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Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable,
healthy and safe indoor environments. In the control loop, the technical feature of the human
demand-oriented supply can help operate HVAC effectively. Among many technical options, real time
monitoring based on feedback signals from end users has been frequently reported as a critical technol-
ogy to confirm optimizing building performance. Recent studies have incorporated human thermal phys-
iology signals and thermal comfort/discomfort status as real-time feedback signals. A series of human
subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a
lab-setting study, which is limited in the application for reality. With the help of advanced technologies,
physiological signals have been detected, measured and processed by using multiple technical formats,
such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in
spite of the small physical dimension and compatibility with other wearable accessories, such as goggles,
and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitor-
ing human facial images, which could detect the facial skin temperature and blood perfusion in a contact-
less way. Also, according to latest pilot studies, a conventional digital camera can generate infrared
images with the help of new methods, such as the Euler video magnification technology. Human thermal
comfort/discomfort poses can also be detected by video methods without contacting human bodies and
be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized,
their cons and pros were discussed, and extended applications for the demand-oriented ventilation were
also reviewed as potential development and applications.

� 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Building energy supply and indoor environmental conditioning
should be performed in demand base and intelligent manner.
Nowadays, building centered design has been changed to human
centered design. Terminology, such as the human building integra-
tion, was frequently mentioned. Traditional methods of controlling
thermal environments rely on research performed on human sub-
jects in controlled, often unrealistic, environments. The tempera-
ture settings are the building operator’s best guess of conditions
that will lead to the highest degree of thermal comfort (subject
to the limitations of equipment and budget). The selected condi-
tions are derived from a long history of thermal comfort measure-
ments (and then adjusted to accommodate the complaints and
requests of the occupants).

Traditional sensor based environmental parameters’ measure-
ments were not accurate enough because sensors are normally
located in one location and indoor environmental parameters are
spatially non-uniform. The survey-based questionnaire method
interrupts occupants frequently, although it can obtain occupants’
feedback to surrounding thermal environments directly. With the
development of image/video processing technologies, more non-
contact image/video sensing methods were used. In this review,
traditional invasive measurements are reviewed in Section 3. Semi
and mini invasive measurements are reviewed in Section 4. Non-
invasive measurements, including the infrared camera technology,
Euler video magnification technology; and the skeleton keypoints
technology, are reviewed in Section 5. Extension applications of
the skeleton keypoints technology for the demand oriented venti-
lation are discussed. Major achievements and future development
are presented at the end of this review. Main contents are summa-
rized in Table 1. Publication search was performed in the following
databases: PubMed, Web of Science, Science Direct, Scopus, Wiley
Online Library and Google Scholar. The following keywords were
combined to retrieve relevant publications: non-invasive measure-
ment, non-contact measurement, occupant thermal comfort, infra-
red imaging, machine learning, wristband, Euler video
magnification, skeleton keypoints, and thermophysiological sign.
The search period covered 2000–2020.

Before the review content, the tiny difference between non-
invasive measurements and non-contact measurements should
be clarified. In the medical field, non-invasive measurement is
defined as any measurement does not require physically break
the skin or enter the human body deeply through an external ori-
fice. In contrast, for thermal comfort research, a non-invasive mea-
surement is usually defined as any measurement system/protocol
to acquire thermal comfort effectors that does not intervene occu-
pants’ activity. Thus, physiological measurements such as body
temperature measurements using thermometers in the ear canal,
mouth or rectum are considered as invasive in thermal comfort
research whereas they are considered as non-invasive from a med-
ical field perspective. Similarly, measurements of the electrical
output of human activity such as electrocardiogram (ECG),
electropalatogram (EEG), electromyogram (EMG) and electrooculo-
gram (EOG) are invasive. Non-contact measurements are defined
as the acquisition of human thermal comfort data or information
without touching the body. For instance, remote sensing tech-
niques such as the infrared camera system are truly both non-
contact and non-invasive. Obviously, non-contact measurements
do not necessarily be non-invasive. Hence, the term ‘‘non-
contact” is more commonly used in the literature regarding non-
contact measurements.
2. Traditional invasive (contact) measurements

