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Beam forming using phased arrays forms the basis of several sonar communication and biomedical
imaging techniques. However, to date, such arrays remain constrained by wave reciprocity in addi-
tion to being confined to their operational frequency; two limitations which have severely hindered
imaginative advancements in this domain. In the context of sound propagation, nonreciprocity
typically refers to unidirectional elastic and surface acoustic wave devices. However, a breakage of
reciprocity in phased arrays manifests itself in reception and transmission patterns which can be
independently tuned; which has thus far been elusive. This work reports on a class of nonreciprocal
phased arrays which operate independently and simultaneously within different directions and fre-
quency channels, thus breaking transmission-reception symmetry and offering enhanced capabilities
in guided wave engineering. The array comprises an array of transceiving piezoelectric wafer discs
bonded to an elastic medium and incorporates a prescribed dynamic modulation on top of a static
phase gradient, which enables concurrent phononic transitions in energy and momentum spaces
that mitigate the constraints imposed by Lorentz reciprocity. Following the theory and predictive
analysis, the entire array and its associated capabilities are demonstrated experimentally.

I. INTRODUCTION

Guided elastic waves have been a cornerstone of struc-
tural health monitoring and nondestructive testing for
decades owing to their superior sensitivity to defects [1–
3]. They have also been adopted in medical applications
due to their low damping, allowing them to travel long
distances without dissipation [4], and to manipulate the
direction of incident waves via diffraction gratings [5, 6]
and metasurfaces [7]. As one of the most prevalent meth-
ods for guided wave engineering, surface-mounted piezo-
electric arrays allow efficient wave beaming [8] and sens-
ing [9] in one self-contained configuration. Phased arrays
are a union of multiple wave transmitting/receiving ele-
ments (transceivers) arranged in one (linear), two (pla-
nar), or three (hemispherical) dimensional configurations
[10, 11]. Conventional phased arrays can transmit elastic
waves in a desired direction via constructive and destruc-
tive interferences between the emitted wave fields from
different array elements. The augmented phase of the
individual elements can be controlled to instigate wave
beaming in transmission and reception in 2D/3D spaces
without requiring moving mechanical parts [12]. For ex-
ample, by incorporating a quasi-statically changing phase
gradient, existing phased arrays are capable of electroni-
cally steering a wave beam across the whole field of view
[13]. Alternatively, by carefully designing the spatial dis-
tribution of their phase gradients, phased arrays can be
used to focus wave energy at a specific point and create
standing waves to trap particles or levitate objects [14].
In offering a wide portfolio of wave forming capabilities,
phased arrays provide a versatile platform which can be
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exploited in a wide range of acoustic engineering appli-
cations [15–17]. Notable among these are fault detection
in elastic media [18–21], identification of pipe damage
[22, 23], wind sensing [24], and more recently, in creating
high resolution 3D images of internal structural defects
[25]. Nonlinear sub-harmonics and higher-harmonic ul-
trasonic phased arrays are now being proposed for imag-
ing of internal closed cracks [26–28]. In the latter, how-
ever, all nonlinear harmonics ought to be received by a
single phased array to obtain all the images needed and
detect the open and closed portions of a crack. A tradi-
tional ultrasonic phased arrays, which can only operate in
a single channel, is simply incapable of fulfilling this ob-
jective [29]. Recently, fundamental wave amplitude dif-
ference (FAD) was suggested that uses both fixed- [30–32]
and different-voltage [33, 34] approaches to address this
issue by measuring the incident amplitude-dependence of
the fundamental wave component. Nevertheless, a more
robust and straightforward strategy remains of great in-
terest and can potentially reshape the future course of
experimental structural health evaluation.

