions. Moreover, works8-10
deal with linear-quadratic ZS games, in which their objective is to minimize the maximum norm of inputs and states,
where the maximum is taken over the unknowns, such as disturbances. Hayoun et al.11 reveal a set-based computing
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method for solving a general class of ZS Stackelberg differential games where the authors come up with a novel class of
differential inequalities to get convex outer approximations of backward and forward reachable sets. Bhattacharya et al.12
worked on a visibility-based PE game when the environment contains a circular obstacle. Furthermore, Li et al.13 and
Liu et al.14 developed an reinforcement learning (RL) algorithm to learn the Nash equilibrium solution for designing
model-free controller by solving the game algebraic Riccati equation forward in time.

Applications of PE games involve the proximate satellite interception guidance strategies. Thework15 studied the inter-
cept problem of satellites where both of the interceptor and target satellite can perform orbital maneuvers with limited
thrusts. In the work,16 the authors analyzed same problem by establishing a local moving coordinate frame and simplify-
ing dynamics of each player to the linear Clohessy-Wiltshire equations. Using the terminal time as a cost function, Gong
et al.17 derived sufficient conditions for capture in the PE problem based on the players’ hyper-reachable domain. Note
that the common point of these papers is to utilize prescribed terminal time on the construction of the game-theoretical
cost function. Jagat et al.18 proposes quadratic infinite-horizon cost functional for both players but the finite-time capture
is not proven mathematically. Instead, simulations are provided to show that capture occurs in a finite-time. Carr et al.19
employ semi-direct collocation nonlinear programmingmethod to solve optimal actions for agents of the pursuit–evasion
game. Authors solve the minimax problem by considering co-state dynamics and boundary conditions simultaneously
for the dynamical models.

Standard solution to constrained PE game is to impose external velocity or acceleration constraints. Unfortunately,
this leads to discontinuous saturated solutions that are difficult to analyze.6,7

Recent works by Hayoun et al.11 Shaferman et al.20 and Weintraub et al.21 focus on the missile-target engagement
where the PE problem is formulated as a differential game with an objective of optimizing the linear quadratic cost
functional. The work11 propose bounded maneuverability of the evader to prove the capture in ZS game whereas Wein-
traub et al.21 consider an engagement scenario by introducing the defense of a non-maneuverable agent. Further, this
work21 reveals the inclusion of altitude and dynamics in 3-dimensions, which is more realistic for the modeling of aerial
engagements.

We sum up the contributions of this article into four categories as:

• First, a backstepping based velocity tracker is developed for PE gameswhere the pursuer and evader both have arbitrary
nonlinear dynamics. Taking a priori velocity constraints into account, a novel non-quadratic scalar functional is solved
to obtain the smooth optimal velocity policies for each player in contrast to the standard discontinuous solutions.

• Second,with the detailed Lyapunov analysis, sufficient conditions are given for the casewhere capturemust be attained
in finite-time.

• The on-policy integral reinforcement learningmethod is employed to solve the correspondingHJI equation and achieve
the game optimal velocity policies for both pursuer and evader.

• Finally, the full rotational dynamics are added to extend the results to full nonlinear dynamical PE systems.

Rest of the article is organized as follows. Section 3 reviews the exponentially stabilizing nonlinear backstepping
controlmethod to track given velocity trajectories for a generalizedNewtonian systemdynamics. Section 4 obtains optimal
actions for the players bymaking use of the Pontryagin’s minimum principle and brings analysis of a Nash equilibrium in
the PE game. Furthermore, having revealed the sufficient conditions for the asymptotic capture, we prove that PE game
ends in a finite-time based on the derived sufficient conditions. Section 5 proposes an on-policy reinforcement learning
algorithm for the solution of HJI equation and derives the proof of convergence to the optimal policies. Section 6 closes
the backstepping control loop by treating forces and/or moments as finalized inputs to the system and representing the
attitude with unit quaternions to overcome the singularity problem of the Euler angles. Finally, the proposed control
policies are illustrated via simulation results in Section 7.

2 PROBLEM FORMULATION AND MODEL DESCRIPTION

We study the pursuit-evasion (PE) game for general Newtonian dynamics. A novel approach is given whereby we first
design backstepping based velocity controllers for the pursuer and evader that guarantee a Nash solution to the PE game.
We use a novel value function that ensures a solution under bounded velocities of the pursuer and the evader. This
provides smooth solutions to the bounded velocity PE game in contrast to standard discontinuous solutions.6 We conduct
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a Nash equilibrium analysis for a game of this kind. Further, we seek to obtain sufficient conditions for global exponential
stability of the origin (equilibrium) using a rigorous Lyapunov analysis. Finally, we seek to derive conditions for a final
time capture, and provide an upper bound on the time of capture.

The generalized translational and rotational dynamics for the pursuer and the evader can be modeled in their
respective body frames of reference as

miv̇iB = miS(wi
B)v

i
B +Ni(𝜼i)fig + fiB, (1)

IiBẇ
i
B = S(wi

B)I
i
Bw

i
B + 𝝉 iB (2)

where the superscript i ∈ {p, e} with p denoting the pursuer and e denoting the evader respectively. Here, viB ∈ R3,
wi
B ∈ R3 are the translational and angular velocities respectively, and fiB ∈ R3, 𝝉 iB ∈ R3 are the control forces andmoments

respectively, in the body fixed reference frame. Further, IiB ∈ R3×3 is the constant nonsingular inertia matrix defined in
the body frame andmi is a scalar quantity that denotes themass of players’ rigid bodies. In addition, fig =

[
0 0 mig

]T is the
gravitational force vector whose components are written in the Inertial frame. S(wi

B) ∈ R3×3 represents a skew-symmetric
matrix form of the vectorwi

B. Moreover,m
iS(wi

B)v
i
B and S(w

i
B)I

i
Bw

i
B are due to the derivative of the body referenced linear

and angular momentum of the vehicles relative to the Inertial frame. Ni(𝜼i) ∈ R3×3 is a rotation matrix from Inertial to
body frame with the argument of Euler angle vector 𝜼i ∈ R3 (see Equation (46) in Section 6). Later in Section 6, we will
call this Inertial frame as earth frame and give detailed explanation for the rotation matrix.

