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a b s t r a c t

This paper investigates methods of band gap formation in two-dimensional locally
resonant elastic metamaterials and proposes a technique for computing such gaps as
algebraic functions of integrated Bloch modes and metamaterial parameters. Mode
shapes associated with the deformation of unit cells consisting of a hard matrix, soft
filler, and hard resonator are investigated near the lower and upper bounds of the first
local resonance band gap. Similarities reveal that Bloch modes at these bounds have
the same non-dimensional geometries and locations within the irreducible Brillouin
Zone irrespective of material properties, matrix and resonator thicknesses, and unit
cell size. A theoretical model for the unit cell incorporating Mindlin plate theory is
employed to compute the frequency of these modes in transverse vibration using
conservation of energy. A least squares system identification algorithm is then described
to generate surface equations for non-dimensional Bloch mode shapes computed by
finite element analysis, employing a computation-saving Kronecker factorization and
yielding continuous surface equations for the non-dimensional Bloch modes when
rectangular cell components are utilized. Nine sample metamaterials are analyzed with
this approach generating reliable predictions of the first band gap bounds. The presented
framework offers insights into band gap formation, opens avenues in inverse unit cell
design, and provides versatile algebraic relationships between band gap frequencies and
unit cell parameters in such resonant metamaterials.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Elastic metamaterials with locally resonant components have grown increasingly popular in applications requiring
ibration isolation and mitigation of external loads, due largely to their ability to create subwavelength band gaps (BGs)
n frequency domains much lower than non-resonant metamaterials of similar size [1–7]. The phenomenon, which was
irst presented by Liu et al. [8], has sparked numerous investigations into methods of BG formation and guidelines for
esigning metamaterials with specific BGs in various locally resonant geometries [9–13]. Sugino et al. [14] for example
nalyzed a one-dimensional locally resonant metamaterial beam with discrete spring–mass resonators and derived a
oncise formula for computing the first (lowest-frequency) BG using a modal analysis approach, providing a guideline
or designing such a geometry to attain a specific BG. Peng and Pai [15] conducted a related study on elastic metamaterial
lates with discrete spring–mass absorbers and found that the location of the BG depends on the natural frequency of the
ocal resonators, while the width of the BG increases as the ratio of the resonator mass to the total unit cell mass increases.
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rushynska et al. [16] investigated the topic of locally resonant elastic metamaterial plates with continuous ‘‘hard-soft-
ard’’ (H–S–H) configurations analyzing the effects of varying unit cell parameters on the dispersion band spectra for
oth in- and out-of-plane vibrations and proposing a design strategy for obtaining an optimal metamaterial with specific
G properties. They further expanded the analysis to distinguish between different resonant inclusions [17]. The focus of
his effort will be on such H–S–H metamaterials. Our interest in these configurations stems from their manufacturability
nd their ability to attenuate low-frequency vibrations which are incident from any direction (e.g., [2]). However, the
wo-dimensional nature and higher-order analytical and finite element models required to predict the performance of
uch metamaterials render the analysis both more complex and computationally expensive. As a result, investigations
nto BG formation mechanisms in metamaterials with such geometries are naturally more difficult to achieve than in 1D
nd discrete spring–mass resonant counterparts.
Motivated by the previous challenges, we consider locally resonant H–S–H metamaterials in this paper in a slightly

ifferent light by focusing on similarities between Bloch wave modes of such metamaterials, proposing a novel technique
or BG computation, and offering further insights into BG formation in such metamaterials. Unlike conventional structures,
hich are finite in length and defined by boundary conditions, metamaterials are typically modeled as infinite arrange-
ents of a series of building blocks, commonly referred to as ‘‘unit cells’’, owing to the periodic (i.e., self-repeating) nature
f these cells [18,19]. H–S–H unit cells in particular consist of a dense, resonating element embedded within a soft filler
aterial that is itself embedded within a stiff rectangular matrix, with multiple repeated unit cells in a one- or two-
imensional array comprising the metamaterial (Fig. 1). Analogous to vibrational modes of finite structures, Bloch modes
epict the deformation patterns (and frequencies thereof) of such unit cells at prescribed points within their dispersion
iagrams [20]. To compute the BGs of such structures, the prevailing method relies on a finite element eigenfrequency
ispersion analysis of an individual self-repeating unit cell conducted along the boundary of the irreducible Brillouin
one (IBZ), simulating an infinite structure by varying wavenumbers in the x- (k̃x = akx) and y- (k̃y = bky) directions.
ere, k̃x and k̃y denote the non-dimensional wavenumbers (periodic with period 2π ) in the x- and y-directions and a
nd b denote the unit cell dimensions (analogous to the lattice constants of a crystal). The frequency ranges for which
o solutions at any wavenumber combination are computed define the BGs of the structure and are the hallmark feature
f H–S–H and more general elastic metamaterials. A dispersion plot displaying the first few bands of the band structure
s well as the first BG for the unit cell in Fig. 1b is displayed in Fig. 1c, computed using finite element eigenfrequency
nalysis (FEEA) for a 20 × 20 mesh of quadrilateral, 12-node planar cubic elements and 200 points along the M-0-X-M IBZ
oundary. However, despite the proven promise of FEEA in BG computation of H–S–H metamaterials, there are a number
f less-than-optimal considerations about FEEA combined with similarities between the band structures and Bloch modes
n H–S–H geometries that suggest a potentially novel analytical approach to BG computation in such metamaterials.

Although FEEA has been undoubtedly shown to be an incredibly versatile and accurate method of BG computation in
–S–H metamaterials ([2,16] to name a few), it remains a computationally-expensive method that does not lend itself
ell to on-demand design of metamaterials with targeted or desired BGs. For instance, when calculating BGs of elastic
etamaterials by FEEA, the frequency bands of the dispersion plot generated by the analysis are always defined by discrete
oints (rather than a smooth function), requiring numerous repetitions of the analysis at small wavenumber intervals
hen a fine dispersion profile (and therefore, accurate BG calculation) is desired, which leads to potentially lengthy
omputation times especially for systems comprising large numbers of degrees of freedom (DOFs). More importantly, BGs
etermined by FEEA do not provide information on the sensitivity of the calculation to changes in material properties, unit
ell size, or geometry (e.g., the thickness of the matrix or resonator elements of the unit cells), making FEEA less-than-
easonable as a method when parametric studies of many designs are undergone to determine the optimal parameters of
metamaterial with specific BGs. Krushynska et al. [16] presented an ideal example of this by parametrically varying

he sizes of filler and resonator elements in H–S–H metamaterials to determine the effects of such variation on the
etamaterial’s BG frequencies; however, the BGs of each solution were still obtained with finite element analyses.
To this end, the objective of this paper is two-fold. First, we identify and outline a few critical similarities which

xist between the dispersion band structures and Bloch modes of H–S–H metamaterials. Second, we strategically exploit
hese similarities to devise a novel computationally-efficient algorithm for computing BGs in H–S–H metamaterials, using
ystem identification of Bloch mode shapes. To do this, Section 2 describes two critical observations between Bloch modes
nd dispersion band structures in H–S–H metamaterials that provide the fundamental motivation for the present method.
ection 3 presents an approach for computing the frequency of an elastic metamaterial unit cell vibrating with a particular
loch mode, guided by observations from the previous section. Following this, a Least Squares Identification Algorithm
s detailed in Section 4 to identify surface equations for unit cell Bloch mode shapes that can be directly employed to
compute metamaterial BGs using the derivations in Section 3. A numerical example demonstrating the utility of the
novel method is presented in Section 5, and a procedure for designing a metamaterial with a specified BG using algebraic
relationships between unit cell parameters is detailed in Section 6. Finally, Section 7 summarizes the analysis and outlines
possible extensions of this work in various metamaterial applications.

2. Observing Bloch modes in H–S–H metamaterials

In elastic metamaterials, Bloch modes refer to mode shapes corresponding to elastic wave propagation in an individual
unit cell of an infinitely long periodic structure, as opposed to the traditional vibration mode shapes of a finite structure
2
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nder a set of prescribed boundary conditions [20,21]. For elastic metamaterial plates analyzed using Mindlin plate theory
our theory of choice and applied in Section 3), these Bloch modes take the form of displacement, x-rotation, and y-rotation
urfaces defined over the planar area of the unit cell, as will be detailed later. A few critical similarities between the Bloch
odes and dispersion band structures of H–S–H metamaterials can be established that provide insight into the method
f BG formation and motivation for a novel approach to BG computation in such structures. Two essential observations
f H–S–H metamaterials are presented in this section that contribute to this novel method.

Fig. 1. Hard–soft–hard (H–S–H) locally resonant metamaterials: (a) 2D array and (b) unit cell of an H–S–H metamaterial in transverse vibration.
Waves propagate in the xy-plane of the metamaterial; material displacements occur in the z-direction. (c) Dispersion band structure identifying
he two lowest frequency bands and the first band gap (shaded region) for an H–S–H metamaterial. The inset in the bottom right depicts the
etamaterial unit cell and wavenumber positions at the M, 0, and X positions of the IBZ. Note the change in scale of the horizontal axis at the
oints M′ and X′ .

.1. Observation 1: Similarity in dispersion band structures

The first critical observation of H–S–H metamaterials motivating this analysis is that all transverse vibrations in
he vicinity of the lower and upper limits of the first BG occur with the same non-dimensional wavenumbers for any
ombination of material properties, matrix or resonator thicknesses, and unit cell size, provided that the elastic modulus
f the filler material is sufficiently smaller than that of the matrix material. This requirement is easily satisfied by the
any H–S–H metamaterials that use very soft silicone rubber as the filler material—e.g., [2,8,16]. That is, the modes of
ibration in the pass band immediately below and above the first BG occur at the same location of the IBZ in all H–S–
metamaterials containing relatively rigid matrix and resonator elements (enabled by soft filler material) and a given

hickness of the filler material relative to the unit cell size. The only exception to this observation occurs when the matrix
lement becomes very light (or thin) or the resonator becomes extremely dense (or thick), which has the potential to
ause a flat, single-frequency band separating the first BG into two regions (this will be illustrated with a numerical
xample in Section 5). However, when treated as a single BG with an intermediate resonance frequency, the lower bound
f the first separated BG and the upper bound of the second separated BG still meet this observation (in these cases, the
ombined BG between the two separated BGs will be referred to as the ‘‘first BG’’ in this paper).
A graphical illustration of this observation is presented in Fig. 1c, depicting a typical dispersion band structure around

he IBZ boundary for a sample H–S–H metamaterial shown in the inset portion of the figure. In particular, it can be
bserved that the lower bound of the first BG is associated with the M point of the IBZ (defined by non-dimensional
avenumbers k̃x = k̃y = π ), and the upper bound is associated with the 0 point of the IBZ (defined by non-dimensional
avenumbers k̃x = k̃y = 0) for this and all other H–S–H metamaterials of soft filler material. As a result, the lower
nd upper bounds of the first BG of such a metamaterial can be calculated by performing FEEA at only the M and 0

oints of the IBZ, rather than along the entire IBZ boundary. This observation tremendously simplifies the analysis of such
etamaterials when knowledge of the first BG is desired—however, it does not provide insight into the sensitivity of the
G frequency or bandwidth to the material properties, unit cell size, or element thicknesses of the metamaterial. The
econd observation and the remainder of the paper are intended to address this second issue.

.2. Observation 2: Similarity in Bloch modes

The second observation motivating this analysis is that all transverse vibrations propagating in H–S–H metamaterials
f soft filler material at the M and 0 points of the IBZ and at frequencies just beyond the limits of the first BG occur
ith the same Bloch modes for any combination of material properties, matrix or resonator thicknesses, and unit cell size

or a given reference geometry, where ‘‘reference geometry’’ is used to refer to the cross section of the unit cell in the
y-plane normalized by the unit cell dimension (a or b) and the thickness of the filler material relative to this dimension.
3
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Fig. 2. Displacement Bloch mode shapes at the (a) lower bound and (b) upper bound of the first BG of a sample H–S–H metamaterial.

