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Abstract
In this paper we use the blow-up surgery introduced in [1] to produce new higher dimensional
partially hyperbolic flows. The main contribution of the paper is the slow-down construction
which accompanies the blow-up construction. This new ingredient allows to dispose of a
rather strong domination assumption which was crucial for results in [1]. Consequently we
gain more flexibility which allows to construct new volume-preserving partially hyperbolic
flows as well as new examples which are not fiberwise Anosov. The latter are produced
by starting with the geodesic flow on complex hyperbolic manifold which admits a totally
geodesic complex curve. Then by performing the slow-down first and the blow-up second
we obtain a new (volume-preserving) partially hyperbolic flows.

1 Introduction

This paper is a sequel to [1] and familiarity with [1] would help the reader. We keep the
introduction brief, still we will recall all definitions which are needed.

A flow ϕt : M → M is partially hyperbolic if the tangent bundle T M splits into Df -
invariant continuous subbundles T M = Es ⊕ Ec ⊕ Eu such that

‖Dϕt (vs)‖ < λt < ‖Dϕt (vc)‖ < μt < ‖Dϕt (vu)‖, t ≥ 1, (1.1)

for some Riemannian metric ‖ · ‖, some λ < 1 < μ and all unit vectors vs ∈ Es , vc ∈ Ec

and vu ∈ Eu . Then it is clear that the generating vector field ϕ̇ lies in the center subbundle
Ec.

An invariant submanifold N ⊂ M is called an Anosov submanifold for ϕt if T N =
Es ⊕ ϕ̇ ⊕ Eu . Note that then the flow ϕt

N is given by the restriction ϕt |N is an Anosov flow.
Further, the flow ϕt : M → M is called locally fiberwise at N if a neighborhood of N can
be smoothly identified with D

k × N , where D
k = {x ∈ R

k : ‖x‖ < 1}, in such a way that
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1794 A. Gogolev, F. R. Hertz

the restriction ϕt |Dk×N has the product form

ϕt (x, y) = (at (x), ϕt
N (y)), (1.2)

where at is a linear hyperbolic saddle flow.

Remark 1.1 Note that locally fiberwise assumption in this paper is weaker than the one in [1]
as we no longer require Es ⊕ Eu to be tangent to the N -fibers in the neighborhood D

k × N .
Suchweakening is crucial for the examples whichwe consider here. Also note that the locally
fiberwise assumption implies that the normal bundle to N is trivial. This assumption is not
crucial for our argument, but it does simplify notation and calculations a lot.

Now we can blow-up M along {0} × N by replacing each point in {0} × N with the
projective space of lines which pass through this point perpendicularly to N . The blown-up
manifold M̂ comes with a canonical blow-down map π : M̂ → M which collapses each
projective space to its base point. The preimage π−1({0} × N ) � RPk−1 × N is called the
exceptional set. In smooth category, M̂ is the result of replacingD

k ×N with (Dk#RPk)×N .
We will write D̃

k for (Dk#RPk). If the flow ϕt : M → M is locally fiberwise at N then it
induces a flow ϕ̂t : M̂ → M̂ such that the diagram

M̂

π

ϕ̂t

M̂

π

M
ϕt

M

(1.3)

commutes. The induced flow ϕ̂t : M̂ → M̂ may or may not be partially hyperbolic.

MAIN THEOREM Let ϕt : M → M be a partially hyperbolic flow with C1 invariant splitting
Es ⊕ Ec ⊕ Eu and let N ⊂ M be an invariant Anosov submanifold of M. Assume that the
dynamics is locally fiberwise in a neighborhood of N. Let ϕ̂t : M̂ → M̂ the induced flow
on M̂. Then there exists a partially hyperbolic flow ϕ̃t : M̂ → M̂ which coincides with ϕ̂t

outside of a neighborhood of the exceptional set.

The Main Theorem builds up on the earlier work [1]. However, strictly speaking, it is
not a generalization of the results in [1]. Indeed in [1] the author showed that the blown-up
flow ϕ̂t is itself partially hyperbolic under more restrictive assumptions, most importantly
the domination assumption, which assures that the Anosov submanifold is sufficiently fast
compared to the center. In this paper we have fully disposed of the domination assumption
and, most interestingly, the Main Theorem applies to examples when ϕ̂t is not partially
hyperbolic. The proof of the Main Theorem relies on some tools developed in [1] but also
develops different technology for controlling the returns. The key basic ingredient of the proof
is the slow-down construction in the neighborhood of theAnosov submanifoldwhich provides
a remedy for absence of domination. Consequently, unlike results of [1], the construction
here can only be used for flows and not for diffeomorphisms. The benefit of the slow-down
construction is that we can also produce volume preserving examples which was impossible
with techniques of [1].

We proceed to describe an application of our theorem in the setting of geodesic flows on
compact complex hyperbolic manifolds. Let M be a compact complex hyperbolic manifold
of dimension n (real dimension 2n). One can realize M as a quotient space of the complex
hyperbolic space H

n
C
by an action of a cocompact lattice in the group of biholomorphic

isometries,� ⊂ SU (n, 1). Assume that there exists a compact totally geodesic complex curve
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Surgery for partially hyperbolic dynamical systems. . . 1795

N ⊂ M . Then, up to conjugating lattice �, the embedding N ⊂ M is induced by the first
coordinate embeddingH

1
C

⊂ H
n
C
. Now consider the geodesic flow on the unit tangent bundle

ϕt : T 1M → T 1M . We view ϕt as a partially hyperbolic flow with dim Es = dim Eu = 1.
Because N is totally geodesic, ϕt restricts to T 1N . We blow-up T 1N ⊂ T 1M . It is easy

to see that the induced flow ϕ̂t : T̂ 1M → T̂ 1M is not partially hyperbolic because it has
periodic orbits with dominated splittings of different dimension signatures. Further, we can
check (see Sect. 4) that all other assumptions of Main Theorem are satisfied as well. Hence
we obtain the following corollary.

Corollary 1.2 Let M be a compact complex hyperbolic manifold and let N ⊂ M be a totally

geodesic complex curve. Then the blow up T̂ 1M of T 1M along T 1N supports a partially
hyperbolic flow ϕ̃t : M̂ → M̂. Moreover, the flow ϕ̃t : M̂ → M̂ can be chosen to be an
arbitrarily C∞ small perturbation of ϕ̂t .

Note that the if ϕt preserves a smooth volume m then ϕ̂t preserves a smooth measure
π∗(m). However the density of π∗(m) vanishes on the exceptional set. Nevertheless, fol-
lowing the idea of Katok and Lewis [5], we adapt our Main Theorem to the conservative
setting.

Addendum 1.3 Let N ⊂ M and ϕt : M → M be as in the Main Theorem. Assume that ϕt

preserves a smooth volume m which has product form in the neighborhood D
k × N; that

is, m|Dk×N = vol ⊗ volN , where vol is the standard Euclidean volume on D
k and volN is

a smooth ϕt |N -invariant volume on N. Then there exists a partially hyperbolic flow on M̂
which preserves a smooth non-degenerate volume.