3 DEVELOPING VELOCITY TRACKER USING BACKSTEPPING CONTROL
METHOD

In this section, we present an exponentially stabilizing backstepping control method to track given velocity trajectories.
This velocity tracker is developed in this section, which uses only the translational dynamics (1). In Section 4, the velocity
tracker is extended for PE games based on the translational dynamics (1) for both pursuer and evader. Then, in Section 6
we also consider rotational dynamics (2) to obtain general controllers for both velocity and attitude for pursuer and evader.

Note, we first derive the required velocity tracking control laws in the Inertial frame, and then subsequently Section 6
shows how they are realized using the dynamics in (1) and (2).

Using standard techniques,22 the translational dynamics (1) is represented in the Inertial frame as,

miv̇i = fi + fig (3)

where vi ∈ R3 is the velocity vector and fi = NiT(𝜼i)fiB is the control force, in the Inertial frame i ∈ {p, e}. Here Ni(𝜼i) is
a rotation matrix given in (46) (Section 6) that depends on the Euler angles, 𝜼i =

[
𝜓 i 𝜃i 𝜑i]T , generated by the rotational

system (2). Therefore, fi cannot be directly controlled, but depends on the rotational dynamics (2). See Section 6 for
elaboration.

Therefore, backstepping must be used to determine the desired fi that must be generated by (2). Introducing a desired
virtual force fid, to the system dynamics (3) we obtain

miv̇i = fid + fig + f̃
i

(4)

where f̃
i
= fi − fid is the difference of control and desired forces of the Newtonian system in 3-D.

Define velocity error as

𝜹iv = vid − vi (5)

where vid ∈ R3 is the desired velocity designed for pursuer vpd and evader v
e
d in the next section. Take the derivative of (5)

and substitute in (4) to obtain closed-loop velocity error dynamics as

mi𝜹̇
i
v = miv̇id − fig − f̃

i
− fid. (6)
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Then select ideal desired force as

fid = miv̇id − fig +miKi𝜹iv (7)

where Ki ∈ Rn×n is a positive-definite matrix. Substituting (7) in (6) yields

𝜹̇
i
v = −Ki𝜹iv −

f̃
i

mi
. (8)

This enables us to derive exponential stability of the origin, as long as an admissible fid exists. In Section 6 we consider
the rotational dynamics and show how to design the control force, fi and hence fiB in (1) and (3) respectively, to make
f̃
i
→ 0.23 Then (8) shows that 𝜹iv → 0 exponentially.

Remark 1. Tracking the vector quantity fid in (7) not only guarantees exponential stability of the equilibrium of (6) but
also gives the desired attitude of the Newtonian system (3) so that it is aligned with the direction of fid.

The next section deals with the derivation of optimal velocity trajectories vid for pursuer and evader, employed in (5).
The design of the desired ideal forces fpd, f

e
d is treated in Section 6.

4 OPTIMAL GAME THEORETIC VELOCITY GENERATION FOR
PURSUIT-EVASION GAME

In this main section, we first propose a formulation of PE game and derive the optimal bounded desired velocity trajec-
tories vpd, v

e
d in (5) for the players. Second, we conduct a Nash equilibrium analysis for the game and derive sufficient

conditions for global exponential stability of the origin by rigorous Lyapunov analysis. Finally, conditions for finite-time
capture and its upper bound are given.

4.1 Pursuit-evasion game formulation

Assuming the players are governed by the velocity error dynamics (8), this section presents various definitions to develop
the game-theoretically optimal solution of the PE game satisfying velocity constraints on the players. To simplify the
notation, define desired velocity in (5) for the pursuer vp = vpd and the evader v

e = ved.
The following kinematic expressions enable us to derive desired velocities and thereby the forces (7) for pursuer and

evader

𝝃̇
p = vp

𝝃̇
e = ve (9)

where 𝝃p ∈ R3 and 𝝃e ∈ R3 denote the 3-dimensional position vectors (x, y, z) of pursuer and evader respectively, which
are defined with respect to Inertial frame. Hence vp ∈ R3 and ve ∈ R3 are desired velocity vectors of the pursuer and
evader respectively. Note that (3) employs the translational velocity in the PE game. This allows analysis of ZS game for
general nonlinear systems in Section 6.

Now, consider the following formulation for the zero-sum (ZS) PE game. Let the evader have an objective of
maximizing the relative distance 𝜹 ∈ R3, defined as

𝜹 = 𝝃p − 𝝃e, (10)

whereas the pursuer tries to minimize (10). Moreover, let the velocities of both pursuer and evader be bounded by scalars|vpj | ≤ 𝜆p; |vej | ≤ 𝜆e∀j = 1, … ,n. To satisfy these constraints, the value functional is defined as

V𝜋p,𝜋e (𝜹) = ∫
∞

t
{𝜹TQ𝜹 + U(𝜋p(𝜹)) − U(𝜋e(𝜹)}d𝜏 (11)
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whereQ ∈ Rnxn is a positive-definite matrix, 𝜋p(.) and 𝜋e(.) stand for the policies of pursuer and evader respectively in ZS
game such that

𝜋p(𝜹) ≜ vp

𝜋e(𝜹) ≜ ve. (12)

Moreover, U(vi) (for i is either p or e) is a generalized non-quadratic scalar functional,24 which ensures bounded
velocities given by

U(vi) = 2∫
vi

0
(𝛼−1(ui∕𝜆i))TRidui,

𝛼−1(ui∕𝜆i) =
[
𝛼−1(ui1∕𝜆

i) … 𝛼−1(uin∕𝜆i)
]T
,

ui =
[
ui1 … uin

]T
, vi =

[
vi1 … vin

]T
(13)

where Ri ∈ Rnxn is a symmetric positive-definite matrix and 𝛼(.) is a bounded one-to-one smooth function that is, it
belongs to C𝓁 ,𝓁 ≥ 1. This is a monotonic odd function with its first derivative bounded by a constant. An example of 𝛼(.)
is tanh(.) and throughout this article, we use tanh(.), which constrains the velocity to remain within predefined limits
that is, |vij| ≤ 𝜆,∀j = 1, … ,n and ∀i = p, e. In ZS PE games, Ri plays a key role by restricting the rate of change of optimal
velocities and hence constrains the accelerations of the each player.

