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Abstract

We propose a new phase-field model formulated within the system of lattice Boltzmann
(LB) equation for simulating solidification and dendritic growth with fully coupled melt flow and
thermosolutal convection-diffusion. With the evolution of the phase field and the transport
phenomena all modeled and integrated within the same LB framework, this method preserves and
combines the intrinsic advantages of the phase-field method (PFM) and the lattice Boltzmann
method (LBM). Particularly, the present PFM/LBM model has several improved features
compared to the existing phase-field models including: (1) a novel multiple-relaxation-time (MRT)
LB scheme for the phase-field evolution is proposed to effectively model solidification coupled
with melt flow and thermosolutal convection-diffusion with improved numerical stability and
accuracy, (2) convenient diffuse interface treatments are implemented for the melt flow and
thermosolutal transport which can be applied to the entire domain without tracking the interface,
and (3) the evolution of the phase field, flow, concentration, and temperature fields on the level of
microscopic distribution functions in the LB schemes is decoupled with a multiple-time-scaling
strategy (despite their full physical coupling), thus solidification at high Lewis numbers (ratios of
the liquid thermal to solutal diffusivities) can be conveniently modeled. The applicability and

accuracy of the present PFM/LBM model is verified with four numerical tests including
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isothermal, iso-solutal and thermosolutal convection-diffusion problems, where excellent
agreement in terms of phase-field and thermosolutal distributions and dendritic tip growth velocity
and radius with those reported in the literature is demonstrated. The proposed PFM/LBM model
can be an attractive and powerful tool for large-scale dendritic growth simulations given the high
scalability of the LBM.

Keywords: Dendritic growth, solidification, phase field, lattice Boltzmann, multiple-relaxation-

time.

1. Introduction

Quantification and prediction of the evolution of the microstructure and segregation
patterns of solidified pure materials and alloys are of great scientific and technological interest.
The dendritic growth during solidification is a complex multiscale phenomenon that involves
phase transition, melt flow, heat and solute convection-diffusion that are fully coupled at the
evolving liquid-solid interface of complex morphology. In addition to the nature of multiphysics
coupling, large transport property ratios are also encountered in the solidification process, for
instance, the solutal diffusivity in the liquid state is generally two to four orders of magnitude
smaller than the thermal diffusivity, and the solutal diffusivity in the solid state is typically two to
four orders of magnitude smaller than that in the liquid [1]. It is also well known that solidification
of alloys differs in many respects from solidification of pure substances, e.g., pure metals solidify
at their definite melting point temperatures, while most alloys start to solidify at their liquidus
temperatures and complete solidification at the solidus temperatures with the latter lower than the
former; and undercooling related microstructure can only be produced by thermal means in pure
metals, while in alloys it can be produced by changes in both temperature and composition. Direct
simulation of solidification and crystal growth on the scale that captures the local liquid-solid
interface geometry (sharp interface) has thus experienced only limited progress [1].

The phase-field method (PFM), which employs the concept of a diffuse interface and
introduces a phase field variable (with constant values in the bulk phases and varying steeply yet
smoothly in the diffuse interface region), has become a widely accepted technique for
computational modeling of dendritic growth and interfacial pattern formation. Several detailed
reviews on phase-field modeling of dendritic growth can be found in [2—4]. While the present
study focuses on solidification modeling, it should be noted that the PFM has broad applications
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in modeling and predicting mesoscale morphological and microstructure evolution in materials
such as solid-state phase transformations, grain growth and coarsening, domain evolution in thin
films [5], morphological evolution of multicomponent vesicles and solving nonlinear high-order
PDEs [6-8], among others. In the early works, the PFM was only employed to model solidification
controlled by pure diffusion, and the effects of thermal and solutal diffusion were mostly separately
studied. The first coupled thermosolutal PFM was proposed in [1] where it was also demonstrated
that the coupled model can reduce to the isothermal and iso-solutal cases. The effect of fluid flow
and melt convection on the crystal growth was well recognized [9-12], but little work was reported
mainly due to the lack of effective and reliable coupled models. Beckermann et al. [13] reported
the first phase-field simulations including melt convection, in which the mass, momentum, energy,
and species conservation equations in the diffuse interface region were formulated based on
volume averaging; and a dissipative interfacial stress term (momentum sink) was introduced in the
momentum equation to deal with the interaction at the liquid-solid interface. All the conservation
equations were solved with traditional computational fluid dynamics (CFD) schemes in [13]. Since
then, a great number of publications on PFM modeling of dendritic growth under melt convection
has been reported (e.g., [14—18]).

In the CFD and heat and mass transfer communities, the lattice Boltzmann method (LBM)
has become a powerful and alternative numerical method for modeling fluid flows and
thermal/mass transport problems with complex geometry due to its attractive features including
simple algorithm, easy implementation, convenience in boundary and interface treatment, and
compatibility with parallel computing [19-27]. It is no surprise that a growing number of
publications have focused (e.g., [14,17,28,29]) on coupling the PFM and LBM for dendritic growth
simulations. Most of those PFM-LBM models can be considered as 4ybrid models in which finite-
difference- or finite-volume-based PFM was applied to simulate the phase field evolution, while
the LBM was implemented to model the melt flow and heat and solute transfer. In addition, fully
coupled PFM models considering all the effects of melt flow and thermosolutal convection-
diffusion in the literature are very rare (e.g., [30]) due to the lack of general, convenient, and
efficient numerical schemes.

Recognizing the capabilities and advantages of the LBM, there has been growing interest
in constructing LB schemes to solve the governing equation for the phase field [31-33]; as a result,
the generic LB algorithm, and thus a single grid system, can be applied to model all the transport
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phenomena as well as the phase field evolution. The current work falls into this category. The main
attractive features of the proposed PFM/LBM model in this work include: (1) compared to the
isothermal PFM models in [14,32,33] and the iso-solutal PFM models in [17,18,28,29,34-36], the
present PFM model is formulated to model fully coupled thermosolutal convection-diffusion; (2)
compared to the PFM model in [1,31,37-39] for solidification with coupled thermosolutal pure
diffusion, the present model also includes melt flow and thermosolutal convection-diffusion; (3)
compared to the single-relaxation-time (SRT) based LBM model for solving the phase-field
equation in [31,33,34], the present PFM/LBM model employs the multiple-relaxation-time (MRT)
based collision operator for both the phase-field evolution and all the other transport equations,
considering the improvement in both numerical accuracy and stability of the MRT-LBM models
compared to the traditional SRT-LBM models [23-27]; and (4) the multiple-time-scaling strategy
proposed in [40] is implemented in the present model so that different time steps can be used in
the evolution of the four sets of microscopic distribution functions defined in the LB schemes for
the respective phase field, flow field, concentration field and thermal field, thus decoupled
relaxation-time coefficients can be selected, and hence a wide range of characteristic parameters
encountered in solidification and dendritic growth processes can be effectively simulated. The
applicability and accuracy of the present PFM/LBM model is verified with four representative
benchmark test cases including both 2D and 3D examples.