The following is a non-trivial corollary.

Corollary 1.4 Let M be a compact complex hyperbolic manifold and let N ⊂ M be a totally

geodesic complex curve. Then the blow up T̂ 1M of T 1M along T 1N supports a volume

preserving partially hyperbolic flow ϕ̃t : T̂ 1M → T̂ 1M.

Finally we remark that similarly to [1, Section 3] one can take multiple blow-ups as well
as connected sums along Anosov submanifolds and produce partially hyperbolic diffeomor-
phisms on manifolds with even more complicated topology. Prior to proving the result we
include a short section presenting a concrete evidence (higher homotopy) of altered topology
of the manifold after the blow-up surgery.

We would like to thank the referee for a thorough reading and several very valuable
suggestions. In particular, the following discussion on topology of the newmanifold appeared
on the suggestion of the referee.

Higher homotopy of ̂T1M

To see that the examples given by Corollaries 1.2 and 1.4 live on newmanifolds one can look
at higher homotopy groups. Namely, we will prove that new examples are not homotopic to
time-1maps of geodesic flows on negatively curvedmanifolds. To do thatwewill additionally
assume that complex dimension of M is n ≥ 3. Then the real dimension of M is 2n and the
dimension of T 1M is 4n − 1.

We begin by observing that since M is aspherical the long exact sequence in higher
homotopy groups for the sphere bundle T 1M yields the isomorphism π2n−1(T 1M) �
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1796 A. Gogolev, F. R. Hertz

π2n−1(S
2n−1) � Z. Hence, to see that the new flow ϕ̃t is not derived from a geodesic

flow (possibly on a different manifold), it is sufficient to verify that π2n−1(T̂ 1M) is not
isomorphic to Z.

To do this calculation we will first construct a special 2-fold cover Q̂ → T̂ 1M . Recall

that T̂ 1M is obtained by blowing-up T 1N ⊂ T 1M in the normal direction. Let’s consider
the same construction but by using the “spherical blow-up” instead of the projective one.
Namely, let’s replace each point in T 1N with the sphere of rays which are based at this point
and are perpendicular to N . In this way we obtain a manifold Q with boundary T 1N ×S

4n−5.
Let a : T 1N × S

4n−5 → T 1N × S
4n−5 be an involution given by a(x, y) = (x,−y). Then,

clearly,

T̂ 1M = Q/a

Now consider another copy of Q which we denote by Q′ and form the double Q̂ = Q 
 Q′
by identifying the boundaries via the identity map. The double Q̂ is a closed manifold and
T 1N × S

4n−5 ⊂ Q̂ is a separating codimension 1 submanifold. Consider its two-sided
thickening

{t : −1/2 ≤ t ≤ 1/2} × T 1N × S
4n−5

where t = 0 corresponds to T 1N × S
4n−5. Recall that the odd dimensional sphere S

4n−5 ⊂
C
n−2 admits the S1-action given by complex multiplication, which we denote by ξ t , ξ1 =

id
S4n−5 . Notice that ξ1/2 is precisely the antipodal map y �→ −y. Hence we can extend the

involution a to the thickening as follows

a(t, x, y) = (−t, x, ξ t+1/2(y))

It is straightforward to verify that a is still an involution and that a(−1/2, x, y) = (1/2, x, y).
Hence a can be extended to the rest of Q̂ outside the thickening by using the identity map
Q → Q′. Hence we obtain a fixed point free involution a : Q̂ → Q̂ which gives a 2-folded
covering map

Q̂ → Q̂/a = Q/a = T̂ 1M

Hence we have π2n−1(T̂ 1M) = π2n−1(Q̂) which now can be calculated. Namely, consider
Q̂ as the union of two open set U and V (corresponding to Q and Q′) so that U ∩ V =
(−1/2, 1/2)×T 1N ×S

4n−5. Nowwewould like to apply the Seifert- van Kampen argument
to U and V . First notice that U is homotopy equivalent to Q which, in turn, is homotopy
equivalent to T 1M\T 1N . Because T 1N has codimension 4n−4 it does not affect (2n−1)-th
homotopy group and we have π2n−1(U ) = π2n−1(V ) = Z. Now it remains to notice that
T 1N ×S

4n−5 have vanishing homotopy in the range from 2 to 4n− 6. Because 4n− 6 ≥ 2n
the Seifert-van Kampen argument works easily to produces the isomorphism π2n−1(Q̂) �
π2n−1(U ) ⊕ π2n−1(V ) = Z

2, as desired.

2 The proof of themain theorem

2.1 Outline of the proof

The partially hyperbolic splitting T M = Es ⊕ Ec ⊕ Eu for ϕt : M → M induces a splitting
T M̂ = Ês ⊕ Êc ⊕ Êu which is invariant under Dϕ̂t : T M̂ → T M̂ . It can be checked in
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local coordinates that, because the partially hyperbolic splitting is C1, the induced splitting
Ês ⊕ Êc ⊕ Êu is continuous. Under and additional domination assumption on ϕt at N (and
also a stronger locally fiberwise assumption) the latter splitting is partially hyperbolic and this
situation was examined in [1]. However, in general, this splitting is not partially hyperbolic.
To recover partial hyperbolicity we modify ϕ̂t in the neighborhood of the exceptional set.
Recall that by the locally fiberwise assumption, in the neighborhood of N , the generator of
the flow is given by

∂ϕt

∂t
(x, y) = X(x) + Y (y),

where X is the vector field on D
k which generates the hyperbolic saddle at and Y is the gen-

erator of ϕt
N . We consider a smooth bump function ρ : D

k → R which is radially symmetric,
that is, ρ(x) = ρ̄(‖x‖) where smooth function ρ̄ verifies

1. ρ̄(s) = ρ0 < 1, for s ≤ δ;
2. ρ̄ is strictly increasing on (δ, 2δ) and |ρ̄′(s)| < 1/δ for s ∈ (δ, 2δ);
3. ρ̄(s) = 1 for s ≥ 2δ

Here the constant ρ0 only depends on the contraction and expansion rates of Dϕt along
invariant subbundles. Constant δ will need to be chosen sufficiently small.

Given such a bump function ρ we replace the flow ϕt |Dk×N with a new flow ϕt
ρ whose

generator is given by a slow-down of the saddle X

∂ϕt
ρ

∂t
(x, y) = ρX(x) + Y (y) (2.4)

Because ρ = 1 on the boundary of D
k the flow ϕt

ρ extends to the rest of M as ϕt and then
the blown-up flow ϕ̂t

ρ is the posited partially hyperbolic flow.
Now we briefly outline the proof of partial hyperbolicity before proceeding with a more

detailed argument. First note that on the δ-neighborhood of N the flow ϕt
ρ is a direct product

of the slow saddle aρ0t and ϕt
N . Therefore, by choosing ρ0 small enough, the domination

condition of [1] holds on the δ-neighborhood and the estimates provided in [1] yield partial
hyperbolicity of ϕ̂t

ρ with respect to the splittingT M̂ = Ês⊕Êc⊕Êu on the δ-neighborhoodof
the exceptional set. Also, by construction, ϕ̂t

ρ coincides with ϕ̂t outside the 2δ-neighborhood

of the exceptional set. The main technical difficulty is that the splitting Ês ⊕ Êc ⊕ Êu does
not remain invariant as orbits cross the transition region (δ ≤ s ≤ 2δ). However, one can still
consider cones centered at these non-invariant distributions and verify the Cone Criterion for
partial hyperbolicity.

