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Abstract

In this paper we use the blow-up surgery introduced in [1] to produce new higher dimensional
partially hyperbolic flows. The main contribution of the paper is the slow-down construction
which accompanies the blow-up construction. This new ingredient allows to dispose of a
rather strong domination assumption which was crucial for results in [1]. Consequently we
gain more flexibility which allows to construct new volume-preserving partially hyperbolic
flows as well as new examples which are not fiberwise Anosov. The latter are produced
by starting with the geodesic flow on complex hyperbolic manifold which admits a totally
geodesic complex curve. Then by performing the slow-down first and the blow-up second
we obtain a new (volume-preserving) partially hyperbolic flows.

1 Introduction

This paper is a sequel to [1] and familiarity with [1] would help the reader. We keep the
introduction brief, still we will recall all definitions which are needed.

A flow ¢': M — M is partially hyperbolic if the tangent bundle T M splits into Df-
invariant continuous subbundles TM = E* @ E¢ & E" such that

ID@' W)l < A" < D' W) < ' < D' W, 1= 1, (LD

for some Riemannian metric || - ||, some A < 1 < p and all unit vectors v* € E*, v¢ € E€
and v* € E". Then it is clear that the generating vector field ¢ lies in the center subbundle
E°.

An invariant submanifold N C M is called an Anosov submanifold for ¢' if TN =
ES & ¢ @ E". Note that then the flow 905\/ is given by the restriction ¢’ |y is an Anosov flow.
Further, the flow ¢’ : M — M is called locally fiberwise at N if a neighborhood of N can
be smoothly identified with D¥ x N, where D = {x € R¥ : ||x|| < 1}, in such a way that
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the restriction ¢’ |px 5 has the product form

¢ (x, y) = (@ (x), oy (), (1.2)

where a’ is a linear hyperbolic saddle flow.

Remark 1.1 Note that locally fiberwise assumption in this paper is weaker than the one in [1]
as we no longer require E¥ @ E* to be tangent to the N-fibers in the neighborhood ¥ x N.
Such weakening is crucial for the examples which we consider here. Also note that the locally
fiberwise assumption implies that the normal bundle to N is trivial. This assumption is not
crucial for our argument, but it does simplify notation and calculations a lot.

Now we can blow-up M along {0} x N by replacing each point in {0} x N with the
projective space of lines which pass through this point perpendlcularly to N. The blown-up
manifold M comes with a canonical blow-down map =: M — M which collapses each
projective space to its base point. The preimage 771({0} x N) =~ RP¥=1 x N is called the
exceptional set. In smooth category, M is the result of replacing D¥ x N with (D¥#R P¥) x N.
We will write DX for (D*#R P¥). If the flow ¢’ : M — M is locally fiberwise at N then it
induces a flow ¢’ : M — M such that the diagram

1

M*>M

L (1.3)

commutes. The induced flow ¢’ : M—> M may or may not be partially hyperbolic.

MAIN THEOREM Let @' : M — M be a partially hyperbolic flow with C' invariant splitting
ES@® E°@® E" and let N C M be an invariant Anosov submamfold of M. Assume that the
dynamlcs is locally fiberwise in a neighborhood ofN Let Q' M — M the mducedﬂow
on M. Then there exists a partially hyperbolic flow @' : M — M which coincides with @'

outside of a neighborhood of the exceptional set.

The Main Theorem builds up on the earlier work [1]. However, strictly speaking, it is
not a generalization of the results in [1]. Indeed in [1] the author showed that the blown-up
flow ¢’ is itself partially hyperbolic under more restrictive assumptions, most importantly
the domination assumption, which assures that the Anosov submanifold is sufficiently fast
compared to the center. In this paper we have fully disposed of the domination assumption
and, most interestingly, the Main Theorem applies to examples when ¢’ is not partially
hyperbolic. The proof of the Main Theorem relies on some tools developed in [1] but also
develops different technology for controlling the returns. The key basic ingredient of the proof
is the slow-down construction in the neighborhood of the Anosov submanifold which provides
a remedy for absence of domination. Consequently, unlike results of [1], the construction
here can only be used for flows and not for diffeomorphisms. The benefit of the slow-down
construction is that we can also produce volume preserving examples which was impossible
with techniques of [1].

We proceed to describe an application of our theorem in the setting of geodesic flows on
compact complex hyperbolic manifolds. Let M be a compact complex hyperbolic manifold
of dimension n (real dimension 2n). One can realize M as a quotient space of the complex
hyperbolic space H{, by an action of a cocompact lattice in the group of biholomorphic
isometries, I' C SU (n, 1). Assume that there exists a compact totally geodesic complex curve
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N C M. Then, up to conjugating lattice I', the embedding N C M is induced by the first
coordinate embeddlng Hl C H{. Now consider the geodesic flow on the unit tangent bundle
o' T'M — T'M. We view ¢' as a partially hyperbohc flow with dim E® = dim E* =

Because N is totally geodesic, ¢ /reitrlcts tgz N. We blow-up T'N C T'M. It is easy

to see that the induced flow ¢': T'M — T!M is not partially hyperbolic because it has
periodic orbits with dominated splittings of different dimension signatures. Further, we can
check (see Sect. 4) that all other assumptions of Main Theorem are satisfied as well. Hence
we obtain the following corollary.

Corollary 1.2 Let M be a compact complex hyperbolic manifold and let N C M be a totally

geodesic complex curve. Then the blow up T1M of T'! M along T'N supports a partially
hyperbolic flow ¢ : M — M. Moreover, the flow ¢': M — M can be chosen to be an
arbitrarily C* small perturbation of ¢'.

Note that the if ¢’ preserves a smooth volume m then ¢’ preserves a smooth measure
7*(m). However the density of w*(m) vanishes on the exceptional set. Nevertheless, fol-
lowing the idea of Katok and Lewis [5], we adapt our Main Theorem to the conservative
setting.

Addendum 1.3 Let N C M and ¢': M — M be as in the Main Theorem. Assume that ¢'
preserves a smooth volume m which has product form in the neighborhood D* x N that
is, m|pk v = vol @ voly, where vol is the standard Euclidean volume on DF and voly is
a smooth ¢'|y-invariant volume on N. Then there exists a partially hyperbolic flow on M
which preserves a smooth non-degenerate volume.