Reciprocity is one of the fundamental principles of
wave propagation that often constrains the operation
of phased arrays. It implies that transmission between
two spatially separated locations in linear time-invariant
(LTI) systems remains the same with an interchange of
the actuating and sensing points [35]. An intentional
breakage of this constraint opens up untapped oppor-
tunities and has understandably found applications in
various fields of engineering ranging from electromagnet-
ics [36–39], to acoustics [40–45] and elasticity [46–49].
The injection of prescribed temporal variations in sys-
tems with a spatial-gradient (with the intention of break-
ing time-reversal symmetry) has been demonstrated as
a favorable approach due to its independence on signal
intensity and its ability to be replicated in a finite prac-
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tical setting [50–52]. There are a number of studies per-
taining to photonic metasurfaces, where a nonrecipro-
cal behavior is observed by incorporating a space-time-
periodic (STP) modulation of properties [53–56]. How-
ever, there are very few efforts of electromagnetic phased
arrays which integrate such modulations with the under-
lying gradient [57]. The concept of nonreciprocity is often
narrowly used to describe unidirectional wave propaga-
tion and diode-like systems. Owing to reciprocal symme-
try, existing phased arrays are sensitive only to incident
waves arriving from the same exact direction as those it
can transmit to; a phenomenon which effectively guaran-
tees identical radiation and reception patterns [58]. As
a result, the notion of nonreciprocity in phased array
platforms potentially manifests itself in the form of non-
identical radiation and reception beam forming patterns,
which can be independently tuned [59, 60].

This work presents a class of phased arrays which
operate independently and simultaneously within dif-
ferent directions and frequency channels, thus breaking
transmission-reception symmetry and offering superior
capabilities in guided wave engineering. In the elastic do-
main, the experimental realization of such a system has
thus far been elusive [61]. Without loss of generality, the
array is comprised of an array of transceiving piezoelec-
tric wafer discs (PWDs) which undergo dynamic phase
modulation on top of a static phase gradient. Contrary
to conventional arrays, the proposed system incorporates
a dynamic modulation on top of the underlying static
phase gradient resulting in a modified time-delay law
which brings about two unprecedented functions: (1) A
capability to generate several beams which can be steered
independently (i.e., multiple momentum channels). (2)
In the absence of advanced (and often time-consuming)
accommodations to operate within wide-band and non-
linear regimes, the system presented here invokes mul-
tiple frequency channels that can be each individually
tuned such that all required data can be derived with a
single measurement without the need for any sub/super-
harmonic post processing schemes. The combined multi-
ple momentum and frequency channels within the array
not only prompt faster scanning (as the time required to
scan the complete domain is inversely proportional to the
number of simultaneous momentum channels), but also
enables concurrent measurements of distinct frequency
content for different channels in both transmission and
reception operations. Finally, we report on the array’s
capability of inducing increasingly nonreciprocal radia-
tion and reception patterns in situ. The entire array and
its associated capabilities are demonstrated experimen-
tally, confirming the theoretical framework established
here and setting a road map for broader future imple-
mentation.

II. THEORY OF DYNAMIC ELASTOACOUSTIC
PHASED ARRAY

The proposed STP-PWD phased array breaks time-
reversal symmetry via a space-time-variation of phase
gradient, which selectively alters directional and fre-
quency content of various harmonics generated by the
array, as illustrated in Fig. 1. A transceiver of the pro-
posed phased array comprises a single PWD coupled with
a phase-shifter. Consider a dynamic phase angle for the
nth PWD of the following STP form

φn(t) = κcyn + δ cos(ωmt− κmyn) (1)

where yn is the y-coordinate of the nth PWD along the
array as depicted in Fig. 1(a). κc is the static phase
gradient (also present in conventional phased arrays),
δ denotes the STP modulation depth, ωm and κm are
the temporal and spatial modulation frequencies, respec-
tively. The figure also shows the array with N PWDs
surface-mounted on a thin plate and linearly distributed
with a pitch d.

A. Transmission

When transmitting, the array is excited with an input
voltage of the form V0e−iωt, where V0 is the amplitude,
i =
√
−1, and ω is the temporal frequency. Subsequently,

each phase-shifter augments this signal with the STP
phase angle described by Eq. (1), vn(t) = V0 ei[−ωt+φn(t)].
The supplied voltage to the nth PWD, thus becomes

vn(t) = V0 ei(−ωt+κcyn) eiδ cos(ωmt−κmyn) (2)

Using the Jacobi-Anger expansion, this can be replaced
with an infinite series of Bessel functions. Upon further
simplification, we get

vn(t) = V0

∞∑
q=−∞

iqJq(δ) ei(−ω
(q)t+κ[q]

c yn) (3)

where Jq(•) is a qth-order Bessel function of the first kind

and (•)(q) and (•)[q] are shorthand notations for a fre-
quency shift of +qωm and a phase gradient shift of +qκm,

respectively, i.e., ω(q) = ω + qωm and κ
[q]
c = κc + qκm.