Traditional invasive (contact) measurements include surveys,
physiological measurements and environmental measurements.
A survey, typically in the form of questionnaire, is the most direct
method because it extracts occupants’ state of mind with regard to
thermal environments. Surveys are invasive because they require
the occupants to temporarily cease their normal activities and fill
out the surveys or respond to electronic inquiries. Paper-based sur-
veys are mainly used for lab tests and are not feasible in real built
environments where both the thermal conditions and the occu-
pants may be constantly changing. Computer based electronic
questionnaires[48]and cell phone based apps can be used but they
need continuous and frequent user feedback[12]. Measurement
results of environmental parameters are not direct feedback or
physiological signals from human occupants. Correlation between
environmental parameters and occupant feedback can be created
by supervised learning methods, which is used for thermal comfort
assessment in the absence of occupant feedback[66]. Location dif-
ference between environmental sensors and occupants, non-
uniform distribution of air temperature, speed and solar radiation,
are main challenges[8,9].

Physiological measurement can be correlated with thermal
comfort/discomfort[17,64,39]. Invasive (contact) methods, for
measuring skin temperature, skin blood flow, core temperature,
heart rate, heart rate variability, electroencephalograph (EEG)
and so forth, are commonly used. Measuring errors are caused by
angle and position of device, movement and limb fat content of
occupant [76]. Foreign body sensation is the main obstacle for
practical measurements.
3. Semi and mini-invasive (contact) measurements

Unlike traditional invasive methods require physically body
contact, semi and mini invasive methods were presented by inte-
grating sensors into wearable accessories. Four infrared sensors
were integrated to eyeglasses to extract the skin temperature from
the front face, cheekbone, nose and ear for thermal comfort assess-
ment and thermal regulation performance analysis [9]. Based on
the results, a hidden Markov model based learning method was
developed[10] to capture individual thermal comfort. The method
could continuously monitor real time thermal comfort of individ-
ual occupants. Nevertheless, the method did not consider the effect
of occupant activity intensity on thermal comfort. Besides, how the



Table 1
Contact, semi and mini-contact and non-contact measurements.

Cases Methods Main Contributions Merits Limitations Selected References

Traditional contact measurements Questionnaire survey, environmental
parameter measurement and physio-
logical parameter measurement were
used to evaluate human thermal
comfort.

Accuracy
Proved by many studies

Continuous and frequent feed-
back is needed for question-
naire survey.
Environmental parameters are
not direct feedback or physio-
logical signals from human
occupants.
Foreign body sensation is the
main obstacle for physiological
parameter measurement.

[17,48,64,76,8,9]

Semi and mini-contact
measurements

Integrating infrared sensor to glasses
to measure human physiological
parameters, a semi-invasive human
thermal comfort measurement
scheme was proposed.
Wrist-type wearable devices, such as
smart bracelet, can be used to mea-
sure wrist skin temperature, pulse
rate variability, etc.

Accuracy
Less disturbance for the
people

1. Not all people wear glasses and
wrist-type wearable devices.

2. The sense of foreign body is
weakened but not eliminated.

3. The allowed ambient thermal
ranges are limited for accurate
sensing.

[9,65,10,43,38,72]

Non-contact measurements (infrared
camera technology)

Infrared images of bare skin (such as face
skin and hand skin) were collected and
analyzed by infrared camera and used to
evaluate human body thermal comfort.

No contact
Comprehensive infor-
mation for multi-people
and surroundings

Infrared cameras are usually high
cost and big size.

[25,55,51,41,52,15,28,71,32,35]

(continued on next page)
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Table 1 (continued)

Cases Methods Main Contributions Merits itations Selected References

Non-contact measurements (cross-
validation of infrared camera, RGB
camera and wearable devices)

The reliability of semi-contact and non-
contact measurement of human thermal
comfort was cross validated.

No contact
Accuracy

[6,3,7,5,72]

Euler video magnification Euler video magnification, a technol-
ogy that enlarges frames in a video
to show subtle movements and color
changes that are invisible to the naked
eyes, was officially proposed.
Euler video magnification can be used
for structural detection, judging
whether the sound is vocal by enlarg-
ing the laryngeal node, detecting
slight changes in heart rate, pulse,
human skin color, and blood flow.