The following is a non-trivial corollary.

Corollary 1.4 Let M be a compact complex hyperbolic manifold and let N C M be a totally
geodesic complex curve. Then the blow up T'M of T'M along T'N supports a volume
preserving partially hyperbolic flow ¢': T'M — T M.

Finally we remark that similarly to [1, Section 3] one can take multiple blow-ups as well
as connected sums along Anosov submanifolds and produce partially hyperbolic diffeomor-
phisms on manifolds with even more complicated topology. Prior to proving the result we
include a short section presenting a concrete evidence (higher homotopy) of altered topology
of the manifold after the blow-up surgery.

We would like to thank the referee for a thorough reading and several very valuable
suggestions. In particular, the following discussion on topology of the new manifold appeared
on the suggestion of the referee.

Higher homotopy of ™

To see that the examples given by Corollaries 1.2 and 1.4 live on new manifolds one can look
at higher homotopy groups. Namely, we will prove that new examples are not homotopic to
time- 1 maps of geodesic flows on negatively curved manifolds. To do that we will additionally
assume that complex dimension of M is n > 3. Then the real dimension of M is 2n and the
dimension of T'M is 4n — 1.

We begin by observing that since M is aspherical the long exact sequence in higher
homotopy groups for the sphere bundle 7'M vyields the isomorphism 7o, (T M) ~
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T2n—1(S¥"~1) ~ Z. Hence, to see that the new flow ¢’ is not derived from a geodesic

flow (possibly on a different manifold), it is sufficient to verify that 75,_1(T1M) is not
isomorphic to Z.

To do this calculation we will first construct a special 2-fold cover Q — T!M. Recall

that m is obtained by blowing-up T'N C T'M in the normal direction. Let’s consider
the same construction but by using the “spherical blow-up” instead of the projective one.
Namely, let’s replace each point in 7! N with the sphere of rays which are based at this point
and are perpendicular to N. In this way we obtain a manifold Q with boundary 7' N x $*=3.
Leta: T'N x $*"=5 — TIN x $**=5 be an involution given by a(x, y) = (x, —y). Then,
clearly,

T/lﬁ\le/a

Now consider another copy of Q which we denote by Q’ and form the double 0=0uQ
by identifying the boundaries via the identity map. The double Q is a closed manifold and
T'N x §*5 Q is a separating codimension 1 submanifold. Consider its two-sided
thickening

{t:=1/2<t<1/2}x T'N x $*73

where ¢ = 0 corresponds to T' N x S*'—3_ Recall that the odd dimensional sphere S**—5 ¢
"2 admits the S'-action given by complex multiplication, which we denote by &7, £! =
idgan-s. Notice that &1/ 2 is precisely the antipodal map y — —y. Hence we can extend the
involution a to the thickening as follows

at, x,y) = (=t,x, % (y))

Itis straightforward to verify that a is still an involution and thata(—1/2, x, y) = (1/2, x, y).
Hence a can be extended to the rest of Q outside the thickening by using the identity map
O — Q’. Hence we obtain a fixed point free involution a : Q — Q which gives a 2-folded
covering map

O0— 0la=0Q/a=T'M

Hence we have 5, (@) = Top_1 (Q) which now can be calculated. Namely, consider
Q as the union of two open set U and V (corresponding to Q and Q') sothat U NV =
(—1/2,1/2) x T'N x S*"=>. Now we would like to apply the Seifert- van Kampen argument
to U and V. First notice that U is homotopy equivalent to Q which, in turn, is homotopy
equivalentto 7' M\T ' N.Because T'' N has codimension 4n — 4 it does not affect (2n — 1)-th
homotopy group and we have 72,1 (U) = m,—1(V) = Z. Now it remains to notice that
T'N x $*=3 have vanishing homotopy in the range from 2 to 4n — 6. Because 4n — 6 > 2n
the Seifert-van Kampen argument works easily to produces the isomorphism 72,1 Q) ~
-1 (U) ® m2,—1 (V) = 72, as desired.

2 The proof of the main theorem
2.1 Outline of the proof

The partially hyperbolic splitting TM = E* & E“ & E* for go M — M induces a splitting
TM = E¥ @ E¢ @ E* which is invariant under D¢ : TM — TM. It can be checked in
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local coordinates that, because the partially hyperbolic splitting is C', the induced splitting
ES @ E¢ @ E" is continuous. Under and additional domination assumption on ¢’ at N (and
also a stronger locally fiberwise assumption) the latter splitting is partially hyperbolic and this
situation was examined in [1]. However, in general, this splitting is not partially hyperbolic.
To recover partial hyperbolicity we modify ¢’ in the neighborhood of the exceptional set.
Recall that by the locally fiberwise assumption, in the neighborhood of N, the generator of
the flow is given by

¢!
W(x’ y) =X+ Y (),

where X is the vector field on D¥ which generates the hyperbolic saddle a” and Y is the gen-
erator of ¢5v~ We consider a smooth bump function p: D¥ — R which is radially symmetric,
that is, p(x) = p(J|x]|) where smooth function p verifies

1. p(s) =po < 1,fors <§;
2. p is strictly increasing on (8, 28) and |p/(s)| < 1/8 for s € (8, 268);
3. p(s) =1fors > 26

Here the constant pp only depends on the contraction and expansion rates of D¢’ along
invariant subbundles. Constant 6 will need to be chosen sufficiently small.

Given such a bump function p we replace the flow ¢’ [pk, v with a new flow ¢/, whose
generator is given by a slow-down of the saddle X

t

d
%(x, V) = pX@) +Y(y) 2.4)

Because p = 1 on the boundary of D* the flow goﬁ, extends to the rest of M as ¢’ and then
the blown-up flow g?;;) is the posited partially hyperbolic flow.

