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The semi-arid climate of the United States Southwest (hereafter 
Southwest) has climatologically low precipitation, soil mois-
ture and humidity1. Against this backdrop of semi-arid condi-

tions, increased atmospheric demand for moisture due to increased 
temperatures and/or decreased humidity can have three major 
adverse consequences, particularly during the summer: increases 
in fire risk2–6, increases in evaporative demand from surface reser-
voirs7 and increases in tree mortality8. While a substantial body of 
work has focused on the important role of rising temperatures in the 
Southwest in causing each of these impacts (for example, refs. 9–11), 
there has been less focus on changes in specific humidity.

Theory12,13 suggests that specific humidity will generally increase 
with global warming due to the Clausius–Clapeyron relationship and 
increased evaporation from the ocean, but it is not clear if the pre-
diction from theory holds for dry regions such as the Southwest or 
across the temperature distribution. Indeed, some weather stations 
across the Southwest show negative trends in annual-mean dew point 
from 1980 to 201014 and climate models project that the changes in 
specific humidity on the hottest days, although positive, will be less 
than those on average temperature days due to land–atmosphere 
interactions15,16. Together, these results point to the importance of 
identifying the origin of observed changes in Southwest humidity, 
including their temperature dependence, to determine whether spe-
cific humidity changes will amplify or damp the effects of tempera-
ture increases on the atmospheric demand for moisture.

Here, we analyse temperature and specific humidity from in situ 
measurements, reanalyses and climate models to determine how 
and why dry extremes on hot summer days have changed over 
the past seven decades and may change in the future. We focus on 
changes in the distribution of specific humidity conditional on fixed 
temperature thresholds, as opposed to joint exceedances of both 
variables, to identify changes in the temperature-specific humid-
ity relationship rather than changes in hot, dry extremes caused by 
increases in temperature alone.

Humidity decreases are amplified at hot temperatures
We first estimate changes in specific humidity on dry days during 
summer. Summer is defined as July–August–September (JAS), the 

climatologically warmest 3 months in the Southwest (defined by the 
outline in Fig. 2a). Our approach is demonstrated at two example 
locations from the Integrated Surface Database (ISD; ref. 17) in Fig. 1.  
The middle panels show summer temperature (T′) and specific 
humidity (q′) anomalies from 1973 to 2019 at Perry Stokes Airport, 
Colorado, and Fresno Yosemite International Airport, California. 
These stations were chosen because they show distinct underlying 
T′ versus q′ relationships: q′ generally decreases with T′ at Perry 
Stokes, whereas it increases with T′ at Fresno, although the relation-
ships are nonlinear with different behaviour at the centre and tails 
of their distributions. We quantify the dependence of q′ on T′ using 
semiparametric quantile smoothing splines18 for the 5th, 50th and 
95th percentile of q′ (black lines in middle panels of Fig. 1). While 
the focus of this work is on low-humidity days, described with the 
5th percentile (q′5), we present the other two percentiles for context.

To assess if the T′ versus q′5 relationship is changing as the planet 
warms, we allow both the average value of q′5 and the shape of the T′ 
versus q′5 spline to vary linearly with the low-pass filtered (1/10 yr−1 
frequency cutoff) global mean temperature anomaly (GMTA) 
using the methods of ref. 19 (Methods). We choose GMTA rather 
than time as our covariate since anthropogenic influence is not 
necessarily linear in time. The method has previously been shown 
to perform well for synthetic data with properties similar to daily 
T′ and q′ (ref. 19). The fitted model provides an estimate of q′5 for 
any co-occurring local T′ and GMTA, so can be queried to quantify 
how q′5 has changed with increasing GMTA. The total estimated 
change over 1973–2019 at Perry Stokes and Fresno is illustrated by 
comparing the grey and black lines in Fig. 1c,f. At both locations, 
there has been a decrease in q′5 when T′ is at the 95th percentile 
(hereafter, q′5,T ′95), as shown by the change along the vertical red 
line in Fig. 1c,f.

We perform the same analysis at all high-quality ISD stations 
in the United States with near-continuous records from 1973 to 
2019 (Methods), with a focus on changes in q′5,T ′95. Across the 
Southwest, q′5,T ′95 has decreased by an average of 1.05 g kg–1 per 
1 ∘C increase in GMTA or 0.94 g kg–1 since 1973 on the basis of the 
estimated 0.9 ∘C warming in GMTA over that period (Fig. 2a). The 
distribution of trends is skewed toward greater decreases, such that 
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a quarter of the stations in the Southwest, primarily in California, 
have decreases in excess of 2 g kg–1 per 1 ∘C increase in GMTA. To 
contextualize these changes, the empirical 5th percentile of specific 
humidity on hot days averaged across ISD stations in the Southwest 
for 1973–2019 is 4.31 g kg–1; thus, the average magnitude of the 
decreases in specific humidity on hot, dry days since 1973 is over 
20% of the baseline value.