The differential equivalent of (11) is the ZS game Bellman equation. Using (9), (10) and Leibniz’s formula, the Bellman
equation is obtained as

H(𝜹,∇V , vp, ve) ≡ 𝜹TQ𝜹 + U(vp) − U(ve) + ∇VT 𝜹̇

≡ 𝜹TQ𝜹 + U(vp) − U(ve) + ∇VT(vp − ve) = 0 (14)

where ∇V = 𝜕V𝜋p,𝜋e∕𝜕𝜹 ∈ Rn is the gradient of value function (11), and H(.) is the Hamiltonian.
To find the optimal policies 𝜋i∗(𝜹) = vi∗ (for i = p, e) of players in the game, check stationarity conditions 𝜕H∕𝜕vp = 0

and 𝜕H∕𝜕ve = 0. For the pursuer, applying Pontryagin’s minimum principle to (14) yields

𝜕H
𝜕vp

≡ 𝜕U(vp)
𝜕vp

+ 𝜕

𝜕vp
{∇VT(vp − ve)}. (15)

Evaluating the derivatives at the right-hand-side of (15) using Leibniz’s formula, and checking the stationarity
condition 𝜕H∕𝜕vp = 0 yields

2
(
tanh−1

(
vp∗

𝜆p

))T

Rp = −∇V∗T . (16)

Then, the optimal policy for the pursuer using the definition (12) is obtained as

𝜋p
∗(𝜹) ≜ vp∗ = −𝜆p tanh

(1
2
(Rp)−1∇V∗

)
. (17)

This velocity control bounded as required.
Likewise, one can follow the same steps to derive bounded optimal velocity policy for the evader as

𝜋e
∗(𝜹) ≜ ve∗ = −𝜆e tanh

(1
2
(Re)−1∇V∗

)
. (18)

LetV∗ be the optimal value of (11)with the policies given in (17) and (18). ThenHamilton-Jacobi-Isaacs (HJI) equation
is obtained as

H(𝜹,∇V∗, vp∗, ve∗) ≡ 𝜹TQ𝜹 + U(vp∗) − U(ve∗) + ∇V∗T(vp∗ − ve∗) = 0. (19)
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Note that the positive and negative definiteness of Hessians, 𝜕2H∕𝜕vp2 > 0 and 𝜕2H∕𝜕ve2 < 0, indeed show that pur-
suer’s optimal policy aims to minimize the Hamiltonian (14) whereas evader’s aims to maximize. Therefore, (vp∗, ve∗)
is the game-theoretic saddle point. Furthermore, this is a Nash equilibrium since the game is of type ZS and (11) is
separable.6 Rigorous analysis of this is shown in Theorem 1.

4.2 Proof of Nash equilibrium

In this section, we derive the value of PE game at Nash equilibrium. The following lemmas and corollary are necessary
steps to prove that the Nash equilibrium is reached with policies (17) and (18).

Lemma 1. Let V𝜋p,𝜋e (𝜹) be the corresponding solution of the Hamiltonian (14). Then following equality holds

H(𝜹,∇V , vp, ve) = H(𝜹,∇V , vp∗, ve∗) + ∇VT((vp − vp∗)
+ (ve∗ − ve)) + U(vp) − U(vp∗) + U(ve∗) − U(ve). (20)

Proof. Adding and subtracting the terms U(vp∗), U(ve∗), ∇VTvp∗, and ∇VTve∗ to Hamiltonian (14) yields

H(𝜹,∇V , vp, ve) = 𝜹TQ𝜹 + ∇VT(vp∗ − ve∗)U(vp∗)
− U(ve∗) + ∇VT((vp − vp∗) + (ve∗ − ve))
+ U(vp) − U(vp∗) + U(ve∗) − U(ve), (21)

which completes the proof. ▪

Lemma 2. Let V𝜋p,𝜋e (𝜹) be the corresponding solution of the Hamiltonian (14) and define V(𝜹(t0)) as the initial value of the
game. Then following equality holds

V𝜋p,𝜋e (𝜹(t0)) = ∫
∞

t0
H(𝜹,∇V , vp, ve)d𝜏 + V(𝜹(t0)). (22)

Proof. Assume that capture occurs in the interval t ∈ [t0,∞], which implies limt→∞ V𝜋p,𝜋e (𝜹(t)) = 0. Then adding zero to
(11) yields

V𝜋p,𝜋e (𝜹(t0)) = ∫
∞

t0
{𝜹TQ𝜹 + U(𝜋p(𝜹)) − U(𝜋e(𝜹))}d𝜏 + ∫

∞

t0
V̇𝜋p,𝜋ed𝜏 + V(𝜹(t0))

= ∫
∞

t0
{𝜹TQ𝜹 + U(vp) − U(ve)}d𝜏 + ∫

∞

t0
∇VT(vp − ve)d𝜏 + V(𝜹(t0))

= ∫
∞

t0
H(𝜹,∇V , vp, ve)d𝜏 + V(𝜹(t0)). (23)

This completes the proof. ▪

The next corollary extends the fact given in Lemma 1.

Corollary 1. Suppose V∗ satisfies the HJI Equation 19. Then H(𝜹,∇V∗, vp∗, ve∗) = 0 and (20) becomes

H(𝜹,∇V∗, vp, ve) = ∇V∗T((vp − vp∗) + (ve∗ − ve)) + U(vp) − U(vp∗) + U(ve∗) − U(ve). (24)

The next theorem derives the optimal value of the ZS game and proves Nash equilibrium reached.