Now we briefly outline the proof of partial hyperbolicity before proceeding with a more
detailed argument. First note that on the §-neighborhood of N the flow <p; is a direct product
of the slow saddle a®’ and gofv. Therefore, by choosing pg small enough, the domination
condition of [1] holds on the §-neighborhood and the estimates provided in [1] yield partial
hyperbolicity of @L with respect to the splitting TM = ES®E‘®E" onthe s -neighborhood of
the exceptional set. Also, by construction, (Z)L coincides with ¢ outside the 28-neighborhood
of the exceptional set. The main technical difficulty is that the splitting ES @ E€ @ E" does
not remain invariant as orbits cross the transition region (§ < s < 2§). However, one can still
consider cones centered at these non-invariant distributions and verify the Cone Criterion for
partial hyperbolicity.

In what follows we will only establish the splitting into unstable and center-stable sub-
bundles. Roughly speaking, this follows from the fact that the damage done to the cones in
the transition region (§ < s < 2§) is controlled uniformly (in §) thanks to the second property
of p and the fact that orbits spend a bounded time of order § in the transition region. Because
all our constructions are time-symmetric, repetitions of the arguments also yields a splitting
into center-unstable and stable subbundles and hence full partial hyperbolicity.

2.2 Cones near the exceptional set

We will need to introduce more notation in order to proceed with the precise description of
the cones and the estimates. Denote by ID)k< s x N the §-neighborhood of the exceptional set,
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that is, the preimage
7 {x e Db x| < 8} x N)

Denote by TN = E}, @ E§, @ E}; the Anosov splitting of the restriction ¢}, (i.e., E§, = ¢})
and by (E3, @ Ef, © E}) © H the product splitting on ]f))k< s X N. Given a small number
® > 0 define the cones on ]13)];8 x N

Ch(x,y) = {v € Tty (DA s x N) 1 L(v, EY) < w)
CE(x,y) = {v € Tty (D 5 x N) : L(v, EY @ E, ® H) < ) 2.5)

Remark 2.1 The splitting E3, ® (E§, @ H) ® E}, coincides with the splitting ES@®E@E"
on the exceptional set only.

Recall that A < 1 < p are the constants from the definition of partial hyperbolicity (1.1).
Alsolet A € (A, 1] and ' € [1, u) be the some constants for which we have

') < 1D @)/l < ey,

where ¢ > 0.! Here a' is the hyperbolic saddle given by the locally fiberwise structure (1.2)
and v € TDF. Now we pick a constant pg > 0 which enters the definition of the function p
in the previous subsection such that we have the following inequality

)\/ £0

(7/) > max(h, u~) 2.6)

7
This is the domination condition [1, (2.3)] on the flow gai). This condition yields required
estimates on the cones on I@’; 5 % N for the blown-up flow. We pick pp < 1. (If domination
condition holds with pgp = 1, our Main Theorem was already established in [1]. In either
case we can always choose pg < 1.) Precisely, we have the following lemma.

Lemma 2.2 There exist o > 0, ¢ > 0, k > 1 and §9 > O such that for all 5 < &gy there
exists a Riemannian metric || - ||s on M, which coincides with the metric || - || coming from
M outside the §-neighborhood of the exceptional set, such that the cone fields C}' and C_)
defined above are eventually (forward and backward) invariant under D(p;7 and verify the
Sollowing hyperbolic properties:

1. for all finite orbits segments {ga‘:) (x,y),0 < s < t}, which are entirely contained in the
8-neighborhood of the exceptional set and for all v € Cf (x, y)

1Dy, (s > w'llvlls, =0

2. for all finite orbits segments {(pf) (x,¥),0 <s < t}, which are entirely contained in the
8-neighborhood of the exceptional set, for allv € C¥(x, y) and for allw € C (x, y) with
Dy'w € CS (¢ (x, y))

1Dey®ls _, IDgy )l

K
llvils llwlls

I Constant w1/ and A’ can be chosen to be arbitrarily close to the “outer” and “inner” spectral radii of a’ by
choosing large ¢ > 0.
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The proof of this lemma is the basic technical ingredient of the prequel paper [1]. More
precisely, the construction of appropriate Riemannian metric || - ||s is given in Section 5.1
of [1]. (For this construction we need to assume that the Riemannian metric || - || from the
definition of partial hyperbolicity (1.1) on D¥ x N is a direct sum of the canonical flat metric
and a metric on N. It was explained in Section 5.3.2 of [1] that such assumption can be made
without loss of generality.) Then Lemma 5.1 of [1] gives partial hyperbolicity of the splitting
Ey, © (ES, © H) @ E},. Finally, the fact that the estimates hold for the vectors in the cones
(with proper choice of ) is proved in Section 5.3.4 of [1].

2.3 Control along the center in the transition domain

Consider the transition domain As x N, where As = ]]3)’225 ﬂ]ﬁ)’; s- Recall that the Riemannian
metric || - ||s restricted to this domain is the direct sum of the flat metric || - || and a metric
on N. Also recall that the flow (p; is generated by p(x) X (x) + Y(y), (x,y) € As x N. It
follows that, even though p is not constant, the splitting E}, ® E, @ E, @ H stays invariant
within this domain. Note that because of the nature of the dynamics of the hyperbolic saddle
(invariance under rescaling) and because p > po with pp independent of §, there exists a
uniform upper bound on time 7" which an orbit can spend in A; x N

T =y, 2.7

where Cy is a constant which depends on a’ and p, but does not depend on § and p.

We proceed to explain how to control extra distortion which occurs along the “horizontal”
distribution H. Hence we focus on the dynamics of reparametrized saddle flow afo generated
by pX. The extra distortion which occurs along H is due to p-driven shear, however we
will see that such shear is controlled uniformly in §. We will perform all calculations using
the canonical Euclidean structure on As C D¥. Let vy € T As be a unit tangent vector and
let v6 = Dai) vg. We would like to obtain uniform control on derivative of the norm of v(’).
Clearly it is sufficient to estimate the derivative at t = 0. Denote by V the vector field on A;
obtained by translating vg to every point. Then by the definition of derivative a vector field
we have

Da,V —V oadl,
- = —LpoxV =1V, pX]

Hence
v(t) =Vo afo + [V, pX]t +h.o.t.