It is also possible to examine how q′5 has changed conditional 
on different percentiles of T′. A consistent picture emerges across 
the region where the magnitude of the decrease in q′5 increases with 
the co-occurring T′ (Fig. 2b). The area-weighted average (Methods) 
shows that q′5 has increased when T′ is low (<26th percentile), 
exhibits a small decrease of 0.27 g kg–1 per 1 ∘C increase GMTA on 
days with the median T′ and shows increasingly large decreases at 
higher T′, with an average decrease of 1.32 g kg–1 per 1 ∘C increase 
GMTA when T′ is at the 99th percentile. Due to this amplification, 
analyses of changes in q′5 without accounting for the relationship 
with T′ would underestimate the changes on hot days, when the 
impacts are greatest.

Hot days have become drier since 1950
The foregoing analysis offers the advantage of using direct mea-
surements from weather stations of the near-surface layer but is  

hindered by data availability. Spatially, only 28 high-quality stations 
are available across the region, which is topographically diverse; 
further, all stations are at airports, raising concerns that they are not 
representative of the region as a whole. Temporally, the relatively 
short duration of the data record (48 yr, 1973–2019) provides only a 
limited view into the potential role of low-frequency variability ver-
sus anthropogenic forcings in contributing to the observed trends.

To address both of these issues, we first turn to additional 
sources of information. To allow for intercomparison between data 
sources in terms of both trends and variability, we define an annual 
amplification index for the full Southwest region. The index is the 
average probability across the region of having a dry day given the 
occurrence of a hot day. A hot day is defined at each location as 
a day in the 85th–95th percentile range of temperature (red poly-
gon in Fig. 1b,e) and a dry day has a specific humidity below the 
temperature-dependent 10th quantile of specific humidity for a 
GMTA of zero (dashed orange polygon in Fig. 1b,e). Both thresh-
olds are estimated using the full record and do not change in time. 
Counts are summed across stations, weighted by the area they rep-
resent, to produce the annual amplification index (Methods). By 
definition, the average amplification index over time is 0.1, mean-
ing 10% of hot days in a summer were also dry. A higher amplifica-
tion index indicates that a greater fraction of hot days were dry in a 
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Fig. 1 | Changes in the distribution of specific humidity as a function of increasing global mean temperature anomalies (GMTA) and local temperature. 
a, Observed summer daily-average temperature and specific humidity anomalies at Perry Stokes Airport in southern Colorado for 1973–1995 
(two-dimensional histogram shown in colours). The relationship between T′ and q′ is summarized by the quantile smoothing spline fit conditional on the 
1973 low-pass filtered GMTA of −0.43 °C for the 5th, 50th and 95th percentiles of q′. b, As in a, but for data from the full 1973–2019 period, and with the 
quantile smoothing spline fit conditional on the average GMTA (0 °C by definition, black lines). c, As in a, but for data from the second half of the record 
(1996–2019), and with the quantile smoothing spline fit conditional on the 2019 low-pass filtered GMTA of 0.51 °C (black lines). The spline fits from a are 
reproduced in grey to show changes in the temperature-specific humidity relationship as a function of increasing GMTA. d, As in a, but for Fresno Yosemite 
Airport in central California. e, As in b, but for Fresno Yosemite Airport. f, As in c, but for Fresno Yosemite Airport. The vertical lines in a,c (d,f) show the 
95th percentile of temperature anomalies for Perry Stokes Airport (Fresno Yosemite Airport) calculated over the full record. The amplification index can be 
visualized graphically in b,e as the count of hot, dry days (dashed orange polygon) normalized by the count of hot days (red polygon).
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given summer and, by design, does not reflect changes in tempera-
ture alone. The thresholds for hot and dry are less extreme than the 
percentiles used in the prior analysis because calculating the prob-
ability of extreme events through empirical counts is noisier than 
using a semiparametric model.

As expected, the amplification index calculated using the ISD 
data from 1973 to 2019, ISD1973, shows a positive trend, with the 
amplification index hovering around 0.07 from 1973 to 2000 and 
then rapidly increasing post-2000 (Fig. 3a). In addition, there is 
substantial interannual variability, with 1979, 1987–1989 and 1993–
1995 all exhibiting above-average dryness before the year 2000. We 
next calculate the same index using the ERA5 reanalysis20 to assess 
if the index is biased by the spatial distribution and limited number 
of stations. The two indices closely track each other in both their 
variability and their trend, and are correlated at 0.89 across their 
shared period of record of 1979–2019, suggesting that the signal of 
drying is sufficiently large-scale across the Southwest that it can be 
captured by a small number of station measurements. Finally, we 
extend the time-series record using the 12 stations in the region 
that have measurements beginning in 1950 (ISD1950; Methods) and 
the JRA-55 reanalysis21, the only third-generation reanalysis prod-
uct that begins before 1979 as of this analysis in October 2020. All 
four estimates of the index paint a similar picture: the ISD1950 index 
is correlated with the ISD1973 and ERA5 indices at 0.82 and 0.75, 
and the JRA-55 index is correlated with the ISD1950, ISD1973 and 
ERA5 indices at 0.75, 0.88 and 0.92, respectively. Although ERA5 
agrees well with the other datasets with respect to the amplification 

index, we note that it does not show greater decreases in humidity 
at hotter temperatures across the full Southwest domain (compare  
Fig. 2b with Extended Data Fig. 1d), which cannot be explained 
by its different spatial coverage or trend length (Extended Data  
Fig. 1c–h). The difference is primarily due to the trends in New 
Mexico, where the ERA5 dataset is an outlier in its suggestion of 
large increases in humidity on hot days.