Theorem 1. Consider kinematic expressions for the players (9) with the value function given in (11). Let V∗ be a positive
definite smooth solution of HJI Equation 19. Then, (vp∗, ve∗) given by (17), (18) is the Nash equilibrium and V∗(𝜹(t0)) is the
value of PE game.
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Proof. Using the facts given in Lemma 2 and Corollary 1, (23) becomes

V𝜋p,𝜋e (𝜹(t)) = ∫
∞

t
{∇V∗T((vp − vp∗) + (ve∗ − ve))

+ U(vp) − U(vp∗) + U(ve∗) − U(ve)}d𝜏 + V∗(𝜹(t0)). (25)

To prove (vp∗, ve∗) is the Nash equilibrium of the game, we need to show that when the pursuer adopts policy given
in (17), the best action for the evader to maximize the value function (11) is ve∗. Likewise, when the evader adopts policy
given in (18), the best action for the pursuer to minimize the value function (11) is vp∗ that is,

V𝜋p∗,𝜋e (𝜹(t)) ≤ V𝜋p∗,𝜋e∗ (𝜹(t)) ≤ V𝜋p,𝜋e∗ (𝜹(t)). (26)

Note that V𝜋p∗,𝜋e∗ (𝜹(t)) = V∗(𝜹(0)) and call the integral term in (25) as 𝛽(V𝜋p,𝜋e ). Now we need to show 𝛽(V𝜋p∗,𝜋e ) ≤ 0
and 𝛽(V𝜋p,𝜋e∗ ) ≥ 0 so that (26) holds. Then using (13), (17), (18), and (25) we obtain

𝛽(V𝜋p∗,𝜋e ) = ∫
∞

t
{∇V∗T(ve∗ − ve) + U(ve∗) − U(ve)}d𝜏

= ∫
∞

t

{
−2(tanh−1(ve∗∕𝜆e))TRe(ve∗ − ve) + 2∫

ve∗

ve
(tanh−1(u∕𝜆e))TRedu

}
d𝜏. (27)

Now define 𝜙T(.) = tanh−1(.) and note that 𝜙T(.) is monotonically increasing function in the interval [−𝜆e, 𝜆e]. To
complete the proof, first assume that ve∗ ≥ ve and apply integral mean value theorem on (27)

𝛽(V𝜋p∗,𝜋e) = ∫
∞

t

{
−2𝜙(ve∗∕𝜆e)Re(ve∗ − ve) + 2∫

ve∗

ve
𝜙(u∕𝜆e)Redu

}
d𝜏

≤ ∫
∞

t
{−2𝜙(ve∗∕𝜆e)Re(ve∗ − ve) + 2𝜙(ve∗∕𝜆e)Re(ve∗ − ve)}d𝜏 = 0. (28)

Then assume that ve∗ < ve and again apply integral mean value theorem on (27)

𝛽(V𝜋p∗,𝜋e ) = ∫
∞

t

{
2𝜙(ve∗∕𝜆e)Re(ve − ve∗) − 2∫

ve

ve∗
𝜙(u∕𝜆e)Redu

}
d𝜏

≤ ∫
∞

t
{2𝜙(ve∗∕𝜆e)Re(ve − ve∗) − 2𝜙(ve∗∕𝜆e)Re(ve − ve∗)}d𝜏 = 0, (29)

which shows that 𝛽(V𝜋p∗,𝜋e ) ≤ 0. The same procedure can be performed to show 𝛽(V𝜋p,𝜋e∗ ) ≥ 0. Then the inequality given
in (26) is verified, which implies that (vp∗, ve∗) is the Nash equilibrium and V∗(𝜹(t0)) is the value of the PE game. ▪

4.3 Stability and finite-time capture analysis

This section first reveals the sufficient conditions for the asymptotic capture of the evader by the pursuer. Then, bymaking
use of these conditions, derives the globally exponential stability of the origin. Finally it is shown that under certain
conditions, finite-time capture is ensured.

Before developing analysis for the asymptotic capture, let Ri in (17) and (18) be a diagonal matrix with elements
of rij > 0,∀j ∈ {1, 2, 3} and ∀i = p, e. This enables us to simplify the analysis that will be developed in the rest of the
article. Employing this assumption, the next theorem shows the sufficient conditions for the asymptotic capture in ZS PE
games.

Theorem 2. Consider kinematic expressions for the players (9) with the value function given in (11). Then the equilibrium
of tracking error dynamics 𝜹̇ = vp∗ − ve∗, is asymptotically stable point with candidate Lyapunov function L(𝜹) = V𝜋p∗,𝜋e∗ (𝜹).
The sufficient conditions for asymptotic capture are 𝜆p > 𝜆e and rei ≥ rpi∀i = 1, … ,n.
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Proof. Since V𝜋p∗,𝜋e∗ (𝜹) does not depend on the time explicitly, equality L̇(𝜹) = ∇LT 𝜹̇ holds. By (14), derivative of the
Lyapunov function, L̇(𝜹) is obtained as

L̇(𝜹) = −𝜹TQ𝜹 − U(vp∗) + U(ve∗). (30)

Assumption of the equality Rp = Re, implies the pursuer and evader are moving in the same direction by (17) and
(18). For intercept, the position of the pursuer and evader must be equal. To meet this criteria, we propose 𝜆p > 𝜆e so
that asymptotic capture occurs as the row elements of optimal actions satisfy |vp∗|i > |ve∗|i ∀i = 1, … ,n . Furthermore,
taking (30) into account, the condition ofRp = Re is relaxed asRe ≥ Rp since proposition 𝜆p > 𝜆e impliesU(vp∗) ≥ U(ve∗),
L̇(𝜹) becomes strictly negative definite. Then sufficient conditions for the asymptotic capture is proved to be 𝜆p > 𝜆e and
rei ≥ rpi∀i = 1, … ,n. ▪

Remark 2. Aysmptotic capture in Theorem 2 can be strengthened to finite-time capture with the assumption that players
involved in the game satisfy the sufficient conditions derived in the proof of Theorem 2. See Lemma 3.