We proceed to estimate the derivative.

d]lvgl _ 1 d|lvy? _ 1 d(Voay,+[V,pX]t,Voa,+[V, pX]t)
dt =0  2lvll dt li=0 2ol dt
(V. pX],vo) _ IV, pX]lllvoll
= = = llplV, X1+ V(p) X

l[voll B l[voll
IV, XTI+ IVIIX] = C2+ Vel C38 < Cy

IA

In the last inequality we used the fact that || X'|| < C3]|8]| on As and that [[Vp| < 1/8 by the
construction of p.
Now, using the above bound and the time control (2.7), we immediately obtain.
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Lemma 2.3 Assume that an orbit segment {a;f7 (x), 0 < s < T} is entirely contained in Ag,
then for all v € T, A, x € As

T T
|Dal ] |Dagvl _ 1
ol = ol = Cs’

where Cs is a constant which does not depend on p and é.

Cs, and

2.4 Cones away from the exceptional set

To define the cones on M \(Iﬁ)’;zg x N) we use the same w given by Lemma 2.2 and let
Ch(p) = {v € Ty(M\(DX 55 x N)) : £ (v, E*) < w)
CS(p) = {v € Ty(M\(D* 5 x N)) : £L(v, EC ® E7) < w)

Because (p’p =¢' and || -|ls = | - || on M\(Iﬁ)iza x N) we then have invariance and

hyperbolicity properties of these cones for orbit segments which stay in M \(]13)’;2 s X N) by
partial hyperbolicity of the flow ¢".

2.5 Proof of partial hyperbolicity

To obtain partially hyperbolic splitting E) & E7* for (p;) we use the cone criterion applied to
CY and C’. We recall that on Iﬁ)’i 5 X N the cone families are centered at E}y, and E}, @ E{, @ H
while on M \(]ﬁ)];za x N) the cone families are centered at E" and E¢ @ E*. Note also that
our cone families are not defined in the transition domain As x N. However, we don’t need
to extend cones there because orbits spend a uniformly bounded time in A5 x N.

By preceding discussion the cones are eventually invariant and and possess hyperbolic
properties required by the Cone Criterion as long as the orbit stays disjoint with A5 x N.
Hence we are left to analyze the case when ¢*(p) € As x N,0 < s < T, with p and (pT(p)
in the boundary of As x N. For the sake of concreteness we can focus on the case when
p € (DX, x N) and 97 (p) € d(DX 55 x N). (The other two cases p € d(DX,; x N),
ol (p) € 8(]]3)’;(S X N) and p € 8(]13)’;28 x N), T (p) € 8(]13)’;2(S x N) can be treated
completely analogously.) Recall that cone aperture w is a fixed number given by Lemma 2.2
and is independent of §. Also recall that ES s E€ and E" are continuous distributions? which
coincide with Ey,, E§, @ H and E},, respectively, on the exceptional set. Hence for all
sufficiently small § we have

dist(ES @ ES @ H(q), E* @ E°(q)) < 1%
and
A w
dist(Ey(q), E"(q)) < n
forallg € Dk<3 5 X N. Because, locally in the neighborhood of the exceptional set, the flow
‘/’,to preserves both splittings E, @ (Ef, @ H) @ E}, and ES @ E¢ @ E" it follows that

Dy[ (E}(p) C Chlel(p)),
Do, T(EC @ E* (¢! (p)) C CS(p)

2 Here we rely on the smoothness assumption for the partially hyperbolic splitting of ¢’ in an essential way.
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Combining this observation with control provided by Lemma 2.3 one can easily verify the
following statement.

Lemma 2.4 There exist constants C¢ > 0 and C7 > 0 such that for all sufficiently small
8 > 0 and for all points {p, T (p)} C 3(As x N) we have

Dy} (Cl(p)) C CE (@) (p)),

Dy, T (C5 (9 (p) CCE,(p),

IDgfvlis = Crllvlls, v € C4(p),
IDg, Tvlls = Crllvlls, v e CS () (p))

Now note that by decreasing 6 we can increase the return time to the 25-neighborhood

of the exceptional set, ]D)k<25 x N, as much as we wish. This observation combined with

Lemma 2.4 implies that C¥ is eventually forward invariant and C.;’ is eventually backward
invariant for all sufficiently small 8. Finally the exponential expansion of vectors in C} and
domination of C¥ over C.’ can be checked by using a standard argument: subdividing the
orbit into segments and pasting together the estimates given by Lemmas 2.2, 2.4 as well as
hyperbolicity of cone families outside ]IN))"<2(3 x N. This arguments takes an advantage of the

long return time to ]]3)’;2 s X N one more time. We suppress detailed estimates as they are very
standard.

3 Volume preserving modification via Katok-Lewis trick

We first formulate a standard lemma.

Lemma3.1 Let M be a smooth manifold equipped with a smooth non-degenerate volume
form m. Assume that a flow generated by a smooth vector field preserves m. Consider a
smooth function p: M — R, p > 0. Then the flow generated by pX preserves m/ p.

Proof By Cartan’s formula
0=Lxm =1xdm +dixm =dixm

and similarly Lx(m/p) = dix(m/p). We calculate
1
Lox(m/p) = pLx(m/p) +dp Aix(m/p) = pdix(m/p) + ;dp Atxm
1 1
= pd(—txm) + —dp ANixm
o o

1 1 1
=p (——de Atxm + 7dLXm> + —dp ANixm =dixm =0
o o o
O

The goal of this section is to prove the Addendum 1.3. Recall that we assume that ' : M —
M preserves a smooth volume m and m|pk, y = vol ® voly. Recall that (p;, is a slow

down of ¢’ along D¥. By Lemma 3.1, the flow ¢}, also locally preserves the smooth volume
Mplpkyy = %vol ®uvol . Note that m, = m near the boundary and hence extend to a smooth
w’p-invariant volume on the whole of M which we still denote by m,. Because p = pp is a
constant on ]D)k< s» we see that m , still have a product form pl—ovol ® voly on ]D)k< s X N.
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1802 A. Gogolev, F. R. Hertz

3.1 Replacing the smooth structure

If we equip D¥ with the standard Euclidean coordinates (xi, x2, . . ., x) then
vol =dxi ANdxy A ... ANdxg. 2.1)

By commutativity of (1.3) the flow @’p preserves 1 *m,, which is a smooth measure away
from the exceptional set.