This rest of this paper is organized as follows. The governing equations for the phase field,
melt flow, concentration (solute) field, and temperature field and their coupling are described in
Section 2. The specific LBM-based numerical schemes in the proposed PFM/LBM model for
solving those governing equations are presented in Section 3. Model verification and discussion
are then detailed in Section 4. And concluding remarks are provided in Section 5. Lastly, the
Chapman-Enskog analysis for the MRT-LBM scheme to recover the phase-field evolution
equation is presented in Appendix A, and Appendix B briefly explains the algorithms used to

compute the dendritic tip growth velocity and radius.

2. Phase-Field Equation and Conservation Equations
2.1 Phase field
In the phase field methods, a continuous dimensionless phase-field variable, ¢, is defined
with ¢ =—1 in the liquid phase, ¢ = 1 in the solid phase, and varying smoothly in the diffuse interface
4



(-1 < ¢ < 1). To determine the governing equation for the phase field in thermosolutal convection-
diffusion problems, the following dimensionless concentration (also called supersaturation) and

temperature (also called undercooling) variables are defined for the entire domain [1,31]

2c/c, B
T-T, -
) Lm/Cmcw’ ®

where c- is the far-field concentration that equals the initial concentration of the alloy, & = ¢y/c;

the partition coefficient that relates the compositions of solid and liquid in contact with each other
at the interface, 7,, the melting temperature, m the slope of the liquidus line in the phase diagram,
Ly, the latent heat, and C, the specific heat. Following the formulations in [1,13,17,31-33], the

governing equation for ¢ during solidification and dendritic growth can be written as
r(,U)0$=V-[ W)V |+WV-N=-f'($)-A(Mc,U+6)g'(¢), 3)

where the relaxation time 7(n, U) and the anisotropic interface width W(n)=W,a (n) are both

functions of the local normal vector n that can be calculated as n=—V¢/ |V¢ , Wy 1s the

characteristic width, 4 is a dimensionless parameter that controls the coupling between the phase
field and the concentration and temperature fields, f '(¢) and g'(¢) are interpolating functions
associated with the double-well potential and the free energy of the bulk, respectively, with a

popular choice of f'(¢)=—¢+¢3 , g'(¢):(l—¢52)2 [17,31], M is the scaled magnitude of the

liquidus slope M =-m(1-k) / (Lh / Cp) , and N is the anisotropic vector defined as

(4)

N=|Vg| a,(n) da,(n) Oa,(n) aas(n)} |

0(0.9) 8(0,4) 0(0.9)
In most previous PFM models, 7 is considered as a function of m only [31-34,36], and
7(n) =7,a; (n) was applied with 7o a constant and a,(n) defined as the crystalline anisotropy

function [31-33]

a,(m)=1-3¢ +4s, > n'=1-3¢ +4¢, > (0,04)" /|v¢

o=x,y,2 o=x,y,2

4
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where & is the anisotropic strength. As pointed out by Ramirez et al. [1] and later also implemented
in [30,37-39], for coupled thermosolutal transport problems, 7 should also be dependent on the

concentration field, i.e.,

t(m,U) =7,a;m)FU), (6)
and FU)= Li +Mc, [1+(1-kU], (6b)
e

where Le = a/Dy is the Lewis number denoting the ratio between the thermal diffusivity o and
solutal diffusivity D; in the liquid phase. This work also implements the generic definition of z(n,
U) in Eq. (6) for thermosolutal convection-diffusion problems. It should be noted that most of the
previous PFM models for solidification and dendritic growth considered only the effect of heat
transfer (i.e., ¢ and 6 coupled only, see e.g., [14,32,33]) or solute transfer (i.e., ¢ and U coupled
only, e.g., [17,18,28,29,34-36]); fully coupled thermosolutal diffusion (without convection)
problems were studied in [1,31,37-39], while the dependence of 7 on U was not taken into account
in [31]. The present PFM model (details presented in Section 3) is applicable to more general
solidification processes involving fully coupled thermosoltual convection-diffusion. It is also
worth noting that the present general PFM model reduces to that for (1) ¢ and & coupled

thermal/iso-solutal transport problems with the selection of Le = 1, Mc, =0, and (2) ¢ and U
coupled solutal/iso-thermal transport problems with Le — o, Mc, =1-(1-k)Q and

v-—2
1-(1-k)Q

where Q is the imposed solutal “undercooling” relating c to the equilibrium

liquidus concentration at the system temperature C,O ,1.e.,

0_
It is clear that for both simplified versions, 7(n, U) in Eq. (6) reduces to 7(n) = 7,a’(n).
With the above expressions, Eq. (3) can be rewritten in the explicit form as
7, (MFU)O$=WV-[ @V |+ WV -N+(¢-¢ )-A(Mc,U+0)(1-#) . ()

2.2 Melt flow
The melt is assumed to be incompressible Newtonian fluid and the flow is governed by the

continuity and Navier-Stokes equations



V-v=0, )
OV+Vv-Vv==Vp/p+W’v, (10)

where v is the flow velocity, p the pressure, p the density, and v the viscosity. For sharp interfaces,
the no-slip boundary condition should be used. For diffuse interfaces, however, a volume-averaged
momentum equation can be formulated, as shown in [13] in the diffuse interface domain; and with
the introduction of the phase field, convenient boundary schemes can be implemented at the diffuse
interface, such as treating the interfacial flow as a flow in a porous medium [33]. In this work, the
latter approach is applied and the specific interface treatment for flow simulation will be presented
in the context of the PFM/LBM model (see Section 3.2 below).

2.3 Concentration field

The governing equation for the concentration field can be written as [1,17,29,31,38,41]

1+(1-k)U

p,(8U+v-VU)=V-(D,VU)-V-j, + d.p-V-J, (11)
where p, :%—sz)¢ , the interpolated diffusivity D¢:DS#+D,¥ , J, 1s the

phenomenological anti-trapping current term defined as [31]

0
W0[1+(1—k)U]a—f|§—Z, (12)

S
.]at_ 2\/5

and J is the flux term associated with fluctuation [17]. The third term on the RHS of Eq. (11) is

due to the rearrangement of 0;U as U'is related to ¢ (see Eq. (1)). In this work, the flux J is neglected
following the setups in [1,31,33,34,42] for direct quantitative comparison with results reported
therein. It should be stressed that in this work, the solute diffusion within the solid phase is also

taken into account as in [17,29]. This is different from the models in [1,31,38,41] where solute

1-¢

diffusion in the solid was neglected with D, = D, BN

2.4 Temperature field
The governing equation for the dimensionless temperature considering convection is

[1,31,33,38,42]

a,¢9+v-v9:av29+%a,¢, (13)



where « is the thermal diffusivity, the last term in Eq. (13) is related to the latent heat of fusion (see
Eq. (2)) during phase change, and the coefficient 2 shows up in Eq. (13) since the bounds for the

phase field variable are ¢ = + 1.