Using all four data sources (ERA5, JRA-55, ISD1950 and ISD1973), 
we calculate a single average amplification index (black line in both 
panels of Fig. 3) that spans seven decades. Because the number of 
datasets being averaged increases over time, we expect more vari-
ability during the earlier period; however, the subsequent results 
are qualitatively similar when using the ISD1950 index alone. By 
extending the time series before the 1970s, we can see that multiple 
years in the 1950–1965 period exhibited an increased probability 
of dry extremes on hot days. This phasing and behaviour is con-
sistent with Atlantic multidecadal variability (AMV): the positive 
phase of the AMV, which occurred from roughly 1926 to 1965 and 
1998 to 2014, causes increased subsidence, decreased precipitation 
and decreased humidity in the Southwest22–24. However, the recent 
uptick is unprecedented in the record, suggesting there may be an 
additional role of human influence.

As an initial estimate of the relative roles of these two factors, we 
fit a multiple linear regression model for the amplification index 
using the AMV index and GMTA, both of which are low-pass filtered 
with a frequency cutoff of 1/10 yr−1. The variance explained by each 
predictor is nearly identical. A regression model that also includes 
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Fig. 2 | Decreases in specific humidity in the American Southwest are amplified on hot days. a, Estimated changes in the 5th percentile of specific 
humidity on hot (95th percentile in temperature anomalies) days (q′5,T ′95) for a 1 °C increase in GMTA at high-quality ISD stations across the continental 
United States. The Southwest domain is outlined in black. Contours show the 5th percentile of July–August–September specific humidity from ERA5. 
Contour labels are shown around the Southwest domain; the lowest contour is 3 g kg–1 and the contour interval is 1 g kg–1. b, The estimated change in the 
5th percentile of specific humidity (q′5) as a function of temperature percentile at each station in the Southwest (thin grey lines) and the area-weighted 
average across stations (thick black line).
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a December–January–February El Niño/Southern Oscillation 
(ENSO) index and/or the annual Pacific Decadal Oscillation (PDO) 
index does not show a statistically significant contribution of either 
mode (Supplementary Table 1).

Summers with hot, dry extremes have low soil moisture
We next turn to explaining the physical mechanisms that lead to 
increases in the probability of dry conditions on hot days. From a 
moisture budget perspective, decreases in near-surface atmospheric 
humidity can come from three sources: (1) increases in horizontal 
and/or vertical moisture divergence; (2) decreases in evapotranspi-
ration; and/or (3) increases in precipitation. Due to our focus on 
the driest days in an already semi-arid region, precipitation is not a 
relevant factor for directly causing humidity levels well below satu-
ration, leaving us to assess sources (1) and (2).

We first consider the potential role of horizontal moisture diver-
gence. Using ERA5, we calculate the spatial pattern of vertically 
integrated moisture divergence anomalies (VIMD′) associated 
with low-humidity years as the difference between a composite of 
the summer VIMD′ during the years in the top tercile (33%) of the 
ERA5-based amplification index, minus those in the bottom tercile. 
In addition, we compare the time series of the amplification index to 
that of the summer-averaged, domain-averaged VIMD′ (Extended 
Data Fig. 2b,c). The composite map does not show a coherent pat-
tern of divergence or convergence across the Southwest and neither 
the raw nor detrended time series are significantly correlated with 
the raw or detrended amplification index. Since moisture divergence 
in the Southwest is closely related to the North American monsoon, 
which varies in its strength throughout the summer season, we addi-
tionally compare month-by-month VIMD′ to the summer-average 
amplification index. Unlike August and September, the July compos-
ite map shows a coherent region of increased divergence in Arizona, 
New Mexico and Colorado, and the detrended July VIMD′ is 
weakly but significantly correlated with the detrended amplification 

index (Extended Data Fig. 2d-i). This suggests a role of the North 
American monsoon for the interannual variability in the amplifica-
tion index that we will return to below.

We next examine whether near-surface drying is associated with 
a vertical redistribution of moisture from the near-surface to other 
parts of the atmospheric column through creating top tercile of 
the ERA5 amplification index minus bottom tercile composites of 
the average vertical profile of specific humidity between 850 and 
200 hPa over the Southwest (note that 47% of the Southwest domain 
is below 850 hPa on average; for all levels, gridboxes where a given 
level is below the surface are masked). The vertical profile shows 
negative specific-humidity anomalies throughout the column 
(Extended Data Fig. 2a), indicating that the vertical redistribution 
of moisture, which would result in positive anomalies at another 
vertical level, cannot explain the near-surface behaviour.