In what follows we will only establish the splitting into unstable and center-stable sub-
bundles. Roughly speaking, this follows from the fact that the damage done to the cones in
the transition region (δ ≤ s ≤ 2δ) is controlled uniformly (in δ) thanks to the second property
of ρ̄ and the fact that orbits spend a bounded time of order δ in the transition region. Because
all our constructions are time-symmetric, repetitions of the arguments also yields a splitting
into center-unstable and stable subbundles and hence full partial hyperbolicity.

2.2 Cones near the exceptional set

We will need to introduce more notation in order to proceed with the precise description of
the cones and the estimates. Denote by D̃

k
<δ × N the δ-neighborhood of the exceptional set,
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1798 A. Gogolev, F. R. Hertz

that is, the preimage

π−1({x ∈ D
k : ‖x‖ < δ} × N )

Denote by T N = Es
N ⊕ Ec

N ⊕ Eu
N the Anosov splitting of the restriction ϕt

N (i.e., Ec
N = ϕ̇t

N )
and by (Es

N ⊕ Ec
N ⊕ Eu

N ) ⊕ H the product splitting on D̃
k
<δ × N . Given a small number

ω > 0 define the cones on D̃
k
<δ × N

Cuω(x, y) = {v ∈ T(x,y)(D̃
k
<δ × N ) : �(v, Eu

N ) < ω}
Ccsω (x, y) = {v ∈ T(x,y)(D̃

k
<δ × N ) : �(v, Es

N ⊕ Ec
N ⊕ H) < ω} (2.5)

Remark 2.1 The splitting Es
N ⊕ (Ec

N ⊕ H) ⊕ Eu
N coincides with the splitting Ês ⊕ Êc ⊕ Êu

on the exceptional set only.

Recall that λ < 1 < μ are the constants from the definition of partial hyperbolicity (1.1).
Also let λ′ ∈ (λ, 1] and μ′ ∈ [1, μ) be the some constants for which we have

c−1(λ′)t ≤ ‖Dat (v)‖/‖v‖ ≤ c(μ′)t ,

where c > 0.1 Here at is the hyperbolic saddle given by the locally fiberwise structure (1.2)
and v ∈ TD

k . Now we pick a constant ρ0 > 0 which enters the definition of the function ρ

in the previous subsection such that we have the following inequality
(

λ′

μ′

)ρ0

> max(λ, μ−1) (2.6)

This is the domination condition [1, (2.3)] on the flow ϕt
ρ . This condition yields required

estimates on the cones on D̃
k
<δ × N for the blown-up flow. We pick ρ0 < 1. (If domination

condition holds with ρ0 = 1, our Main Theorem was already established in [1]. In either
case we can always choose ρ0 < 1.) Precisely, we have the following lemma.

Lemma 2.2 There exist ω > 0, c > 0, κ > 1 and δ0 > 0 such that for all δ < δ0 there
exists a Riemannian metric ‖ · ‖δ on M̂, which coincides with the metric ‖ · ‖ coming from
M outside the δ-neighborhood of the exceptional set, such that the cone fields Cuω and Ccsω
defined above are eventually (forward and backward) invariant under Dϕt

ρ and verify the
following hyperbolic properties:

1. for all finite orbits segments {ϕs
ρ(x, y), 0 ≤ s ≤ t}, which are entirely contained in the

δ-neighborhood of the exceptional set and for all v ∈ Cuω(x, y)

‖Dϕt
ρ(v)‖δ > μt‖v‖δ, t ≥ 0

2. for all finite orbits segments {ϕs
ρ(x, y), 0 ≤ s ≤ t}, which are entirely contained in the

δ-neighborhood of the exceptional set, for all v ∈ Cuω(x, y) and for allw ∈ Ccsω (x, y) with
Dϕtw ∈ Ccsω (ϕt (x, y))

‖Dϕt
ρ(v)‖δ

‖v‖δ

> cκ t ‖Dϕt
ρ(w)‖δ

‖w‖δ

, t ≥ 0

1 Constant μ′ and λ′ can be chosen to be arbitrarily close to the “outer” and “inner” spectral radii of at by
choosing large c > 0.
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The proof of this lemma is the basic technical ingredient of the prequel paper [1]. More
precisely, the construction of appropriate Riemannian metric ‖ · ‖δ is given in Section 5.1
of [1]. (For this construction we need to assume that the Riemannian metric ‖ · ‖ from the
definition of partial hyperbolicity (1.1) on D

k × N is a direct sum of the canonical flat metric
and a metric on N . It was explained in Section 5.3.2 of [1] that such assumption can be made
without loss of generality.) Then Lemma 5.1 of [1] gives partial hyperbolicity of the splitting
Es
N ⊕ (Ec

N ⊕ H) ⊕ Eu
N . Finally, the fact that the estimates hold for the vectors in the cones

(with proper choice of ω) is proved in Section 5.3.4 of [1].

2.3 Control along the center in the transition domain

Consider the transition domain Aδ ×N , where Aδ = D̃
k
<2δ ∩D̃

k
>δ . Recall that the Riemannian

metric ‖ · ‖δ restricted to this domain is the direct sum of the flat metric ‖ · ‖ and a metric
on N . Also recall that the flow ϕt

ρ is generated by ρ(x)X(x) + Y (y), (x, y) ∈ Aδ × N . It
follows that, even though ρ is not constant, the splitting Es

N ⊕ Ec
N ⊕ Eu

N ⊕ H stays invariant
within this domain. Note that because of the nature of the dynamics of the hyperbolic saddle
(invariance under rescaling) and because ρ ≥ ρ0 with ρ0 independent of δ, there exists a
uniform upper bound on time T which an orbit can spend in Aδ × N

T ≤ C1, (2.7)

where C1 is a constant which depends on at and ρ0, but does not depend on δ and ρ.
We proceed to explain how to control extra distortion which occurs along the “horizontal”

distribution H . Hence we focus on the dynamics of reparametrized saddle flow atρ generated
by ρX . The extra distortion which occurs along H is due to ρ-driven shear, however we
will see that such shear is controlled uniformly in δ. We will perform all calculations using
the canonical Euclidean structure on Aδ ⊂ D

k . Let v0 ∈ Tx Aδ be a unit tangent vector and
let vt0 = Datρv0. We would like to obtain uniform control on derivative of the norm of vt0.
Clearly it is sufficient to estimate the derivative at t = 0. Denote by V the vector field on Aδ

obtained by translating v0 to every point. Then by the definition of derivative a vector field
we have

DatρV − V ◦ atρ
t

= −LρXV = [V , ρX ]
Hence

vt0 = V ◦ atρ + [V , ρX ]t + h.o.t .