3. Present Phase-Field/Lattice-Boltzmann Model (PFM/LBM)
3.1 LB scheme for phase field

By treating the phase-field equation as a transient pseudo-convection-diffusion equation
with source terms, and following the idea originally demonstrated in [43] for solute and heat
transfer in heterogeneous porous median, an LB scheme was proposed in [31,32] for the phase

field with a modified single-relaxation-time (SRT, also called BGK [44]) collision operator:

a’(n)g,(x+e,0t,1+5t)=g, (x,t)—[l—af(n)}ga (x+e,ot,1)

[ga (x,1)— g (x,t)]+a)a5, G, (x,t)/ro, (14)

1
7,(x.1)
where gu(X, 1) = g(x, &4, 1), § is the microscopic particle velocity vector in the LB model and it is

discretized to a small set of discrete velocities {E.a =0, 1, ...,m — 1}, e, the ath discrete velocity

vector, Jt the time step, and w, the weight coefficient. The distribution function g, (x+e,5%,¢)

evaluated at the adjacent nodes is necessary to recover the correct governing equation for ¢ [31,32].

The macroscopic phase-field variable can be obtained from
p(x.1)=2 g, (x1), (152)
and the equilibrium distribution was defined as [31,32]

w2 5t} (15b)

(xt)=w Jt)——e, N——
() =0 #(x0) Lo, N
with ¢ a constant related to the lattice structure (= 1/3 in D2Q5 and = 1/4 in D3Q7 LB models),

and the relaxation time coefficient needs to satisfy

r( )_Ea()mg&z ;

(16)

The BGK-LB scheme in Eq. (14) was also implemented in [33,34], where the authors introduced
an “interface advancing velocity” evoked by the interfacial surface energy and it can be expressed

as



2
v, E—NW—OQ. (17)
7, OX
It is noted that the 2nd-order terms of O( v> ) were also included in the equilibrium distribution in

[33,34] — a practice generally considered necessary for modeling fluid flow but not for scalar
convection-diffusion [24,27].

Based on the modified BGK scheme in Eq. (14) and the discussion in [43] regarding the
numerical stability of the modified LB scheme, we present an improved PFM/LBM model in this
work for the phase field coupled with thermosolutal convection-diffusion.

First, the phase-field governing equation in (8) is rewritten as

2 G
Toaf(n)ﬁtgé:WOzV.{ij(n)V¢}+W2V N +—

2V , (18)
) FU) FU)

where G, = (¢ - ) —A(Mc, U +0) (1 — ¢ )2 . Clearly, in obtaining Eq. (18), the assumption of

“semi-explicit” coupling was applied, i.e., the coupling of U into the phase-field is mainly through
the last source term in Eq. (8), while its coupling in the remaining transient, diffusion and pseudo-
convection terms in Eq. (8) is assumed to be weak so that 1/F(U) was directly moved into the
divergence terms. Such an assumption is acceptable for LB simulations with small enough time
steps as demonstrated in Section 4 with numerical examples. For problems with strong coupling
between U and ¢, the present model can still be applicable, one just needs to add those originally
neglected terms (related to VU ) to the combined source term.

The present LB evolution scheme is written as
a’(n)g, (x+e,ot,t+5t)=g, (x,1) —[1 - af(n)} g, (x+e,51,1)

G¢ (X’t) (19)

M 1S[m(x,l‘)—meq (x,t)]a +@,0t O,
where M is a transformation matrix to map the distribution functions to the moment space through
m = M-g and m*1= M-g®, and S is related to the matrix of relaxation time coefficients with the
multiple-relaxation-time (MRT) collision operator applied in Eq. (19). We choose the matrices as
in [24] and the equilibrium moments can be explicitly obtained as in [25,27]. Specifically, for the

D2Q5 MRT-LB model



11 1 11
0 1-100
M=|0 0 0 1 -1 ,s-1=diag(roo,r¢,r¢,rp,f,,), and (20a)
4 -1-1-1-1
0 1 1 —1-1]
2 ) v, 2. Y
1%
meq: ou»:»u s 90 = g¢, o s ,O ,lnDz 5, 20b
(¢ oo > 59 (415 FU) FO) 37 ] Q (20b)

while for the D3Q7 MRT-LB model, the following can be similarly obtained

1 111 11 1]
01 -10 0 00
00 01 -100
M=/00 0 0 O 1-1 ,s-l:diag(z'oo,T¢,r¢,r¢,rp,fp,rp),and (21a)
6 —1-1-1 -1 —-1-1
02 2-1-1 -1-1
00 01 1-1-1

% % % 3

3 T !
m=|\gu u u. A ~$00| =p—-— —— —=—=¢0,0| ,in D3Q7.(21b
(9’5 Upr Uy s Uy, 4¢ j (475 O FU) FO) 4¢ j in D3Q7. (21b)

Remark 1. It should be emphasized that in deriving m*d in Egs. (20b, 21b), the equilibrium

distribution function is rescaled in the present model as
. 1 1 v
g (x,1)=w, |:¢(x,t)+gea -un} =w, {¢(x,t)+gea 2 }

FU
— _l . 02 _ét
a, |:¢(X,l‘) § €, N ( )TO },

(22)

V}'l

where u, = with v, defined in Eq. (17). Additionally, in the relaxation matrices in Egs. (20a,

21a), the relaxation coefficient 74 related to the diffusion coefficient also needs rescaling to satisfy

the following

_La@wg o 1
EFU) 7, 6x* 2

7,(x.1)

(23)
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The other relaxation coefficients do not affect the leading-order numerical solutions and thus zoo =
zp = 1 is used for consistency [25-27].

Remark 2. The proposed MRT-LB model for the phase field evolution is able to
significantly improve the numerical stability with two combined features. First, it is well known
that the LB models with an MRT collision operator generally have better numerical accuracy and
stability compared to those with the BGK operator in both fluid flow and scalar transport
simulations [22,24,27,45,46]. Therefore, the present MRT-LB scheme in Eq. (19) is considered an
improvement from the BGK-LB scheme in Eq. (14). Second, the rearrangement of the governing
equation in Eq. (18) and the rescaling of the corresponding equilibria, relaxation coefficients and
source term (see Egs. (19, 20b, 21b, 22, 23)) are crucial in ensuring the numerical stability

especially for high Lewis number (Le) problems. While one could keep the original governing
equation in (8), combine F(U) with af (n), and construct similar LB scheme as in Eq. (14) such

as

a(mFU)g, (x+e,5,,t+3,) =g, (x.t)-[1-a’@mFU) g, (x+e,05,.t)

atd a’td

1

—m[ga (x,1)—-g (x,t)}+a)a5t G, (x,t)/ro, (24)

in Eq. (24) no rescaling is needed for g;*, r, or G,, and it can be verified to recover Eq. (8) up to

2" order accuracy; the LB scheme in Eq. (24) would become unstable when the magnitude of

F(U) is small (noting that a’(n) is of O(1) and F(U) ~ 1/Le in Eq. (6b)) since the RHS of Eq. (24)

will be divided by a’(n)F(U) when updating g, (x+e o, t+5t). This phenomenon was also

a9
reported in detail in [43] for low-porosity simulations. Furthermore, it should be noted that as
pointed out in [1], in typical solidification of alloys the solutal diffusivity in the liquid state is
generally much smaller than the thermal diffusivity (i.e., Le = a/D >> 1). Thus small F(U) is
encountered in typical alloy solidification processes. Overall, the present PFM/LBM model is
well-poised to simulate solidification and dendritic growth with both high- and low-Lewis
numbers with improved numerical stability compared to those previous PFM-LBM models.