Providing heart rate [18,36]

Non-contact measurements(ordinary
camera combined with Euler video
magnification)

Euler video magnification was firstly
used to monitor human thermal com-
fort and control HVAC system.
A preliminary experiment of non-con-
tact measurement was carried out
under the condition of weak stimula-
tion of human hand in 45 �C warm
water.3. The skin image was trained
by using big data and the NIDL algo-
rithm.4. The skin sensitive index,
which is an index to evaluate the
non-contact measurement scheme,
was proposed

The subjects are only Asian
women, and the experiment
needs to be further verified.
The experiment was only per-
formed under strong stimula-
tion conditions

[75,74]
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Table 1 (continued)

Cases Methods Main Contributions Merits Limitations Selected References

Non-contact measurements(ordinary
camera combined with Euler video
magnification)

Human body is weakly stimulated at
different ambient temperatures (high
temperature 30 �C low temperature
20 �C), and facial images are extracted
for analysis. A thermal comfort evalu-
ation scheme was proposed, which
combines commercial camera and
RGB video image technology.
The video post-processing technology
was explored to eliminate the influ-
ence of interference areas and
artifacts.

The influence of human move-
ment and background light is
unavoidable.

[70,26,69]

Skeleton keypoints model Dynamic poses can be captured in real
time.
Multi-person and single-person pose
estimation based on deep learning
was proposed.
It was widely used in different fields,
such as video games, robotics, medical
science, etc.

[54,77,62]

Non-contact measurements method
(Skeleton keypoints mode)

The twelve poses of thermal discom-
fort was defined.
An algorithm was proposed to associ-
ate thermal uncomfortable poses with
thermal uncomfortable feeling.

No contact
Detailed information
about human pose

In a short time, the number of
frames available for pose deter-
mination is insufficient, which
causes a misjudgment at the
first one to two seconds of pose
switching.

[16]

Four thermal discomfort related poses
were defined.
Library of thermal discomfort poses
was established.

The Kinect is protected by many
patents and its application scope is
limited.

[11]

Application of non-contact
measurements in demand oriented
ventilation

A new image based indoor personnel
positioning and pose recognition sys-
tem was set up.
The method can be used for detecting
operating modes of multi-functional
rooms (classroom/conference room)
and controlling demand oriented ven-
tilation systems.

Accurate human posi-
tion and pose
Easy system setup
Low system cost

3D reconstruction accuracy
need to be improved.

[34]
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factors such as optimal positions, distancing and sensing coverage
affect the prediction accuracy of thermal comfort remained
unknown.

Wrist-type wearable devices, such as smart bracelet, can be
used to measure the wrist skin temperature[23,50]. Skin tempera-
tures from three different wrist parts were monitored on sedentary
occupants under different room temperatures, together with fin-
gertip skin temperature measurements[65]. A thermal comfort
estimation model was developed. A wristband was used to record
photoplethysmogram (PPG) signals, from which Inter-beat interval
(IBI) signals were extracted and sent to a smart phone for pulse
rate variability (PRV) calculation and real time thermal comfort
prediction[43]. The wristband was also used to dynamically correct
offset errors for thermal images captured by smartphone thermal
cameras[35]. Measuring results of skin temperature and heart rate
(HR)/heart rate variability (HRV) from smartwatch were used to
develop thermal sensation estimation models[20,21] . They were
also compared with results from professional measuring devices
[27]. In spite of good estimations of the thermal sensation percep-
tion were found based on the wrist skin temperature/hear rate and
proposed models, most models were validated on a limited num-
ber of occupants in specific thermal conditions. Besides, individual
characteristics such as gender and fitness are not considered in
those models.
4. Non-invasive (non-contact) measurements

Traditional invasive measurements, including a questionnaire
surveys, monitoring of environmental parameters and human
physiological parameters were widely used and integrated with
Internet of Things (IoT), Artificial Intelligence (AI) and machine
learning (ML). Minimized measuring sensors are more user-
friendly to occupants. Sensors were also integrated into wearable
accessories, such as goggles, watches, to avoid potential foreign
body sensations.