(Unit cells of different relative filler thicknesses are observed to not follow this phenomenon, since the difference in
filler thickness relative to the size of the cell institutes a different non-dimensional shape to the Bloch modes due to the
large deformations present in the soft filler material). Stated differently, all H–S–H metamaterials with a specific reference
geometry and soft filler material vibrate with the same Bloch modes at the natural frequencies corresponding to the lower
and upper limits of the first BG. This observation can be made by conducting FEEA for an H–S–H unit cell to plot the first
few bands of the band structure along the IBZ boundary (both COMSOL Multiphysics and an in-house MATLAB code were
used here), verifying that the BG limits indeed occur at the M and 0 points of the IBZ, and generating the displacement
nd rotation Bloch modes at the appropriate M and 0 frequencies corresponding to these BG limits on the dispersion
and structure. Therefore, given a specific reference geometry and by varying any or all of the material properties, matrix
r resonator thicknesses, or unit cell size of the metamaterial (while retaining the soft filler material compared to the
atrix and resonator elements), it can be observed that both the non-dimensional wavenumbers at the BG limits and the
eneral shapes of the Bloch modes do not change when any of these metamaterial parameters are altered.
To illustrate this observation, the general displacement Bloch modes at the lower and upper bounds of the first BG

or the metamaterial in Fig. 1 are displayed in Fig. 2, depicting the transverse vibration of the unit cell with sample
eference geometry at the lower (Fig. 2a) and upper (Fig. 2b) limits of the first BG. After repeated investigations of H–S–H
etamaterials analyzed with FEEA, it can be observed that the displacement Bloch mode at the lower bound of the first
G is always characterized by a rigid, vibrating resonator moving about a rigid, fixed matrix via a periodically deforming
nd relaxing filler material, as illustrated in Fig. 2a. Similar observations reveal that the upper bound of the first BG is
lways characterized by a rigid resonator and a rigid matrix vibrating out-of-phase with each other about a deforming
iller material and moving about the center of mass of the vibrating unit cell, as illustrated in Fig. 2b. Both of these Bloch
odes are observed to have the same mode shape and occur with the same non-dimensional wavenumbers irrespective
f the material properties, unit cell size, or thicknesses of the matrix and resonator elements (changes in filler thickness
re allowed as well as long as they are made in proportion to changes in unit cell size), providing a pragmatic unification
etween all H–S–H metamaterials with soft filler material and specific reference geometry.
Given these similarities in dispersion band structures and Bloch modes in H–S–H metamaterials, it would be possible to

stimate the limiting frequencies of the first BG for any H–S–H metamaterial of specific reference geometry using a single
inite element eigenfrequency analysis if a method existed for determining the vibration frequency of a unit cell vibrating
ith specific Bloch modes in terms of the metamaterial’s unit cell size, material properties, and element thicknesses, along
ith data from a single FEEA describing the Bloch modes at the BG bounds for that geometry. A technique for doing this

s the subject of the remainder of this paper, with Section 3 describing a method for computing the vibration frequency of
unit cell with known continuous Bloch modes and Section 4 detailing a procedure for determining continuous surface
quations for Bloch modes from finite element data with a system identification procedure.

. Computing natural frequencies using Bloch modes

As previously demonstrated, the observation that all H–S–H metamaterials with a given reference geometry and
ufficiently soft filler material share the same Bloch modes at the limits of the first transverse frequency BG has significant
mplications in drawing parallels between the first BGs of H–S–H metamaterials. Most notably: if the Bloch modes
hared by these metamaterials are calculated by a single FEEA, could there be a method of determining the vibration
requency of other metamaterials having those same Bloch modes—and hence, the frequency limits of the first BG in
hose metamaterials—with only a single FEEA? The answer to this question is definitely affirmative, and it will be shown
n the following analysis how a novel computational approach for the first transverse frequency BG can be developed

sing analysis of Bloch modes and a system identification procedure.

4
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We start by deriving a method for calculating the vibration frequency of an elastic metamaterial unit cell corresponding
to specific Bloch modes, which plays an important role in the overall BG computation algorithm. The method is achieved
via an analysis of the potential and kinetic energies in a unit cell subject to periodic vibration and the assumptions of
Mindlin plate theory. The z-directional displacement w and the angular displacements θx and θy about the x- and y-axes
re adopted as the independent kinematic variables in the unit cell, with the remaining translational variables u and v
omputed using θx and θy as described in Eq. (1). The remaining angular displacement θz about the z-axis is equal to zero
n accordance with Mindlin plate theory and our restriction to out-of-plane material motion (Fig. 3) [22–24]. Further, it
s assumed that each unit cell may be treated as a control volume with negligible damping governed by the classical law
f conservation of energy, and that each unit cell vibrates in a sinusoidal manner (a feature of any general plate vibration
odel). Using these assumptions, Sections 3.1 and 3.2 describe integral relations for the maximum potential and kinetic
nergies in the vibrating unit cell that can be obtained in terms of non-dimensional Bloch modes describing the vibration
t the BG bound and the unit cell’s material and geometric properties. Following this, Section 3.3 presents a conservation
f energy argument using these potential and kinetic energies to provide a simple equation for calculating the vibration
requency (and thus—a frequency bound of the BG) of the H–S–H unit cell as a function of material properties, unit cell
eometry, and continuous equations for the non-dimensional Bloch modes defining the vibration.

Fig. 3. Mindlin plate element defining the five kinematic variables u, v, w, θx , and θy in their positive directions for an elastic metamaterial. The
- and y-displacements can be written as functions of z and the rotational displacements θx and θy as per Eq. (1), leaving w, θx , and θy as the
ndependent kinematic variables defined over the mid-planar region of the unit cell.

.1. Potential energy analysis

Consider an H–S–H unit cell vibrating with non-dimensional Bloch modes W(x, y), 2x(x, y), and 2y(x, y), where W is
he displacement Bloch mode (the amplitude of the z-displacement w), 2x is the x-rotation Bloch mode (the amplitude
f the x-rotation θx), and 2y is the y-rotation Bloch mode (the amplitude of the y-rotation θy), where ‘‘non-dimensional’’
enotes the fact that W, 2x, and 2y are each normalized to provide a constant, dimensionless description of the Bloch
odes for any unit cell size (Eqs. (13) and (14)). Further, suppose that any point in the unit cell in the mid-plane of

he metamaterial can be represented by the Mindlin plate element shown in Fig. 3, in which the xy-plane defines the
id-plane of the metamaterial plate, the z-direction is the direction of transverse vibration, u(x, y, z, t), v(x, y, z, t), and
(x, y, t) are the displacements of the unit cell in the x-, y-, and z-directions, and θx(x, y, t) and θy(x, y, t) are the rotational
ounter-clockwise displacements about the x- and y-axes. (Note that the z-displacement w and the rotations θx and θy
o not depend on z according to Mindlin plate theory). The goal of this section is to use this coordinate framework to
etermine the maximum potential energy in the vibrating unit cell as a function of the material properties, element
hicknesses, and non-dimensional Bloch modes for a particular mode of vibration.

According to Mindlin plate theory, the displacements u and v can be written in terms of z, θx, and θy from geometry
nd a small angle approximation on θx and θy as

u = zθy and v = −zθx (1)

sing Eq. (1) and the definition of bending strain ϵb ≡ [ϵx ϵy γxy]
T, the bending strain in the unit cell can be expressed as

function of z and the spatial derivatives of θx and θy as

ϵb(x, y, z, t) ≡

[
ϵx
ϵy
γxy

]
≡

⎡⎣ ∂u
∂x
∂v
∂y

∂v
∂x +

∂u
∂y

⎤⎦ = z

⎡⎢⎣
∂θy
∂x

−
∂θx
∂y

−
∂θx
∂x +

∂θy
∂y

⎤⎥⎦ (2)

Similarly, using Eq. (1) and the definition of transverse shear strain ϵs ≡ [γxz γyz]
T, the transverse shear strain in the unit

cell can be expressed as a function of θx, θy, and the spatial derivatives of w as

ϵs(x, y, z, t) ≡

[
γxz
γyz

]
≡

[
∂w
∂x +

∂u
∂z

∂w
∂y +

∂v
∂z

]
=

[
∂w
∂x + θy
∂w
∂y − θx

]
(3)

etting the right side of Eq. (2) be equal to zLb and the right side of Eq. (3) be equal to Ls, this yields the relations:

ϵ = zL and ϵ = L (4)
b b s s

5
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Lb ≡

[
∂θy
∂x −

∂θx
∂y

(
−

∂θx
∂x +

∂θy
∂y

)]T
and Ls ≡

[(
∂w
∂x + θy

) (
∂w
∂y − θx

)]T
(5)

ow consider the definitions of plane bending stress σb ≡ [σx σy τxy]
T

= Dbϵb and transverse shear stress σs ≡ [τxz τyz]
T

=

sDsϵs, where ks is a shear correction factor accounting for the non-uniformity of the transverse shear stresses τxz and τyz
ver the domain of the unit cell (which typically holds a value of ks =

5
6 as in [2,25]), and the material property matrices

Db and Ds are defined as

Db ≡
E

1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ and Ds ≡
E

2(1 + ν)

[
1 0
0 1

]
(6)

in which E = E(x, y) and ν = ν(x, y) are the elastic (Young’s) modulus and Poisson’s ratio of the materials comprising the
unit cell, respectively.

Next, let the elastic potential energy in the vibrating unit cell as a function of time be denoted by V(t), which can be
expressed in terms of the bending stress, bending strain, transverse shear stress, and transverse shear strain integrated
over the unit cell volume as

V(t) ≡
1
2

∫
V

(
σT
bϵb + σT

s ϵs
)
dV =

1
2

∫
V

(
ϵTbDbϵb + ksϵTsDsϵs

)
dV (7)

here the relations σb = Dbϵb and σs = ksDsϵs have been substituted to obtain the second equation. Substituting Eq. (4)
or ϵb and ϵs simplifies this equation to

V(t) =
1
2

∫
V

(
z2LT

bDbLb + ksLT
sDsLs

)
dV (8)

which when split into an integral over the mid-planar area of the plate A and an integral over the plate thickness z yields

V(t) =
1
2

∫
A

∫ h/2

−h/2

(
z2LT

bDbLb + ksLT
sDsLs

)
dzdA =

1
2

∫
A

(
h3

12
LT
bDbLb + kshLT

sDsLs

)
dA (9)

here h = h(x, y) is the thickness of the elements comprising the unit cell. Next, substituting Eqs. (5) and (6) for Lb, Ls,
Db, and Ds into the expressions for LT

bDbLb and LT
sDsLs in Eq. (9) reveals that

LT
bDbLb =

E
1 − ν2

((
∂θy

∂x

)2

− 2ν
∂θy

∂x
∂θx

∂y
+

(
∂θx

∂y

)2

+

(
1 − ν

2

)(
∂θy

∂y
−

∂θx

∂x

)2
)

(10)

nd

LT
sDsLs =

E
2(1 + ν)

((
∂w

∂x
+ θy

)2

+

(
∂w

∂y
− θx

)2
)

(11)

here typical matrix multiplication was employed to arrive at these equations. Substituting these expressions for LT
bDbLb

nd LT
sDsLs into Eq. (9) then yields

V(t) =
1
2

∫
A

Eh3

12(1 − ν2)

((
∂θy

∂x

)2

− 2ν
∂θy

∂x
∂θx

∂y
+

(
∂θx

∂y

)2

+

(
1 − ν

2

)(
∂θy

∂y
−

∂θx

∂x

)2
)
dA + · · ·

· · · +
ks
2

∫
A

Eh
2(1 + ν)