Remark 3. Accurate and efficient computation of the gradient V¢ is essential in the PFM

as it shows up in several different terms (e.g., the normal vector n = —V¢/ |V¢

, the anisotropy

function as(n) in Eq. (5), and the anisotropic vector N in Eq. (4)). As demonstrated in [27,47], in
11



the LB framework, the scalar gradient can be conveniently computed from the distribution

functions. Using the notations in this work, the scheme becomes

m—1

a¢ 1 neq
_ = e . , 25
x I 5 2 (25)

where g, '=g,—g>" is the non-equilibrium component of the distribution function. It is

emphasized that Eq. (25) is a local scheme, i.e., it requires only the populations at the local lattice
node and is thus more efficient than using finite-difference schemes that were used in previous
PFM models. The second-order accuracy of the scheme in Eq. (25) has been verified in [27,47].
The Chapman-Enskog analysis for the LB evolution equation (19) to recover the phase-
field governing equation (18) is presented in Appendix A.
For efficient computation and storage, the LB evolution equation (19) is solved in two
steps:

collision step:

A 1
2, (%) asz(n){ga(x,t)—[l—af(n)]ga(x-i-eaé't,t)
G,(x,t
_[M‘IS-(m—meq)(X,l‘)l{ +a)a§t$)‘)%)}, and (26a)
Streaming step:
g, (x+ed1,t+61)=g, (x,1), (26b)

where § . represents the post-collision state.

3.2 LB scheme for melt flow

The incompressible melt flow in the liquid phase can be simulated with the widely used
D3Q19 and D2Q9 MRT-LB models [45,46]. In the diffuse interface, the flow can be considered
as porous medium flow. To avoid tracking the sharp interface with no-slip boundary condition, we
adopt the gray LB scheme [48—-50] for porous medium flows to handle the diffuse interface. The
collision-streaming procedure for melt flow becomes

collision step:
£ (x,0) = £, (x.1) —[M”S -(m—meq)(x,t)] , and (27a)

Streaming step.
12



. 1 . .
f.(x+e,6,t+6,) =, (x,1)+6, (X+Eeaé‘t’tj|:fa (x+e,d,.1)-f, (X,I)J , (27b)
where the details of the matrices M, S and the equilibrium moments m® can be found in [45,46]

and are not shown here for brevity, and the subscript & denotes the opposite direction of « (i.e.,

€, =—€,). The fraction coefficient 6ris related to the solid fraction that can be calculated from the

phase-field variable (6y = (¢+1)/2) and is evaluated at the midpoint of the link in Eq. (27b), i.e.,
(X+lea§”l‘j B 0/. (X’t)—i_ ef (X—I—eaé‘nt) ¢(X,t) +¢(X+ea5tﬂt)+ 2

0

; = . (28)

2 4

The LB scheme for melt flow in Eq. (27) and the calculation of the macroscopic variables
including density and velocity are applicable to the entire computational domain under the
PFM/LBM framework. Specifically, all the terms in Eq. (27b) are considered within the diffuse
interface region; additionally, it reduces to the standard LB scheme for fluid flow within the melt
at 0y = (¢+1)/2 = 0, and to the bounce-back scheme which represents the no-slip condition within

the solid phase at 6§ = 1. Similar discussion was also presented by Sun et al. [33], however, it

should be noted that in [33] the pre-collision distribution functions f (X+e o t) and f, (X,z‘)

29>
were used in the last term in Eq. (27b). To correctly recover the governing equations for flow in
porous media, post-collision terms as shown in Eq. (27b) should be used. One can refer to [48] for
a detailed comparison of the various LB schemes for porous media flow and their Chapman-
Enskog analyses.

For dendritic growth modeling with melt flow and dendrite movement under external
forces (e.g., gravity or buoyance forces as in [17,35,51]), the body forces can be conveniently
added in the LB scheme in Eq. (27) using standard body force treatments in the LB model. Thus
the PFM/LBM model is an attractive and powerful tool for large scale simulations of solidification
processes with motion of multiple dendrites [35,51].

3.3 LB scheme for concentration field

To apply the LB method to solve for the concentration (supersaturation) field, the

governing equation (11) is reorganized to an anisotropic convection-diffusion equation (CDE) with

a general source term

oU+v-VU=V-(D,VU)+G,, (29)
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D 1+¢)D,+(1-9¢)D
where D, = — = (1+¢)D.+(1-9) D, , and the combined source term becomes

Dy (1+k)—(1—k)¢

_(1=0)[(1+¢)D, +(1-¢)D, ]

[1+(1—k)U]8t¢—2V-jm

G, = VU-Vg+ (30)
0 [(1+k) - -k)g] (1+k)-(1-k)¢
. O 2(1-k) . .. .
It is noted that V( P, ): V¢ was used in deriving Eq. (30). In this work, the

[+5)—(1-k)g]
CDE in (29) will be solved with the D2Q5/D3Q7 MRT-LB models [24,27]. By introducing the set

of distribution functions #h«(x, f), the dimensionless concentration is obtained from

m—1

U(x,t)=> h,(x1) and the collision-streaming procedure for the LB evolution equation includes

a=0

collision step:
h, (x,8)=h, (x.)=[M'S:(m—m*)(x,1) | +@,5tG, (x.t),and (31a)
Streaming step:
h, (x+e,8t,t+5t)=h, (x,1). (31b)

The matrices M and S are the same as those in Section 3.1 and the details of equilibrium moment
m*® can be found in [24,27]. It is worth noting that the principal relaxation time coefficients are

related to the effective diffusion coefficient through -, —=3p_, +0.5. With the MRT collision

operator implemented, the present LB model is stable in handling solutal convection-diffusion
with very large diffusivity ratios. Numerical verification with D/Ds = 10* will be presented in
Section 4.3. Some additional remarks are given below.

First, the present LB model for solute convection-diffusion is considered much more

convenient and easier to implement than the LB model proposed in [31], where

1-¢)D,
D, = ( ¢) ! was assumed neglecting diffusion in the solid phase. As a consequence,
(1+k)—(1-k)¢

in order to apply the LB model to the entire domain for U evolution, the relaxation coefficient ry
was chosen to be related to the D; even within the solid phase; and additional rearrangement of the
governing equation for U as well as redefinition of the equilibrium distribution function were used
in [31]. The present LB model avoids those complex steps and is able to model diffusion within

the solid as well.
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Second, similar to computing V¢ in the LB model, the gradient VU is also conveniently

obtained from a local scheme similar to that in Eq. (25) based on the distribution functions in the

LB model. It is also noted that, however, for computing V‘jm in Eq. (30), one has to adopt

conventional schemes (the central-difference scheme is applied in this work) as in all previous

PFM models. And the simple forward Euler method, o,¢ = P10 =X, = 01)

, 1s used for
ot

computing 0,4 in the combined source term in Eq. (30).