Let’s examine the form of 7w*m,, at the exceptional set. Because 7 is a product, we only
need to look at the pullback of vol to D* under D¥ — D, Recall that

DF = {(x1, x2, ... X, £) 1 (x1, X2, ...x%) € €, £ € RPF1)

and that the standard smooth charts for D¥ are given by extending the standard charts for the
projective space RP¥~!. Namely the i-th chart is given by

Wi(ur, u, ... uk)

= (UUj, UDUjy o UG Uy Ujy Ui Uy oo Uty (U] 2ot u—y 2 L iyt ug])

(2.2)

We can calculate the pull-back of vol

d(uiui) Adau) A - Adug A A d ) = u¥ " duy Adug A - A dug

Hence, when k > 1 the pull-back vanishes on the projective space. To remedy the situation
we follow the idea of Katok-Lewis (which they used to construct non-standard higher rank
volume preserving group actions.) Namely we replace the smooth structure on ID¥ by declaring
that

D: i Ju||%U, <0
is a smooth chart near the origin (i.e., by changing the smooth atlas). With respect to this
chart the Euclidean norm of a vector u is given by
- -1
it llnew = I+ (2.3)

Accordingly we change the smooth structure on M by declaring that ® x idy : DK x N —
M is a smooth chart at N. Note that M equipped with the new smooth atlas, which we denote
by M™W, is obviously diffeomorphic to the original M. However, it is easy to check that
a;): DF — D* and, hence, <p’p: M"Y — M"Y fail to be smooth.

Accordingly we replace we replace charts (2.2) for Dk by composing ¥; and @, that is,

WY (g, ug, .. ug)

= (fol(ula"'aul'flvul'+17'~'uk)
i 1 uyui, waui, . oowgy o), [y oo L ug])),
where
2 2 2 2 2ve/2
Jour, oo uiy, w1, coug) = Wy +us+ oot + Tt ug + . A ud)

Because the new smooth structure amounts to mere reparametrization in the radial direc-
tion the projective dynamics remains exactly the same. A direct calculation in chart shows that
&;, : DF — DF is smooth with respect to the new smooth structure. Hence g?);, D MY s ppnew
is also smooth. Further, by appropriate choice of @ we can now guarantee that 7 *m is a non-
degenerate volume on M"Y We present the chart calculation which determines the “right”
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value of a. In order to simplify notation we perform this calculation in the first chart W{°%.
We also abbreviate fi (12, us, ...ux) to simply f. Note that

dfy Ndug Aduz N -+ ANdup =0
This is very helpful for the calculation:

d(foellugl®ur) Ad(fellug®uiuz) Ao A d(follug | ugug)
=d(folluilur) A ad(follurl|®ur)

+ fellurlurduz) A - A (ud (follun1“ur) + follut|*urdug)
= (fullur1*u)* ' d(fullur 1un) Aduz A -+ A duy
= (fallur 1w~ (fud(lur|“ur) Aduy A+ A duy

+ Jlug|“urdfy A duy A dus A .../\duk)
= (Fullur 1) Y + 1) follur|%duy A duz A ... A dug)

= (@ + D fE¥fuy reuk !

Notice that f, is asmooth function. Hence the pull-back of vol is a smooth and non-degenerate
on M™W whenka +k—1=0, i.e,

k—1
k

o =

Remark 3.2 1t is crucial for this construction that the initial volume on D given by (2.1) has
constant density. Indeed, if we allow for a non-trivial density B8(xy, ...x;) and begin with
Bdxi Adxz A - - - Adxy instead, then all computations go through in the same way. However
the expression for the density after the blow-up in the chart W% will have an additional
factor

B(falur, .. oui—t,uip1, - owi) g 1% uyng, uoug, .. ug, oo ugu;))

which is not C! at the exceptional set given by u; = 0 (unless the Taylor coefficients of
up to order k vanish). Hence we have a positive continuous density which is not C' on the
exceptional set. This issue, in fact, gives us an additional difficulty to overcome in the proof
of Corollary 1.4.

3.2 Partial hyperbolicity in volume preserving setting

We now have a volume preserving flow (,2;) : M™V — M™Y. Here we explain that this flow
is also partially hyperbolic provided that constant py (from the definition of p) is chosen to
be sufficiently small. Namely, we amend the domination condition (2.6), as follows

7\ PO
(%) > max(h, uY), A < W)k (ot <y (2.4)
Clearly these inequalities are verified for a sufficiently small pp.

The proof of partial hyperbolicity is the same as the one given in Sect. 2. The only
difference which requires some commentary is the Lemma 2.2 for @; ¢ M"Y — M"Y under
the condition (2.4). Recall that the proof of this lemma mostly rests on Lemma 5.1 of [1]
and the proof of Lemma 5.1 is the only place which requires some adjustments. We indicate
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how (2.4) must be used in the proof of Lemma 5.1. Recall that on the small neighborhood of
the projective space the dynamics of &; is given by

al(s,v) = (@), @ (v), s e RPF v eRy

where &; : RP¥=! — RP*1 is the projectivization of a;) (which coincides with the restric-

tion of @}, to RP*=1)and a! is the cocycle over c:z;) given by the action of @}, on lines (see the
proof of Lemma 5.3 in [1]).3

The estimate on c:z'f) (Claim 5.4 of [1]) remains exactly the same as the alternation of the
smooth structure did not change the projective dynamics. The place where (2.4) is needed is
the inequality (5.16) of [1] (estimate on the cocycle a!). Indeed, given a small i, according
to (2.3), we have the local estimate

lla @) lnew = llah, @)1 < (c(ug) 1l = /¥y ¥ il new
and similarly
lla, @ llnew = ¢ * QYO il new

This effects the last inequality in the proof of Lemma 5.3 of [1]. Namely, we obtain an

exponential upper bound in
)\./ PO
max ((*,) , (M’)”“”‘)
w

(and, analogously, a lower bound with (1 )#0/ky Hence, in order for the rest of the proof to
work we need to use (2.4) instead of (2.6).

4 The example

In this section we introduce geodesic flows on complex hyperbolic manifolds in detail and
then prove Corollaries 1.2 and 1.4.