We proceed to estimate the derivative.

d‖vt0‖
dt

∣∣∣
t=0

= 1

2‖v0‖
d‖vt0‖2
dt

∣∣∣
t=0

= 1

2‖v0‖
d〈V ◦ atρ + [V , ρX ]t, V ◦ atρ + [V , ρX ]t〉

dt

= 〈[V , ρX ], v0〉
‖v0‖ ≤ ‖[V , ρX ]‖ ‖v0‖

‖v0‖ = ‖ρ[V , X ] + V (ρ)X‖
≤ ‖[V , X ]‖ + |V (ρ)|‖X‖ ≤ C2 + ‖∇ρ‖C3δ ≤ C4

In the last inequality we used the fact that ‖X‖ ≤ C3‖δ‖ on Aδ and that ‖∇ρ‖ ≤ 1/δ by the
construction of ρ.

Now, using the above bound and the time control (2.7), we immediately obtain.
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Lemma 2.3 Assume that an orbit segment {asρ(x), 0 ≤ s ≤ T } is entirely contained in Aδ ,
then for all v ∈ Tx Aδ , x ∈ Aδ

‖DaTρ v‖
‖v‖ ≤ C5, and

‖DaTρ v‖
‖v‖ ≥ 1

C5
,

where C5 is a constant which does not depend on ρ and δ.

2.4 Cones away from the exceptional set

To define the cones on M\(D̃k
>2δ × N ) we use the same ω given by Lemma 2.2 and let

Cuω(p) = {v ∈ Tp(M\(D̃k
>2δ × N )) : �(v, Êu) < ω}

Ccsω (p) = {v ∈ Tp(M\(D̃k
>2δ × N )) : �(v, Êc ⊕ Ês) < ω}

Because ϕt
ρ = ϕt and ‖ · ‖δ = ‖ · ‖ on M\(D̃k

>2δ × N ) we then have invariance and

hyperbolicity properties of these cones for orbit segments which stay in M\(D̃k
>2δ × N ) by

partial hyperbolicity of the flow ϕt .

2.5 Proof of partial hyperbolicity

To obtain partially hyperbolic splitting Eu
ρ ⊕ Ecs

ρ for ϕt
ρ we use the cone criterion applied to

Cuω and Ccsω .We recall that on D̃
k
<δ ×N the cone families are centered at Eu

N and Es
N ⊕Ec

N ⊕H

while on M\(D̃k
>2δ × N ) the cone families are centered at Êu and Êc ⊕ Ês . Note also that

our cone families are not defined in the transition domain Aδ × N . However, we don’t need
to extend cones there because orbits spend a uniformly bounded time in Aδ × N .

By preceding discussion the cones are eventually invariant and and possess hyperbolic
properties required by the Cone Criterion as long as the orbit stays disjoint with Aδ × N .
Hence we are left to analyze the case when ϕs(p) ∈ Aδ × N , 0 < s < T , with p and ϕT (p)
in the boundary of Aδ × N . For the sake of concreteness we can focus on the case when
p ∈ ∂(D̃k

<δ × N ) and ϕT (p) ∈ ∂(D̃k
>2δ × N ). (The other two cases p ∈ ∂(D̃k

>2δ × N ),
ϕT (p) ∈ ∂(D̃k

<δ × N ) and p ∈ ∂(D̃k
>2δ × N ), ϕT (p) ∈ ∂(D̃k

>2δ × N ) can be treated
completely analogously.) Recall that cone aperture ω is a fixed number given by Lemma 2.2
and is independent of δ. Also recall that Ês , Êc and Êu are continuous distributions2 which
coincide with Es

N , E
c
N ⊕ H and Eu

N , respectively, on the exceptional set. Hence for all
sufficiently small δ we have

dist(Es
N ⊕ Ec

N ⊕ H(q), Ês ⊕ Êc(q)) <
ω

10
and

dist(Eu
N (q), Êu(q)) <

ω

10

for all q ∈ D̃
k
<3δ × N . Because, locally in the neighborhood of the exceptional set, the flow

ϕt
ρ preserves both splittings Eu

N ⊕ (Ec
N ⊕ H) ⊕ Es

N and Ês ⊕ Êc ⊕ Êu it follows that

DϕT
ρ (Eu

N (p)) ⊂ Cuω(ϕT
ρ (p)),

Dϕ−T
ρ (Êc ⊕ Ês(ϕT

ρ (p))) ⊂ Ccsω (p)

2 Here we rely on the smoothness assumption for the partially hyperbolic splitting of ϕt in an essential way.
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Combining this observation with control provided by Lemma 2.3 one can easily verify the
following statement.

Lemma 2.4 There exist constants C6 > 0 and C7 > 0 such that for all sufficiently small
δ > 0 and for all points {p, ϕT (p)} ⊂ ∂(Aδ × N ) we have

DϕT
ρ (Cuω(p)) ⊂ CuC6ω

(ϕT
ρ (p)),

Dϕ−T
ρ (Ccsω (ϕT

ρ (p))) ⊂ CcsC6ω
(p),

‖DϕT
ρ v‖δ ≥ C7‖v‖δ, v ∈ Cuω(p),

‖Dϕ−T
ρ v‖δ ≥ C7‖v‖δ, v ∈ Ccsω (ϕT

ρ (p))

Now note that by decreasing δ we can increase the return time to the 2δ-neighborhood
of the exceptional set, D̃

k
<2δ × N , as much as we wish. This observation combined with

Lemma 2.4 implies that Cuω is eventually forward invariant and Ccsω is eventually backward
invariant for all sufficiently small δ. Finally the exponential expansion of vectors in Cuω and
domination of Cuω over Ccsω can be checked by using a standard argument: subdividing the
orbit into segments and pasting together the estimates given by Lemmas 2.2, 2.4 as well as
hyperbolicity of cone families outside D̃

k
<2δ × N . This arguments takes an advantage of the

long return time to D̃
k
<2δ × N one more time. We suppress detailed estimates as they are very

standard.

3 Volume preservingmodification via Katok–Lewis trick

We first formulate a standard lemma.

Lemma 3.1 Let M be a smooth manifold equipped with a smooth non-degenerate volume
form m. Assume that a flow generated by a smooth vector field preserves m. Consider a
smooth function ρ : M → R, ρ > 0. Then the flow generated by ρX preserves m/ρ.