Having found only weak relationships between moisture diver-
gence and the amplification index, we turn to our second physical 
mechanism, decreases in evapotranspiration. The composite map 
and time series, made in the same manner as for VIMD′, show that 
years with a high number of dry extremes on hot days are associated 
with below-average evapotranspiration (the sign of evapotranspira-
tion is defined here as positive from surface to atmosphere) across 
the Southwest (Fig. 4a). The time series of Southwest-average 
evapotranspiration and the amplification index are significantly 
and negatively correlated in their raw and detrended versions  
(Fig. 4b), suggesting the importance of moisture from the land sur-
face in controlling the probability of dry conditions.

Due to the low soil moisture in the Southwest, evapotranspira-
tion is strongly moisture-limited25–27 and closely follows surface 
soil moisture (Fig. 4c,d). Summer soil moisture is controlled by a 
simple balance between (1) the initial soil moisture at the begin-
ning of the summer season and (2) changes in moisture availabil-
ity during summer. Because the contribution of runoff is an order 
of magnitude smaller than evapotranspiration and precipitation 
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Fig. 3 | The observed and fitted amplification index from 1950 to 2019. a, The amplification index estimated from four datasets (thin coloured lines) and 
the average across the estimates (thick black line). Note that the number of datasets used to calculate the average changes over time as a function of 
dataset availability. The low-frequency behaviour (grey line) is estimated on the basis of a regression onto the GMTA and AMV, both which are low-pass 
filtered with a 1/10 yr−1 cutoff frequency. b, The fitted amplification index using June soil moisture (SM) from three different datasets and summer 
precipitation. The average amplification index (black) is reproduced from a. The average amplification index over time is 0.1 by definition.

Nature Climate Change | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


ArticlesNaTUrE ClIMaTE CHangE

(Extended Data Fig. 3) and evapotranspiration is limited by soil 
moisture, factor (2) is expected to be dominated by precipitation. 
Using soil moisture from ERA5 and precipitation from the Global 
Precipitation Climatology Centre (GPCC; ref. 28), we indeed find 

that summer soil moisture is very well predicted (Pearson’s r = 0.93) 
by June top 1 m soil moisture and JAS precipitation (Fig. 4i). June 
soil moisture has been decreasing since 1979, consistent with the 
trend in summer surface soil moisture (Fig. 4e,f). On the other 
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hand, summer precipitation does not exhibit a significant trend 
during the ERA5 period but primarily explains the interannual vari-
ability around the trend through its ability to recharge soil moisture 
levels throughout the summer (Fig. 4g,h).

To link these controls on summer soil moisture back to hot, dry 
days, we fit a multiple linear regression model for the amplification 
index using June top 1 m soil moisture from three different sources 
and summer precipitation from GPCC as predictors; the time series 
of June soil moisture and summer precipitation are not significantly 
correlated for any of the soil moisture datasets. The fitted ampli-
fication index using soil moisture from either ERA5 (1979–2019), 
JRA-55 (1958–2019) or NASA Global Land Data Assimilation 
System v.2.0 (GLDAS2.0 (1950–2014); ref. 29) is correlated with 
the observed average amplification index at 0.64, 0.51 and 0.50 for 
their respective periods. The two predictors collectively capture 
the low-frequency variability and recent uptick in the amplifica-
tion index, although the fitted amplification index tends to be too 
high in the 1970s and too low in the recent period (compare the 
coloured and black lines in Fig. 3b). The regression coefficients for 
both soil moisture and precipitation are significant in all cases at the 
0.01 level (Supplementary Table 1), except for GLDAS2.0 soil mois-
ture, which has a slightly weaker relationship with the amplification 
index (P = 0.014). The difference emerges because GLDAS2.0 shows 
a smaller recent decrease in soil moisture than the other two datas-
ets (Fig. 5a), perhaps because it is produced without assimilation of 
observations of the land state or land–atmosphere coupling.

Future projections are uncertain due to precipitation. We finally 
consider the implications of our results for future projections. June 
top 1 m soil moisture has been decreasing since the 1980s (Fig. 5a), 
which has led to decreased summer soil moisture, decreased evapo-
transpiration and an increase in the probability of dry conditions on 
hot days (recall Fig. 4). The observed reduction in June top 1 m soil 
moisture probably reflects both a forced response and sampling of 
internal variability30,31, which is substantial in the Southwest due to 
oceanic teleconnections22–24,32,33 and soil moisture memory34. While 
precipitation plays an important role in the interannual variability 
of moisture availability, it does not yet appear to have a significant 

(Fig. 4h) or forced (for example, ref. 35) trend. How will these fac-
tors change in the future? To provide one answer to this question, 
we use the 28 models with the required data in the CMIP6 archive36 
to estimate forced changes from 1950 to 2100 (Methods). The 
1950–2014 period uses the historical forcing scenario, whereas the 
2015–2100 period uses the energy and resource intensive Shared 
Socioeconomic Pathways (SSP)5–8.5 scenario37. We note the impor-
tant caveat that many CMIP6 models have substantial biases in their 
mean state of soil moisture, precipitation and evapotranspiration in 
the Southwest (Extended Data Fig. 4), so are likely to exhibit differ-
ent controls on evapotranspiration than is observed.