Applying this voltage to the nth PWD generates a radial
strain which is transferred to the substrate plate through
the shear coupling of bonding layer. This shear stress
excitation induces Lamb waves with a displacement dis-
tribution on the top surface of the plate, wn(rn, t). The
total far-field out-of-plane displacement field is then com-
puted by adding the field generated by the individual

STP-PWDs, i.e., wnet(r, t) =
∑N
n=1 wn(rn, t). Here, r is

the radial distance from the center of the array to a field
point and rn is the radial distance between the center of
the nth PWD to the same field point as per Fig. 1(a).
The total far-field out-of-plane displacement field, thus
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FIG. 1. STP-PWD phased array surface-mounted on a thin aluminium plate. (a) Coordinate system and array
geometry. (b) Schematic diagram of the different array components including piezoelectric discs, STP phase-shifters, power
divider (P.D.) and voltage generator. Different harmonics are generated and propagate in different directions.

becomes (See Supplementary Note 1 for a detailed deriva-
tion [62])

wnet(r, θ, t) ∼= Ne−i
π
4

√
2

πr

∞∑
q=−∞

[
B

(q)
S√
k
(q)
S

DS,q(θ)ψ
(q)
S (r, t)

+
B

(q)
A√
k
(q)
A

DA,q(θ)ψ
(q)
A (r, t)

]
(4)

where (r, θ) are the polar coordinates of a field point of
interest with respect to the center of the array, while θ is
measured counter-clockwise from broadside, as shown in

Fig. 1(a). k
(q)
α is the frequency-shifted wavenumber of the

first symmetric (or antisymmetric) Lamb wave, for α = S

(or α = A), and B
(q)
α is the associated amplitude coef-

ficient (See Supplementary Note 1 for more details). In

Eq. (4), ψ
(q)
α (r, t) = ei(−ω

(q)t+k(q)α r) denotes a symmetric
(for α = S) or antisymmetric (for α = A) spherical Lamb
wave with a unit amplitude. Due to the elliptical motion
of material particles in both symmetric and antisymmet-
ric Lamb waves, the two are naturally coupled and Eq. (4)
confirms that they appear alongside one another in out-
of-plane deformations. Further, Dα,q(θ) represents qth-
order modified transmission directivities of the array for
the first symmetric and antisymmetric Lamb waves as
follows

Dα,q(θ) = iqJq(δ)
sin

[
Nd
2 (k

(q)
α sin θ − κ[q]c )

]
N sin

[
d
2 (k

(q)
α sin θ − κ[q]c )

] ; α = S,A

(5)

An inspection of Eq. (4) and ψ
(q)
α (r, t) reveals that in

addition to the fundamental mode, an infinite set of har-
monics of both first Lamb waves travel in the structure
with different frequencies and wavenumbers, effectively
acting as different transmission channels. The amplitude,
wavenumber, and directional behavior of these channels
primarily depends on the phase angle parameters and
are in situ tunable to achieve a desired performance
(see Supplementary Note 2). A qth-order transmission
channel, however, is not equally strong in every direc-
tion θ. Its propagation strength along any direction θ
can be quantified using its Dα,q(θ) function (see Sup-
plementary Note 3). Practically, we are able to define
principal transmission directions for both symmetric and
antisymmetric Lamb waves as the θ-values which maxi-
mize the respective directivities and corresponding wave
amplitudes. Using Eq. (5), we determine the qth-order
(q ∈ Z) principal transmission directions for the first

Lamb waves to be θα,q = sin−1(κ
[q]
c /k

(q)
α ) with α = S,A.