Proof By Cartan’s formula

0 = LXm = ιXdm + dιXm = dιXm

and similarly LX (m/ρ) = dιX (m/ρ). We calculate

LρX (m/ρ) = ρLX (m/ρ) + dρ ∧ ιX (m/ρ) = ρdιX (m/ρ) + 1

ρ
dρ ∧ ιXm

= ρd(
1

ρ
ιXm) + 1

ρ
dρ ∧ ιXm

= ρ

(
− 1

ρ2 dρ ∧ ιXm + 1

ρ
dιXm

)
+ 1

ρ
dρ ∧ ιXm = dιXm = 0

�

The goal of this section is to prove theAddendum1.3.Recall thatwe assume thatϕt : M →

M preserves a smooth volume m and m|Dk×N = vol ⊗ volN . Recall that ϕt
ρ is a slow

down of ϕt along D
k . By Lemma 3.1, the flow ϕt

ρ also locally preserves the smooth volume

mρ |Dk×N = 1
ρ
vol⊗volN . Note thatmρ = m near the boundary and hence extend to a smooth

ϕt
ρ-invariant volume on the whole of M which we still denote by mρ . Because ρ = ρ0 is a

constant on D
k
<δ , we see that mρ still have a product form 1

ρ0
vol ⊗ volN on D

k
<δ × N .
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3.1 Replacing the smooth structure

If we equip D
k with the standard Euclidean coordinates (x1, x2, . . . , xk) then

vol = dx1 ∧ dx2 ∧ . . . ∧ dxk . (2.1)

By commutativity of (1.3) the flow ϕ̂t
ρ preserves π∗mρ , which is a smooth measure away

from the exceptional set.
Let’s examine the form of π∗mρ at the exceptional set. Because π is a product, we only

need to look at the pullback of vol to D̃
k under D̃

k → D
k . Recall that

D̃
k = {(x1, x2, . . . xk, 
) : (x1, x2, . . . xk) ∈ 
, 
 ∈ RPk−1}

and that the standard smooth charts for D̃
k are given by extending the standard charts for the

projective space RPk−1. Namely the i-th chart is given by

�i (u1, u2, . . . uk)

= (u1ui , u2ui , . . . ui−1ui , ui , ui+1ui , . . . ukui , [u1 : . . . : ui−1 : 1 : ui+1 : . . . : uk])
(2.2)

We can calculate the pull-back of vol

d(u1ui ) ∧ d(u2ui ) ∧ · · · ∧ dui ∧ . . . ∧ d(ukui ) = uk−1
i du1 ∧ du2 ∧ · · · ∧ duk .

Hence, when k > 1 the pull-back vanishes on the projective space. To remedy the situation
we follow the idea of Katok-Lewis (which they used to construct non-standard higher rank
volumepreservinggroup actions.)Namelywe replace the smooth structure onD

k bydeclaring
that

� : �u �→ ‖�u‖α �u, α < 0

is a smooth chart near the origin (i.e., by changing the smooth atlas). With respect to this
chart the Euclidean norm of a vector �u is given by

‖�u‖new = ‖�u‖1+α (2.3)

Accordingly we change the smooth structure on M by declaring that�× idN : D
k ×N →

M is a smooth chart at N . Note that M equipped with the new smooth atlas, which we denote
by Mnew, is obviously diffeomorphic to the original M . However, it is easy to check that
atρ : D

k → D
k and, hence, ϕt

ρ : Mnew → Mnew fail to be smooth.

Accordingly we replace we replace charts (2.2) for D̃
k by composing �i and �, that is,

�new
i (u1, u2, . . . uk)

= (
fα(u1, . . . , ui−1, ui+1, . . . uk)

‖ui‖α(u1ui , u2ui , . . . ui , . . . ukui ), [u1 : . . . : 1 : . . . : uk])
)
,

where

fα(u1, . . . , ui−1, ui+1, . . . uk) = (u21 + u22 + . . . + u2i−1 + 1 + u2i+1 + . . . + u2k)
α/2

Because the new smooth structure amounts to mere reparametrization in the radial direc-
tion the projective dynamics remains exactly the same.A direct calculation in chart shows that
âtρ : D̃

k → D̃
k is smoothwith respect to the new smooth structure.Hence ϕ̂t

ρ : M̂new → M̂new

is also smooth. Further, by appropriate choice of α we can now guarantee that π∗m is a non-
degenerate volume on M̂new. We present the chart calculation which determines the “right”
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value of α. In order to simplify notation we perform this calculation in the first chart �new
1 .

We also abbreviate fα(u2, u3, . . . uk) to simply fα . Note that

d fα ∧ du2 ∧ du3 ∧ · · · ∧ duk = 0

This is very helpful for the calculation:

d( fα‖u1‖αu1) ∧ d( fα‖u1‖αu1u2) ∧ . . . ∧ d( fα‖u1‖αu1uk)

= d( fα‖u1‖αu1) ∧ (u2d( fα‖u1‖αu1)

+ fα‖u1‖αu1du2) ∧ · · · ∧ (ukd( fα‖u1‖αu1) + fα‖u1‖αu1duk)

= ( fα‖u1‖αu1)
k−1d( fα‖u1‖αu1) ∧ du2 ∧ · · · ∧ duk

= ( fα‖u1‖αu1)
k−1( fαd(‖u1‖αu1) ∧ du2 ∧ · · · ∧ duk

+ ‖u1‖αu1d fα ∧ du2 ∧ du3 ∧ . . . ∧ duk
)

= ( fα‖u1‖αu1)
k−1(α + 1) fα‖u1‖αdu1 ∧ du2 ∧ . . . ∧ duk)

= (α + 1) f kα ‖u1‖kαuk−1
1

Notice that fα is a smooth function.Hence the pull-backofvol is a smooth andnon-degenerate
on Mnew when kα + k − 1 = 0, i.e.,

α = −k − 1

k

Remark 3.2 It is crucial for this construction that the initial volume on D
k given by (2.1) has

constant density. Indeed, if we allow for a non-trivial density β(x1, . . . xk) and begin with
βdx1 ∧ dx2 ∧ · · · ∧ dxk instead, then all computations go through in the same way. However
the expression for the density after the blow-up in the chart �new

i will have an additional
factor

β( fα(u1, . . . , ui−1, ui+1, . . . uk)‖ui‖α(u1ui , u2ui , . . . ui , . . . ukui ))

which is not C1 at the exceptional set given by ui = 0 (unless the Taylor coefficients of β

up to order k vanish). Hence we have a positive continuous density which is not C1 on the
exceptional set. This issue, in fact, gives us an additional difficulty to overcome in the proof
of Corollary 1.4.