Consistent with the behaviour of ERA5 shown in Fig. 4i, summer 
surface soil moisture in the CMIP6 models is well predicted by June 
column soil moisture and summer precipitation: the median corre-
lation across the CMIP6 models between the fitted and actual sum-
mer soil moisture is 0.95, where the correlation is calculated over the 
full historical run. The CMIP6 ensemble mean shows a decrease in 
June soil moisture beginning around 1970 and the majority (82%, 
67% significant) of models project a negative trend over 2015–2100 
(Fig. 5), reflecting decreased snowpack and increased evapotranspi-
ration during winter and spring38,39. In addition, 70% (48%) of mod-
els project a (significant) increase in summer precipitation, which 
stands in contrast to a current lack of forced precipitation trend. As a 
result, the models are split about whether summer surface soil mois-
ture will significantly increase (18%), decrease (30%) or not show a 
significant change (52%) (Fig. 5b). Further, changes in plant physiol-
ogy driven by increased CO2 have the potential to alter the histori-
cal link between soil moisture and evapotranspiration if plants close 
their stomata and increase their water use efficiency40. Thus, while 
the trend in summer soil moisture and the probability of hot, dry 
days appears driven by decreases in pre-summer soil moisture in the 
historical record, future trends will additionally depend on summer 
precipitation and the response of the biosphere to elevated CO2.

In summary, we find that specific humidity has decreased during 
the summer over the semi-arid Southwest since 1950, with the great-
est decreases co-occurring with hot days. In the historical record, the 
probability of dry conditions on hot days, quantified by the amplifica-
tion index, exhibits low-frequency variability consistent with the AMV 
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Fig. 5 | CMIP6 projections of June column soil moisture, summer precipitation and summer surface soil moisture. a, The June total column soil moisture 
in the CMIP6 models (grey lines, grey shading outlined in black shows 50% range) and the ensemble mean (black line) from 1950 to 2100 using the 
historical and SSP5–8.5 scenarios. Three observational estimates of June top 1 m soil moisture are shown in colours. All time series are normalized to have 
zero mean and unit variance for the overlapping period of 1979–2014. The CMIP6 models show a wide spread of behaviour, although most models project 
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precipitation increases counterbalance June soil moisture decreases. Trends are calculated over 2015–2100 and normalized to per 50 yr.
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and a recent uptick that is unprecedented since 1950. The proximal 
cause of the recent increase in the amplification index is a decrease 
in evapotranspiration due to low summer soil moisture, which fol-
lows from decreases in June soil moisture. The observed decreases in 
June soil moisture are, on average, simulated by the CMIP6 models; 
however, the models exhibit substantial biases in their mean state and 
a large spread in their future projections of soil moisture and rain-
fall, leaving uncertainties about the future of Southwest dry extremes. 
Given the recent extreme fire seasons across the Southwest, combined 
with a growing population and water demand41, our results highlight 
the need to quantify the direct impacts of decreasing humidity on the 
biosphere and water supplies, and to reduce model spread in projec-
tions to determine if the recent drying will continue.
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Methods
ISD data. Temperature and humidity data are from the ISD (ref. 17) provided by 
the National Centers for Environmental Information. The database is composed 
of in situ weather station measurements taken on subdaily timescales and is the 
only source of publicly available non-remotely sensed humidity data that spans 
the United States. Humidity information is provided via measurements of dew 
point. We mark any measurement with a suspect quality control flag as missing. 
In particular, we remove data points with a source flag of 2, A, B, O or 9; a report 
type flag of 99999; a call sign flag of 99999; and a quality control flag of V01. We 
additionally remove days that do not have four or more valid observations. Our 
ISD-based analysis focuses on two time periods: 1973–2019 and 1950–2019. 
There is a large increase in the number of weather stations reporting to the ISD 
database beginning in 1973, so the shorter time period allows for greater selectivity 
and more complete spatial coverage. In both cases, a given weather station is 
only included in the analysis if at least 80% of years have less than 20% missing 
data in both temperature and dew point for the summer season (defined as July–
September) of each year and are not entirely missing the first and last 3 yr of the 
time period of interest. For the 1973–2019 period, we additionally remove stations 
that have more than one missing year in a row. The station distribution and trends 
in q′5 for the 1950–2019 period are shown in Extended Data Fig. 5.

Calculating daily-average specific humidity. Daily-average specific humidity  
(q in g kg–1) is calculated from subdaily (at least 6-hourly) values of dew point  
(Td in °C) and pressure (p in hPa) using the following approximation42:

e = 6.112 exp
(

17.67Td
Td + 243.5

)

(1)

q = 1, 000 0.622e
p − 0.378e

(2)

Dew point and pressure are converted to specific humidity before performing 
the daily average.

Anomaly calculation. Daily temperature and specific humidity are considered 
as anomalies from the climatological seasonal cycle, with the seasonal cycle 
calculated as the first three seasonal harmonics for temperature and ten harmonics 
for specific humidity. The larger number of harmonics for specific humidity is 
necessary in this region because the onset of the North American monsoon in 
July can lead to a rapid increase in specific humidity over a short period of time. 
The estimated seasonal cycle for specific humidity using ten harmonics, as well 
as two alternative methods (low-pass filter and moving average), is shown for two 
representative ISD stations, one influenced by the North American monsoon and 
one not, in Extended Data Fig. 6.