((
∂w

∂x
+ θy

)2

+

(
∂w

∂y
− θx

)2
)
dA

(12)

s an expression for the elastic potential energy as a function of time in the vibrating unit cell.
We now aim to determine the maximum value of Eq. (12) using a non-dimensional form of the displacement and

rotation Bloch modes such that a specific set of Bloch modes generated from a single FEEA can be used to describe the
metamaterial behavior for any unit cell size. Since the values of the z-displacement w remain unchanged with unit cell
ize for a given vibration amplitude, while the rotations θx and θy decrease in proportion to unit cell size for a given
ibration amplitude, a factor of 1/a must be included in the relationship between θx and the x-rotation Bloch mode 2x

and between θy and the y-rotation Bloch mode 2y, where a is the characteristic length (defined for completeness to be the
maximum of the two side lengths) of the rectangular unit cell. Since w, θx, and θy each increase linearly as the vibration
amplitude increases, a factor of d (defined to be the vibration amplitude) must also be included in the relationships
between w and W, θ and 2 , and θ and 2 , as well as a unit amplitude, sinusoidal function of time η(t) due to the
x x y y

6
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ssumed sinusoidally-periodic vibration of the unit cell. Using these relationships, the free kinematic variables w, θx, and
y can be expressed in terms of a, d, and the non-dimensional Bloch modes W, 2x, and 2y as

w(x, y, z, t) = W(x, y)η(t)d, θx(x, y, z, t) = 2x(x, y)η(t)
d
a
, and θy(x, y, z, t) = 2y(x, y)η(t)

d
a

(13)

ext, taking the amplitude of each equation in Eq. (13) (i.e., evaluating η, w, θx, and θy at the time that maximizes the
inusoidal function η(t), denoted by |•|) and solving for the non-dimensional Bloch modes yields the expressions:

W(x, y) =
1
d

⏐⏐w(x, y, z, t)
⏐⏐, 2x(x, y) =

a
d

⏐⏐θx(x, y, z, t)⏐⏐, and 2y(x, y) =
a
d

⏐⏐θy(x, y, z, t)⏐⏐ (14)

hich can be employed to generate non-dimensional Bloch modes from a single FEEA and thus describe the vibration at
he BG bound for any metamaterial unit cell of similar reference geometry. Substituting Eq. (13) into Eq. (12) and taking
he amplitude of the resulting equation, this yields

Vmax ≡ |V(t)|

=
d2

24

∫
A

Eh3

(1 − ν2)a2

((
∂2y

∂x

)2

− 2ν
∂2y

∂x
∂2x

∂y
+

(
∂2x

∂y

)2

+

(
1 − ν

2

)(
∂2y

∂y
−

∂2x

∂x

)2
)
dA + · · ·

· · · +
d2

4

∫
A

ksEh
(1 + ν)

((
∂W
∂x

+
1
a
2y

)2

+

(
∂W
∂y

−
1
a
2x

)2
)
dA

(15)

here Vmax is defined to be the maximum (equivalent to amplitude for a scalar variable) potential energy in the vibrating
nit cell.
Finally, consider changing variables from x and y defined over the planar area A used to generate the Bloch modes to

′
≡ x/a and y′

≡ y/a defined over a dimensionless planar area A′ describing a general metamaterial of any unit cell size,
nd further, consider defining a non-dimensional thickness γ by γ ≡ h/a to replace the element thicknesses h in Eq. (15).

Substituting these into Eq. (15) yields

Vmax =
d2

24

∫
A′

Eγ 3a
(1 − ν2)

((
∂2y

∂x′

)2

− 2ν
∂2y

∂x′

∂2x

∂y′
+

(
∂2x

∂y′

)2

+

(
1 − ν

2

)(
∂2y

∂y′
−

∂2x

∂x′

)2
)
dA′

+ · · ·

· · · +
d2

4

∫
A′

ksEγ a
(1 + ν)

((
∂W
∂x′

+ 2y

)2

+

(
∂W
∂y′

− 2x

)2
)
dA′

(16)

here the chain rule and the Jacobian of the transformation from A to A′ were used to obtain this expression, giving the
aximum potential energy of the vibrating unit cell as a function of the elastic modulus E and Poisson’s ratio ν of the
aterials comprising the metamaterial, the non-dimensional thicknesses γ of the unit cell’s constitutive elements, the
on-dimensional Bloch modes W, 2x, and 2y, the characteristic length a, and the amplitude d of the unit cell’s vibration.

.2. Kinetic energy analysis

Using the Mindlin plate element shown in Fig. 3 defining the kinematic variables u, v, w, θx, and θy, we now aim to
etermine the maximum kinetic energy in the metamaterial unit cell of characteristic length a vibrating with amplitude
and non-dimensional Bloch modes W, 2x, and 2y. To do this, let the kinetic energy of the unit cell as a function of time
e denoted by T (t) and defined as

T (t) ≡
1
2

∫
V

ρ
(
u̇2

+ v̇2
+ ẇ2) dV =

1
2

∫
V

ρ
(
ẇ2

+ z2
(
θ̇ 2
x + θ̇ 2

y

))
dV (17)

where Eq. (1) has been substituted to obtain the second equation and ρ = ρ(x, y) is the mass density of the materials
omprising the unit cell. Analogous to the method used for V(t) in Section 3.1, splitting this expression for T (t) into an
ntegral over the mid-planar area of the plate A and an integral over the plate thickness z gives the relation:

T (t) =
1
2

∫
A
ρ

(
hẇ2

+
h3

12

(
θ̇ 2
x + θ̇ 2

y

))
dA (18)

and taking the amplitude of the resulting equation yields

Tmax ≡ |T (t)| =
1
2

∫
A
ρ

(
h
⏐⏐ẇ⏐⏐2 +

h3

12

(⏐⏐θ̇x⏐⏐2 +
⏐⏐θ̇y⏐⏐2)) dA (19)

here Tmax is the maximum kinetic energy in the vibrating unit cell. Using the assumption that w, θx, and θy each vary
inusoidally with time, the amplitudes

⏐⏐ẇ⏐⏐, ⏐⏐θ̇x⏐⏐, and ⏐⏐θ̇y⏐⏐ can each be written in terms of the angular frequency ω as⏐⏐ẇ⏐⏐ = ω
⏐⏐w⏐⏐, ⏐⏐θ̇ ⏐⏐ = ω

⏐⏐θ ⏐⏐, and
⏐⏐θ̇ ⏐⏐ = ω

⏐⏐θ ⏐⏐ (20)
x x y y

7
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hich can be substituted into Eq. (19) to give

Tmax ≡ |T (t)| =
ω2

2

∫
A
ρ

(
h
⏐⏐w⏐⏐2 +

h3

12

(⏐⏐θx⏐⏐2 +
⏐⏐θy⏐⏐2)) dA (21)

inally, substituting Eq. (13) for w, θx, and θy, changing variables from x and y to the non-dimensional x′ and y′, and
ubstituting for the non-dimensional thicknesses γ as in Section 3.1 yields

Tmax =
d2ω2

2

∫
A′

ρa3
(

γW2
+

γ 3

12

(
2 2

x + 2 2
y

))
dA′ (22)

s an expression for the maximum kinetic energy in the vibrating unit cell as a function of the mass density ρ of the
aterials comprising the metamaterial, the non-dimensional thicknesses γ of the unit cell’s constitutive elements, the
on-dimensional Bloch modes W, 2x, and 2y, the characteristic length a, and the amplitude d of the unit cell’s vibration.

.3. Conservation of energy

Using the expressions for the maximum potential and kinetic energies in the vibrating unit cell in Eqs. (16) and (22),
espectively, and assuming negligible material damping, a straightforward energy argument can now be presented for
etermining the vibration frequency that must accompany the motion defined by the non-dimensional Bloch modes W,
x, and 2y, the unit cell geometry, and material properties. To do this, we first make note of the fact that either the
otential or kinetic energies in the vibrating unit cell must be zero when the other quantity is maximized as a consequence
f the assumed sinusoidal vibration of the unit cell. Therefore, both the maximum potential and kinetic energies derived
n Eqs. (16) and (22) must be equivalent to the total energy in the unit cell. Treating the unit cell as a control volume,
onservation of energy requires that:

E(t)|Vmax = (V(t) + T (t))|Vmax = Vmax and E(t)|Tmax = (V(t) + T (t))|Tmax = Tmax H⇒ Vmax = Tmax (23)

where E(t)|Vmax = E(t)|Tmax ≡ E denotes the total conserved energy in the unit cell. Substituting Eq. (16) for Vmax and
q. (22) for Tmax into Eq. (23) gives

d2

24

∫
A′

Eγ 3a
(1 − ν2)

((
∂2y

∂x′

)2

− 2ν
∂2y

∂x′

∂2x

∂y′
+

(
∂2x

∂y′

)2

+

(
1 − ν

2

)(
∂2y

∂y′
−

∂2x

∂x′

)2
)
dA′

+ · · ·

· · · +
d2

4

∫
A′

ksEγ a
(1 + ν)

((
∂W
∂x′

+ 2y

)2

+

(
∂W
∂y′

− 2x

)2
)
dA′

=
d2ω2

2

∫
A′

ρa3
(

γW2
+

γ 3

12

(
2 2

x + 2 2
y

))
dA′

(24)

elating the angular frequency ω to the non-dimensional Bloch modes, material properties, and geometry of the H–S–H
etamaterial unit cell.
To simplify the form of this equation, consider defining an equivalent bending stiffness Kb, an equivalent transverse

hear stiffness Ks, and an equivalent mass M of the unit cell, respectively as

Kb ≡

∫
A′

Eγ 3a
12(1 − ν2)

((
∂2y

∂x′

)2

− 2ν
∂2y

∂x′

∂2x

∂y′
+

(
∂2x

∂y′

)2

+

(
1 − ν

2

)(
∂2y

∂y′
−

∂2x

∂x′

)2
)
dA′ (25)

Ks ≡

∫
A′

ksEγ a
2(1 + ν)

((
∂W
∂x′

+ 2y

)2

+

(
∂W
∂y′

− 2x

)2
)
dA′ (26)

nd

M ≡

∫
A′

ρa3
(

γW2
+

γ 3

12

(
2 2

x + 2 2
y

))
dA′ (27)

ubstituting these definitions into Eq. (24) reveals the following:

1
2
d2 (Kb + Ks) =

1
2
Md2ω2

H⇒ f =
ω

2π
=

1
2π

√
Kb + Ks

M
(28)

iving a concise expression for the vibration frequency f independent of the vibration amplitude and in terms of the
stiffness and mass expressions Kb, Ks, and M , which are themselves defined as functions of the material properties E,
, and ρ, the non-dimensional element thicknesses γ , the characteristic length a, the mid-planar geometry (defining A
nd A′), and the non-dimensional Bloch modes W, 2x, and 2y describing the vibration at the BG bound for all H–S–H
etamaterials with the given reference geometry.
8
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Eqs. (25) through (28) provide a pragmatic technique for calculating the vibration frequency of any H–S–H metamaterial
of specific reference geometry—and hence, the limits of the first frequency BG—from its non-dimensional Bloch modes
computed with a single FEEA. However, it is critical to note that this approach relies on accurate computation of both the
spatial derivatives and integrals of the Bloch modes in Eqs. (25) through (27), an endeavor that can be cumbersome—if
not impossible—to achieve directly with finite element data. Motivated by this difficulty, a system identification analysis
of these non-dimensional Bloch modes is next considered to establish continuous surface equations from finite element
data which can be directly employed by symbolic or numerical calculus in the preceding equations, therefore providing
algebraic expressions for the limits of the first transverse frequency BG of any similar metamaterial in terms of pre-
computed integrals involving the continuously-known non-dimensional Bloch modes. A technique for conducting this
identification is presented in the following section.

4. System identification of Bloch mode shapes

In this section, we provide observations of symmetry in H–S–H metamaterials (Section 4.1) and a Least Squares
Identification Model (Section 4.2) for identifying surface equations for a given set of unit cell Bloch modes determined
by FEEA, using the simple yet prevailing case of H–S–H metamaterials with square filler and resonator elements as the
archetypal geometry. The overarching objective is to introduce a technique for computing the integral equations for the
stiffness and mass values in Eqs. (25) through (27) and thus provide a novel procedure for computing the first transverse
frequency BG of any metamaterial of similar reference geometry with a single finite element eigenfrequency analysis.
Following this presentation, Sections 5 and 6 will apply this procedure to sample metamaterials to illustrate the powerful
omputational promise and insights of this methodology.