3.2 Partial hyperbolicity in volume preserving setting

We now have a volume preserving flow ϕ̂t
ρ : Mnew → Mnew. Here we explain that this flow

is also partially hyperbolic provided that constant ρ0 (from the definition of ρ) is chosen to
be sufficiently small. Namely, we amend the domination condition (2.6), as follows

(
λ′

μ′

)ρ0

> max(λ, μ−1), λ < (λ′)ρ0/k, (μ′)ρ0/k < μ (2.4)

Clearly these inequalities are verified for a sufficiently small ρ0.
The proof of partial hyperbolicity is the same as the one given in Sect. 2. The only

difference which requires some commentary is the Lemma 2.2 for ϕ̂t
ρ : Mnew → Mnew under

the condition (2.4). Recall that the proof of this lemma mostly rests on Lemma 5.1 of [1]
and the proof of Lemma 5.1 is the only place which requires some adjustments. We indicate
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1804 A. Gogolev, F. R. Hertz

how (2.4) must be used in the proof of Lemma 5.1. Recall that on the small neighborhood of
the projective space the dynamics of âtρ is given by

âtρ(s, v) = ( ˆ̂atρ(s), āts(v)), s ∈ RPk−1, v ∈ R+

where ˆ̂atρ : RPk−1 → RPk−1 is the projectivization of atρ (which coincides with the restric-

tion of âtρ to RPk−1) and āts is the cocycle over
ˆ̂atρ given by the action of atρ on lines (see the

proof of Lemma 5.3 in [1]).3

The estimate on ˆ̂atρ (Claim 5.4 of [1]) remains exactly the same as the alternation of the
smooth structure did not change the projective dynamics. The place where (2.4) is needed is
the inequality (5.16) of [1] (estimate on the cocycle āts). Indeed, given a small �u, according
to (2.3), we have the local estimate

‖atρ(�u)‖new = ‖atρ(�u)‖1+α ≤ (c(μ′ρ
0 )t‖�u‖)1+α = c1/k(μ′)ρ0t/k‖�u‖new

and similarly

‖atρ(�u)‖new ≥ c−1/k(λ′)ρ0t/k‖�u‖new
This effects the last inequality in the proof of Lemma 5.3 of [1]. Namely, we obtain an
exponential upper bound in

max

((
λ′

μ′

)ρ0

, (μ′)ρ0/k
)

(and, analogously, a lower bound with (λ′)ρ0/k) Hence, in order for the rest of the proof to
work we need to use (2.4) instead of (2.6).

4 The example

In this section we introduce geodesic flows on complex hyperbolic manifolds in detail and
then prove Corollaries 1.2 and 1.4.

4.1 Complex hyperbolic manifolds

First recall that 1-dimensional complex hyperbolic space can be identifiedwith 2-dimensional
real hyperbolic space with metric equal to one quarter of the standard Poincaré metric. The
linear fractional transformations form the group of holomorphic isometries (to generate the
full group of isometries one also needs the anti-holomorphic transformation) and can be
identified with PSU (1, 1) = ±I d\SU (1, 1). Because of the 1

4 multiple in the expression
for the metric the curvature is −4 and the contraction and expansion rates of the geodesic
flow on the complex hyperbolic space are twice bigger. It follows that the full stable and
unstable horocycles of geodesic flows on higher dimensional complex hyperbolic manifolds
contain one dimensional “fast” horocycles which correspond to the complex lines in the
tangent bundle. This yields a partially hyperbolic splitting which is different from the Anosov
one and makes the geodesic flow on complex hyperbolic manifold suitable for the blow-up
surgery.

3 One difference which appears is that even though, with respect to the new smooth chart�new, atρ still sends
lines to line the cocycle āts is no longer linear. This, however, does not present any additional difficulty.
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We begin by summarizing some standard material on complex hyperbolic manifolds. We
mostly follow the lucid exposition by D.B.A. Epstein [3]. Consider the following Hermitian
quadratic forms on C

n+1 of signature (n, 1).

Q(x) = ∑n
i=1 zi z̄i − zn+1 z̄n+1

Q̂(x) = ∑n−1
i=1 zi z̄i + zn z̄n+1 + z̄n zn+1

These forms have the following associated matrices

J = diag(1, 1, . . . 1,−1)

Ĵ =
(
I d 0
0 J0

)

respectively. Here J0 = (
0 1
1 0

)
. Let SU (n, 1; Q) and SU (n, 1; Q̂) be the groups of (n + 1) ×

(n+1) complex matrices which have determinant 1 and preserve corresponding form. These
groups are conjugate in GL(n + 1) by

T =
(
I d 0
0 T0

)

where T0 = 1√
2

(
1 1−1 1

)
.

Recall that the complex hyperbolic n-space H
n
C
can be defined as

H
n
C

= {[x] ∈ CPn : Q(x) < 0}
Clearly the action of SU (n, 1; Q) on C

n+1 induces an action on H
n
C
and, in fact, SU (n, 1)

coincides with the group of biholomorphic isometries of H
n
C
. If � is a discrete cocompact

subgroup of SU (n, 1) acting on the right then the orbit space

M = H
n
C
/�

is a closed complex hyperbolic manifold. Moreover, every closed complex hyperbolic man-
ifold arises in this way.

4.2 The geodesic flow as a homogenous flow

We describe M and its unit tangent bundle as homogeneous spaces. The group SU (n, 1; Q)

acts transitively on H
n
C
and the stabilizer of [(0, 0, . . . 0, 1)] is

{(
A 0
0 det A

)
: AĀt = I d

}
� U (n).

The stabilizer of a tangent vector is the group W (n − 1) given by4

W (n − 1) =
⎧⎨
⎩

⎛
⎝A 0 0
0 λ̄ 0
0 0 λ̄

⎞
⎠ : AĀt = I d, λ2 = det A

⎫⎬
⎭

4 Notice that, by mapping to the (n − 1) × (n − 1) upper diagonal matrix A, the group W (n − 1) is a double
cover ofU (n− 1). It is curious to notice that, unlike in the real case,W (n− 1) is not isomorphic toU (n− 1).
However using the fact that det : U (n) → U (1) is a trivial principal fiber bundle one can check thatW (n− 1)
is diffeomorphic to U (n − 1).
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Hence we have

M = U (n)\SU (n, 1; Q)/� T 1M = W (n − 1)\SU (n, 1; Q)/�.

The same descriptions work using SU (n, 1; Q̂) as the underlying Lie group with embed-
dings of W (n − 1) and U (n) are conjugated by T . Also note that W (0) = {±I d} and we
will write PSU (1, 1) instead of W (0)\SU (1, 1).

From now on it would be more convenient to only use the form Q̂ and we abbreviate
SU (n, 1; Q̂) to SU (n, 1).

Now recall the Lie algebras

u(n − 1) = {A ∈ Mn−1 : Āᵀ = −A}
and

su(n, 1) = su(n, 1, Q̂) = {B ∈ Mn+1 : Tr(B) = 0, B̄ᵀ Ĵ + Ĵ B = 0} (2.1)

If we write a traceless matrix B ∈ su(n, 1) in block form, then B ∈ su(n, 1) if and only if

B =
(

A v

−J0v̄ᵀ D

)

where A ∈ o(n − 1) and D = (
a ib
ic −ā

)
, a ∈ C, b, c ∈ R.