In the most general case, k
(q)
S and k

(q)
A can only be com-

puted after numerically solving the symmetric and anti-
symmetric Rayleigh-Lamb equations for a given ω(q) [63];
however, for sufficiently small values of hω(q)/2π ≤ 100
kHz·mm where h is the plate thickness, the first sym-
metric and antisymmetric Lamb waves asymptotically
approach the behavior of extensional and flexural plate
waves and kS,A can then be approximated accordingly
[1]. As such, to facilitate an analytical solution, we limit
our analysis to systems where the frequency-shifted sym-

metric wavenumber is k
(q)
S = ω(q)

√
ρ(1− ν2)/E and the

frequency-shifted antisymmetric wavenumber is k
(q)
A =√

ω(q)[12ρ(1 − ν2)/Eh2]1/4. Here, E is the modulus of
elasticity, ν is Poisson’s ratio and ρ is the plate material
density. We note that the flexural waves predominantly
result in out-of-plane shear deformations, while exten-
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FIG.2. STP-PWDphasedarrayintransmissionandreception modes. (a,b)Out-of-planedisplacementfieldat
t=0.005secondsfora modulationdepthofδ=1.5andδ=2.4,respectively. TheinsetsshowthenormalizedFFT
amplitudesofsensorlocationsindicatedbystarsaspredictedbyboththeoryandsimulations.(c,d)Directionalbreakdownand
distributionoftheFFTamplitudesforup-converted,fundamentalanddown-convertedharmonicswhenδ=1.5andδ=2.4,
respectively. Theoreticalprincipaltransmissiondirectionsareplottedasdashedarrowsforcomparison.(e)Planewavewith

frequencyofω̃incidentuponthearrayfromanarbitraryanglẽθ.(f)Fromlefttoright: NormalizedFFTamplitudes(both

theoryandsimulations)ofreceivedsignalatoutputchannelwhentheincomingplanewaveisincidentfromθ̃A,+1,̃θA and

θ̃A,1,respectively.(g)FFTmagnitudeofreceivedsignalatoutputchannelasafunctionoftheincidentanglefordifferent
harmonics.Theoreticalprincipalreceptiondirectionsareplotedasdashedlinesforcomparison.Here,ω/2π=ω̃/2π=3kHz,

ω(+1)/2π=ω̃(+1)/2π=3.05kHz,ω(−1)/2π=ω̃(−1)/2π=2.95kHz.AllotherparametersaredefinedintheMethodssection.

sionalwavesbreedin-planedisplacements. Assuch,we
focushereonout-of-planedeformationsresultingfrom
antisymmetricflexuralwavesinplates.Thetoppanelof
Fig.2illustratesthetransmissionbehavioroftheSTP-
PWDphasedarrayoperatingattwomodulationdepths,
δ=1.5andδ=2.4predictedbyboththeoryandsimu-
lations.Here,a6m-radiusthincircularplate(h=1.27
mmthickness)wasusedasanelasticmedium. Finite
elementsimulationswereconductedupto0.02seconds,
whichislessthanthethetimewavesneedtoreachthe

boundariestoavoidreflectionsthusenablinga0.05kHz
resolutioninthefrequencyspectrum.Theplateismade
ofAluminiumwiththefollowingparameters:E=73.1
GPa,ν=0.33andρ=2780kg/m3.Thefirstantisym-
metricLambwavewasgeneratedusing12STP-PWDs
eachhavingana=4mmradius.Aquarter-wavelength
pitchwasused,i.e.,d=16mm. ThePWDswereex-
citedwithafundamentalfrequencyofω/2π=3kHz.
TheeffectofSTPphase-shifterswasimplicitlyincluded
inthevoltageprovidedtothePWDsusingthefollowing
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set of parameters: ωm/2π = 0.05 kHz, κc = 0 and κm =
20.4808π rad/m. As a result, each group of 6 STP-PWDs
constitutes one spatial unit cell with a modulation travel-
ing velocity of vm = ωm/κm = 4.88 m/s. As can be seen
in Fig. 2(a), the displacement field captured at t = 0.005
seconds with δ = 1.5 exhibits three distinct transmission
channels, the frequency content of which is revealed us-
ing a Fast Fourier Transform (FFT). Hereafter, we omit q
from the notation when q = 0 since the fundamental har-
monic matches the excitation frequency, i.e., ω(0) = ω.
The normalized spectrum of the wave passing over the
sensor locations indicated by the three green markers
shows the fundamental harmonic (ω/2π = 3 kHz), first
up-converted harmonic (ω(+1)/2π = 3.05 kHz), and first
down-converted harmonic (ω(−1)/2π = 2.95 kHz) propa-
gating along the θA, θA,+1 and θA,−1 directions, respec-
tively. It is worth noting that sensors are placed at the
the principal transmission angles given by θA,q in the ar-
ray’s far-field, i.e., r ≥ 1 m. The FFT amplitudes of all
three sensors (obtained via finite element (FE) simula-
tions) are in near-perfect agreement with their counter-
parts computed using Eq. (4) as shown in Fig. 2(a). A
visualization of the same is provided in Fig. 2(c) where
the spatial distribution of FFT amplitudes are presented
for different harmonics, confirming the predicted princi-
pal transmission directions (superposed as dashed black
lines). For a modulation depth of δ = 2.4, the funda-
mental harmonic completely disappears as a result of
its vanishing directivity (J0(2.4) ∼= 0). This can also
be confirmed by inspecting the corresponding FFT am-
plitudes in Figs. 2(b) and (d). Waves traveling in the
broadside direction with small amplitudes are in fact
side-lobes of up- and down-converted transmission chan-
nels. For the parameters chosen here, the principal trans-
mission directions calculated for second and higher or-
der harmonics are complex. (Specifically for κc = 0,
κm = 20.4808π, ωm/2π = 0.05 kHz and ω/2π = 3 kHz,
principal transmission directions for second order har-
monics are computed as θS,−2 = −π/2 + i0.257π and
θS,+2 = π/2− i0.241π). The physical implication of com-
plex angles is that these channels only propagate along
the array and eventually evanesce. They do not transmit
energy due to the directivity of the PWD phased array.