ERA5 data. For the calculation of the amplification index using ERA5 (ref. 20), we 
use 6-hourly 2-m air temperature, 2-m dew point and surface pressure; surface 
pressure and dew point are used to calculate 6-hourly specific humidity, which is 
then averaged to calculate the daily-average specific humidity. ERA5 incorporates 
screen-level observations through optimal interpolation in the land data 
assimilation system, which is weakly coupled with the full 4D-Var assimilation. To 
understand the causes of the variability and trend in the amplification index, we 
use the monthly averaged reanalysis for evapotranspiration, vertically integrated 
moisture divergence, runoff and soil moisture. The effective accumulation period 
for evapotranspiration, vertically integrated moisture divergence and runoff is 1 d. 
We group soil moisture into surface (swvl1, 0–7 cm) and top 1 m (swvl1, swvl2 and 
swvl3). All ERA5-based analyses span 1979–2019. The trends in q′5 for ERA5 data 
are shown in Extended Data Fig. 1c,d.

JRA-55 data. For the calculation of the amplification index in JRA-55 (ref. 21), 
we use 6-hourly 2-m air temperature and 2-m specific humidity, which are then 
averaged to calculate daily-average temperature and specific humidity. We calculate 
the amplification index using both the analysis and forecast variables; the former 
incorporates screen-level observations through optimal interpolation but is not 
subsequently coupled back into the forecast. The results using the analysis output 
are presented in the main paper. The amplification index calculated using the 
forecast variables alone, however, is inconsistent with all other estimates of the 
amplification index in both the low-frequency and high-frequency variability, 
indicating the importance of the screen-level observations for the reanalysis 
product. JRA-55 soil moisture is provided as a wetness fraction for three layers 
of soil; the thickness of the layers depends on the land cover type. We integrate 
the soil wetness fraction across the top 1 m of soil assuming a vegetation type 
of broadleaf shrubs with groundcover, which is dominant in the Southwest 
(for example, Fig. 5 in ref. 43). The layer thicknesses for broadleaf shrubs with 
groundcover are 0.02 m, 0.47 m and 1 m. All JRA-55-based analyses span 1958–
2019. The trends in q′5 for JRA-55 data are shown in Extended Data Fig. 1a,b.

GLDAS data. The GLDAS-based regression model in Fig. 3b uses the top 1 m 
soil moisture for the 1950–2014 period on the basis of the Noah land surface 

model, where the end date is limited by the availability of GLDAS2.0. GLDAS2.0 
is forced by the Princeton meteorological forcing dataset44 and does not use data 
assimilation (that is, is open loop).

CMIP6 data. We use the following 28 models from the CMIP6 archive, on the 
basis of their having at least one ensemble member with monthly average total 
column soil moisture (mrso), surface soil moisture (mrsos) and precipitation (pr) 
for both the historical and SSP5–8.5 scenarios: ACCESS-CM2, ACCESS-ESM1-5, 
BCC-CSM2-MR, CAMS-CSM1-0, CESM2, CESM2-WACCM, CMCC-CM2-SR5, 
CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, CanESM5, 
CanESM5-CanOE, EC-Earth3, EC-Earth3-Veg, FGOALS-f3-L, FGOALS-g3, 
GFDL-CM4, GFDL-ESM4, GISS-E2-1-G, IPSL-CM6A-LR, MIROC-ES2L, 
MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, 
NorESM2-MM and UKESM1-0-LL. For CMIP6 models that have more than 
one ensemble member, we first average the available ensemble members before 
calculating the ensemble mean such that each model contributes equally to our 
analysis. The standardized soil moisture anomalies in Fig. 5a are calculated using 
the 1979–2014 period as a reference, to match the overlapping availability of the 
three observation-based datasets. The trends in Fig. 5b are calculated over the 
SSP5–8.5 scenario only, 2015–2100.

Global mean temperature and sea surface temperature modes. GMTA are from 
the Berkeley Earth Surface Temperature dataset45. The time series of the AMV 
index, the ENSO and the PDO are calculated using monthly average data from 
ERSSTv.5 (ref. 46). The AMV index is calculated using the Climate Variability 
Diagnostics Package47 as per ref. 48 by removing the near-global mean (60∘ S–60∘ N) 
sea surface temperature (SST) anomaly from the SST anomaly over the North 
Atlantic (0∘–60∘ N, 80∘ W–0∘) at each timestep. All analyses with GMTA and AMV 
use a low-pass filtered time series calculated with a third-order Butterworth filter 
with a cutoff frequency of 1/10 yr−1. The ENSO index is the 3-month running 
mean of SST anomalies in the Niño 3.4 region (5∘ S–5∘ N, 170∘–120∘ W). The PDO 
index is created by first regressing the SST anomalies against the Mantua PDO 
index49 for their overlap period to compute a PDO regression map for the North 
Pacific (20∘–70∘ N), which is then projected onto the SST anomalies to compute the 
index. Both the ENSO and PDO indices are provided by the National Center for 
Environmental Information and neither are further low-pass filtered.