3.4 LB scheme for temperature field

The energy equation (13) can also be considered as a standard CDE with a source term (

G,= %at¢) and the above D2Q5/D3Q7 MRT-LB models [24,27] will also be implemented for the

temperature field evolution. For completeness, the collision-streaming procedure is also shown

below where nq(X, t) is the last set of distribution function defined to yield 0(x,1)= mf,na (x,7)
a=0

collision step:
i, (x.2)=n, (%)= M"'S-(m—m* )(x,t)L +,5tG, (x,t), and (32a)
Streaming step:
n,(x+e,01,1+6t)=h, (x,1). (32b)

The flow chart for the present PFM/LBM model for solidification and dendritic growth
simulation with fully coupled melt flow and thermosolutal convection-diffusion is depicted in Fig.

1.
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Initialize phase field ¢ and physical fields
(v, U, 0) and calculate model parameters
(e.g.: A, Le, Pe, Pr, Mc,, ¢, k)
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relaxation-time coefficients in
LB schemes (z, 75 71, 79)

Update flow field (v, f,) for 4, steps;

Update phase field (¢, g,);

Update concentration field (U, 4,) for A, steps;
Update temperature field (4, n,) for A steps.

Update flow field (v, £,);

Update phase field (¢, g,);

Update concentration field (U, 4,);
Update temperature field (6, n,).

v

False

* Converged flow and DFs £, for flow over the initial seeds can be used;
** Scaling factors 4, 4, and A can be chosen independently with the MTS used for each LB scheme.

i .
b

True

Fig. 1. Flow chart for the proposed fully coupled PFM/LBM model. Here MTS represents
the multiple-time-scaling (MTS) strategy developed in [40].

4. Numerical Verification and Discussion

In this section, we implement the present PFM/LBM model to simulate four representative
solidification problems with coupled melt flow and thermosolutal convection-diffusion. The
applicability and accuracy of the proposed model is verified through detailed comparison of the
simulated results with published data in the literature. In each test, a single circular/spherical solid

seed of radius Rq is initially placed in the center of a 2D/3D domain with an initial phase-field

distribution ¢, :tanh[(Rs —d,)/ 2W0] , where ds; is the distance from the seed center;
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solidification and dendritic grow under various melt flow, heat, and solute transport conditions are
simulated. Specifically, the first test focuses on iso-solutal solidification in 2D with the coupled
melt flow, phase field, and temperature field evolution simulated; the second test is for isothermal
solidification in 2D; fully coupled thermosolutal convection-diffusion in 2D is simulated in the
third test; and 3D simulations are presented in the fourth test. The evolution of the phase field,
melt flow, concentration (supersaturation) and temperature fields is checked for each case, and
quantitative verification of the simulated results in terms of tip velocity and radius, and selected
concentration/temperature profiles is presented. The details for accurate computation of the tip
velocity and radius based on the solved phase field are given in Appendix B.
4.1 Thermal/iso-solutal dendritic solidification in 2D

The 2D computational domain is shown in Fig. 2, where the domain size is set as a square

with 5120x x 5120x grid resolution and the initial seed radius is R, =106x. The characteristic

VVOZ

—025 and Pr=v/a=23.1, and the inlet

parameters for convection-diffusion are Pe, =
ar,

velocity is set as u, =W, / r, for convection and u;, = 0 for pure diffusion problems. The length and
time scales are controlled by selected interface thickness W, =2.55x and reference time z, =1255¢

with unit spatial and time steps (ox = ot = 1) in the LB framework. To simulate the coupled
thermal/iso-solutal solidification and be consistent with reported simulations in the literature, the

parameters in the PFM model are chosen as Le = 1, Mc, =0, ¢ =0.05 and A=aW,/d, =6.3826
with constant g =0.8839. Under the above parameter settings, the relaxation coefficient in the
thermal LB model is 7, =1.1 which results in Tt original =14.36 in the hydrodynamic LB model if

the same time scaling is utilized. Such a large relaxation coefficient would lead to instability of
the model and/or large numerical error. Therefore, we implement the multiple-time-scaling (MTS)

strategy in [40] and decouple the time steps in the LB models. The effect of this scaling factor,

/1 _ z-f,original _05

)

05’ is studied in Fig. 11 below, and for all the other results presented 4, = 15 was
z.f,scaled - Y

used, which would render 7; g = 1.424.
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Fig. 2. Schematic depiction of the square computational domain for dendritic growth with
melt convection with boundary conditions specified on all four walls and a circular seed
located at the center.

Dendritic solidification under pure diffusion is considered first. Fig. 3 shows the phase
field interface (¢ = 0) at different times with both the BGK- and MRT-LB models for the phase-
field evolution implemented (see Sec. 3.1). Excellent agreement between the results from the two
LB models in Fig. 3 and also between the present results and those in previous studies [31,33] is
observed, confirming the accuracy of the proposed MRT-LB model for the phase field in this work.
The results from the MRT-LB model are thus shown throughout this paper. Furthermore, the
dimensionless temperature contours and the phase-field “advancing velocity” (see Eq. (17))
components in x- and y-directions are shown in Figs. 4 and 5, respectively, at the time of #/70 =

128.

1 LA R D R R L A
I ® MRT-LB model
® BGK-LB model
0.8 A
0.6 5
- L
B
04f .
0.2 A
0 I M B RS RS R ]

0 02 04 06 08 1
x/L
Fig. 3. Interface evolution comparison between the MRT- and BGK-LB models for the phase
field for 2D dendritic growth with pure diffusion at #/70 =0, 4, 8, 16, 32, 64, 128.
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Fig. 4. Contours of the temperature field for 2D dendritic growth with pure diffusion at #/7o

=128.
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Fig. 5. Interface advancing velocity contours in (a) x-direction and (b) y-direction for 2D
dendritic growth with pure diffusion at #/7o = 128.

The velocity contours in Fig. 5 clearly show that the advancing velocities are much more
significant in the diffuse interface region compared to the rest of the domain. It should be noted
that the velocity components are evaluated at the LBM nodes with the convenient local scheme in
the LBM framework (see Eq. (25)); this allows direct and quantitative investigation of the diffuse
interface growth at different locations of interest in addition to the tip velocities that were studied
in previous publications. To further verify the present model, Fig. 6 compares the tip velocity and

radius results with those reported in [31,33].