B. Reception

In order to investigate the STP-PWD phased array’s
performance characteristics in reception mode, we con-
sider a plane Lamb wave incident upon the array from
an arbitrary direction θ̃ with respect to the broadside (see
Fig. 2(e)). Consistent with the previous analysis, we as-
sume a sufficiently low frequency ω̃ enabling us to account
for the first symmetric and antisymmetric Lamb waves
only, with k̃S or k̃A as wavenumbers, respectively. This
results in the voltage signal received by the nth PWD at
the corresponding location of (x, y) = (0, yn) of the form

ṽn(t) = tR[B̃Sei(−ω̃t−k̃Syn sin θ̃)+B̃Aei(−ω̃t−k̃Ayn sin θ̃)] (6)

where B̃α is the amplitude and k̃α is the incident
wavenumber of symmetric (α = S) or antisymmetric
(α = A) waves. The displacement-to-voltage transfer
function tR is presumed to be identical for all array el-
ements. The signal is then fed through the STP phase-
shifters, and following another Jacobi-Anger expansion,
simplifies to

ṽn(t) = tR

∞∑
q=−∞

iqJq(δ) ei(−ω̃
(q)t+κ[q]

c yn)[B̃S e−ik̃S sin θ̃yn

+B̃A e−ik̃A sin θ̃yn ]
(7)

Finally, the output signal from the entire array is ob-
tained by summing up all of the individual output signals,

i.e., ṽ(t) =
∑N
n=1 ṽn(t) which becomes (see Supplemen-

tary Note 1)

ṽ(t) ∼= tRN

∞∑
q=−∞

[B̃SD̃S,q(θ̃) + B̃AD̃A,q(θ̃)] e−iω̃
(q)t (8)

where D̃α,q(θ̃) is the qth-order modified reception direc-
tivities of the STP-PWD phased array for the first sym-
metric (α = S) and antisymmetric (α = A) Lamb waves;
found to be

D̃α,q(θ̃) = iqJq(δ)
sin

[
Nd
2 (k̃α sin θ̃ − κ[q]c )

]
N sin

[
d
2 (k̃α sin θ̃ − κ[q]c )

] ; α = S,A

(9)

Eq. (9) resembles (5) albeit with wavenumbers (k̃α) that
are not frequency-shifted. Akin to the concept of prin-
cipal transmission directions, we can define the principal
reception directions as the angles along which the STP-
PWD phased array is most sensitive to receiving incident
waves. As such, we find the qth-order principal reception

directions as θ̃α,q = sin−1(κ
[q]
c /k̃α) with α = S,A for

symmetric and antisymmetric Lamb waves. The bottom
panel of Fig. 2 depicts the behavior of the array operating
in reception predicted from both theory and simulations.
For evaluation purposes, the array is subjected to an an-
tisymmetric wave incident at an arbitrary angle θ̃ and
comprising a frequency of ω̃/2π = 3 kHz, as shown in
Fig. 2(e). The previous 12 PWDs were utilized as receiv-