Video and image methods were tried to achieve non-contact
measurements. Presently, three research directions were devel-
oped, including the miniaturization and low-cost of infrared cam-
era technology, the Euler video magnification technology-aided
normal camera for monitoring human thermal physiology signals,
and the skeleton keypoints model aided normal camera for moni-
toring thermal comfort/discomfort poses.
4.1. Infrared camera technology

Before being used for the occupant thermal comfort assessment,
videos and images captured by infrared camera were widely used
for emotion and expression recognition [19,46,24,4] , medical
detection[55,45,40] , face recognition and landmarking
[57,61,44,56] , lie detection[37,78,63] , and so forth.

Infrared camera was widely used for collecting and analyzing
infrared images of the nude skin such as facial, hand skin
[55,51,41,52,15,28,71,32] , which may be used to infer how to con-
trol HVAC systems in an energy efficient manner without compro-
mise of occupant thermal comfort [41]. Facial skin temperature
was obtained by far-infrared imaging (7–14 lm). Other parame-
ters, including skin potential, skin resistance, hand skin tempera-
ture, respiratory frequency and cardiac frequency can also be
obtained and analyzed[25]. Recently, low cost and miniaturized
models are commercially available, such as smartphone based
thermal camera[29]. Compared to high-end models, the accuracy
of low cost thermal camera is insufficient because of uncooled
infrared detectors. A dynamic offset correction method was pro-
posed[35]. Infrared camera technology was also compared with
traditional invasive measurements of ambient air temperature
and semi invasive measurements of wrist-type wearable devices
[2]. Accuracy tradeoffs among them were analyzed. Results
revealed that data combination from both physiological and ambi-
ent sensors resulted in 3–4% higher accuracy than using ambient
sensors only. Thus, using physiological sensors might not be desir-
able in the studied conditions. To solve the issue of occupants’ rel-
ative movements to thermal camera, a new approach was
proposed to extract skin temperature by locating specific face
regions in thermal images which combined data from RGB images
with thermal images and leveraged facial landmark detection in
RGB images [2]. Combination of different algorithms, including
the face detection, facial landmark detection, emotion recognition,
face frontalization and analysis, was tried to analyze infrared face
images[53]. Infrared camera was also used for collecting and ana-
lyzing infrared images of athletes during outdoor running and
indoor treadmill running[30]. Though above-mentioned studied
showed good thermal sensation predictions with 65–85% accuracy,
the effect of noise in thermal images on thermal and comfort mod-
eling has not been examined. The robustness and precision of algo-
rithms and models require further validation. In addition, privacy
concerns on how to analyze and use data collected by infrared
cameras are presented.

Three sensors, including a thermographic camera, a depth sen-
sor and a color camera, were integrated into a sensing platform
named RGB-DT (RedGreenBlue-DepthTemperature) to extract skin
and clothing temperature for thermal comfort assessment[6]. The
sensing platform followed three principles, which are low cost
(USD 300), small form-factor device and real-time capabilities.
Based on the methods, the machine learning method was used to
generate prediction and perform data analysis [1],Chaudhuri
et al., 2017; [7,5]. Infrared thermal camera network, composed
by low-cost thermal cameras and RGB-D sensors (Kinect), was
tried to overcome influences of occupants’ postures and move-
ments [72]. However, an infrared camera in thermal comfort and
sensation predictions is still limitedly accurate in reality, mainly
caused by users’ dynamic postures and movements. Also, a poten-
tial privacy issue is still available by taking the identifiable facial
image.

4.2. Euler video magnification technology-aided normal camera

A microscope-like visual motion magnification technique was
presented, which combined the measured visual motion with pix-
els modified from a sequence of video images using the Lagrangian
method to view the forms and characteristics of magnified motion
in a video[18]. Euler video, a technology that enlarges frames in a
video to show subtle movements and color changes invisible to the
naked eyes, was officially proposed[36]. Unlike the Lagrangian
method, Euler processing does not actually track motion, but
rather relies on video pyramids and temporal processing that pro-
duce magnification. The basic method is to consider the time series
of color values at any given pixel and amplify the changes in a
given time band of interest.