19



— 60 T
—6— west tip T N —e— west tip
— -A— - cast tip 1 L — -A— - cast tip

| —-=)—--north tip J 4 —-<)—--north tip -
0.04 <@ south tip o 50 AR <@ south tip -
L O Sun et al. [33] i ) 8a — -©— - Sun et al. [33] west tip
5 A Cartalade et al. [31] [6 \ — -A— -Sun et al. [33] east tip
< {1~ \ — 40— -Sun et al. [33] normal tips J
S 1408 &
. =
= 0.03 1
k| 15 %0
S 0.02 i t
=¥ dq .~ r
B = L
& 17 20
0.01 -
10f
ol o L0 0w by b b b 1 ol TN TN T T ST N TN [N T T S N T TN T AN ST S T [N TN ST T B
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time, t/7 Time, t/7
(a) (b)

Fig. 6. Evolution of (a) tip velocities, and (b) tip radii for 2D dendritic growth with pure
diffusion.

The computed values at the four tips are the same for pure diffusion case, confirming the
self-consistence of the model and simulation results. Good agreement for the tip velocity with
those in [31,33] and the steady-state analytical value (dashed line) is observed in Fig. 6a; and our
simulation shows smoother and more consistent tip radius data in Fig. 6b compared to Sun et al.’s
[33], where the tips showed fluctuating results.

Next, we report the simulation results for the 2D dendritic solidification with both thermal
convection and diffusion. Fig. 7 shows the interface comparison at the same times as in Fig. 3. It
is clearly observed that convection plays a significant role on the dendrite growth, with the west
(upstream) tip becoming much larger than the other tips. Consistent results are obtained from both

BGK- and MRT-LB models with some discrepancy noticed at the west tip at /7, = 128. The

respective contours of the temperature field and the phase-field advancing velocity components

under convection at ¢/z, = 128 are shown in Figs. 8 and 9, where the effect of thermal convection

is obvious compared to those in Figs. 4 and 5. In addition, the evolution of the tip velocities and
radii is presented in Fig. 10. The tip velocity comparison further illustrates the significant influence
of the fluid flow and thermal convection on the dendrite growth: the upstream west tip has much
higher growth velocity and the downstream east tip lower velocity compared to the symmetric
north and south tips perpendicular to the inlet flow; and excellent agreement with those reported
in [33] is observed. The evolution of the radii of the four tips is close to each other, and also in
good agreement with that in [33]. Consistent with the comparison in Fig. 6b, our model and tip

radius evaluation scheme (see Appendix B) yield improved results compared to those in [33].
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Fig. 7. Interface evolution comparison between the MRT- and BGK-LB models for the phase
field for 2D dendritic growth with convection-diffusion at #/z0o = 0, 4, 8, 16, 32, 64, 128. The
melt flow velocity vectors are shown at #/7o = 128.

0

0.2 0.4 0.6 0.8

x/L
Fig. 8. Contours of temperature field for 2D dendritic growth with convection-diffusion at
t/to = 128.
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Fig. 9. Interface advancing velocity contours for 2D dendritic growth with convection-

diffusion at #/zo = 128.
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Fig. 10. Evolution of (a) tip velocities and (b) tip radii for 2D dendritic growth with
convection-diffusion.

Furthermore, the efficacy of the multiple-time-scaling (MTS) strategy, which is critical in
decoupling the time steps in the different LB schemes in the coupled PFM/LBM model, is
demonstrated in Fig. 11, where the comparison of the tip growth velocities and radii at different

scaling factor A, values is shown. With the selected Prandtl number Pr = 23.1, the rescaled

relaxation-time coefficients for the melt flow are 7 = 1.424, 0.962, and 0.731 at 4s = 15, 30,
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and 60, respectively. In general, very good agreement can be observed in both tip velocity and

radius results in Fig. 11, confirming the applicability and accuracy of the MTS scheme.
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Fig. 11. Comparison of the (a) tip velocities and (b) tip radii with the multiple-time-scaling
(MTS) strategy implemented using various As; values for 2D dendritic growth with
convection-diffusion.

4.2 Solutal/iso-thermal dendritic solidification in 2D

The 2D MRT-LB schemes for the phase field coupled with the concentration field is
verified in this section with the 2D isothermal solidification problem with pure diffusion that has
been studied by various authors such as Karma [36] with the finite-difference Euler method,
Cartalade et al. [31] using the BGK-LB schemes for both fields, and Wang et al. [34] with a hybrid
BGK-LB/finite-volume method for the respective phase field and concentration field. In present
simulations, the scaled solute mass diffusivity is selected as D, = Dz, /w,> =2 with interface
thickness 1, =2.55x and constant time scale 7, = 505¢. The ratio of the solutal diffusivity in solid
to liquid is D,/ D, =10"* in all cases considered including the following Section 4.3. Other model
parameters include 4=3.1913, intial dimensionless cocentration £ = -0.55 (see Eq. (6)), @ =0,

k=0.15, £ =0.02, and Mc = 0.5325. The computation domian has a 10000x x 10000x uniform

mesh and with an initial seed radius R, = 100x.
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Fig. 12. (a) Phase-field interface evolution at #7o = 0, 40, 120, 200, 400, 600, 800, and 1000,
and (b) concentration field at #/7o = 800 for the 2D dendritic growth with pure diffusion.
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Fig. 13. (a) Dendritic tip velocity variation and (b) concentration profile in the solid phase
for the 2D isothermal dendritic growth with solute diffusion.

The interface morphology of ¢ at different times and the distribution of Qat ¢/ z, =800 are
shown in Fig. 12. The results are consistent with those reported in [1,31,34]. It should be noted that
different from the previous models [1,31,34] where D; = 0 was assumed, the present model also
considers the solutal transfer within the solid phase (b, /D, =10), therefore the concentration
gradient on the solid side can be clearly observed in Fig. 12(b). To quantify the comparison with
published results, Fig. 13(a) shows the variation of simulated tip velocity and Fig. 13(b) the central
solute profiles along the y-axis in the solid at ¢#/z, =800. Due to the symmetry of the pure
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diffusion case, we only present the results of the north tip in Fig. 13; and the solute profile obtained

from the Gibbs-Thomson relation ¢, /¢, = k[1 - -k)d, / r,, 1, Where ,, is the dendritic tip radius
(r,, =21.9960x with the present bi-cubic interpolation used), is also included in Fig. 13(b). Good

agreement with published results is observed for both the tip velocity and solute profile in Fig. 13,
confirming the accuracy of the present PFM/LBM model for isothermal solidification simulations.
The discrepancies in the solute profiles near the dendrite center might be caused by (1) different
initial seed radii used in the various simulations (e.g., Ry = 100x = 14.4dp in present simulation, R
= 22dp in [36], and R, not specified in [34]), and (2) slightly higher relative concentration at the

center (C,/C, =0.085 in present) than the reference value C /¢ =0.08 in [34,36] since the present

model considers non-zero diffusity D, in the solid phase.

4.3 Thermosolutal solidification and dendritic growth in 2D

In this section, the PFM/LBM model is implemented to simulate the 2D dendritic growth
of a binary alloy into an undercooled melt with coupled melt flow and thermosolutal convection-
diffusion. The diffusion cases at Le = 1 and 50 studied in [1] are used for model verification; and
we also report our simulation results under convection at Le = 50.