ing sensors. For each incident angle θ̃, the received signals
from PWDs are fed through their respective STP phase-
shifters and summed up at the output port. The FFT
magnitudes of the array’s output is provided in Fig. 2(g)

as a function of θ̃ for three specific harmonics: the funda-
mental (ω̃/2π = 3 kHz), up-converted (ω̃(+1)/2π = 3.05
kHz), and down-converted (ω̃(−1)/2π = 2.95 kHz) chan-
nels. Owing to the linearity of the system dynamics,
it immediately follows that FFT calculations can only be
done at up- and down-conversions since other frequencies
cannot be generated. The theoretical principal reception
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FIG. 3. Experimental setup. (a) Illustration of the experimental setup showing the Aluminum plate under study, mounting
setup, laser vibrometer system (SLDV), controller circuit, and the perfectly matched layer (PML). The STP-PWD phased
array is highlighted in the close-up using blue lines. The arrays used for generating incident waves in reception are highlighted
in dashed red boxes. (b) Schematic diagram of the controller circuit. Solid lines represent the circuit for the transmission
experiment, dashed lines represent the circuit for the reception experiment, and the thicker lines represent the connections that
remain constant for both experiments. (I) and (II) refer to the arrays generating the different incident waves shown in (a) for
the reception experiment. The individual piezoelectric connections in the schematic diagram and their respective phase signals
are color-coded for clarity.

directions for first antisymmetric Lamb wave (θ̃A = 0◦,

θ̃A,+1 = 41.4◦, and θ̃A,−1 = −41.4◦) are indicated on
the figure as vertical dashed lines. We conclude that
ω̃(q) is most effectively detected with a θ̃A,q incidence,
where q ∈ Z. To further elucidate this concept, Fig. 2(f)
provides a comparison between the normalized FFT am-
plitudes of the received signal at the output channel as
determined both theoretically and via FE simulations
(Here, the incoming wave is incident from the exact prin-

cipal reception angles for the antisymmetric wave θ̃A,q).
In addition to the good agreement, we note that higher
frequencies do not make a dominant appearance in the
output spectrum; a phenomenon which is primarily at-
tributed to the fact that higher harmonics do not have
a real principal reception angle. For instance, the prin-
cipal reception angle for the 3.10 kHz is calculated to
be π/2 − i0.770, and for 2.90 kHz to be −π/2 + i0.770.

The same can be confirmed by examining principal re-
ception angles corresponding to higher harmonics. The
nontrivial frequency conversion process taking place in
an STP-PWD phased array (during reception) is signif-
icant, particularly from a practical standpoint. Conven-
tional phased arrays quasi-statically sweep the value of
κc to listen for omnidirectional incident waves. The pro-
posed phased array with fixed parameters is potentially
capable of the same by exploiting its reception features,
specifically by only analyzing amplitudes of the various
harmonics in the collected signal. If the parameters are
tuned to the exact incident angles of multiple waves with
the same frequency ω̃, it becomes possible to clearly iden-
tify the dominant frequency relating to each incident di-
rection as shown in Fig. 2(f); effectively surpassing the
single-channel constraint typically exhibited by conven-
tional arrays.
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III. EXPERIMENTAL ARRAY PERFORMANCE

The theoretical framework established earlier is vali-
dated through an experimental performance evaluation
of the proposed STP-PWD phased array. The array
is constructed out of 12 PWDs (Manufacturer: Stem-
inc Inc., Model: SMD05T04R111WL) forming 2 spa-
tial unit cells which are epoxy-bonded (Manufacturer:
3M, Model: Scotch-Weld DP 270) to the center of an
1066 × 1066 × 1.27 mm3 Aluminum plate (5052 Alu-
minum Alloy). The complete setup is shown in Fig. 3
(see Supplementary Note 5 for details). Note that the
piezoelectric discs used in this work are capable of in-
ducing in-plane radial strain which can generate the re-
quired antisymmetric Lamb waves accordingly. Addi-
tionally, to minimize the amplitude of reflections, bound-
aries were covered with the damping material (Blu-Tack
adhesive) to form a perfectly matched layer. In transmis-
sion, the elements of the array were excited using indi-
vidual phase-modulated amplified harmonic signals with
a frequency of ω/2π = 3 kHz. The excitations were gen-
erated by a custom driver controlled with a MATLAB
code which utilizes the Data Acquisition Toolbox. The
phase-modulated signals were created digitally and then
converted to analog signals using a D2A converter. The
analog signals were amplified and tuned to generate a
peak-to-peak voltage of Vpp