4.1 Complex hyperbolic manifolds

Firstrecall that 1-dimensional complex hyperbolic space can be identified with 2-dimensional
real hyperbolic space with metric equal to one quarter of the standard Poincaré metric. The
linear fractional transformations form the group of holomorphic isometries (to generate the
full group of isometries one also needs the anti-holomorphic transformation) and can be
identified with PSU (1, 1) = £1d\SU (1, 1). Because of the % multiple in the expression
for the metric the curvature is —4 and the contraction and expansion rates of the geodesic
flow on the complex hyperbolic space are twice bigger. It follows that the full stable and
unstable horocycles of geodesic flows on higher dimensional complex hyperbolic manifolds
contain one dimensional “fast” horocycles which correspond to the complex lines in the
tangent bundle. This yields a partially hyperbolic splitting which is different from the Anosov
one and makes the geodesic flow on complex hyperbolic manifold suitable for the blow-up
surgery.

3" One difference which appears is that even though, with respect to the new smooth chart W™V, a;, still sends
lines to line the cocycle al is no longer linear. This, however, does not present any additional difficulty.
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We begin by summarizing some standard material on complex hyperbolic manifolds. We
mostly follow the lucid exposition by D.B.A. Epstein [3]. Consider the following Hermitian
quadratic forms on C"*! of signature (n, 1).

Q) =371 2iZi — Zn1Zn+1
Ox) = Y1) 2Zi 4 2aZntt + Znznsi
These forms have the following associated matrices
J =diag(1,1,...1,—1)
A Id 0
' < 0 JO>
respectively. Here Jp = (?(1)) Let SU(n, 1; Q) and SU (n, 1; Q) be the groups of (n + 1) x
(n+ 1) complex matrices which have determinant 1 and preserve corresponding form. These
groups are conjugate in GL(n + 1) by
Id 0
r= ( 0 To)
where Ty = % (1)
Recall that the complex hyperbolic n-space H: can be defined as
t={[x1€CP": Q(x) < 0}

Clearly the action of SU (n, 1; Q) on C"*! induces an action on H% and, in fact, SU (n, 1)
coincides with the group of biholomorphic isometries of H.. If ' is a discrete cocompact
subgroup of SU (n, 1) acting on the right then the orbit space

M =H./T

is a closed complex hyperbolic manifold. Moreover, every closed complex hyperbolic man-
ifold arises in this way.

4.2 The geodesic flow as a homogenous flow

We describe M and its unit tangent bundle as homogeneous spaces. The group SU (n, 1; Q)
acts transitively on Hﬂ(’: and the stabilizer of [(0,0,...0, 1)]is

A 0 =
{(0 m) D AA :Id} >~ U(n).

The stabilizer of a tangent vector is the group W (n — 1) given by*

A0 0 i
Win—-1=4{10 % 0]:AA" =1d, 2> =detA
0 0 %

4 Notice that, by mapping to the (n — 1) x (n — 1) upper diagonal matrix A, the group W(n — 1) is a double
cover of U (n — 1). It is curious to notice that, unlike in the real case, W (n — 1) is not isomorphic to U (n — 1).
However using the fact thatdet: U(n) — U(1) is a trivial principal fiber bundle one can check that W(n — 1)
is diffeomorphic to U(n — 1).

@ Springer



1806 A. Gogolev, F. R. Hertz

Hence we have
M=Um\SU(n,1;Q)/T T'M = Wmn—D\SU@n, 1; Q)/T.

The same descriptions work using SU (n, 1; 0) as the underlying Lie group with embed-
dings of W(n — 1) and U (n) are conjugated by 7. Also note that W(0) = {£Id} and we
will write PSU (1, 1) instead of W(0)\SU (1, 1). A

From now on it would be more convenient to only use the form Q and we abbreviate
SU (@, 1; Q) to SU(n, 1).

Now recall the Lie algebras

un— 1) ={AeMy_: AT = —A}
and R N
su(n, 1) =su(m, 1, Q) ={B € My4+:Tr(B)=0, BTJ+JB =0} 2.1

If we write a traceless matrix B € su(n, 1) in block form, then B € su(n, 1) if and only if

A v
B= <—Jol_)T D)

whereAeo(n—l)andD:(“ ib),ae(C,b,ceR.

ic—a
The geodesic flow d;: T'M — T'M is given by W(n — 1)gl’ — d;W(n — 1)gI' =
W(n — 1)d;gl", where

_ Id 0 . 0 _ @t 0
d[—(o d?), with dt —<Oe_t)

The strong stable and strong unstable horocycle subgroups are

Id 0 . ‘ 1 it 10
hf/u = < 0 hsO/uO) . with h?O = <0 1)7 h?o = <il‘ 1) :
t

We refer to [4] for a more detailed exposition on the geodesic flow as a homogeneous flow.

4.3 Totally geodesic holomorphic curve

The complex hyperbolic space ]I-]I(lC can be identified with {z] = z2 = - - = z,—1 = O} NH..
The group of holomorphic isometries SU (1, 1) of H(lc embedsinto SU (n, 1) aslower diagonal
block. Let I' be a cocompact lattice in SU(n, 1) and let ' = SU(1, 1) N I". We assume
that I'; is a cocompact subgroup of SU (1, 1). Hence the embedding H(}: C H yields the
embeddings
N=UMD\SUA, /T cUm\SUn,1)/T =M, and
T'N =PSU(1,1)/Ty C Win—D\SU(n, 1)/T =T'M

where N is a totally geodesic one dimensional complex curve.
4.4 Parametrization of the neighborhood and the geodesic flow
We introduce a parametrization of a neighborhood ¢/ of PSU(1, 1) in W(n — D\SU (n, 1).

This parametrization will be constructed to be I'j equivariant and, hence, will descend to a
parametrization of a neighborhood of T'N in T' M.
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Pick a small ¢g > 0 and take the following as a transversal to the Lie algebras of SU (1, 1)
and W(n — 1). Using the block from (2.1) let

0 v
D, = {(—Jofﬂ 0) e su(n, 1), where ||v| < 80}

This is a (4n — 4)-dimensional transversal spanned by weak stable and unstable horocycles.
Let ¥ = X, = exp(Dyg,).