First, for the diffusion case with Le = 1, the same parameters as in [1] are used including 4
= 3.1913, Mc, =05325, U, = 0, g, = -0.55, k = 0.15, &, = 0.02, and D, =Dz, /WS> =2;
addtionally, we choose the reference length and time scales 1, =2.56x and ¢, = 555¢, respectively,

which yield a domain size of 23950x x 23950x to maintain the same resolution as in [1]. And the
same initial seed radius is also used ( R, = 65do= 450x). The evolution of the tip velocity and radius
(results are symmetric for the four tips) is presented in Fig. 14, where it is clear that the tip velocity
matches extremely well with the reference data, and although persistent discrepancy in the tip
radius results is noticed at small times, they both converge to close steady results. It is speculated

that the initial phase field, ¢(x,0) = tanh [( R —d.)/ 2w, ] with ds the distance to the seed center

used in the present simulation following [31] could be responsible for the early deviation in Fig.
14(b). To further verify the accuracy of the present model, Fig. 15 shows the comparison of the
profiles of ¢, U, and 6 along the central dendrite axis with those in [1] at /p, / a2= 470,000. The

present results match very well with the published data in general, and the discrepancy in the U
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profiles near the dendrite center is due to the non-zero solid solute diffusivity (b, / b, =10*) used,

as a similar behavior is also noted in Fig. 13(b).
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Fig. 14. Evolution of (a) tip velocity and (b) tip radius for the 2D thermosolutal dendritic
growth with pure-diffusion at Le = 1.
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Fig. 15. Simulated ¢, U, and 6 profiles along the central dendrite axis at tD;/d3 = 470,000.
Next, thermosolutal dendritic growth at higher Lewis numbers is simulated. As emphasized
in Section 3.1, the present PFM/LBM model is particularly stable in simulating high Le cases. For
illustration purposes, Fig. 16 (a-f) presents the phase field, concentration, and temperature fields

at (p, /42 = 3500 for both the diffusion-only and convection-diffusion cases. The simulation
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parameters include Le = 50, 1 = 1.5957, p, = 1, Mc, = 0.1, k= 0.15, g, = 0.02, W, =25x, and
7, =10005¢ ; initial distributions ¢, = tanh [(RS —d,)/ 2w, ] U, =0, and g, =-0.55 and far-field

Dirichlet boundary conditions ¢ = -1, U =0, and € = -0.55 are employed; and the computational

domian size is 17510x x17510x with two initial seed radii R, =200x and R, =440x tested. Similar
to the convection test in Section 4.1, constant inlet flow condition (u, =,/ z,) and the converged

flow field over the circular seed as initial condition are implemented for the convection-diffusion

Wy __ Y _0.02 and Pr=23.1. The distributions in Fig. 16 are very similar to

case with p, —
“ ar, D,Le

those reported in [1] for pure diffusion and [30] for convection-diffusion dendritic growth. In
particular, the complex microsegregation pattern in the solid is fully captured; the thermal
boundary layer thickness is much larger than that of the solutal boundary layer due to the high Le
simulated; the concentration variations are mainly confined within the solid phase with more
complex contours obtained compared to those in [1] as a non-zero solid solutal diffusivity is used
in the present model; noticeable temperature variations in a much larger domain are observed
including those in the solid; and the effects of the melt flow and convection on the field
distributions are also clearly seen in Fig. 16 (b, d, f) with the upstream primary and secondary tips

growing much faster and with significantly higher tip temperature compared to the pure diffusion

case in Fig. 16 (a, c, e).
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Fig. 16. Distributions of (a, b) the phase fields, (¢, d) concentration fields, and (e, f)

temperature fields at D, / d(f =3500 for the 2D fully coupled thermosolutal dendritic growth.

(a, ¢, e) are simulations for the pure diffusion case and (b, d, f) for the convection-diffusion
case both at Le = 50.

To further verify the temporal accuracy of the present model, Figs. 17 and 18 show the
evolution of the primary tip velocity and tip radius results for the respective diffusion and
convection-diffusion cases at Le = 50 and with the same parameters described above. The results
from [1] are also included in Fig. 17 as references. First, the overall agreement in Fig. 17 is

encouraging, especially for the excellent agreement of tip velocity at small times and the close
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steady tip radius results. It should be noted that the present work represents the first quantitative
comparison with the published data in [1] for the dendritic growth with coupled thermosolutal
transport. Second, the present simulation results with two different R, values confirm the
sensitivity of the tip evolution with the initial seed size, which was also examined in detail in [37]
in terms of interface morphology. Moreover, the results in Fig. 17 demonstrate that even though
obvious discrepancies are noticed with different initial seed sizes, their steady-state (when domain
size is large enough) results are almost identical for both tip velocity and radius. Compared to the
large fluctuations in the data from [1] in Fig. 17 (a, b), it is believed that the present simulation
results are more reliable. Lastly, the effect of the melt flow and convection on the evolution of the
four primary tips is clearly seen in Fig. 18 (a, b). In summary, the present results in Figs. 17 and
18 can serve as benchmark data for verification of phase-field models for dendritic growth with

fully coupled thermosolutal transport.
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Fig. 17. Evolution of (a) the primary tip velocities and (b) tip radii for 2D dendritic growth
with thermosolutal diffusion at Le = 50.
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Fig. 18. Evolution of (a) the primary tip velocities and (b) tip radii for the 2D dendritic
growth with thermosolutal convection-diffusion at Le = 50.

4.4 Thermal/iso-solutal dendritic solidification in 3D
In this section, dendritic growth in 3D with pure diffusion is simulated to verify the present
PFM/LBM model when extended to 3D. The thermal/iso-sloutal diffusion problem in Section 4.1

is directly extended to 3D with the same characteristic parameters Le = 1, Mmc_ =0, & =0.05 and

A=6.3826. A computational domain with 385dx x 3850x x 3850x grid sizes and a spherical seed

of mitial radius R, =105x are used, and the interface thickness and reference time are selected as
w,=2.55x and r,=1255¢ . Fig. 19 shows the representative phase-field and temperature

distributions at #/7o = 60. The 3D contours in Fig. 19 (a, b) can be observed to be symmetric across
the three central coordinate planes; and the 2D phase-field contours in Fig. 19 (c¢) are similar to
those presented in Section 4.1. Furthermore, Fig. 20 compares the computed tip growth velocity
and radius results with those reported by Jeong et al. [42], where excellent agreement for the tip
velocities are observed in Fig. 20 (a), and similar trends in tip radii are shown in Fig. 20 (b) with
slight discrepancies in magnitude. It should be noted that similar phenomena are observed and
discussed in Section 4.3, the tip radius results are very sensitive to the initial seed size, the initial

phase-field distribution and the evaluation schemes used.
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Fig. 19. (a) Dendritic shape at ¢ = 0 and (b) isothermal shape at § = -0.25 in 3D, and (c¢)
phase-field and (d) temperature contours in 2D on the central x-y plane for the 3D
thermal/iso-solutal dendritic growth problem with pure diffusion. All results are at #/70 = 60.
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Fig. 20. Evolution of (a) tip velocities and (b) tip radii on the central x-y plane for 3D dendritic
growth with pure diffusion.