Euler video magnification can be used for structural detection,
judging whether the sound is vocal by enlarging the laryngeal
node, detecting slight changes in heart rate, pulse, human skin
color, and blood flow[67]. Subsequently, two research groups at
Umeå University in Sweden and Virginia Tech University in the
United States applied Euler video magnification for human skin
temperature measurements which could reflect thermal comfort
status and send feedback signals for controlling HVAC systems.

Based on subtle changes in blood vessels and skin colors, the
relationship between the skin color saturation and the skin tem-
perature was established[75]. A non-contact human skin tempera-
ture measurement technology that can be used as feedback signals
for HVAC systems was proposed. The color of the human skin
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changes slightly with the expansion or contraction of blood vessels,
especially under local thermal stimulation such as using a hand
warmer. Although the changes are invisible to naked eyes, images
captured by a common camera can be enlarged to analyze temper-
ature changes. High blood vessel density on hand back is usually
not covered by clothes. Skin of young female subjects is relatively
delicate without skin wrinkles and sensitive to thermal stimula-
tion. Therefore, east Asian women were chosen and their hands
were stimulated in warm water at 45 �C for 10 min. After that,
video was recorded and analyzed by magnification to obtain the
hand back skin color saturation. Meanwhile, the hand back skin
temperature was also measured. The relationship between skin
color saturation and skin temperature was established for the pur-
pose of measuring skin temperature in a non-contact way.

Euler video magnification technology can accurately analyze
the skin color saturation. When skin temperature rises, pores
expand and the skin becomes red. According to the Saturation-
Temperature (ST) model, skin color saturation may have a linear
relationship with the skin temperature. Red, green and blue
(RGB) signals of skin colors were extracted and magnified. Inde-
pendent component analysis (ICA) was used in video post-
processing to remove noise and separate heart pulses for achieving
automatic measurements of heart pulses. Through the vital sign
camera algorithm, the rate of skin color change was enlarged to
achieve accurate measurement of non-contact pulse and breathing
frequency. Using the partly personalized ST model for non-contact
measurement of the skin temperature of young women from East
Asia, the median value of absolute error changed from 1.32 �C to
0.61 �C. The results demonstrated that the skin temperature signal
can be obtained by using a common camera combined with the
video amplification technology to achieve non-contact measure-
ments of human temperature. The subtleness magnification and
deep learning (NIDL) algorithm was proposed and cross-
validation was performed using NIDL, partly personal ST model
(NIPST) and iButton sensors, which further evaluated the feasibility
of using Euler video magnification technology[73]. A non-contact
skin temperature measurement method based on skin sensitivity
index (SSI) was proposed, and deep learning network training
was performed on skin images using big data[74].

Euler video magnification technology was developed from non-
contact measuring the skin temperature under strong stimulation
by water to weak stimulation by room air. A thermal comfort eval-
uation scheme using off-the-shelf commercial cameras (i.e., Log-
itech HD Pro Webcam C920) and RGB video image technology
was proposed[26]. Under experimental conditions, two different
thermal conditions are stimulated to the user sitting in the work-
ing environment in front of the computer (high temperature
30 �C and low temperature 20 �C). The connected camera can con-
tinuously capture images of the head and facial skin to detect
bleeding subtle changes in flow, inferring the regulation mecha-
nism of human body temperature and thermal comfort. The cam-
era on the mobile computer can be used to easily capture the
human skin. The technology parts such as the face detection, skin
pixels isolation, image magnification and the detection index cal-
culation can extract human body thermal comfort information
contained in the video. In the recognition process, it is necessary
to eliminate the influence of irrelevant areas such as facial eye-
brows and beard. It is also necessary to consider the possible inter-
ference of different lighting on the performance of the method (the
original image should be subtracted from the enlarged image to
consider the variable original color intensity) and eliminate the
brightness channel to reduce the impact of various lighting. The
feasibility evaluation of this scheme was carried out. Twenty-one
participants were stimulated under different ambient tempera-
tures of a low temperature (20 �C) and a high temperature
(30 �C). Of the 18 statistically significant cases, a total of 16 cases
were observed using the optimal method combination, with a suc-
cess rate of 89%. The results showed that it is feasible to use the
human body temperature regulation mechanism (blood perfusion
change) and the Euler video amplification algorithm to infer ther-
mal comfort state through RGB video images under different ambi-
ent temperatures. Building occupants (especially office/
administration buildings) can use this non-invasive platform to
interact with personal computers using commonly connected
video devices, which is not only expected to achieve non-
invasive, real-time, personalized thermal comfort measurement,
but also provide feedback signals for energy management. How-
ever, the above experiments require the human subjects to remain
still while recording to minimize changes in light and movement,
which is unavoidable in practical applications. Subsequently, a
framework for extracting subtle changes in photoplethysmography
(PPG) signals using facial RGB video images recorded from a dis-
tance was proposed[69]. After separating the region of interest
(cheek), the combination of independent component analysis and
least mean squares (LMS) adaptive filtering algorithms are inte-
grated into a framework, and the effects of unwanted and in-
band artifacts can be eliminated while retaining the amplitude
information of the PPG signal. In addition, the feasibility of using
the Doppler radar sensing (DRS) system to express passenger ther-
mal comfort with changes in breathing intensity has also been
studied[70]. Results illustrated that the real-time measurement
of respiration can be used as an index of occupants’ thermoregula-
tion state to achieve smart control of the building HVAC system.
4.3. Skeleton keypoints model aided normal camera