.1. Observing symmetry in H–S–H Bloch modes

As demonstrated earlier, in H–S–H metamaterials with sufficiently soft filler material, the displacement and rotation
loch modes at the limits of the first transverse frequency BG are observed to attain the same non-dimensional mode
hapes across all metamaterials of similar reference geometry. Using the technique detailed in the following section,
ontinuous surface equations for each of the non-dimensional Bloch modes W, 2x, and 2y can be computed, which
an be substituted into Eqs. (25) through (28) to determine the BG frequencies. However, two further observations of
ymmetry in these Bloch modes at the limits of the first BG can be made to significantly reduce the number of required
dentification analyses in this procedure. The first is between the Bloch modes at the lower and upper limits of the first
G, and the second is between the x- and y-rotation modes at a single BG bound—both of which significantly simplify the
dentification procedure.

It can be observed that both the displacement and rotational Bloch modes at the upper bound of the first BG can be
pproximated by the same surface equations as the Bloch modes at the lower bound, leading to the conclusion that only
he lower bound Bloch modes need to be included in the identification analysis. To illustrate this observation, Fig. 4 displays
he non-dimensional Bloch modes W, 2x, and 2y at the lower and upper limits of the first BG for the H–S–H unit cell
nalyzed in Section 2. Upon inspection of these surface plots, it can be observed that the x-rotation Bloch mode at the
pper bound of the BG has nearly the same mode shape as the x-rotation mode at the lower bound (Figs. 4b and e), the
-rotation mode at the upper bound has nearly the same mode shape as the y-rotation mode at the lower bound (Figs. 4c
nd f), and the displacement mode at the upper bound has nearly the same mode shape as the displacement mode at
he lower bound, with a constant shift equal to the center of mass of the lower bound displacement mode subtracted
rom the lower bound mode shape to obtain the mode shape at the upper bound (Figs. 4a and d; Section 2). Although it
s impossible to quantify the error between these mode shapes for every conceivable unit cell configuration, the errors
or this particular unit cell and for all cases studied do not exceed 6% of the displacement amplitude for the displacement
ode shape and 2.5% of the rotation amplitude for the rotation mode shapes, with average absolute errors in finite element
ata between the exact and approximated upper bound modes less than 2% and 0.5% for the displacement and rotation
odes, respectively. These small errors will be readdressed in Section 5 where it will be shown that they can be neglected

n the identification analysis, enabling us to determine both bounds of the BG in the identification procedure with the
ower bound Bloch modes only and without significant error.

As a second observation, we note that the y-rotation Bloch mode at the lower or upper bound of the first BG can be
btained from the x-rotation mode at the same bound with exact accuracy for rotationally-symmetric unit cells, where
‘rotationally-symmetric’’ denotes a geometry that does not change when rotated by 90◦ in either direction about the
-axis. This is demonstrated for the current set of Bloch modes in Fig. 4, which shows that the surface equation for the
-rotation Bloch mode at either bound of the BG can be obtained from that of the x-rotation Bloch mode at the same
ound by a simple 90◦ counter-clockwise rotation about the z-axis. A closer inspection reveals that this hypothesis holds
ith exact accuracy, since rotational symmetry implies that the unit cell geometry is immutable to a 90◦ rotation about
he z-axis, the definitions of θx and θy imply that any value of θx will be mapped to the same value of θy by a 90◦ rotation
bout the z-axis (Fig. 3), and such a rotation applied to a wavenumber pair at either the lower bound (M, (k̃x = π, k̃y = π ))
r the upper bound (0, (k̃x = 0, k̃y = 0)) of the first BG will result in the same wavenumber pair after the rotation. (At
, (k̃ = π, k̃ = π ) will be mapped to (k̃ = −π, k̃ = π ) by such a rotation, which is equivalent to (k̃ = π, k̃ = π )
x y x y x y

9
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Fig. 4. Non-dimensional displacement and rotation Bloch mode shapes at the lower and upper bounds of the first BG for an H–S–H metamaterial
with 90◦ rotational symmetry and rectangular filler and resonator elements, determined from FEEA: (a) lower bound W, (b) lower bound 2x , (c)
lower bound 2y , (d) upper bound W, (e) upper bound 2x , and (f) upper bound 2y .

due to the 2π-periodic nature of the Brillouin zone). As a result of this, for the archetypal case of H–S–H unit cells with
rotational symmetry, the y-rotation modes do not need to be determined by an identification procedure.

Finally, it can be observed that due to the natural design of H–S–H metamaterials with soft filler material, the matrix
and resonator elements do not deform and only the filler component attains significant deformation—this is the defining
feature of H–S–H metamaterials leading to the fact that all H–S–H metamaterials with specific reference geometry share
the same Bloch modes at both bounds of the first BG. Applying this to the previous observations, we conclude that only
the lower bound displacement and x-rotation Bloch modes of the filler material of an H–S–H unit cell need to be identified
for the entire mode shapes at both the lower and upper BG bounds to be determined, with the lower bound y-rotation
Bloch mode of the filler material added to this list when the H–S–H unit cell does not contain rotational symmetry.

4.2. System identification procedure

Using the aforementioned symmetries, we propose a Least Squares Identification Model to compute continuous surface
equations for an H–S–H unit cell using the minimum number of identification analyses, which can be employed to
compute the first BG of any H–S–H metamaterials of similar reference geometry using the results of Section 3. We begin by
partitioning the unit cell into areas of identification along the material boundaries and along sections of symmetry in the
unit cell, exemplified for the rotationally-symmetric H–S–H unit cell with square filler and resonator elements discussed
to this point in the paper. Following this, we provide a mathematical foundation for the identification algorithm, formulate
and solve the least squares analysis for the appropriate Bloch mode sections, and simplify computations for partitioned
sections expressed by finite element data on a rectangular grid of data points. A slightly generalized identification
algorithm to be used when such a rectangular grid of data points on a partitioned section is not available is then presented
and a method for quantifying error in the identification algorithm is established.

4.2.1. Partitioning unit cell Bloch modes
Making use of symmetries in the filler region of the Bloch modes apparent in Fig. 4, consider the partition of the

lower bound displacement and x-rotation Bloch modes of this sample unit cell shown in Fig. 5, using lines extending
from the corners of the square resonator parallel to the sides of the unit cell and intersecting the boundary between
the filler and matrix elements to generate the partition. Let us define the section of the displacement mode in the third
quadrant of the unit cell by Wcorner, shown as a section of the complete displacement mode in non-dimensional (x′, y′)
coordinates and over a transformed, isoparametric region in (r, s) coordinates in Figs. 5a and c, respectively. This and
all other non-dimensional Bloch mode sections to be identified by least squares analyses are transformed to the (r, s)
region for consistency in the least squares procedure and to ensure that each mode section is defined over a rectangular

region (this latter reason will be evident in the following section), in which −1 ≤ r, s ≤ 1. Notice from symmetry of the

10
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Fig. 5. System identification partition for a sample H–S–H unit cell for non-dimensional (a) displacement and (b) x-rotation Bloch mode shapes.
ff-white colors represent rigid sections (matrix and resonator). Red and blue colors represent the corner and side sections of the displacement
ode, respectively. Orange, green, and violet colors represent the y-side, corner, and x-side sections of the x-rotation mode, respectively. Muted
olors represent repeated sections of the filler material. (c) through (g) display the transformed Bloch mode shape sections Wcorner , Wside , 2x,y−side ,
x,corner , and 2x,x−side over the planar area (r, s) that uniquely define the sections requiring identification. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

isplacement mode that the Wcorner mode shape is repeated three times over the remaining filler sections of the Bloch
ode—sections that can therefore be eliminated from the identification procedure. Similarly, let us define the section of

he displacement mode spanning the third and fourth quadrants of the unit cell by Wside, shown in Figs. 5a and d and
gain repeated three times in the remainder of the Bloch mode. Together, Wcorner and Wside capture all unique sections
f the displacement Bloch mode requiring identification.
Analogous to the displacement Bloch mode, consider a similar partition of the x-rotation Bloch mode shown in Fig. 5b,

here 2x,corner defines the filler section in the third quadrant of the unit cell, 2x,x−side defines the filler section spanning
he third and fourth quadrants, and 2x,y−side defines the filler section spanning the second and third quadrants of the unit
ell, shown as combined sections in Fig. 5b and over isoparametric regions in Figs. 5f, g, and e, respectively. Notice that
hree, rather than two, unique sections of the partition are required here due to a lack of symmetry about the xz-plane
or this x-rotation mode. Together, Wcorner, Wside, 2x,corner, 2x,x−side, and 2x,y−side transformed to (r, s) coordinates provide
nique isoparametric sections on which to conduct piecewise identification analyses for any H–S–H metamaterial with
otationally symmetric unit cells and square filler and resonator elements. Finally, while this specific metamaterial and
artition are applied in the remainder of this paper, we note that a similar partition can be generated for other H–S–H
eometries employing non-square, non-symmetric, and non-rectangular elements, with different transformations from
he non-rectangular mode sections to isoparametric regions required in these scenarios.

.2.2. Mathematical foundations
Consider a specific partition of the non-dimensional Bloch modes W, 2x, and 2y for an H–S–H unit cell, and consider

specific section of that partition for either the displacement or rotation Bloch modes denoted by S. Further suppose
hat the region of the unit cell defined by S is transformed from the region (x′, y′) to the isoparametric region (r, s) as
llustrated in Fig. 5 (with −1 ≤ r, s ≤ 1) and that values of S(r, s) have been determined by FEEA on a set of discrete data
oints over the isoparametric region. Finally, suppose that linearly independent basis functions fi(r) and gj(s) are chosen
eparately in the r- and s-directions (where 1 ≤ i ≤ m and 1 ≤ j ≤ n) to capture surface equations for S(r, s) over the
soparametric region. (Our reason for choosing separate basis functions in the r- and s-directions will be revealed shortly).
he objective of the remainder of the system identification procedure is to determine the best-fit surface equation to the
iscrete FEEA data using the chosen basis functions as the general shape of the isoparametrically-defined Bloch mode
ection.
11
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Suppose that f (r) and g(s) are m × 1 and n × 1 column vectors containing the independent basis functions fi(r) and
gj(s), respectively. That is:

f (r) ≡
[
f1(r) · · · fm(r)

]T and g(s) ≡
[
g1(s) · · · gn(s)

]T (29)

Using this set of basis functions, an expression for the values of the mode section over the isoparametric region as a
continuous equation can be written as

S(r, s) = f (r)TCg(s) (30)

here C is an m × n matrix of constants. In this section through Section 4.2.4, it will be assumed that the known mode
ection data computed by FEEA and transformed to the isoparametric region are expressed on a rectangular grid of data
oints, with Section 4.2.5 providing an alternative solution when the data for the mode section are not expressed in this
ectangular format. In both formats of the known data, the optimal surface equation for S(r, s) in the form of Eq. (30) is
efined to be the solution with the precise values of C that give a least squares agreement between the finite element
ata and the values of the identified solution evaluated at those data points.
If the finite element data are known on a rectangular grid of data points, suppose that this grid is represented by a

ector of r-values of length p (r ≡ [r1 · · · rp]T) and a vector of s-values of length q (s ≡ [s1 · · · sq]T), for which any two
alues (ri, sj) with 1 ≤ i ≤ p and 1 ≤ j ≤ q form the (r, s) coordinates of a single data point. Now suppose that the known
FEEA) value of the Bloch mode section at the point (ri, sj) is denoted by S̃(ri, sj), and that the least squares estimate of
his value calculated with the representation of Eq. (30) is denoted by Ŝ(ri, sj). The value of the mode section at the point
ri, sj) computed from the identified representation can therefore be expressed as

Ŝ(ri, sj) = f (ri)TCg(sj) (31)

hich in expanded matrix form can be written as

Ŝ(ri, sj) =
[
f1(ri) · · · fm(ri)

]⎡⎢⎣C1,1 · · · C1,n
...