Following theorem extends the Theorem 2 to exponential stability of the origin.

Theorem 3. Consider sufficient conditions and Lyapunov function, L(𝜹) given in Theorem 2. Then, there exists positive
scalars c1, c2, and 𝜖, which satisfies

c1||𝜹||22 ≤ L(𝜹) ≤ c2||𝜹||22
L̇(𝜹) ≤ −𝜖L(𝜹), (31)

which implies that the origin is an exponentially stable equilibrium. Furthermore, radially unboundedness of the L(𝜹) implies
the globally exponentially stability of the origin,25 which is an essential result as the initial positional offset between the pursuer
and evader should not be problem to prove the capture in PE game.

Proof. The inequality U(vp∗) ≥ U(ve∗) by Thoerem 2 and the strict convexity of U(vi) (for i = p, e), imply the existence of
positive scalars c1 and c2.26 Now, define convex functionUs(𝜹) that satisfies the inequalityUs(𝜹) ≤ U(vp∗) − U(ve∗). Using
this and (30), the following inequality is derived as

L̇(𝜹) ≤ −𝜹TQ𝜹 − Us(𝜹). (32)

Substituting (32) in (11) with the optimal policies (17) and (18), results in

L(𝜹) ≤ ∫
∞

t
{𝜹TQ𝜹 + Us(𝜹)}d𝜏, (33)

which stands for the proof of L̇(𝜹) ≤ −𝜖L(𝜹) for sufficiently small 𝜖, which completes the proof. ▪

Notice that PE game given in Section 4 is formulated by treating the players as unit masses since the kinematic expres-
sions (9) is employed in the value function (11). In Section 6, we consider full nonlinear dynamics (1), (2). Now, consider
the volume of pursuer and evader in 3-dimensional space and let the pursuer and evader have a sphere of collision with
radius rp and re respectively, as illustrated in Figure 1. Then capture occurs when the distance between the center of
masses of players is less than rp + re. With this inmind, the next main lemma proves that the capture of evader by pursuer
indeed occurs in finite-time in PE game.

Lemma 3. There exists an upper-bound for the capture time in PE game when the conditions 𝜆p > 𝜆e and rei ≥ rpi∀i =
1, … ,n derived in Theorem 2 are satisfied. This also implies that the PE game ends in finite-time as required.

Proof. The globally exponentially stability of the origin derived in Theorem 3 implies the equation of positional offset
between the players is in the form of

||𝜹(t)||2 ≤ b1||𝜹(t0)||2e−b2(t−t0) ∀t > t0 (34)
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F I GURE 1 Sphere of collisions for players and their frames in 3-dimensions used for finite-time capture analysis [Colour figure can be
viewed at wileyonlinelibrary.com]

where bi is a positive scalar ∀i = 1, 2. Then the upper bound for capture time tc is derived as

tc ≤ t0 +
1
b2
log

(
b1||𝜹(t0)||2
re + rp

)
(35)

where log(.) is a natural logarithm function and this completes the proof. ▪

Remark 3. It is seen that for finite-time capture, the velocity bound 𝜆p for the pursuer must be greater then the velocity
bound 𝜆e on the evader. Moreover, the sufficient condition on weights (13) is found as rei ≥ rpi∀i = 1, … ,n. Note that
capture time is also studied for multi-agent systems in the work27 by assuming the players are using their maximum
efforts. In Lemma 3, we showed that capture time is upper bounded under certain conditions even the players are not
using their maximum efforts.

5 ONLINE SOLUTION OF HJI EQUATION USING INTEGRAL
REINFORCEMENT LEARNING (IRL)

The PE game formulation in Section 4 requires the generation of velocity set-points online and in real-time for both
agents of the game. With this in mind, we employ the following synchronous IRL algorithm28 to solve the HJI
Equation 19 in real-time and hence, reach the Nash equilibrium velocity policies (vp∗, ve∗) online by observing mea-
sured data. In the work [28], it is emphasized that persistence of excitation condition must be satisfied so that the
IRL algorithm convergences. This is achieved in most applications28,29 by adding small probing noise. In our case,
the persistence of excitation for IRL to work is satisfied inherently until capture occurs, at which time the game
ends.

The tracking HJI Equation 19 is nonlinear in the value function gradient ∇V∗, and non-quadratic partial differen-
tial equation that is extremely difficult to solve. However, (36) can be solved for the value function and its gradient
by collecting position data over some interval [t, t + T]. Therefore, finding the value of game optimal velocity policies
by solving (36) is easier than solving (19). This is the motivation of introducing an iterative algorithm for approxi-
mating the tracking HJI solution, which is necessary to evaluate game optimal velocity policy for pursuer (17), and
evader (18).

5.1 Policy iteration solution for PE game

In this section, we present a policy iteration algorithm that avoids solution of (19) and also does not require knowledge
of the system dynamics. The following lemma enables us to recognize IRL form of the value function (11).

http://wileyonlinelibrary.com
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Lemma 4. Let V𝜋p,𝜋e (𝜹) be the corresponding solution of the Bellman Equation 14. Then, the value function (11), can be
written in the IRL form as

V𝜋p,𝜋e (𝜹(t)) = ∫
t+T

t
{𝜹TQ𝜹 + U(𝜋p(𝜹)) − U(𝜋e(𝜹))}d𝜏 + V𝜋p,𝜋e (𝜹(t + T)). (36)

Proof. The equality V̇𝜋p,𝜋e = −𝜹TQ𝜹 − U(𝜋p(𝜹)) + U(𝜋e(𝜹)) holds by the differentiation of ZS game Bellman Equation 14.
Then integrating both sides from t to t + T, results in

∫
t+T

t
V̇d𝜏 = −∫

t+T

t
{𝜹TQ𝜹 + U(𝜋p(𝜹)) − U(𝜋e(𝜹))}d𝜏, (37)

which verifies (36). ▪

The online policy-iteration Algorithm 1 performs a sequence of four-step iterations to find the optimal control policies
for players. Notice that these policies stand for the optimal desired velocities, which are employed in (5). Furthermore,
they are also Nash equilibrium velocity policies by Theorem 1.