Human pose estimation has been explored for many years [49]
and it was widely used in different fields, such as video games,
robotics[59]and medical science[14]. Body parts, such as the torso,
limb, face and finger were captured [31]. A generic convolution
neural network can be applied to the human pose estimation.
[13]. To capture human poses more accurately, skeleton keypoints
were also proposed[54,77,62] . The skeletal node model has good
dynamic capture, remote location of personnel information, wide
application range, and strong system adaptability. The task of pose
estimation was completed by convolutional pose machines
through learning image features and image-dependent spatial
models[60]. An open source software which named Openpose
was also released, which can be applied to real-time single or mul-
tiple human pose estimation[58]. In addition to the Euler video
magnification technology, the skeleton keypoints model can also
assist normal camera to assess human thermal comfort in a non-
contact way. Thermal comfort can not only be reflected in specific
physiological parameters but also be expressed in human poses.

Kinect for detecting thermal comfort/discomfort related pos-
tures was proposed[11]. Four types of postures were defined, and
the logical relationship between posture and thermal discomfort
was established. Database of ‘‘heat discomfort postures” needs to
be established. In addition, Kinect was applied to detect metabolic
rates by adopting image classifications using the deep learning
algorithm[33]. However, practical application of Kinect is not scal-
able and economical. As a special device generally used for com-
puter games, Kinect is protected by patents. As a solution, open
source platforms (e.g., Openpose) can be used to generate coordi-
nates of human skeleton keypoints. Twelve thermal discomfort
poses were defined, including: ‘‘sweat”, ‘‘hand fan wind”, ‘‘shake
T-shirt”, ‘‘scratch”, ‘‘roll up sleeves”, ‘‘walk”, ‘‘shake” ‘‘shoulders”,
‘‘crossed arms”, ‘‘crossed legs”, ‘‘necks with both hands”, ‘‘warm
hands with breath” and ‘‘stomp”[16]. The poses were compared
with questionnaire survey results. Compared with the infrared
camera mentioned earlier, the initial investment is reduced and
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no additional costs are required. Mobile phone or computer camera
can be used for data collection.

Unlike the Euler video magnification technology, which is now
targeted at stationary people, the skeletal keypoints model can also
pick up and identify human skeleton keypoints with high accuracy
when human body moves. The technology can also have the feasi-
bility of remote measurements[16]. However, the wrong judgment
of human comfort/discomfort may be occurred based on the poses.
Cross-validation of the same poses from different occupants is
necessary.