. . .
...

Cm,1 · · · Cm,n

⎤⎥⎦
⎡⎢⎣g1(sj)

...

gn(sj)

⎤⎥⎦ (32)

ith the middle matrix expression of the RHS of Eq. (32) denoting the values of the matrix C . Expanding and regrouping
erms in this equation, Eq. (32) can be written as

Ŝ(ri, sj) = Ai,jc (33)

here

Ai,j ≡
[
f1(ri)g1(sj) · · · f1(ri)gn(sj)

⏐⏐ · · ·
⏐⏐ fm(ri)g1(sj) · · · fm(ri)gn(sj)

]
(34)

s a 1 × mn row vector, and

c ≡
[
C1,1 · · · C1,n

⏐⏐ · · ·
⏐⏐ Cm,1 · · · Cm,n

]T (35)

s an mn × 1 column vector containing reshaped values of C . Now consider expressing the values for each Ŝ(ri, sj) in a
imilar manner to the way in which C was reshaped in the previous equation. That is, let the pq × 1 vector ŝ(r, s) be
efined as

ŝ(r, s) ≡
[
Ŝ(r1, s1) · · · Ŝ(r1, sq)

⏐⏐ · · ·
⏐⏐ Ŝ(rp, s1) · · · Ŝ(rp, sq)

]T
(36)

ontaining values of the identified solution at each of the pq data points in the isoparametric region. Similarly, let the
data in each value of S̃(ri, sj) be expressed in a pq×1 column vector s̃(r, s) containing the pq values of S determined from
FEEA, defined as

s̃(r, s) ≡
[
S̃(r1, s1) · · · S̃(r1, sq)

⏐⏐ · · ·
⏐⏐ S̃(rp, s1) · · · S̃(rp, sq)

]T
(37)

Finally, substituting the simplified expression for Ŝ(ri, sj) from Eq. (33) into Eq. (36) yields the equation:

ŝ(r, s) =
[
AT
1,1 · · · AT

1,q

⏐⏐ · · ·
⏐⏐ AT

p,1 · · · AT
p,q
]T c = Ac (38)

where A is the pq × mn matrix defined by

A ≡
[
AT
1,1 · · · AT

1,q

⏐⏐ · · ·
⏐⏐ AT

p,1 · · · AT
p,q
]T

(39)

Eqs. (36) and (37) describing the estimates and measured values for the transformed Bloch mode section, the basis
function vectors f (r) and g(s) in Eqs. (29) and (30) describing the general representation of the identified solution, and
Eqs. (34) and (39) defining the matrix of basis function evaluations A are all that are needed to conduct the least squares
analysis fitting the finite element data to the surface equation representation for the given Bloch mode section, as will be

detailed next.

12
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.2.3. Least squares solution
The objective of the least squares analysis is to identify the coefficients c in Eq. (35) that give the optimal surface

equation for the data S̃(r, s) using the basis function representation in Eq. (30). Here, ‘‘optimal’’ is defined as optimality
in the least squares sense, for which the sum of the squares of the errors between the finite element values S̃(ri, sj) and
the identified values Ŝ(ri, sj) attains its minimum value. Mathematically, employing the vector representations of Ŝ and S̃
in Eqs. (36) and (37) and the expression for ŝ(r, s) in Eq. (38), this definition of optimality requires minimization of the
following cost function:

J ≡

p∑
i=1

q∑
j=1

(
s̃(ri, sj) − ŝ(ri, sj)

)2
=
(
s̃ − ŝ

)T (s̃ − ŝ
)

=
(
s̃ − Ac

)T (s̃ − Ac
)

(40)

which has the well-established solution [26]:

c =
(
ATA

)−1
AT s̃ (41)

Such a solution for c in Eq. (41) is uniquely defined when the number of rows of A (pq) equals or exceeds the number
of columns of A (mn), or equivalently, when there is sufficient finite element data such that there is at least one finite
element data point for every combination of basis functions in f (r) and g(s). This simply indicates that the product of the
number of basis functions in the r- and s-directions (mn) must not exceed the amount of available finite element data
(pq), or more strongly, that both m ≤ p and n ≤ q must hold as explained in the following section. Using Eq. (41) for
the column vector c , the values of c can be reshaped into the matrix C by inversion of Eq. (35) and substituted into the
representation of Eq. (30) to give a continuous surface equation for the Bloch mode section S defined by the FEEA data
and the basis functions vectors f (r) and g(s). This continuous equation for the mode section can then be transformed
to (x′, y′) coordinates along with the remaining partitioned sections to yield a complete piecewise representation of the
non-dimensional Bloch modes using continuous surface equations.

4.2.4. Kronecker factorization
While the surface equations for each mode section computed with Eqs. (29) through (41) could now be substituted

directly into Eqs. (25) through (28) to determine the frequency bounds of the first BG, such a solution relies on inversion
f the ATA matrix of size mn×mn (Eq. (41)), which may become computationally expensive to evaluate as the number of
asis functions increases. In this section, a simple yet efficient algorithm achievable for a rectangular grid of data points is
resented which provides an equivalent evaluation for the constant vector c , minimizes the size of the matrix inversion
n the computation, and significantly reduces the computational expense required for the analysis. When the FEEA data
ransformed to the (r, s) region can be expressed on a rectangular grid of data points, it can be shown that the matrix of
asis function evaluations A defined in Eqs. (34) and (39) can be expressed as

A = Ar ⊗ As (42)

here Ar and As are defined as

Ar ≡

⎡⎢⎣f1(r1) · · · fm(r1)
...

. . .
...

f1(rp) · · · fm(rp)

⎤⎥⎦ and As ≡

⎡⎢⎣g1(s1) · · · gn(s1)
...

. . .
...

g1(sq) · · · gn(sq)

⎤⎥⎦ (43)

nd Ar ⊗As denotes the Kronecker product of Ar and As. Substituting this factored expression for A into Eq. (41) and using
roperties of the Kronecker product shown in [26], the least squares solution for c simplifies to

c =
(
ALS,r ⊗ ALS,s

)
s̃ (44)

here ALS,r and ALS,s are separate least squares solution matrices, defined by

ALS,r ≡
(
Ar

TAr
)−1

Ar
T and ALS,s ≡

(
As

TAs
)−1

As
T (45)

f size m × p and n × q respectively.
Recall from Section 4.2.2 that the matrix A has size pq × mn in the least squares analysis, leading to the inverse of

n mn × mn matrix in Eq. (41) required in the direct computation of Section 4.2.3. On the other hand, the equivalent
olution employing the Kronecker factorization in Eqs. (44) and (45) reduces the computation from a single inversion of
n mn×mn matrix to smaller inversions of m×m (Ar

TAr ) and n×n (As
TAs) matrices, along with a computationally-efficient

ronecker product of the solutions ALS,r and ALS,s. Such a factorization for data expressed on a rectangular grid of data
oints is achievable as long as the number of basis functions does not exceed the length of the data grid in the r- or
-directions (m ≤ p and n ≤ q, respectively) to ensure that Ar

TAr and As
TAs in Eq. (45) are both invertible matrices. Since

he Kronecker product is a fast computation relative to matrix inversion, this factorization when possible reduces the
peed of the least squares computation from Oninv2 to Oninv , where Oninv is the algorithmic efficiency of the procedure( T )−1 ( T )−1

sed to calculate the Ar Ar and As As matrix inverses in Eq. (45).

13
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.2.5. Non-rectangular identification procedure
In the identification regions of some H–S–H metamaterial unit cells, it may become difficult or unreasonable to express

he finite element data for a Bloch mode section on a rectangular grid—in this scenario, a modified identification procedure
an be followed that does not make use of the Kronecker factorization. The transformation of the identification section
rom the region (x′, y′) to the isoparametric region (r, s) is still required; however, the modified procedure can be applied
to any distribution of data points over the region (r, s) albeit with reduced computational efficiency. Here, slightly modified
quations to those in Sections 4.2.2 and 4.2.3 are presented that can be used to produce a continuous surface equation
or such a mode section.

Instead of a rectangular grid of data points over the isoparametric region, suppose that the data have a general
istribution of coordinates denoted by (rk, sk), where 1 ≤ k ≤ l and l denotes the total number of data points in the
ode section. Given this, let f (k) and g(k) denote the basis function vectors f (r) and g(s) representing the form of the
ode section evaluated at index k. That is:

f (rk) =
[
f1(rk) · · · fm(rk)

]T and g(sk) =
[
g1(sk) · · · gn(sk)

]T (46)

And let

Ŝ(rk, sk) = f (rk)TCg(sk) (47)

denote the value of the mode section at the point (rk, sk) computed from the identified representation, using the same
m × n matrix C defined in the previous analysis. Similar to Eqs. (36) and (37), let the values of the identified and FEEA
solutions Ŝ(rk, sk) and S̃(rk, sk) be respectively expressed as

ŝ(r l, sl) ≡
[
Ŝ(r1, s1) · · · Ŝ(rl, sl)

]T
(48a)

s̃(r l, sl) ≡
[
S̃(r1, s1) · · · S̃(rl, sl)

]T
(48b)

where r l ≡ [r1 · · · rl]T and sl ≡ [s1 · · · sl]T contain the r- and s-values of each data point. Next, substituting Eq. (46) into
Eq. (47) and expanding the result in a similar manner to Section 4.2.2 yields the equation:

Ŝ(rk, sk) =
(
f1(rk)C1,1g1(sk) + · · · + f1(rk)C1,ngn(sk)

)
+ · · · +

(
fm(rk)Cm,1g1(sk) + · · · + fm(rk)Cm,ngn(sk)

)
= Bkc (49)

where c is the mn × 1 column vector defined in Eq. (35) and Bk is the following 1 × mn row vector:

Bk ≡
[
f1(rk)g1(sk) · · · f1(rk)gn(sk)

⏐⏐ · · ·
⏐⏐ fm(rk)g1(sk) · · · fm(rk)gn(sk)

]
(50)

defined similarly to Ai,j in Eq. (34). Substituting Eq. (49) into Eq. (48a) then yields the relations:

ŝ(r l, sl) =
[
B1

T
· · · Bl

T
]T c = Bc (51)

where B is the following l × mn matrix:

B ≡
[
B1

T
· · · Bl

T
]T (52)

containing information about the basis function vectors f (rk) and g(sk) evaluated at each of the l data points in the
identification region.

Similar to the cost function defined in Eq. (40), the modified cost function expressing the sum of the squares of the
errors between the FEEA data S̃(rk, sk) and the identified values Ŝ(rk, sk) can then be written as

J ′ ≡

L∑
k=1

λk
(
s̃(rk, sk) − ŝ(rk, sk)

)2
=
(
s̃ − ŝ

)T
Λ
(
s̃ − ŝ

)
=
(
s̃ − Bc

)T
Λ
(
s̃ − Bc

)
(53)

where λk is an optional weighting parameter that may be introduced due to potential non-uniformity of the finite element
points in the non-rectangular region (e.g., equivalent to the mesh density of the finite element nodes at each data point)
and Λ ≡ diag(λ1 · · · λl) is an l× l diagonal matrix containing the weighting information (equal to the l× l identity matrix
if weights are not used). Eq. (53) defines the new cost function needed to be minimized to determine the least squares
coefficients in the optimal surface equation and has the solution [26]:

c =
(
BTΛB

)−1
BTΛ s̃ (54)

when the number of rows of B (l) equals or exceeds the number of columns of B (mn), or equivalently, when there are
at least as many finite element data points for every combination of basis functions in f (r) and g(s), as in the previous
analysis.