Algorithm 1. Online policy-iteration algorithm

1. Select any policy 𝜋p0 and 𝜋
e
0 for the players

2. Policy evaluation

V𝜋
p
j ,𝜋

e
j (𝜹(t)) = ∫

t+T

t
{𝜹TQ𝜹 + U(𝜋pj (𝜹)) − U(𝜋ej (𝜹)}d𝜏 + V𝜋

p
j ,𝜋

e
j (𝜹(t + T)). (38)

3. Policy improvement

𝜋
p
j+1(𝜹) = −𝜆p tanh

(1
2
(Rp)−1∇V𝜋

p
j ,𝜋

e
j

)
,

𝜋ej+1(𝜹) = −𝜆e tanh
(1
2
(Re)−1∇V𝜋

p
j ,𝜋

e
j

)
. (39)

4. On convergence stop; else go to step 2. □

Notice that the position data of each player is collected through each iteration over the period T. The proof of
convergence of Algorithm 1 to the optimal policies is shown in the following theorem.

Theorem 4. Using the temporal difference (TD) learning method, Algorithm 1 converges to the Nash value V∗(𝜹(t0)) and
Nash equilibrium policies (𝜋p∗, 𝜋e∗), which optimizes velocity trajectories for the players in a game theoretic manner.

Proof. First, evaluate the value function V𝜋pj,𝜋ej(𝜹(t)), which solves the (38) by TD method. Then by Theorem 1, Isaacs’
condition is derived as

H(𝜹,∇V , vp∗, ve) ≤ H(𝜹,∇V , vp∗, ve∗) ≤ H(𝜹,∇V , vp, ve∗). (40)

Noting 𝛽(V𝜋p∗,𝜋e ) ≤ 0 and 𝛽(V𝜋p,𝜋e∗ ) ≥ 0 is proved in the Theorem 1, the uniform convergence of Algorithm 1 immedi-
ately follows from Dini’s theorem as reinforcement H(𝜹,∇Vj, vp, ve) converges to H(𝜹,∇V∗, vp∗, ve∗) = 0 by Corollary 1.
Moreover, due to the uniqueness of the value function (11), it follows that limj→∞V𝜋

p
j ,𝜋

e
j (𝜹(t)) = V∗(𝜹(t0)). ▪
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5.2 Value function approximation to find game optimal pursuer and evader velocity
policies

This section presents a critic neural network structure for policy-evaluation step in Algorithm 1.

Remark 4. The IRLmethod given inAlgorithm1 requires the value function approximation (VFA),which can be achieved
in a least-squares sense that is also known as single hidden layer critic Neural Network (NN). We employ this technique
as in Reference 28 that guarantees the successive least-squares iterations converge to the optimal value function of the
HJI Equation 19, and hence ∇V∗.

Remark 5. Note that the pair (vp∗, ve∗) stands for the Nash equilibrium by Theorem 1, thereby the Algorithm 1 converges
to optimal actions for both players. Unlike theworks29,30 that use the IRL technique to reachmin ormax point of the value
functional, we employ this technique to converge game theoretic saddle point by using the Isaacs’ condition derived in
Theorem 4. In addition, the system dynamics (1) does not appear in the value functional, which implies that we do not
need to implement actor NN30,31 and the solution of HJI (19) can be obtained by using only critic NN, see Reference 32.

By Remarks 4 and 5, we approximate the game optimal value functional in step 2 of Algorithm 1 using Weierstrass
approximator such that

V̂(𝜹) = ŴT
𝛷(𝜹),

∇V̂ = ∇𝛷(𝜹)TŴ (41)

where 𝛷(𝜹) ∈ Rnk is the k-times concatenated basis function vector, n = 3 as 𝜹 ∈ R3, and Ŵ is a critic NN weight vector
to be determined. Using (41), the policy evaluation step of the IRL Algorithm 1 can be re-written as

eb = ŴT
△𝜱(𝜹) − 𝜅(t) (42)

where eb is the continuous-time counterpart residual error of the TD,△𝜱(𝜹) = 𝛷(𝜹(t)) −𝛷(𝜹(t + T)), and reinforcement

𝜅(t) = ∫
t+T

t
{𝜹TQ𝜹 + U(𝜋p(𝜹)) − U(𝜋e(𝜹))}d𝜏. (43)

Therefore, (42) implies that the problem of solving the HJI equation is converted to tuning the critic NN weights such
that eb to be minimized. Now, to adjust these weights, the following objective function is employed

Eb =
1
2
e2b. (44)

Then, the TD gradient descent algorithm30 to minimize eb is obtained by using the chain rule

̇̂W = − 𝛼L △𝜱(𝜹)
(1 +△𝜱(𝜹)T △𝜱(𝜹))2

eb (45)

where 𝛼L > 0 is the learning rate. The proof of convergence of critic NN weights is shown in the Theorem 3 of Modares
et al..30

6 GENERALIZED ROTATIONAL DYNAMICS OF THE PURSUER AND
EVADER

The analysis in the preceding sections has shown how to derive velocity tracker for the PE game given velocity dynamics
(3). In this section, we analyze the general rotational dynamics (2) that are coupled to (1), and hence (3). We first derive
the desired attitude of the system by using the Z-Y -X Euler angle rotation matrix from [E] (earth frame) to [Bi] (body
frames of pursuer or evader) as shown in Figure 1, and desired force vector fid in (7). Then, by the analysis developed on
the desired Euler angles, we propose the desired attitude representationwith unit quaternions to overcome the singularity
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problem of the Euler angles. Lastly, by treating forces and/or moments as final inputs to the Newtonian system, we close
the backstepping control loop to track desired force vector fid in (7). Note that in this section, i represents either p or e.