Amplification index. The amplification index is the empirical count of hot, dry 
days normalized by hot days in a given summer. The main analysis shows the 
index calculated by defining a hot day as one that falls in the 85th–95th percentile 
range and a dry day as one that falls below the 10th percentile of specific humidity. 
The amplification index is similar although more noisy (Extended Data Fig. 7) if 
we instead define a hot day as around the 95th percentile (±5%) and a dry day as 
below the 5th percentile to match the quantile regression analysis. Because some 
gridboxes and stations may not have any hot days in a given summer, we first sum 
the counts across stations or gridboxes, weighted by the area they represent, before 
performing the division (‘Spatial domain and area weighting’ below).

Quantile smoothing splines method. To assess changes in the distribution of 
specific humidity anomalies conditional on the co-occurring local temperature 
anomalies and GMTA, we use quantile smoothing splines18 that can vary linearly 
with GMTA. Specifically, we model a given quantile, τ, of specific humidity 
anomalies on day t as

q′τ(t) = β0,τ + s0,τ(T′

(t)) + β1,τG
′

(t) + G′

(t)s1,τ(T′

(t)) (3)

where T′(t) is the co-occurring temperature and G′(t) is the low-pass filtered 
GMTA. Both s0,τ and s1,τ are functions of T′(t). The first two terms on the 
right-hand side summarize the quantiles of specific humidity anomalies, including 
the dependence on local temperature anomalies, for a GMTA of zero. The third 
term allows changes in specific humidity that are linearly dependent on GMTA 
to be incorporated, while the fourth term allows the relationship between specific 
humidity and local temperature to evolve with GMTA. For example, if global 
warming were associated with a mean increase in specific humidity at quantile 
τ, as well as a greater increase in specific humidity on days at the 95th percentile 
of temperature anomalies, this would appear in the model as positive β1,τ and 
s1,τ(T′

95) values, respectively. The terms s0,τ(T′(t)) and s1,τ(T′(t)) are quantile 
smoothing splines that summarize the potentially nonlinear relationship between 
a given quantile of specific humidity and temperature anomalies. The complexity 
of the spline, as measured by the number of change-points, is controlled by a 
regularization parameter, which was selected in ref. 19 through minimization of a 
high-dimensional Bayesian Information Criterion50. Here, we draw from the results 
of ref. 19 and model the log of the regularization parameter as linearly related to 
the standard deviation of the temperature anomalies at each station (see Fig. S5 
in ref. 19). We fit the 5th, 10th, 50th, 90th and 95th percentile of specific humidity 
anomalies, although the focus of the work is primarily on the 5th percentile. A 
non-crossing constraint is enforced during the fitting procedure following ref. 51 
such that a lower percentile of specific humidity anomalies cannot be larger than a 
higher percentile at any time.
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Spatial domain and area weighting. We focus on the American Southwest, 
defined here as including Colorado, New Mexico, Utah, Arizona, Nevada and 
non-coastal California (outline in Fig. 2a). We exclude the stations along the 
California coast from our analysis because their climate is strongly and directly 
influenced by the neighbouring ocean. Values presented as averages over the 
domain are weighted by approximations of the amount of area represented by each 
weather station or gridbox. For the 1973–2019 period, during which stations are 
more plentiful, the station weights are the areas associated with each station after 
performing a Voronoi tessellation on all stations in the United States. For the 1950–
2019 period, due to the reduced number of stations that border the Southwest 
domain, the station weights are instead calculated as the minimum distance 
between a station and any other station within the Southwest domain. Results are 
insensitive to reasonable choices of station weighting. For the reanalyses, gridboxes 
are weighted by the cosine of latitude.

Correlations and significance. All correlation values are Pearson correlation 
coefficients. The effective degrees of freedom used for the estimation of P values 
is calculated as neff = 1−ϕ2

1+ϕ2 N − k (ref. 52). For the raw correlations, k = 2, where 
the reduction of two degrees of freedom is due to controlling for the mean and 
variance. For the detrended correlations, k = 3 due to controlling for a linear 
time trend. For the regression models, k is equal to the number of predictors 
(including an intercept term). The value of ϕ is the empirical lag-1 autocorrelation 
coefficient of the residuals from the regression model. The effective regression 
model is y = β0 + β1x + ϵ for the raw correlations and y = β0 + β1x + β2t + ϵ for 
detrended correlations. All P values, except those predicting the amplification 
index with GMTA and AMV, are one-sided, because the expected direction of the 
relationships is a priori known. Throughout the paper, significance is assessed at 
the 0.01 level.