Now we define a parametrization p: ¥ x PSU(1,1) — W(n —1)\SU (n, 1) of a neigh-
borhood U = U, of PSU(1, 1) in W(n — 1)\SU (n, 1) as follows

plo,u) =Wmn — 1Dou. 2.2)

To verify that this is a well-defined parametrization for a sufficiently small g it is sufficient
to check that the map P: W(n — 1) x ¥ x PSU(1,1) — SU(n, 1) given by P(w, o, u) =
wou is a diffeomorphism on its image. And that the image contains a neighborhood of
Wmn—-1)x PSU(,1) C SU(n, 1). To do this we consider a metric d on SU (n, 1) which
is invariant under the right action of PSU (1, 1) and left action of W (n — 1). One can obtain
such a metric by starting with a right invariant Riemannian metric and then averaging with
respect to the left action of (compact group) W(n — 1).

Notice that T;4 %, su(l, 1) and to(n — 1) span the full Lie algebra su(n, 1), and, hence,
P is a local diffeomorphism on the neighborhood of (0, 0, 0). More precisely, by choosing
appropriately small g > 0 and r > 0 we have that the restriction of P to the neighborhood

fweWmn-1) :dw,id) <r} x X x{uepPSUU,1):d(u,id) <r}

is a local diffeomorhism on its image. Further, because P(w'w, o, uu’) = w'P(w, o, u)u’
we obtain that each point P(w’, 0, u’) has a neighborhood which has a uniform size (with
respect to metric d) entirely contained in the image of P.
It remains to check that P is one-to-one. Let
8o = sup d(id, o)
oeX

Note that by choosing smaller &g we can make §p > 0 as small as desired. Assume that
P(wy, 01,u1) = P(wz, 02, u2), L.e,

1

— -1
W, W0 = 0oUU,| 2.3)

Then
d(wy ' wy, uouy) < d(wsy 'wi, wy ' wioy)
+d(02u2ufl, uzufl) =d(id, o1) + d(o2,id) < 25

Recall that W(n — 1) x PSU(1, 1) is (explicitly) properly embedded in SU (n, 1). Hence
the last inequality implies that both w, ! w1 and ugul_l are close to id. On the other hand we
have already shown that P is a local diffeomorphism on the neighborhood of id. Hence (2.3)
implies that w;lwl =id, uzufl = id and o1 = o proving that P is injective.

Finally, we let I'; acton X x PSU(1, 1) by y1: (0, u) — (0, uyy). Our parametrization
is equivariant with respect to the right action of I'1 and hence descends to a parametrization
of a neighborhood of T'N € T'M by £ x PSU(1,1)/T; =~ = x T'N ~ D, x T'N.?

5 Notice that in particular we have shown that the normal bundle of TIN in T'M is trivial. This happens
because W(n — 1) N PSU(1, 1) = {Id}. It was pointed out to us by Mike Davis that in general the normal
bundle of N in M is twisted and the twisting is controlled by the Chern class.
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4.5 Proof of Corollary 1.2

The Corollary 1.2 follows from the Main Theorem provided that we verify the locally
fiberwise assumption with respect to our parametrization. We write v as a column vectors
v = (v1, v2) which parametrizes ¥. That is,

0
A, 1) = (_MTS>

and o (v, v2) = exp A(vy, v2).
Notice that

dio (v, v2)d; ' = d; exp A(vy, v2)d;”!
=expd;A(vy, vz)d,_1 =expA(e vy, ') = o (e vy, e'vy)

Now we can deduce the formula for the geodesic flow using the coordinates (v, va, u) €
¥ x PSU(1, 1)

di(v1, v2,u) = W(n — Ddio (v1, v2)u = W(n — dso (v1, v2)d; ' dyu

= (e "vy, e'va, diu)

We conclude that with respect to the coordinates (v1, vz, 1) the geodesic flow is the product
of (4n — 4)-dimensional hyperbolic saddle and the geodesic flow on a holomorphic curve.
This verifies the assumption of the Main Theorem on locally fiberwise structure of d; on /.

Finally to see that the partially hyperbolic flow ¢’ could be chosen to be arbitrarily close to

Q' m — T/IZ\\/I in C topology recall that we obtain ¢’ by blowing up the reparametrized
flow <p;). The reparametrization is localized in the neighborhood of ! N and is given by (2.4).
Function p has to be chosen so that (2.6) holds:

)\/ PO
(ﬁ) >max()n,pfl)

In the current setting Ml = =eand 27! = p = €2 Hence any value of pgp < 1
would work. It follows that the function p can be chosen to be arbitrarily close to 1 in the
C* topology. Therefore ¢}, can be arbitrarily C* close to ¢’ and, accordingly, ¢’ can be
arbitrarily C® close to ¢'.

4.6 Proof of Corollary 1.4

Corollary 1.4 does not immediately follow from Addendum 1.3. The reason is that the pull-
back of the Liouville volume form p*vol under parametrization p has the form

a(vy, v2)wg A volyiy,

where wy is the standard volume form on D¢, and voly1 is the Liouville volume form on
T N.Indeed, because the Liouville measure comes from the Haar measure on SU (n, 1) and P
is equivariant with respect to the right action of PSU (1, 1) the density « is independent of the
u-coordinate. However, the dependence on vy and v, is non-trivial. Hence the Addendum 1.3
does not apply directly (cf. Remark 3.2). Our approach is to replace the flow ¢, with a
different flow ¢, to which Addendum 1.3 can be applied. More precisely, on the neighborhood
Dy, x TN we will let
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where i = (h, idy1) and & is C! small and tapers away to identity on the neighborhood of
the boundary of Dy, .

Let w1 = a(vy, v2)wp. By rescaling wq if needed, we may assume that «(0,0) = 1.
Denote by a’ the saddle flow, a’ (v, v2) = (e 'vy, e’ v2). Note that, because « is continuous
and a’-invariant, we also have « (0, v2) = a (v, 0) = 1.