Assume that the gravity g is constant and the Earth is flat in the 3-dimensional space as illustrated in the Figure 1.
Then, the vehicle carrier frame is aligned with the body frame [Bi]. Thereby the rotation matrix from [E] to [Bi] frames
shown in Figure 1, can be given in terms of the Euler angles as

N(𝜼i) =
⎡⎢⎢⎢⎣

c𝜃ic𝜓 i c𝜃is𝜓 i −s𝜃i

−c𝜑is𝜓 i + s𝜑is𝜃ic𝜓 i c𝜑ic𝜓 i + s𝜑is𝜃is𝜓 i s𝜑ic𝜃i

s𝜑is𝜓 i + c𝜑is𝜃ic𝜓 i −s𝜑ic𝜓 i + c𝜑is𝜃is𝜓 i c𝜑ic𝜃i

⎤⎥⎥⎥⎦ (46)

where c and s refers to cosine and sine respectively, and 𝜼i =
[
𝜓 i 𝜃i 𝜑i]T is the Euler angle vector. Note thatN(𝜼i) belongs

to the special orthogonal group and is of rank 3, or SO(3), whose determinant is equal to 1.
Assuming the direction of the thrust force to be along the nose of players’ bodies or positive xi-axis (∀i = p, e). This

enables us to write that the desired force vector is indeed in the form of fiBd =
[
𝜇id 0 0

]T , whose components written in
[Bi]. Using (7) and expressing the desired force

[
𝜇id 0 0

]T in [E] by fid = NT(𝜼id)f
i
Bd
, following relation is derived

fid =
⎡⎢⎢⎢⎣
f ixd
f iyd
f izd

⎤⎥⎥⎥⎦ = NT(𝜼id)
⎡⎢⎢⎢⎣
𝜇id

0
0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜇id(c𝜃

i
dc𝜓

i
d)

𝜇id(c𝜃
i
ds𝜓

i
d)

𝜇id(−s𝜃
i
d)

⎤⎥⎥⎥⎦ (47)

where 𝜼id =
[
𝜓 i
d 𝜃

i
d 𝜑

i
d

]T is the desired Euler angle vector.
Then, (47) can be solved for desired attitude angles 𝜃d, 𝜓d, and 𝜇d as

𝜃id = −tan−1
(

f izd
fxd cos𝜓 i

d + f iyd sin𝜓
i
d

)
, (48)

𝜓 i
d = tan−1

(
f iyd
f ixd

)
, (49)

𝜇id =
√
f ix
2
d + f iy

2
d + f iz

2
d. (50)

Note that 𝜑i
d can be arbitrarily prescribed. However, (48)–(50) assumes that the equality conditions f

i
xd = 0, f iyd = 0

cannot occur simultaneously since (48) and (49) become indefinite. This singularity problem is also known as gimbal
lock, which is associated with 𝜃id = 𝜋∕2.

To avoid gimbal lock, define the following unit quaternion representation

qi =
[
qi0 q

i
1 q

i
2 q

i
3
]T =

[
qi0 q

i
v
T
]T

(51)

qi0 = cos𝜙i∕2 (52)

qiv = ki sin𝜙i∕2 (53)

where 𝜙i is the rotation about equivalent axis ki, which is subjected to constraint qiTqi = 1. Moreover, the kinematics
equation for unit quaternion is

q̇i = 1
2
JT(qi)wi

B (54)

where J(qi) ∈ R3×4 satisfies the equalities J(qi)JT(qi) = I3×3, J(qi)qi = 0, and can be expressed as
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J(qi) = [−qiv S(qiv) + qi0I3×3]

where S(qiv) =
⎡⎢⎢⎢⎣
0 q3 −q2

−q3 0 q1
q2 −q1 0

⎤⎥⎥⎥⎦ . (55)

Then, the rotation matrix from [Bi] to [E] in terms of the unit quaternion (51) is given by

NT(qi) = I3×3 − 2qi0S(q
i
v) + 2S2(qiv), (56)

which is also known as Rodrigues formula. The following set of equations can be obtained by substituting the rotation
matrix with the argument qid (56) into (47) along with selected 𝜑

i
d

⎡⎢⎢⎢⎣
f ixd
f iyd
f izd

⎤⎥⎥⎥⎦ = 𝜇id

⎡⎢⎢⎢⎣
1 + 2(−qi2d

2 − qi3d
2)

2qi0dq
i
3d
+ qi1dq

i
2d

−2qi0dq
i
2d
+ qi1dq

i
3d

⎤⎥⎥⎥⎦
𝜑d = tan−1

⎛⎜⎜⎝
2(qi0dq

i
1d
+ qi2dq

i
3d
)

1 − 2(qi1d
2 + qi2d

2)

⎞⎟⎟⎠ . (57)

Notice that fid =
[
f ixd f

i
yd f

i
zd

]T ,𝜑i
d and 𝜇

i
d are known by (7) and (48)–(50). Thence, (57) can be solved for the desired unit

quaternion qid =
[
qi0d q

i
1d
qi2d q

i
3d

]T
as (57) represents four equations with four unknowns, which are the elements of qid.

Further substitute qid into kinematics Equation 54 to find the desired angular velocityw
i
Bd
such that

wi
Bd

= 2J(qid)q̇
i
d. (58)

Remark 6. For any Newtonian system (1) or (3) and (2), we know that forces and moments are coupled to each other,
which implies that 𝝉 iB is required to be compatible with the selected desired force f

i
d in (7).

Then applying the dynamic inversion technique, 𝝉 iB is given using (58) as

𝝉 iB = IiBẇ
i
Bd

− S(wi
Bd
)IiBw

i
Bd
. (59)

Notice that we treat 𝝉 iB as final input for the general rotational dynamics (2). Consequently, wewill not develop further
analysis by giving location of thrusters and actuators, which is a control allocation problem and out of scope of this article.
Interested reader can check our work23 to examine how to generate 𝝉 iB for the quadrotors.