∼= 14V for each channel. In
order to visualize the elastic wave propagation, the out-
of-plane velocity wave field was captured using a Poly-
tec PSV-500 scanning laser Doppler vibrometer (SLDV),
which is triggered from MATLAB’s command line to en-
sure synchronized measurements with respect to the exci-
tation signal. The measurements were taken over a scan-
ning area of 1000×500 mm2 with a resolution of 12 points
per wavelength (12pt/λ) and a sampling frequency of 100
kHz. The top panel of Fig. 4 presents the experimentally
measured out-of-plane velocity wave field at t = 0.001
seconds generated by the phased array in transmission
corresponding to a modulation depth of δ = 1.5 (left)
and δ = 2.4 (right). The close-up insets in both fig-
ures show the recorded measurements in both frequency
and time-domain for the three sensor locations depicted
by the red, blue and green discrete markers for the up-
converted, fundamental and down-converted harmonics,
respectively. The experimentally recorded wave fields as
well as the frequency content of the generated harmonics
show good agreement with predictions, i.e., both theoret-
ical and simulation results presented in Fig. 2 for both
modulation depths; thus validating the behavior of the
array in transmission mode (see Supplementary Movies
1 and 2 for the transient response in transmission mode).
In reception, incident plane waves with an excitation fre-
quency of ω̃/2π = 3 kHz were generated using two ar-
rays of piezoelectric discs which are bonded to the plate
at angles of 41◦ and -41◦ (principal reception directions),
respectively, with respect to the broadside. Once the
incident wave reaches the STP-PWD phased array, the
signals are recorded and post-processed to augment the

STP phase modulation and then summed up to yield the
net voltage signal. The bottom panel of Fig. 4 shows
incoming wave fields incident upon the STP-PWD array
from the principal reception directions: θ̃A,+1 (left) and

θ̃A,−1 (right). In these figures, insets in the top left cor-
ner depict the post-processed modulated signals collected
from each channel of the STP-PWD phased array in light
pink (background lines) and the collected voltage ṽ(t) in
magenta (foreground line). The collected voltage signal
from the output port is the total sum of the individual
modulated signals which can be analyzed to estimate the
direction of arrival. The top right insets show the col-
lected voltage (unmodulated) from the first (navy-blue)
and last (maroon) elements of the phased array. An in-
herent phase shift can be observed due to the direction of
incidence of the incoming wave. For example, when the
direction of incidence is θ̃A0,+1 (θ̃A0,−1), the waves first
reach the first (last) piezo-disc before reaching the last
(first) one which explains the phase shift in the recorded
signals. The bottom insets show the normalized FFT
amplitude of the collected signal at the output port, indi-
cating a frequency conversion, and is utilized to estimate
the direction of arrival of the incident wave. These re-
sults validate the theoretical findings presented in Fig. 2
for the behavior of the array in reception mode (see Sup-
plementary Movies 3 and 4 for the transient response
during reception).

IV. WAVE BEAMING AND MULTI-CHANNEL
NONRECIPROCITY

To demonstrate the capabilities of the STP-PWD ar-
ray to instigate some form of wave nonreciprocity, we ex-
amined its response in transmission mode to its counter-
part when operating under a time-reversed signal. Fig-
ure 5(a) shows the transmission channels of the array op-
erating at δ = 1.5 as a result of an input voltage carrying
a fundamental frequency ω. As anticipated, three dis-
tinct waves with different frequencies are observed, each
propagating in its respective principal transmission direc-
tion, θA,q. We then examined the array’s output when a
time-reversed version of either of these transmitted waves
are incident upon the array (i.e., incident plane waves
with the same frequency traveling in reverse direction
towards the array, as shown in Fig. 5(b)). The angle
of incidence associated with the fundamental wave ω is
θA, which is received with the same frequency as shown
in the middle panel of Fig. 5(b); reasserting the recipro-
cal behavior within the array’s fundamental channel. A
comparison between the frequency content of the output
voltage signal in reception of each of the cases with the
input signal in transmission (ω) reveals the nonrecipro-
cal nature of the proposed array. On the other hand, the
angle of incidence associated with the up-converted wave
is θA,+1, which is received with a predominant frequency