Lemma 4.1 For all sufficiently small &1 € (0, &o) there exists a diffeomorphism h: Dy, —
h(Dg,) C Dy, such that hyw = wo and h commutes with the saddle flow, when defined:

hoa; =a;oh

Before proving the lemma we first finish the proof of Corollary 1.4. First extend /: s, —
h(IDg, ) to a diffeomorphism 4 : Dg, — D, which equals to identity near the boundary. Then
replace the geodesic flow ¢’ with the new flow ¢’ by replacing the restriction ¢’ Dy xT1N
with (h o a' o h_l,go;,lN
hyperbolic with C! splitting. Further, T' N remains @'-invariant and, because 4 commutes
with a’ on D, we have

). Clearly ¢' is smoothly conjugate to ¢’. Hence ¢’ is partially

@' (1, v2, u) = @' (v1, v2, u) = (@' (1, v2), Phy (W)

for (vi, v2) € D, . Hence the locally fiberwise assumption is also verified for @'. On the

neighborhood D, x TIN the @'-invariant volume has the form Iy A volyiy) = hywy A

volpiy = wo A volyiy and hence the assumption of Addendum 1.3 is also verified. We

conclude that Addendum 1.3 applies to ¢’ and yields Corollary 1.4. (]
Hence it only remains to prove the Lemma.

Proof of Lemma 4.1 The idea of the proof is perform an a’ -equivariant Moser trick.® To obtain
the diffeomorphism 4 such that @1 = wq consider the path w; = (1—s)wo+sw1,s € [0, 1].
Then, by the Poincaré Lemma, there exists 1 such that

dn=w; —wy=vywy, y=0—1

Further, we can choose 71 to be a’-invariant; that is, Lxn = 0, where X = 9da’/dt. We
proceed with the proof assuming this fact, which we will verify later via a direct calculation.
Because w; are non-degenerate forms the equation

ly,og = 1],

uniquely defines “time-dependent vector field” Y. Then, by Cartan’s formula, we have for
every s € [0, 1]

Ly,ws = (ty,od +doty)ws =dp
Hence by integrating Y; we obtain a one-parameter family of diffeomorphisms /¢ such that
(hs)xwo = ws
Recall that volume forms w, are invariant under X, i.e., Lxyw; = 0 Hence

0=LxB =Lx(y,ws) =ty,(Lxws) +loyy,05 = Leyy, O,

6 While such trick is standard in the context of equivariant cohomology, when the acting group is compact,
see e.g. [2], we were unable to locate any prior work on “locally equivariant” Moser trick. While we only do
it here for the saddle singularity, presumably it is much more general.
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which implies that [X, Y] = LxY; = 0 because w; in non-degenerate. It follows from the
Frobenius Theorem that a’ commutes with & as posited. Note that /4(0,0) = (0, 0). It
remains to set 1 = & and restrict to a sufficiently small disk D¢, such that 2(Dg,) C Dg,.

Hence, to finish the proof of the Lemma it remains to show that the form , can be chosen
to be ¢’ invariant. For the sake of notation we prove this fact only when dim D, = 4. The
general case can be addressed in the same way.

We use coordinates (x1, x2, X3, x4). Then wg = dx1 A dxa A dx3 A dxg and the generator
of a’ is given by

Y 9 I
T T T o T Ban T Mon

First let no = x1dx> A dxz A dxs. Then dno = wp and, using Cartan formula Lxno =
txwo + dixng it is straightforward to verify that Lxno = 0, i.e., ng is a’-invariant.
Our goal now is to find an a’-invariant function 8 such that d(819) = y wo. We have

0
d(Bno) = o +dB A 1o = Pao + xla—flw

Hence we need to solve the equation

e
B M = x1B)=vy

for S. Then

1 [
B(x1, x2,x3, x4) = E/ v(q, x2, X3, x4)dq
0
is a solution.

We check that B is a’-invariant. Let I' = T'(xy, x2, X3, X4) = f(;” y(q, x2, x3, X4)dq.
Because y is a’-invariant we have

X1
02/ Xy(q,x2, x3,x4)dg
0

dx2 0x3 0x4
—xn/(xl,m, X3, x4) + T'(x1, x2, X3, x4)

g 9 9 9
= - qu(q x2,x3, x4)dq — xp— T +x3— T +x4—T
0

T 43T 4 4T =T 4 XT
—_ X X4 — =
9% 3ox3  oxa

where we used integration by parts and the fundamental theorem of calculus. Now differen-
tiating x1 8 = I with respect to X gives

X(x)B+x1XB=XT
which yields
x1Xp=XI'+x1p=XI'+I=0.
Hence X8 = 0. Finally by the product formula

LxBno = X(B)no+ BLxno = 0.

@ Springer



Surgery for partially hyperbolic dynamical systems. . . 1811

References

1. Gogolev, A.: Surgery for partially hyperbolic dynamical systems 1. Blow-ups of invariant submanifolds.
Geometry Topol. 22(4), 2219-2252 (2018)

2. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics, p. xi+468. Cambridge University Press,
Cambridge (1984)

3. Epstein, D.B.A.: Complex hyperbolic geometry. Analytical and geometric aspects of hyperbolic space
(Coventry/Durham, 1984), 93—-111, London Math. Soc. Lecture Note Ser., 111, Cambridge Univ. Press,
Cambridge (1987)

4. Foth, T., Katok, S.: Spanning sets for automorphic forms and dynamics of the frame flow on complex
hyperbolic spaces. Ergodic Theory Dyn. Syst. 21(4), 1071-1099 (2001)

5. Katok, A., Lewis, J.: Global rigidity results for lattice actions on tori and new examples of volume-
preserving actions. Israel J. Math. 93, 253-280 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Surgery for partially hyperbolic dynamical systems II. Blow-up of a complex curve
	Abstract
	1 Introduction
	Higher homotopy of T1M"0362T1M

	2 The proof of the main theorem
	2.1 Outline of the proof
	2.2 Cones near the exceptional set
	2.3 Control along the center in the transition domain
	2.4 Cones away from the exceptional set
	2.5 Proof of partial hyperbolicity

	3 Volume preserving modification via Katok–Lewis trick
	3.1 Replacing the smooth structure
	3.2 Partial hyperbolicity in volume preserving setting

	4 The example
	4.1 Complex hyperbolic manifolds
	4.2 The geodesic flow as a homogenous flow
	4.3 Totally geodesic holomorphic curve
	4.4 Parametrization of the neighborhood and the geodesic flow
	4.5 Proof of Corollary 1.2
	4.6 Proof of Corollary 1.4

	References