Finally, the vector c determined from this procedure can be reshaped into the matrix C using Eq. (35) and substituted
into the basis function representation of Eq. (46) to give a continuous surface equation for the Bloch mode section S
without requiring a rectangular grid of data points. However, when such a non-rectangular data distribution is present
for the mode section, a general Kronecker factorization to simplify the computation does not exist—therefore, this version
of the identification procedure relies on a direct inversion of the mn × mn matrix BTΛB (Eq. (54)), yielding reduced
computational efficiency but still a viable algorithm for most computational solvers.
14
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.2.6. Error quantification
To verify the accuracy of this system identification procedure, a quantifiable comparison between the identified mode

ection values Ŝ (or ŝ) and the FEEA values S̃ (or s̃) must be made in both identification procedures before using the
esulting surface equations to determine metamaterial BGs. For the general case of any distribution of data points over
he identification region, there exist l FEEA data points weighted by the l× l matrix Λ when conducting the least squares
nalysis, for which the weighted RMS error Erms between the identified and FEEA values can be calculated as

Erms ≡

(
1

tr(Λ)

l∑
k=1

λk
(
s̃(k) − ŝ(k)

)2)1/2

=

(
1

tr(Λ)

(
s̃ − ŝ

)T
Λ
(
s̃ − ŝ

))1/2

(55)

nd the average absolute error Eavg between each data point can be calculated as

Eavg ≡
1

tr(Λ)

l∑
k=1

λk
⏐⏐s̃(k) − ŝ(k)

⏐⏐ (56)

here tr(•) denotes the trace operator. Further, for sections of the unit cell partition for which rectangular data grids
re present, the weighting matrix is identity and there exist pq data points in the identification region, leading to the

expressions:

Erms =

√
1
pq

(
s̃ − ŝ

)T (s̃ − ŝ
)

and Eavg ≡
1
pq

p∑
i=1

q∑
j=1

⏐⏐s̃(ri, sj) − ŝ(ri, sj)
⏐⏐ (57)

or the RMS and average absolute error between the identified and FEEA solutions, respectively. Either representation of
he identification error can be used to quantify the accuracy of the identified mode section and provide a quantifiable
riterion for adding more or fewer basis functions to the vectors f (r) and g(s) employed in the analysis. Once surface
quations are identified for each required section in the unit cell partition, these surface equations can be substituted
nto Eqs. (25) through (28) along with the characteristic length, element thicknesses, and material properties of the unit
ell to determine the range of the first transverse frequency BG by this novel computation method.

.3. Computing BGs using identified Bloch modes

At the conclusion of Section 3, it was claimed that the integrals involving W, 2x, and 2y in Eqs. (25) through (27)
equired to compute the first BG could be pre-computed using the identified Bloch modes after the system identification
rocedure, thus providing algebraic expressions for the first BG bounds of any H–S–H metamaterial of similar reference
eometry to the one used to determine the non-dimensional Bloch modes. Here, we illustrate how those integrals can be
mployed to create an efficient algebraic expression for practically instantaneous computation of the first BG of H–S–H
etamaterials.
Consider the definitions of bending stiffness Kb, shear stiffness Ks, and mass M of the unit cell in Eqs. (25) through

(27), and suppose that i represents the ith section of the unit cell partition (i = 1, . . . ,N). If WLB,i, 2x,LB,i, and 2y,LB,i are
used to denote the identified displacement, x-rotation, and y-rotation Bloch modes at the lower bound of the BG for the
ith section of the unit cell, then the stiffness and mass values for this section can be expressed using the equations of
Section 3 as

Kb,LB,i =
Eiγ 3

i a
12(1 − ν2

i )

(∫
A′
i

((
∂2y,LB,i

∂x′

)2

+

(
∂2x,LB,i

∂y′

)2
)
dA′

i − 2νi

∫
A′
i

∂2y,LB,i

∂x′

∂2x,LB,i

∂y′
dA′

i + · · ·

· · · +
1 − νi

2

∫
A′
i

(
∂2y,LB,i

∂y′
−

∂2x,LB,i

∂x′

)2

dA′

i

) (58)

Ks,LB,i =
ksEiγia

2(1 + νi)

∫
A′
i

((
∂WLB,i

∂x′
+ 2y,LB,i

)2

+

(
∂WLB,i

∂y′
− 2x,LB,i

)2
)
dA′

i (59)

nd

MLB,i = ρiγia3
∫
A′
i

W 2
LB,idA

′

i +
ρiγ

3
i a

3

12

∫
A′
i

(
2 2

x,LB,i + 2 2
y,LB,i

)
dA′

i (60)

where each equation is notably expressed as a set of integrals involving only WLB,i, 2x,LB,i, and 2y,LB,i and their x′- and
y′-derivatives multiplied by constants for the mode section, since it is assumed that each section of the partition has a
constant non-dimensional thickness γi and uniform material properties Ei, νi, and ρi. It should also be noted that Eqs. (58)
through (60) are valid for both the identified sections of the filler material determined in Section 4.2 and the matrix and
resonator elements: in the latter scenario, all integrals except for that involving W in Eq. (60) vanish in the calculation,
LB,i
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ince the rotation Bloch modes are very nearly equal to zero (e.g., Fig. 4) and the x′- and y′-derivatives of WLB are likewise
qual to zero (since the matrix and resonator are rigid elements) in the Bloch modes of the matrix and resonator materials.
Defining the function I(•) ≡

∫
A′
i
(•)dA′

i to be the surface integral of the argument of I over the A′

i region (e.g., I
(
W2

i

)
≡

A′
i
W2

i dA
′

i), Eqs. (58) through (60) can be rewritten as

Kb,LB,i =
Eiγ 3

i a
12(1 − ν2

i )

(
I
(

∂2y,LB,i

∂x′

2)
− 2νiI

(
∂2y,LB,i

∂x′

∂2x,LB,i

∂y′

)
+ I

(
∂2x,LB,i

∂y′

2)
+ · · ·

· · · +
1 − νi

2

(
I
(

∂2x,LB,i

∂x′

2)
− 2I

(
∂2x,LB,i

∂x′

∂2y,LB,i

∂y′

)
+ I

(
∂2y,LB,i

∂y′

2))) (61)

Ks,LB,i =
ksEiγia

2(1 + νi)

(
I
(

∂WLB,i

∂x′

2)
+ 2I

(
2y,LB,i

∂WLB,i

∂x′

)
+ I

(
2 2

y,LB,i

)
+ · · ·

· · · + I
(

∂WLB,i

∂y′

2)
− 2I

(
2x,LB,i

∂WLB,i

∂y′

)
+ I

(
2 2

x,LB,i

)) (62)

nd

MLB,i = ρiγia3I
(
W 2

LB,i

)
+

ρiγ
3
i a

3

12

(
I
(
2 2

x,LB,i

)
+ I

(
2 2

y,LB,i

))
(63)

n terms of the characteristic length a, non-dimensional element thicknesses γi, and material properties Ei, νi, and ρi,
long with the set of pre-computed integrals I that do not change when any of the preceding metamaterial parameters
re altered. These integrals I can be easily computed by symbolic integration using the identified surface equations if a
imple transformation exists between the (x′, y′) regions and the isoparametric sections (e.g., when all sections of the unit
ell partition are rectangular regions), or by numerical integration if a transformation fostering simple symbolic integration
annot be found.
To obtain the values of Kb, Ks, and M at the upper bound of the BG, we exploit the fact that the displacement and

otation Bloch modes at the BG upper bound can be approximated almost exactly by those at the lower bound (an
xample illustrating this accuracy is provided in the following section), with the upper bound rotation mode shapes
pproximately equal to those at the lower bound and the upper bound displacement mode shape approximately equal
o the lower bound displacement mode minus its center of mass. (Using our now continuous equations for the identified
ower bound displacement Bloch mode, its center of mass can be computed quite easily in terms of the pre-computed
ntegrals I

(
WLB,i

)
and I (1) and the density and element thickness data for the unit cell, where I (1) ≡

∫
A′
i
dA′

i is simply
the area in the xy-plane of the ith section of the partition; this is shown in more detail in the Appendix in Eq. (A.5)). Using
this, the following model can be assumed for approximating the upper bound Bloch modes WUB, 2x,UB, and 2y,UB using
those at the lower bound to simplify the identification procedure:

WUB ≈ WLB − zCOM, 2x,UB ≈ 2x,LB, and 2y,UB ≈ 2y,LB (64)

where zCOM denotes the center of mass of the lower bound displacement Bloch mode. Using Eq. (64), we notice that
∂

∂x′ (•)LB ≈
∂

∂x′ (•)UB and ∂
∂y′ (•)LB ≈

∂
∂y′ (•)UB for each non-dimensional Bloch mode (where (•) here denotes W, 2x, or 2y),

ince zCOM is independent of x′ and y′. Thus, under the assumption of Eq. (64), all of the integrals I in Eqs. (61) and (62)
re approximately equivalent at both bounds of the first BG, and therefore:

Kb,UB,i ≈ Kb,LB,i and Ks,UB,i ≈ Ks,LB,i (65)

or all sections of the partition. Similarly, since the form of Eq. (63) is valid at either BG bound, all lower bound subscripts
can be replaced with upper bound subscripts in this equation and Eq. (64) can be substituted to give

MUB,i ≈ ρiγia3
(
I
(
W 2

LB,i

)
− 2zCOMI

(
WLB,i

)
+ z2COMI (1)

)
+

ρiγ
3
i a

3

12

(
I
(
2 2

x,LB,i

)
+ I

(
2 2

y,LB,i

))
(66)

describing the mass value at the upper bound of the BG for the ith section of the unit cell partition.
Using these values for Kb, Ks, and M at each section of the unit cell and at the lower and upper bounds of the first BG

(Eqs. (61) through (66)), these computed expressions can be summed over the N sections of the partition to obtain the
total bending stiffness, shear stiffness, and mass values at the Bloch modes of vibration corresponding to the lower and
upper bounds of the first BG:

Kb,UB ≈ Kb,LB =

N∑
i=1

Kb,LB,i, Ks,UB ≈ Ks,LB =

N∑
i=1

Ks,LB,i, MLB =

N∑
i=1

MLB,i, and MUB =

N∑
i=1

MUB,i (67)

where Kb,LB,i, Ks,LB,i, MLB,i, and MUB,i were defined in Eqs. (61), (62), (63), and (66), respectively. Finally, the values of Kb, Ks,
and M at both bounds of the BG in Eq. (67) can be substituted into Eq. (28) to instantaneously compute the first BG of any
metamaterial sharing the same reference geometry to the one originally employed in determining the non-dimensional
Bloch modes—a procedure that will be exemplified in the following sections.
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Table 1
Unit cell parameters of the H–S–H metamaterial used in FEEA.

Material Elastic modulus
E (Pa)

Poisson’s ratio
ν

Mass density
ρ (kg/m3)

Non-dimensional
thickness γ

Matrix Aluminum 6.89 × 1010 0.33 2700 0.10
Filler Silicone rubber 1.00 × 106 0.49 1300 0.10
Resonator Brass 1.06 × 1011 0.32 8500 0.15

Table 2
Accuracy of identified solution.

WLB 2x,LB 2y,LB WUB 2x,UB 2y,UB

Maximum absolute error 0.34% 1.23% 1.23% 4.46% 2.66% 2.66%
RMS error 0.015% 0.051% 0.051% 1.35% 0.506% 0.506%
Average absolute error 0.009% 0.030% 0.030% 1.20% 0.427% 0.427%

5. Numerical results

Using the framework detailed in Sections 3 and 4, a numerical example of the system identification and BG computation
algorithms is now presented, both to illustrate the accuracy of the identification analysis for a sample metamaterial and
to demonstrate the utility of this method in algebraically computing the first BG of an infinite number of metamaterials
with a single FEEA. To this end, the unit cell in Fig. 1 is employed to determine the non-dimensional Bloch modes for this
specific reference geometry, defined by unit cell side lengths of a = b = 20 mm, an original filler side length of 16 mm,
and an original resonator side length of 8 mm, with both the filler and resonator elements having square geometries. The
material properties and non-dimensional element thicknesses used to determine these Bloch modes are shown in Table 1,
where aluminum, soft silicone rubber, and brass are used as the matrix, filler, and resonator materials, respectively. A soft
silicone rubber with an elastic modulus of 1 MPa is chosen as the filler material to provide a large difference in elastic
moduli between the matrix and filler and the resonator and filler elements, ensuring a nearly perfect rigidity to the Bloch
modes of the matrix and resonator materials at each BG bound; however, it will be shown later in this section that the
Bloch modes of such a unit cell still provide excellent estimation of the first BG for unit cells of stiffer filler materials.