Data availability
Data from ISD are publicly available at https://www.ncdc.noaa.gov/isd/data-access. 
Data from ERA5 are publicly available at https://cds.climate.copernicus.eu. Data 
from JRA-55 are publicly available at https://rda.ucar.edu/datasets/ds628.1/ 
(monthly) and https://rda.ucar.edu/datasets/ds628.0/ (daily). Data from GPCC 
are publicly available at https://psl.noaa.gov/data/gridded/data.gpcc.html. Data 
from GLDAS2.0 are publicly available at https://ldas.gsfc.nasa.gov/data. Model 
output from CMIP6 is publicly available at https://esgf-node.llnl.gov/projects/
cmip6/. Berkeley Earth global mean temperature is publicly available at http://
berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt. ERSSTv.5 
data are publicly available at http://berkeleyearth.lbl.gov/auto/Global/Land_and_
Ocean_complete.txt. The AMV index was calculated using the Climate Variability 
and Diagnostics Package, which is publicly available at https://www.cesm.ucar.edu/
working_groups/CVC/cvdp/. The PDO index is publicly available at https://www.
ncdc.noaa.gov/teleconnections/pdo/. The Niño 3.4 index is publicly available at 
https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt.

Code availability
Code to fit the non-crossing quantile smoothing splines model is available at 
https://github.com/karenamckinnon/humidity_variability. Code to perform the 
analysis and reproduce the figures in the paper is available at https://github.com/
karenamckinnon/compound_extremes.
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Extended Data Fig. 1 | Changes in hot, dry days for JRA-55, ERA5, ISD1979, and ERA5 at locations of Integrated Surface Database stations. As in Fig. 2, 
but with data from (a, b) JRA-55, (c, d) ERA5, (e, f) Integrated Surface Database (ISD) stations from 1979–2019, and (g, h) ERA5 subset to the locations 
of the ISD stations in (e). Trends are calculated over the 1958–2019 period for JRA-55, and over the 1979–2019 period for all other maps. The ERA5-based 
trends in panel (d) uniquely do not show the amplification of drying at hot temperatures. To test whether the difference is due to the different starting 
point of the ERA5 trends, we recalculate trends in the ISD stations for the 1979–2019 period (panels e and f), which still show the amplification. To test 
whether the difference is due to the specific locations of the ISD stations, we subset the ERA5 trends to the locations of the ISD stations (panels g and 
h); this subset does not show the amplification behaviour. In the line plots (panels b, d, f, h), thin grey lines show the trends at each gridbox, and the thick 
black line is the area-weighted average across gridboxes. Note the different y-scales across the line plots.
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Extended Data Fig. 2 | Vertical and horizontal divergence do not explain the amplification index. a, The composite vertical profile of July–
August-September specific humidity from ERA5 on years in the top tercile (33%) of the amplification index minus the bottom tercile. b, The composite 
July–August-September vertically integrated moisture divergence from ERA5 on years in the top tercile of the amplification index minus the bottom tercile. 
c, The time series of the amplification index (orange) and the Southwest-average vertically integrated moisture divergence (teal). (d-i) As in (b)-(c), but 
for July, August, and September vertically integrated moisture divergence separately. Vertically integrated moisture divergence is the total per day.
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Extended Data Fig. 3 | Runoff covaries with surface soil moisture, but its contribution to the water balance is small. As in Fig. 4, but for runoff from 
ERA5. Runoff is the total per day.
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Extended Data Fig. 4 | The CMIP6 models can have large biases in their mean state of precipitation, soil moisture, and evapotranspiration in the 
Southwest. The distribution of July–August-September (a) average precipitation, (b) surface soil moisture, and (c) evapotranspiration from the 28 
CMIP6 models used for Fig. 5 (blue histograms) and ERA5 (red vertical line). The CMIP6 estimates are based on 1979–2014, and the ERA5 estimates are 
based on 1979–2019; the end date in CMIP6 is the end of the historical scenario simulations. The 95% range shown for ERA5 is calculated by performing 
a bootstrap of the seasonal mean values with replacement, and provides an estimate of the uncertainty of the mean value due to sampling of internal 
variability. Surface soil moisture in the CMIP6 models is calculated over the top 10cm, whereas the top soil layer in ERA5 is 7cm; as such, the ERA5 surface 
soil moisture is multiplied by 10/7 for this comparison.
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Extended Data Fig. 5 | Changes in hot, dry extremes in Integrated Surface Database stations from 1950–2019. As in Fig. 2, but with the limited number 
of Integrated Surface Database stations with data beginning in 1950. Trends are calculated over the 1950–2019 period.
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Extended Data Fig. 6 | The complex seasonal structure of specific humidity is captured by ten harmonics. The empirical seasonal cycle of specific 
humidity (blue), and three different estimates of the seasonal cycle using ten seasonal harmonics (orange), a low-pass Butterworth filter with a frequency 
cutoff of 1/30 day−1, and a 15-day moving average at two Integrated Surface Database stations. Tucson International Airport (a) is influenced by the 
North American monsoon, and shows a rapid change in specific humidity at its onset in July, whereas the seasonal cycle in specific humidity at Stockton 
Metropolitan Airport (b) does not show such rapid changes.
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Extended Data Fig. 7 | The amplification index using more extreme cutoffs for hot and dry days. The ISD1973 amplification index used in the main text 
(blue) compared to a version calculated with more extreme temperature (90th-100th percentile) and specific humidity (less than 5th percentile) cutoffs 
(orange).
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