of ω(+2) (leftmost panel of Fig. 5(b)). This double up-
conversion is a direct manifestation of the induced bias
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FIG. 4. Experimental performance of the dynamic array. (a,b) Out-of-plane velocity wave field for δ = 1.5 and δ = 2.4
at t = 0.001 seconds. In (a) and (b), the insets show time and frequency domain measurements at sensor locations indicated
by the red, blue and green markers which are placed at a radial distance of 450 mm from the center of the plate at principal
transmission directions. (c,d) Out-of-plane velocity wave fields of the generated incident waves approaching the array from
principal reception directions. In (c) and (d), the top-left insets shows the post-processed individually modulated signals for
each of the channels in light pink and the collected voltage signal in magenta. The top-right insets show the unmodulated
signal from the first (navy-blue) and last (maroon) elements of the phased array. The bottom insets shows the normalized FFT
amplitude of the collected voltage signal at the output port. All parameters are same as those used in Fig. 2.

in the system. A similar pattern can be observed for the
down-converted wave which at reception shows a spec-
trum dominated by ω(−2) (rightmost panel of Fig. 5(b)).
The same conclusions pertaining to the array’s behav-
ior in reception mode can be arrived at using Eq. (8),
as detailed in Supplementary Note 4. Figure 5(c) illus-
trates the characteristics of the signal at different stages
of the reception process in both frequency (right panel)
and time (left panel) domains. The received signal is fed
through the STP phase-shifters and finally collected at
the output port.

Another way to quantify the reciprocity of the sys-
tem (or lack thereof) is via the extent to which radiation
and reception patterns are identical within a given ar-
ray. The STP-PWD array is capable of breaking reci-
procity by introducing different principal transmission
and reception directions. We examine the antisymmet-
ric Lamb waves and define ∆θA,q as the difference be-
tween the principal transmission and reception angles,
i.e., ∆θA,q = θA,q − θ̃A,q. For the special case corre-

sponding to ω̃ = ω, ∆θA,q is nonzero for all values of
q 6= 0 and is proportional to the ratio of ωm/ω. As an-
ticipated, ∆θA,q vanishes at q = 0, which is reminiscent
of the behavior of conventional phased arrays. To fur-
ther illustrate, Fig. 5(d) demonstrates the effect of the
modulation frequency ratio ωm/ω on both radiation and
reception patterns of an STP-PWD phased array; which
perfectly coincide at ωm/ω = 0 (demonstrating a fully-
reciprocal response). As the modulation frequency ratio
increases, the difference between the principal angles be-
comes more stark since ∆θA,q takes on nonzero values for
up- and down-converted waves. In effect, the dissimilar-
ity between radiation and reception patterns, and con-
sequently the degree of nonreciprocity, becomes stronger
with faster modulation.
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FIG. 5. Nonreciprocal wave beaming in the STP-PWD phased array. (a) Transmission channels as a result of
an input voltage signal with frequency of ω. (b) Reception process and normalized FFT amplitudes (as predicted from
both theory and simulations) of received signal at the output port corresponding to different transmission channels. (c)
Characteristics of the received signal in different stages of the reception process. (d) Effect of temporal modulation speed on
the radiation and reception patterns of the STP-PWD phased array. The parameter used are as follows: ω/2π = ω̃/2π = 3

kHz, ω(+1)/2π = ω̃(+1)/2π = 3.05 kHz, ω(−1)/2π = ω̃(−1)/2π = 2.95 kHz, κc = 5.4113π, κm = 15.4821π and δ = 1.5.
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V. CONCLUSION

In summary, a conventional PWD phased array trans-
mits guided waves in a desired direction by augmenting
the individual voltage signals inputted to each array el-
ement by a static phase gradient κc. For the same set
of parameters, it can only listen for guided waves ar-
riving from the same exact direction. In contrast, in an
STP-PWD phased array, the individual input voltage sig-
nals for the PWDs are augmented with a dynamically-
varying phase angle, enabling an intentional breakage of
elastoacoustic reciprocity and establishing independent
(and tunable) radiation and reception patterns, while si-
multaneously allowing for multiple-channel operation in
both transmission and reception regimes.
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