5.1. Identification solution

Using this H–S–H metamaterial with square filler and resonator elements, a single application of FEEA is employed
to compute both the first BG and the displacement and rotation Bloch modes at the lower and upper BG bounds on a
rectangular grid of data points, allowing the identification procedure described in Sections 4.2.1 through 4.2.4 to be used
to fit surface equations to each of the partitioned sections (shown in Fig. 5). To conduct the identification procedure, a set
of 7th-order polynomial basis functions in r and in s were chosen to form the respective basis function vectors f (r) and
g(s) for each mode section, with periodic and higher order polynomial basis functions investigated but found to offer no
significant improvements to identification accuracy over 7th-order polynomials. The results of this identification analysis
are shown in Fig. 6, with Figs. 6a through c displaying the identified solutions for W, 2x, and 2y at the lower bound of
the first BG, and Figs. 6d through f displaying the identified solutions at the upper bound.

To evaluate the numerical accuracy of the identification, RMS, average absolute, and maximum absolute errors between
the identified and FEEA solutions calculated using Eq. (57) are displayed in Table 2, with the RMS and absolute error
equations expanded to account for the entire Bloch mode and with each error statistic displayed as a percentage of
the maximum amplitude of the corresponding FEEA mode. The error plots represented by these summary statistics are
presented below each corresponding identified Bloch mode in Fig. 6, with maximum absolute errors of only 0.34% for
the lower bound displacement solution, 1.23% for the lower bound rotation solutions, 2.66% for the upper bound rotation
solutions, and 4.46% for the upper bound displacement Bloch mode. The higher errors for the upper bound Bloch modes
are not a reflection of the accuracy of the least squares analysis, but a simple result of the observation stated earlier that
the upper bound modes can be approximated by those at the lower bound. In the lower bound Bloch modes (directly
identified in the least squares procedure), the overall RMS errors providing a measure of the standard deviation of all
identification errors are 0.015% and 0.051% for the displacement and rotation solutions, respectively, providing a nearly-
exact identification of the lower bound Bloch modes using the least squares analysis. While not as accurate as the lower
bound Bloch modes, the upper bound displacement and rotation solutions with overall RMS errors of 1.35% and 0.51%,
respectively still provide a reasonable approximation of the upper bound Bloch modes, and it will be shown next that both
these lower and upper bound solutions provide reliable estimation of the first BG for an infinite number of metamaterials
despite the less accurate identification solution at the upper bound.
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Fig. 6. Identification results and errors between FEEA and identified solutions displayed for the non-dimensional displacement and rotation Bloch
mode shapes of a sample H–S–H metamaterial at the lower and upper bounds of the first BG. Vertical axes on error plots display the error between
identified and FEEA solutions as a percentage of the maximum value of the FEEA-computed mode shape. Color scales are identical for each error
plot and range from white at zero error to red at ±4.5% error between the FEEA and identified mode shape solutions. Colored sections of the mode
shapes represent the sections of the lower bound W and 2x modes identified directly from the FEEA solutions, matching the sections shown in
Fig. 5.

5.2. BG computation using identified Bloch modes

Using the identified non-dimensional Bloch modes for the original H–S–H metamaterial, we now make use of the BG
computation method presented in Sections 3.3 and 4.3 to demonstrate computation of the first BG in an infinite number
f metamaterials using only the identified Bloch modes and algebraic expressions involving the material and geometric
roperties of each unit cell. To achieve this, we present nine examples in which this method can be applied to compute
he first BG in many metamaterials with a single application of FEEA and the identification analysis. In Example 1, the
irst BG of the original metamaterial is estimated using Eqs. (61) through (67) of Section 4.3 and Eq. (28) of Section 3.3 to
ompute the stiffness and mass values and the corresponding BG frequencies for the metamaterial, yielding a BG of 216.4
o 367.3 Hz in the identified solution. (More specific details on how to determine this BG are presented in Section 6).
eanwhile, the BG computed by FEEA in the original computation yielded a BG of 211.3 to 358.1 Hz, corresponding

o lower and upper bound BG frequency errors of 2.38% and 2.59%, respectively. The small significance of these errors
elative to the size of the BG and band structure can be evidenced from Fig. 7a, showing the first four bands of the band
tructure computed by FEEA (using a 20 × 20 mesh of quadrilateral, 8-node serendipity elements), the FEEA-computed
G indicated by the shaded region, and the identified BG indicated by the solid blue circles at the M and 0 points of the
BZ.
18
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Fig. 7. Comparison of band structures and BGs for sample H–S–H metamaterials computed with FEEA and the presented identification algorithm.
Bands and highlighted BGs (shaded regions) were computed by FEEA using a 20 × 20 finite element mesh of quadrilateral, 8-node serendipity
lements; solid blue circles represent the BG bounds computed with the system identification method using the Bloch modes at the lower bound
f the original unit cell. M′ and X′ are defined as the points on the IBZ boundary with non-dimensional wavenumbers k̃x = k̃y = π/(5

√
2) and

k̃x = π/5, k̃y = 0, respectively (Fig. 1c), while M′′ and X′′ in Fig. 7c are defined by k̃x = k̃y = 4π/(5
√
2) and k̃x = 4π/5, k̃y = 0, respectively.

To demonstrate the applicability of this approach in computing BGs for other metamaterials without additional
pplication of FEEA, the band structure and identified first BG for Examples 2 through 9 are shown in Figs. 7b through i,
espectively, with the numerical results for each FEEA and identified BG and the errors between them presented in Fig. 8
or all scenarios. (The FEEA band structures and BGs are presented simply as verification of the identification solution;
hey are not required to be computed nor identified in the computation procedure). Example 2 in Fig. 7b presents the
ase where the elastic modulus of the filler material Ef has been modified to 1% of its original value, showing a BG shift
o exactly 1/10 of the BG frequencies in the original metamaterial and lower and upper BG bound errors between the
EEA and identification solutions of 2.34% and 2.59%, respectively. Similarly, Example 3 in Fig. 7c analyzes a filler elastic
odulus modified to 100 times its original value (Ef = 100Ef 0), showing a BG shift to exactly 10 times the original
G frequencies and lower and upper BG bound errors of 4.67% and 2.82%, respectively. Here, we notice that despite the
ncreased stiffness of the filler material, this BG computation method still provides a reliable (albeit with greater lower
ound error) estimate of the first BG, even though the elastic modulus of the filler material is in this scenario slightly
loser to that of the matrix and resonator materials (Em = 68.9 GPa, Er = 106 GPa, and Ef = 100 MPa)—that is, the
iller elastic modulus Ef is still low enough to yield an accurate estimation of the first BG by this procedure. Further, we
ote that it is no coincidence that a decrease in Ef by a factor of 100 decreases the BG frequencies by a factor 10, while
n increase in Ef by a factor of 100 increases the BG frequencies by a factor 10. In fact, it can be shown by a simple
anipulation of the algebraic equations for Kb, Ks, and M in Eqs. (61) through (67) and (28) that any modification to the
lastic modulus of the filler material by a factor of n yields a variation in both the lower and upper bound BG frequencies
19
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Fig. 8. Identified and FEEA BG frequencies corresponding to the (a) lower and (b) upper BG bounds in the original unit cell (Example 1) and the
remaining H–S–H metamaterial designs analyzed in Sections 5 and 7. (c) Numerical solutions for both BG bounds and the computational errors
ssociated with each design.

y a factor of
√
n for H–S–H metamaterials of sufficiently soft filler material, yielding a relation between the filler elastic

odulus and the first BG of H–S–H metamaterials that would be very useful in applications investigating the effects of
etamaterial parameters on BG frequencies—for example, when analyzing soft, variable-stiffness filler elements utilized

n tunable H–S–H metamaterials [27–30]. (These relationships can be evidenced most clearly from the equations that will
e presented in Section 6).
In the remaining presented scenarios, Examples 4 through 6 demonstrate that modification to the mass densities of any

onstitutive material can be made without compromising the accuracy of the computation, with Example 4 demonstrating
decrease in the matrix material density by a factor of 5 (Fig. 7d) and Examples 5 and 6 demonstrating an increase in

he filler and resonator material densities by factors of 3 and 2.5, respectively (Figs. 7e and f). When varying the matrix
nd resonator material densities in Examples 4 and 6, modification to the Bloch modes corresponding to the flat band
hown above the upper BG bound in other cases causes this band to lie within instead of above the first BG, separating
he now wider BG into two distinct regions (as was discussed in Section 2). However, the identification procedure still
ccurately predicts the lower and upper bounds of the larger BG formed on the two sides of this flat band (Figs. 7d and f).
urther, Example 7 in Fig. 7g and Example 8 in Fig. 7h demonstrate modification to the non-dimensional thicknesses of
he matrix and resonator elements, respectively (recall from Section 2 that changes to the non-dimensional filler thickness
re not allowed in this BG computation procedure), and Example 9 in Fig. 7i demonstrates an increase in unit cell size
chieved by doubling the unit cell’s characteristic length, which is found to decrease the BG frequencies by a factor of 2
n the identified solution. Expanding this result, one can easily show using the equations of Sections 3.3 and 4.3 that a
modification to the unit cell characteristic length by a factor of n yields a variation in the lower and upper BG frequencies
by a factor of 1/n, demonstrating another useful relation evident from the BG equations which can be used as a simple
design rule when designing H–S–H metamaterials to have specific BGs (see Section 6). Finally, we note that any two or
more of these modifications to the original metamaterial can be made and provide an accurate estimation of the first BG
for the new design, along with any modifications to the matrix and resonator elastic moduli and the Poisson’s ratio of
any material. This provides a useful procedure for computing the first BG of any similar metamaterial from a single FEEA
as well as algebraic relationships between the metamaterial’s material properties, element thicknesses, and unit cell size,
which can be used to both simultaneously compute BGs in a large number of metamaterials and produce design strategies

for creating H–S–H metamaterials with specific BG properties.
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. Application: Designing an H–S–H metamaterial with a specified band gap

To further exemplify the application of our BG prediction method, we now present one final example employing the
rocedure in designing metamaterials with specific BG properties. Suppose we are in search of a metamaterial with a
G from 100 to 200 Hz and we have selected an H–S–H configuration with aluminum, silicone rubber, and brass with
aterial properties in Table 1 as the materials for the matrix, filler, and resonator elements, respectively. Suppose also

hat we design the metamaterial with square filler and resonator elements and the same reference geometry used to
ompute the non-dimensional Bloch modes shown earlier in this paper. Doing so reduces the unspecified parameters of
he unit cell to the non-dimensional matrix thickness γm, the non-dimensional resonator thickness γr , and the unit cell
haracteristic length a, all of which can be analyzed using the results of Sections 3 and 4 to obtain a specific combination
hat produces a metamaterial with the desired BG.