7 IMPLEMENTATION ON DYNAMIC SYSTEM

This section reveals the simulation results of ZS PE game with different scenarios. First, we consider when both the
pursuer and evader follows their game optimal velocities given in (17) and (18) respectively. Then, we show the sce-
nario in which the pursuer tracks its game optimal velocity (17) whereas the evader adopts a sub-optimal velocity
policy.

In order to model the constrained optimal velocity trajectories, (13) is evaluated for pursuer and evader. Then, the
resultant integral is found as

U(vi∗) = 𝜆i(∇V∗)T tanh(vi∗) − 2𝜆iRi log(cosh(vi∗)) ∀i = p, e (60)

where log(.) is the natural logarithm, Ri ≜ diag(Ri) = [ri1 r
i
2 r

i
3]
T , and vi∗ stands for the optimal velocity policy given by

(17) and (18) ∀i = p, e.
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F IGURE 2 Position of the pursuer and evader: (A) 𝜋p(𝜹) ≜ (17), 𝜋e(𝜹) ≜ suboptimal, (B) 𝜋p(𝜹) ≜ (17), 𝜋e(𝜹) ≜ (18). L2 norm of (10):
(C) 𝜋p(𝜹) ≜ (17), 𝜋e(𝜹) ≜ suboptimal, (D) 𝜋p(𝜹) ≜ (17), 𝜋e(𝜹) ≜ (18) [Colour figure can be viewed at wileyonlinelibrary.com]

When the evader is moving with the sub-optimal velocity, we set U(𝜋e(𝜹)) term in (11) to zero and thereby we obtain
Hamilton Jacobi Bellman (HJB) equation instead of HJI (19). Notice that HJB equation in this case stands for the single
player game where the pursuer is the only player. Furthermore, the existence of unique Nash equilibrium by Theorem 1
implies that the value functional (11) is convex in vp∗ for |vej | ≤ 𝜆e ∀j ∈ {1, 2, 3} given in (13), and the functional (11) is
concave in ve∗ for |vpj | ≤ 𝜆p ∀j ∈ {1, 2, 3}. Then, (11) is separable, and solution of the HJB in terms of the optimal velocity
policy for the pursuer remains the same as (17).

We conducted two simulation scenarios to validate the proposed methods in this article. We first consider
ZS game with the value functional (11), and get the players track desired game optimal velocity trajectories
(17), (18) by selecting ideal forces of players derived in (7) and corresponding moments (59). Then, we set
U(𝜋e(𝜹)) term in (11) to zero, and by solving the corresponding HJB equation, we played single-player game
where the pursuer is the only player. Figure 2 shows the trajectories followed by the players for each of these
scenarios.

In these simulations (Figures 2 and 3), parameters of the system (1), (2) are selected as mi = 1 kg, g = 9.81 m/s2,
IiB = I3×3, where I3×3 is a 3 × 3 identity matrix. The backstepping gain Ki = 5I3×3. In addition, the bounds (13) are 𝜆p = 5,
𝜆e = 4, and value functional parameters (11) areQ = 3I3×3, Rp = 0.1I3×3, Re = 0.125I3×3. The position data of each player
is collected through each iteration over the period T = 0.01s. Lastly re + rp (35) and shown in Figure 1 is selected
as 0.25 m.

Notice that Figure 2 shows the trajectories of the players (Figure 2A,B), and corresponding L2 norm of the position
offset (Figure 2C,D). In addition, regarding the optimal velocity policies for the pursuer and evader, that is, when 𝜋p(𝜹) ≜
(17), 𝜋e(𝜹) ≜ (18), Figure 3 illustrate optimal velocities (17), (18), control forces (47), L2 norm of velocity error (5), and
Euler angles (48), (49).

Figure 4 shows the simulation results of the PE game when the velocity bounds are 𝜆p = 10, 𝜆e = 9, and other
simulation parameters remain the same as in the PE game illustrated in Figures 2 and 3.

http://wileyonlinelibrary.com
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F IGURE 3 PE game when 𝜆p = 5, 𝜆e = 4: (A) game-optimal velocity of the pursuer and evader ∀i ∈ {x, y, z}, (B) control force of the
pursuer (47), (C) control force of the evader (47), (D) L2 norm of (5) for each player, (E) Euler angles of the pursuer by (47), (F) Euler angles of
the evader by (47), (G) body evaluated control force of the players (50), (H) weights ∀i ∈ {x, y, z} convergence for the critic NN (45) [Colour
figure can be viewed at wileyonlinelibrary.com]

8 SUMMARY AND CONCLUSIONS

In this article, we worked on the game theoretic solution of pursuit-evasion (PE) intercept problem when the velocity
constraints are imposed on both pursuer and evader. By solving the HJI equation corresponds to the novel non-quadratic
functional, we showed that game-optimal velocity trajectories are smooth and satisfies the predetermined boundaries.
Using the rigorous Lyapunov analysis, we proved that the PE game ends in a finite-time under certain conditions, which
indeed implies that intercept or capture occurs in finite-time. To solve the HJI equation, the IRL method with critic NN
structure is used. Consequently, we showed the simulation results of the PE game when the evader adopts both game
optimal and sub-optimal velocity policy while the pursuer tracks corresponding game optimal velocity trajectory with
the nonlinear backstepping tracker. Simulations showed that when the evader adopts its game optimal velocity policy, it
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F IGURE 4 PE game when 𝜆p = 10, 𝜆e = 8: (A) game-optimal velocity of the pursuer and evader ∀i ∈ {x, y, z}, (B) control force of the
pursuer (47), (C) control force of the evader (47), (D) L2 norm of (5) for each player, (E) Euler angles of the pursuer by (47), (F) Euler angles of
the evader by (47), (G) body evaluated control force of the players (50), (H) weights ∀i ∈ {x, y, z} convergence for the critic NN (45) [Colour
figure can be viewed at wileyonlinelibrary.com]

takes more time to be intercepted by the pursuer compared to the scenario, in which the evader employs a sub-optimal
velocity policy. Further research can be conducted to analyze robustness of the proposed methods, when the evader has
mixed strategies.
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