The geodesic flow dt : T 1M → T 1M is given by W (n − 1)g� �→ dtW (n − 1)g� =
W (n − 1)dt g�, where

dt =
(
I d 0
0 d0t

)
, with d0t =

(
et 0
0 e−t

)

The strong stable and strong unstable horocycle subgroups are

hs/ut =
(
I d 0
0 hs0/u0t

)
, with hs0t =

(
1 i t
0 1

)
, hu0t =

(
1 0
i t 1

)
.

We refer to [4] for a more detailed exposition on the geodesic flow as a homogeneous flow.

4.3 Totally geodesic holomorphic curve

The complex hyperbolic space H
1
C
can be identified with {z1 = z2 = · · · = zn−1 = 0}∩H

n
C
.

The groupof holomorphic isometries SU (1, 1)ofH1
C
embeds into SU (n, 1) as lower diagonal

block. Let � be a cocompact lattice in SU (n, 1) and let �1 = SU (1, 1) ∩ �. We assume
that �1 is a cocompact subgroup of SU (1, 1). Hence the embedding H

1
C

⊂ H
n
C
yields the

embeddings

N = U (1)\SU (1, 1)/�1 ⊂ U (n)\SU (n, 1)/� = M, and

T 1N = PSU (1, 1)/�1 ⊂ W (n − 1)\SU (n, 1)/� = T 1M

where N is a totally geodesic one dimensional complex curve.

4.4 Parametrization of the neighborhood and the geodesic flow

We introduce a parametrization of a neighborhood U of PSU (1, 1) in W (n − 1)\SU (n, 1).
This parametrization will be constructed to be �1 equivariant and, hence, will descend to a
parametrization of a neighborhood of T 1N in T 1M .
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Pick a small ε0 > 0 and take the following as a transversal to the Lie algebras of SU (1, 1)
and W (n − 1). Using the block from (2.1) let

Dε0 =
{(

0 v

−J0v̄ᵀ 0

)
∈ su(n, 1), where ‖v‖ < ε0

}

This is a (4n − 4)-dimensional transversal spanned by weak stable and unstable horocycles.
Let � = �ε0 = exp(Dε0).

Now we define a parametrization p : � × PSU (1, 1) → W (n − 1)\SU (n, 1) of a neigh-
borhood U = Uε0 of PSU (1, 1) in W (n − 1)\SU (n, 1) as follows

p(σ, u) = W (n − 1)σu. (2.2)

To verify that this is a well-defined parametrization for a sufficiently small ε0 it is sufficient
to check that the map P : W (n − 1) × � × PSU (1, 1) → SU (n, 1) given by P(w, σ, u) =
wσu is a diffeomorphism on its image. And that the image contains a neighborhood of
W (n − 1) × PSU (1, 1) ⊂ SU (n, 1). To do this we consider a metric d on SU (n, 1) which
is invariant under the right action of PSU (1, 1) and left action of W (n − 1). One can obtain
such a metric by starting with a right invariant Riemannian metric and then averaging with
respect to the left action of (compact group) W (n − 1).

Notice that Tid�, su(1, 1) and w(n − 1) span the full Lie algebra su(n, 1), and, hence,
P is a local diffeomorphism on the neighborhood of (0, 0, 0). More precisely, by choosing
appropriately small ε0 > 0 and r > 0 we have that the restriction of P to the neighborhood

{w ∈ W (n − 1) : d(w, id) < r} × � × {u ∈ PSU (1, 1) : d(u, id) < r}
is a local diffeomorhism on its image. Further, because P(w′w, σ, uu′) = w′P(w, σ, u)u′
we obtain that each point P(w′, 0, u′) has a neighborhood which has a uniform size (with
respect to metric d) entirely contained in the image of P .

It remains to check that P is one-to-one. Let

δ0 = sup
σ∈�

d(id, σ )

Note that by choosing smaller ε0 we can make δ0 > 0 as small as desired. Assume that
P(w1, σ1, u1) = P(w2, σ2, u2), i.e.,

w−1
2 w1σ1 = σ2u2u

−1
1 (2.3)

Then

d(w−1
2 w1, u2u

−1
1 ) ≤ d(w−1

2 w1, w
−1
2 w1σ1)

+d(σ2u2u
−1
1 , u2u

−1
1 ) = d(id, σ1) + d(σ2, id) ≤ 2δ0

Recall that W (n − 1) × PSU (1, 1) is (explicitly) properly embedded in SU (n, 1). Hence
the last inequality implies that both w−1

2 w1 and u2u
−1
1 are close to id . On the other hand we

have already shown that P is a local diffeomorphism on the neighborhood of id . Hence (2.3)
implies that w−1

2 w1 = id , u2u
−1
1 = id and σ1 = σ2 proving that P is injective.

Finally, we let �1 act on � × PSU (1, 1) by γ1 : (σ, u) �→ (σ, uγ1). Our parametrization
is equivariant with respect to the right action of �1 and hence descends to a parametrization
of a neighborhood of T 1N ⊂ T 1M by � × PSU (1, 1)/�1 � � × T 1N � Dε0 × T 1N .5

5 Notice that in particular we have shown that the normal bundle of T 1N in T 1M is trivial. This happens
because W (n − 1) ∩ PSU (1, 1) = {I d}. It was pointed out to us by Mike Davis that in general the normal
bundle of N in M is twisted and the twisting is controlled by the Chern class.
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4.5 Proof of Corollary 1.2

The Corollary 1.2 follows from the Main Theorem provided that we verify the locally
fiberwise assumption with respect to our parametrization. We write v as a column vectors
v = (v1, v2) which parametrizes �. That is,

A(v1, v2) =
(

0 v

−J0v̄ᵀ 0

)

and σ(v1, v2) = exp A(v1, v2).
Notice that

dtσ(v1, v2)d
−1
t = dt exp A(v1, v2)d

−1
t

= exp dt A(v1, v2)d
−1
t = exp A(e−tv1, e

tv2) = σ(e−tv1, e
tv2)

Now we can deduce the formula for the geodesic flow using the coordinates (v1, v2, u) ∈
� × PSU (1, 1)

dt (v1, v2, u) = W (n − 1)dtσ(v1, v2)u = W (n − 1)dtσ(v1, v2)d
−1
t dt u

= (e−tv1, e
tv2, dtu)

Weconclude thatwith respect to the coordinates (v1, v2, u) the geodesic flow is the product
of (4n − 4)-dimensional hyperbolic saddle and the geodesic flow on a holomorphic curve.
This verifies the assumption of the Main Theorem on locally fiberwise structure of dt on U .

Finally to see that the partially hyperbolic flow ϕ̃t could be chosen to be arbitrarily close to

ϕ̂t : T̂ 1M → T̂ 1M inC∞ topology recall that we obtain ϕ̃t by blowing up the reparametrized
flow ϕt

ρ . The reparametrization is localized in the neighborhood of T 1N and is given by (2.4).
Function ρ has to be chosen so that (2.6) holds:(

λ′

μ′

)ρ0

> max(λ, μ−1)

In the current setting λ′−1 = μ′ = e and λ−1 = μ = e2. Hence any value of ρ0 < 1
would work. It follows that the function ρ can be chosen to be arbitrarily close to 1 in the
C∞ topology. Therefore ϕt

ρ can be arbitrarily C∞ close to ϕt and, accordingly, ϕ̃t can be
arbitrarily C∞ close to ϕ̂t .