After algebraic manipulation of Eqs. (61) through (67) and (28) (shown in the Appendix), expressions for the lower
and upper bounds of the first BG can be shown to be:

fLB =

√
Ef

2πa

([
1 − ν2

f

]−1
γ 3
f

(
I1,c + I1,s

)
+ 6

[
1 + νf

]−1 ksγf
(
I2,c + I2,s

)
12ρf γf

(
I3,c + I3,s

)
+ 3ρrγr I3,r + ρf γ

3
f

(
I6,c + I6,s

) )1/2

(68a)

fUB =

√
Ef

2πa

( [
1 − ν2

f

]−1
γ 3
f

(
I1,c + I1,s

)
+ 6

[
1 + νf

]−1 ksγf
(
I2,c + I2,s

)
12ρf γf

(
I3,c + I3,s

)
+ 3ρrγr I3,r + ρf γ

3
f

(
I6,c + I6,s

)
+ 3f (ρ, γ , I4, I5)

)1/2

(68b)

here f (ρ, γ , I4, I5) is defined as

f (ρ, γ , I4, I5) ≡ −

(
4ρf γf

(
I4,c + I4,s

)
+ ρrγr I4,r

)2
4ρf γf

(
I5,c + I5,s

)
+ ρrγr I5,r + ρmγmI5,m

(69)

nd I1 through I6 are defined as

I1
(
νi, 2x,LB,i, 2y,LB,i

)
≡ I

(
∂2y,LB,i

∂x′

2)
− 2νiI

(
∂2y,LB,i

∂x′

∂2x,LB,i

∂y′

)
+ I

(
∂2x,LB,i

∂y′

2)
+ · · ·

· · · +
1 − νi

2

(
I
(

∂2x,LB,i

∂x′

2)
− 2I

(
∂2x,LB,i

∂x′

∂2y,LB,i

∂y′

)
+ I

(
∂2y,LB,i

∂y′

2)) (70a)

I2
(
WLB,i, 2x,LB,i, 2y,LB,i

)
≡ I

(
∂WLB,i

∂x′

2)
+ 2I

(
2y,LB,i

∂WLB,i

∂x′

)
+ I

(
2 2

y,LB,i

)
+ · · ·

· · · + I
(

∂WLB,i

∂y′

2)
− 2I

(
2x,LB,i

∂WLB,i

∂y′

)
+ I

(
2 2

x,LB,i

) (70b)

I3
(
WLB,i

)
≡ I

(
W 2

LB,i

)
(70c)

I4
(
WLB,i

)
≡ I

(
WLB,i

)
(70d)

I5 ≡ I (1) (70e)

I6
(
2x,LB,i, 2y,LB,i

)
≡ I

(
2 2

x,LB,i

)
+ I

(
2 2

y,LB,i

)
(70f)

ith the integrals I(•) pre-computed using symbolic or numerical integration from the identified Bloch modes for the
eference geometry (and I(•) was defined in Section 4.3). Note in these equations that for any n ∈ {1, 2, . . . , 6}, In,c
efers to In evaluated on the corner section of the filler material, In,s refers to In evaluated on the side section of the filler
aterial, In,m refers to In evaluated on the matrix material, and In,r refers to In evaluated on the resonator material of the

eference unit cell. Since all integral functions In are constant for the reference geometry, Eqs. (68) through (70) can now
e used to provide algebraic relationships between unit cell parameters and BG bounds to serve numerous applications
n both analysis and design of H–S–H metamaterials. (Eqs. (68) through (70) are precisely the equations used to compute
he identified BGs for sample metamaterials and identify relationships between unit cell parameters and BG frequencies
nalyzed in Section 5).
To illustrate the application of these equations in designing metamaterials, consider our example of designing an H–S–
metamaterial with a BG from 100 to 200 Hz in which all unit cell parameters with the exceptions of γm, γr , and a have
een selected, and we aim to choose specific values for γm, γr , and a that yield an H–S–H metamaterial with the desired
G. Suppose we further specify that our metamaterial has a non-dimensional resonator thickness of 0.3, which—since
q. (68a) for fLB depends on a and γr but not γm—allows us to directly solve Eq. (68a) for a and determine the unit
ell characteristic length with γr = 0.3 that predicts a BG lower bound of 100 Hz. With both a and γr determined, we
an then substitute those values into Eq. (68b) for fUB to determine the non-dimensional matrix thickness that gives a
G upper bound of 200 Hz. Following this approach using pre-computed integrals of the identified Bloch modes yields
21
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= 31.182 mm and γm = 0.12138, which combined with the specified value γr = 0.3, the chosen material properties,
nd the reference geometry yields all parameters for an H–S–H metamaterial with a predicted BG from 100 to 200 Hz
sing our novel method. Verifying the BG of this metamaterial using the finite element mesh in Section 5 yields an FEEA-
omputed BG from 97.68 to 194.9 Hz with a flat intermediate band at 163.1 Hz—a result that yields less than 2.6% error
etween solutions at both BG bounds and validates the accuracy of this method in both efficiently computing BGs and
esigning metamaterials with specific BG properties.

. Summary and conclusions

This paper has examined BG formation mechanisms in two-dimensional locally resonant elastic metamaterials and
resented an approach for computing the first frequency BG in metamaterials with:

1. Out-of-plane material motion (transverse vibrations)
2. H–S–H design with square matrix, filler, and resonator elements (implying unit cell symmetry)
3. Through-thickness unit cell geometry (any (x, y) location has uniform properties in the z-direction so 2D analysis

can be utilized)

H–S–H configurations subject to transverse vibrations were selected for this analysis due to their versatility in two-
imensional metamaterial design and their similarities in Bloch modes at the lower and upper bounds of the first BG. It
as observed that all H–S–H metamaterials of specific planar geometry and ratio of filler thickness to unit cell size yield
he same non-dimensional out-of-plane Bloch mode shapes in all metamaterials of any matrix or resonator thicknesses,
nit cell size, or material properties. These observations were shown to be a consequence of the fact that all H–S–H unit
ells of soft filler material consist of a rigid matrix and resonator vibrating around a deforming filler material at pass
and solutions at the lower and upper bounds of the first BG. Inspired by these similarities, a method was presented to
ompute vibration frequencies corresponding to these Bloch modes using Mindlin plate theory and conservation of energy
rinciples. A least squares identification algorithm was detailed for computing continuous surface equations for the mode
hapes, which were employed in the preceding equations to compute the first BG frequencies. The framework was applied
o nine different metamaterials with rectangular unit cells, and the computation of the first BG was achieved using a single
inite element eigenfrequency analysis (FEEA) with high numerical accuracy. The same computations used to calculate
he first BG also reveal sensitivities between metamaterial parameters and BG frequencies in the form of simple algebraic
elationships, providing the ability to create computationally-instantaneous parametric studies and design choices for
etamaterials with prespecified BGs. The procedure outlined here opens up new avenues in the predictive, rapid, and
n-demand design of H–S–H unit cells with more general planar geometries, metamaterials with higher-order transverse
r in-plane frequency BGs, and other configurations of locally resonant metamaterials.
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ppendix

eriving algebraic equations for BG bounds

In Sections 3, 4, and 6, it was shown that a set of algebraic relationships for the lower and upper bounds of the
first BG could be computed from material properties, geometric properties, and pre-computed integrals of expressions
involving non-dimensional Bloch modes, with Eqs. (68) through (70) in Section 6 providing a final concise form for these
expressions. Here, an analytical derivation is presented that was used to arrive at these equations.

Using the integrals I1 through I6 defined in Eq. (70), the stiffness and mass values Kb,LB,i, Ks,LB,i, MLB,i, and MUB,i derived
in Eqs. (61) through (63) and (66) can be rewritten as

Kb,LB,i =
Eiγ 3

i a
12(1 − ν2

i )
I1
(
νi, 2x,LB,i, 2y,LB,i

)
(A.1)

Ks,LB,i =
ksEiγia I2

(
WLB,i, 2x,LB,i, 2y,LB,i

)
(A.2)
2(1 + νi)
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(
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(A.3)

MUB,i = ρiγia3
(
I3
(
WLB,i

)
− 2zCOMI4

(
WLB,i

)
+ z2COMI5

)
+

ρiγ
3
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(
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)
= MLB,i + ρiγia3

(
−2zCOMI4

(
WLB,i

)
+ z2COMI5

) (A.4)

Using the standard definition of center of mass, the integrals I4 and I5 in Eq. (70), the fact that the Bloch mode of
he matrix material for WLB is zero (i.e., I4,m ≡ I

(
WLB,m

)
= 0), and the observation that the filler material consists of

xactly four ‘‘corner’’ and four ‘‘side’’ sections, the center of mass zCOM of the lower bound displacement Bloch mode can
e expressed as

zCOM ≡
1∫

A′ ργ adA′

∫
A′

ργ aWLBdA′
=

[
N∑
i=1

ρiγia
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ρiγia
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ρiγiI (1)
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I4,c + I4,s

)
+ ρrγr I4,r

4ρf γf
(
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+ ρrγr I5,r + ρmγmI5,m

(A.5)

Summing Kb,LB,i and Ks,LB,i in Eqs. (A.1) and (A.2) over all sections of the unit cell and using the fact that I1 and I2 are
ero for the matrix and resonator materials then yields the following for Kb,LB and Ks,LB:

Kb,LB ≡

N∑
i=1

Kb,LB,i =
Ef γ 3

f a

12(1 − ν2
f )

(
4I1,c + 4I1,s

)
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Ef γ 3
f a

3(1 − ν2
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I1,c + I1,s
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(A.6)

Ks,LB ≡

N∑
i=1

Ks,LB,i =
ksEf γf a
2(1 + νf )

(
4I2,c + 4I2,s

)
=

2ksEf γf a
1 + νf

(
I2,c + I2,s

)
(A.7)

he fact that I3 is zero for the matrix material and I6 is zero for the matrix and resonator materials yields the following
or MLB:

MLB ≡
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(
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+ ρrγra3I3,r +

ρf γ
3
f a

3

12

(
4I6,c + 4I6,s

)
= 4ρf γf a3

(
I3,c + I3,s

)
+ ρrγra3I3,r +

ρf γ
3
f a

3

3

(
I6,c + I6,s

) (A.8)

nd the fact that I4 and I5 are zero for the matrix material yields the following for MUB:
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(A.9)

sing Eq. (A.5), where f (ρ, γ , I , I ) was defined in Eq. (69) of Section 6.
4 5
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Letting Kb = Kb,LB, Ks = Ks,LB, and M = MLB for the lower bound of the BG and substituting Eqs. (A.6) through (A.8)
into Eq. (28) then gives the equation

fLB =
1
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(A.10)

roducing the final expression for fLB as stated in Eq. (68a) of Section 6.
Finally, letting Kb = Kb,UB, Ks = Ks,UB, and M = MUB for the upper bound of the BG, employing the assumptions that

b,UB ≈ Kb,LB and Ks,UB ≈ Ks,LB as explained in Section 4.3 (Eq. (67)), and substituting Eqs. (A.6), (A.7), and (A.9) into
q. (28) gives the equation
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⎞⎟⎟⎠
1/2

=

√
Ef

2πa

( [
1 − ν2

f

]−1
γ 3
f

(
I1,c + I1,s

)
+ 6

[
1 + νf

]−1 ksγf
(
I2,c + I2,s

)
12ρf γf

(
I3,c + I3,s

)
+ 3ρrγr I3,r + ρf γ

3
f

(
I6,c + I6,s

)
+ 3f (ρ, γ , I4, I5)

)1/2

(A.11)

roducing the final expression for fUB as stated in Eq. (68b) of Section 6.

ote on finite element analyses

Finite element analyses employed in this paper were completed using in-house MATLAB codes with 8-node serendipity
r 12-node cubic two-dimensional quadrilateral Mindlin elements, with the specific element type selected depending on
pplication. A 20 × 20 mesh of 12-node cubic elements was used to generate the band structure shown in Fig. 1 and
he displacement and rotation Bloch modes shown in Figs. 2, 4, 5, and 6, which were used as the non-dimensional Bloch
odes for all system identification and BG computation analyses performed in this paper. Due to its reduced computation

ime without significant loss of accuracy, a 20 × 20 mesh of 8-node serendipity elements was used to compute all FEEA
Gs and band structures in Section 5 (Figs. 7 and 8) and Section 6, with the chosen mesh type yielding insignificant (less
han 0.4%) differences in BG frequencies with the former mesh but more than 4 times reduction in computation time
or a single eigenfrequency analysis. BG frequencies were found to be approximately 0.35% lower using a 20 × 20 cubic
lement mesh over a similar 10 × 10 mesh but only 0.09% lower using a 30 × 30 cubic element mesh over a similar
0 × 20 mesh, informing our selection of a 20 × 20 mesh showing sufficient convergence as our mesh size of choice
n all finite element analyses. Pilot simulations using 3D elements were performed on H–S–H metamaterials in COMSOL
ultiphysics and compared with our MATLAB analysis to confirm that the results of our in-house code are in agreement
ith commercially-proven software.
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