5. Conclusions

A new PFM/LBM model for solidification and dendritic growth simulation with fully
coupled melt flow and thermosolutal convection-diffusion was developed in this work based on a
synergy of the phase-field method (PFM) and the lattice Boltzmann method (LBM). The attractive
feature of the diffuse interface in the PFM was maintained to effectively simulate the complex
dendritic morphology evolution; and different from previous hybrid PFM-LBM models where the
LBM was mainly applied to simulate the flow field, the present coupled PFM/LBM model inherits
the intrinsic benefits of the LBM (e.g., simple and explicit algorithms, convenient
boundary/interface treatment, and compatibility with parallelization), and all the evolution of the
phase field, flow field, solute and thermal fields is simulated in the LB framework with a single
Cartesian grid system. In addition, effective diffuse interface treatments are proposed in the LB
schemes, which are directly implemented to the entire computational domain. Moreover, to
improve the model stability and accuracy, multiple-relaxation-time (MRT) LB schemes are
applied for all. Furthermore, in order to simulate various dendritic growth problems with wide
ranges of characteristic parameters, a multiple-time-scaling strategy is employed in the LB
framework that effectively decouples the times steps in the four LB schemes.

The efficacy of each of those unique features and the overall accuracy of the coupled
PFM/LBM model were verified with representative numerical tests involving melt flow and

thermosolutal convection-diffusion in 2D and pure diffusion in 3D. It was demonstrated that with
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comparable spatial and temporal resolution, the present model showed more robust and consistent
results than those in the literature in terms of the dendrite tip growth velocity and radius. The
reported simulation results for thermosolutal dendritic solidification with and without convection
can serve as reliable benchmark data.

Future studies will focus on applications of the verified PFM/LBM model to simulate large-
scale dendritic growth such as those with natural and forced convection effects and involving
dendrite motion driven by melt flow, and model validation with experimental measurements

available in the literature.
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Appendix A. Chapman-Enskog Analysis of the MRT-LBM for the Phase-Field Equation
For the Chapman-Enskog expansion analysis, a “small” perturbation parameter ¢ , which
is defined as the ratio of the lattice spacing Jx to a characteristic macroscopic length L, i.e.,

€ =0x/ L, is applied. The standard spatial scale x; = € x and two time scales 1 = € tand £, =
e’ t (hence V=¢v,, 0, =€0, +¢ 2(3,2 ) are considered for the analysis, with also the following

expansions introduced

=Yg, (A1)
n=0
g, (x+e,51,1) :;%d g (x,1), (A2a)
g, (x+e, 01,1+ 6t =i€—'D g (x,1), (A2b)
n=0 M-

where d=e_ -V, and D= a te, V' is the convective derivative.

Following the similar steps in [31,43,48,52], one can insert the above expansions and rewrite the

MRT-LB scheme in Eq. (19) in the consecutive orders of the parameter € as follows

O(c"): Ay g5 — 25" ]=0, (A3a)
1
O(e'):=5;Aug) =Dig’ (A3b)
1 St
0(52):_5Aaﬂgﬂ) _azaz gg)) +D,, gs) > —D;, ,(1), (A3c)

~ 0
where A=M"'SM and D, =a’ o e V,.
1

Since A is invertible, Eq. (A3a) simply implies
g: =8 (A4)
Also, the combination of Egs. (A3b, A3c) gives

—éAaﬂgg)—azﬁ g94+D,, (I- A/2) g(l). (AS)

From the zeroth-order moments of g(l) in Eq. (A3b) and g(z) in Eq. (AS) one can obtain

a a
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[Zg”)] (Zeagf;’)j (A6)
(28(0)] {1 S,/2), Zeagi,”} : (A7)

where the following relations are noted
anAaﬂ = Socﬂ’ ZeaAaﬂ = Slocﬂ + Sleﬂ s (AS)

withe=(1,1,...,1) € R™ soa constant parameter, Sioa m X 1 matrix, and S; an invertible m X
m relaxation matrix corresponding to the diffusion matrix [52].

Also from the first-order moment of gS)

Zeag“)— 5t2eaA;l 1ygy =—01S; Ze Dlygy

we obtain

(A9)
=-0tS;' {af&tl [Z e, gV J +V,- Zeaeagflo)}.
Eq. (A9) can be inserted into (A7) to yield
o (Tet o [l 95, Te?]
’ . (A10)

+01V, '{(Sf] —I/2)af@,1 Zeagfzo)}.
With the appropriate selection of g, O = =g at]Zeag;‘” =0 is noted and thus Eq. (A10)
reduces to

(ij atv{(S;l—l/z)vl-ze g} (AT

Finally, we can combine the terms in € X Eq. (A6), ¢ X Eq. (A11) and the source term

of O(¢*)to obtain

(Zg<°>]+v-(zeagé°)] : 5N{(Sf' —I/Z)V'Zeaeagif”}&Z%- (A12)
~ a a 2
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w? St
Clearly, with o~ defined in Eq. (22), D=9 e o= N—0 2
y g g (22) ;ga ¢ ; L& F U ox

Zeaeag(o) =&l can be readily verified; also, recalling the relaxation matrix in Eq. (23), Eq.

24

(A12) becomes
2 2 2 G
cop=v.| - Wgyl Mg N % (A13)
' FU) 7, 5, FU) F@U)g,

Eq. (A13) is identical to the governing equation in (18) when preserving the terms up to O (62 ) .

It is thus verified that the MRT-LB evolution scheme in Eq. (19) recovers the governing equation

for the phase field up to second-order accuracy.
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Appendix B. Evaluation of the Tip Velocity and Radius

With the objective of accurately evaluating the tip velocity and tip radius during the dendritic
growth, bi-cubic interpolation using 16 data points of the phase field variable, ¢, i=1~4,j=1~4)
enclosing each tip is applied. Through the introduction of a local coordinate system (&, #), the bi-cubic

3 3
function is constructed as #(&,7n7) = Z Z Caﬁfc’nﬁ where Cyp are constant coefficients that can be
a=0 =0

easily determined with the ¢;; values from the phase-field solution.

In addition, the Newton-Raphson method for root-finding in 2D is employed to accurately

0
determine the tip coordinates (&, ) that satisfy the two conditions of ¢(&,7,) =0, and %‘ e =0

0
(for north and south tips) or %‘(m{) =0 (for west and east tips). After determining the tip

coordinates, the tip velocity can be readily calculated in the time marching procedure, and the tip

af7¢ ‘ (&)

radius is analytically calculated according to p,, =————
a§¢‘(§,,m)

(for north and south tips) and

6§¢ ‘ (&m0

2
677¢‘ (&1

For 3D simulations, the center of the initial spherical seed is placed exactly on a lattice node,

Piip = (for west and east tips).

and the tip velocity and radius are evaluated on the selected 2D planes following the same process

described above.
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