4.6 Proof of Corollary 1.4

Corollary 1.4 does not immediately follow from Addendum 1.3. The reason is that the pull-
back of the Liouville volume form p∗vol under parametrization p has the form

α(v1, v2)ω0 ∧ volT 1N ,

where ω0 is the standard volume form on Dε0 and volT 1N is the Liouville volume form on
T 1N . Indeed, because theLiouvillemeasure comes from theHaarmeasure on SU (n, 1) and p
is equivariant with respect to the right action of PSU (1, 1) the density α is independent of the
u-coordinate. However, the dependence on v1 and v2 is non-trivial. Hence the Addendum 1.3
does not apply directly (cf. Remark 3.2). Our approach is to replace the flow ϕt with a
different flow ϕ̄t towhichAddendum1.3 can be applied.More precisely, on the neighborhood
Dε0 × T 1N we will let

ϕ̄t = h̄ ◦ ϕt ◦ h̄−1
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where h̄ = (h, idT 1N ) and h is C1 small and tapers away to identity on the neighborhood of
the boundary of Dε0 .

Let ω1 = α(v1, v2)ω0. By rescaling ω0 if needed, we may assume that α(0, 0) = 1.
Denote by at the saddle flow, at (v1, v2) = (e−tv1, etv2). Note that, because α is continuous
and at -invariant, we also have α(0, v2) = α(v1, 0) = 1.

Lemma 4.1 For all sufficiently small ε1 ∈ (0, ε0) there exists a diffeomorphism h : Dε1 →
h(Dε1) ⊂ Dε0 such that h∗ω1 = ω0 and h commutes with the saddle flow, when defined:

h ◦ at = at ◦ h

Before proving the lemma we first finish the proof of Corollary 1.4. First extend h : Dε1 →
h(Dε1) to a diffeomorphism h : Dε0 → Dε0 which equals to identity near the boundary. Then
replace the geodesic flow ϕt with the new flow ϕ̄t by replacing the restriction ϕt |Dε0×T 1N

with (h ◦ at ◦ h−1, ϕt
T 1N

). Clearly ϕ̄t is smoothly conjugate to ϕt . Hence ϕ̄t is partially

hyperbolic with C1 splitting. Further, T 1N remains ϕ̄t -invariant and, because h commutes
with at on Dε1 we have

ϕ̄t (v1, v2, u) = ϕt (v1, v2, u) = (at (v1, v2), ϕ
t
T 1N (u))

for (v1, v2) ∈ Dε1 . Hence the locally fiberwise assumption is also verified for ϕ̄t . On the
neighborhood Dε1 × T 1N the ϕ̄t -invariant volume has the form h̄∗(ω1 ∧ volT 1N ) = h∗ω1 ∧
volT 1N = ω0 ∧ volT 1N and hence the assumption of Addendum 1.3 is also verified. We
conclude that Addendum 1.3 applies to ϕ̄t and yields Corollary 1.4. �

Hence it only remains to prove the Lemma.

Proof of Lemma 4.1 The idea of the proof is perform an at -equivariantMoser trick.6 To obtain
the diffeomorphism h such that h∗ω1 = ω0 consider the pathωt = (1−s)ω0+sω1, s ∈ [0, 1].
Then, by the Poincaré Lemma, there exists η such that

dη = ω1 − ω0 = γω0, γ = α − 1

Further, we can choose η to be at -invariant; that is, LXη = 0, where X = ∂at/∂t . We
proceed with the proof assuming this fact, which we will verify later via a direct calculation.

Because ωs are non-degenerate forms the equation

ιYsωs = η,

uniquely defines “time-dependent vector field” Ys . Then, by Cartan’s formula, we have for
every s ∈ [0, 1]

LYsωs = (ιYs ◦ d + d ◦ ιYs )ωs = dβ

Hence by integrating Ys we obtain a one-parameter family of diffeomorphisms hs such that

(hs)∗ω0 = ωs

Recall that volume forms ωs are invariant under X , i.e., LXωs = 0 Hence

0 = LXβ = LX (ιYsωs) = ιYs (LXωs) + ιLXYsωs = ιLXYsωs,

6 While such trick is standard in the context of equivariant cohomology, when the acting group is compact,
see e.g. [2], we were unable to locate any prior work on “locally equivariant” Moser trick. While we only do
it here for the saddle singularity, presumably it is much more general.
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which implies that [X , Ys] = LXYs = 0 because ωs in non-degenerate. It follows from the
Frobenius Theorem that at commutes with hs as posited. Note that hs(0, 0) = (0, 0). It
remains to set h = h1 and restrict to a sufficiently small disk Dε1 such that h(Dε1) ⊂ Dε0 .

Hence, to finish the proof of the Lemma it remains to show that the form η can be chosen
to be at invariant. For the sake of notation we prove this fact only when dimDε0 = 4. The
general case can be addressed in the same way.

We use coordinates (x1, x2, x3, x4). Then ω0 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 and the generator
of at is given by

X = −x1
∂

∂x1
− x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

First let η0 = x1dx2 ∧ dx3 ∧ dx4. Then dη0 = ω0 and, using Cartan formula LXη0 =
ιXω0 + dιXη0 it is straightforward to verify that LXη0 = 0, i.e., η0 is at -invariant.

Our goal now is to find an at -invariant function β such that d(βη0) = γω0. We have

d(βη0) = βη0 + dβ ∧ η0 = βω0 + x1
∂β

∂x1
ω

Hence we need to solve the equation

β + x1
∂β

∂x1
= ∂

∂x1
(x1β) = γ

for β. Then

β(x1, x2, x3, x4) = 1

x1

∫ x1

0
γ (q, x2, x3, x4)dq

is a solution.
We check that β is at -invariant. Let � = �(x1, x2, x3, x4) = ∫ x1

0 γ (q, x2, x3, x4)dq .
Because γ is at -invariant we have

0 =
∫ x1

0
Xγ (q, x2, x3, x4)dq

= −
∫ x1

0
q

∂

∂q
γ (q, x2, x3, x4)dq − x2

∂

∂x2
� + x3

∂

∂x3
� + x4

∂

∂x4
�

= −x1γ (x1, x2, x3, x4) + �(x1, x2, x3, x4)

−x2
∂

∂x2
� + x3

∂

∂x3
� + x4

∂

∂x4
� = � + X�

where we used integration by parts and the fundamental theorem of calculus. Now differen-
tiating x1β = � with respect to X gives

X(x1)β + x1Xβ = X�

which yields

x1Xβ = X� + x1β = X� + � = 0.

Hence Xβ = 0. Finally by the product formula

LXβη0 = X(β)η0 + βLXη0 = 0.

�
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