However, there are still technical limitations in the accuracy of
predicting activity levels and metabolic rates [33]. Due to individ-
uals’ physiological differences, a developed prediction model’s per-
formance has frequently been not consistent, depending on gender
and physical shapes. For example, a similar action intensity could
be applied to individuals differently, and a predicted metabolic rate
could be variously perceived per individual in practice. In addition,
a specific angle is usually pre-defined to capture a preferred image
for the models. People may not show the presumptive poses when
feeling hot or cold. Poses, defined in the thermal discomfort library,
may be caused by other reasons non-related to hot/cold discom-
fort. For an instance, stamping feet may not be caused by cold dis-
comfort but dirty shoes. These technical drawbacks limit the
application of skeleton keypoint-based image models to reality.
5. Discussion

5.1. Non-contact measurements for personalized thermal comfort

Infrared imaging technology is rapidly evolving in both built
environment research and industrial fields over the past 5 decades.
It is widely considered as an excellent non-contact inspection tool
for monitoring and diagnosing building conditions. Infrared images
could visually display the surface temperature of buildings, which
is affected by the heat flow, air and moisture through the building
envelope. These three factors not only affect building durability
and energy efficiency but also occupant comfort, health and safety.

It has been well known that it is not possible to satisfy all occu-
pants with the same indoor condition due to large individual dif-
ferences. To achieve individual thermal comfort, individual
thermal status must be analyzed and simultaneously being sent
to the process control of personal comfort systems to trigger
proper actions to meet individual needs. Infrared imaging technol-
ogy is recognized as one of the most convenient approaches to
measure real time skin temperature of occupants. This technology
has been proposed as a potential personal based energy efficiency
control strategy to improve individual occupant thermal comfort.
It should be mentioned that such control strategy is mainly based
on room level. With the rapid development and technology
advancing on personal thermal management systems, the applica-
tion of infrared imaging technology to control a personal thermal
management system such as personal cooling or warming clothing
seems promising. The concept is believed to further enhance indi-
vidual occupant thermal comfort as well as save enormous built
conditioning energy.

Nevertheless, the infrared imaging technology has inherent lim-
itations. First, infrared imaging technology could only measure
naked skin temperatures but not the temperature of local body sites
that are covered by clothing or deep body temperatures. To mea-
sure the temperature of clothed body part, occupants have to stop
the normal activity and take off the clothing. Hence, this procedure
has no longer been defined as non-invasive. Therefore, only the
temperatures are the facial area, hands or lower arms may be con-
veniently measured by the infrared imaging technology. In spite of
local skin temperatures at these sites are useful for predicting ther-
mal and comfort sensations, these areas account for a very small
portion of the entire skin surface, and thereby, accurately predic-
tion of overall thermal comfort or local thermal comfort at other
clothed body parts is challenging. Second, the infrared camera has
a relatively low measurement accuracy compared to thermistors.
Most existing infrared cameras have a measurement accuracy
of ± 2 K or ± 2% of measured temperature, which could greatly
decrease the judgement of time dependent individual thermal sta-
tus. Besides, high definition cameras are pricy. Third, the quality of
infrared images is influenced by many factors such as test condi-
tions, view angle, emissivity, stabilization time and background
radiation sources. Thus, more research is needed to determine the
adequate procedures for image acquisition and analysis. There is
also a need to train the experimenter to help control different influ-
ential factors that could affect the measurement accuracy.

5.2. Non-contact measurements for demand-oriented environmental
controls

Skeleton keypoints model, as one of the video/image based
non-contact methods, was used not only to recognize occupants’
thermal comfort/discomfort poses but also to positioning indoor
occupants and estimate poses. Video/image based non-contact
methods overcome the limitations of traditional occupants count-
ing and positioning methods such as temperature and CO2 sensor
based method, passive infrared ray (PIR) sensor based method,
radio frequency identification (RFID) based method, Bluetooth
low energy (BLE) based method, and so forth.

Zonal occupant counting can be obtained accurately by the
video/image based non-contact occupant positioning[47]. Recogni-
tion algorithm, based on the convolutional neural network, can
achieve a detection rate of 95.2% for human head-shoulder targets
[42]. Multiple vision sensors, aided by the Bayesian algorithm data
fusion, can improve sensing accuracy [22]. Above mentioned stud-
ies were mainly focused on occupants’ positioning, without obtain-
ing human poses which reflected operating modes of multi-
functional rooms. Skeleton keypoints model was developed for
occupants’ positioning and pose recognition. The method can be
used for detecting operating modes of multi-functional rooms
(classroom/conference room) and controlling the demand-based
HVAC system [34]. Image collection, extraction, 3D reconstruction
and data fusion can be finished in 1.5 s for achieving real time
human positioning and pose recognition.

The speed of image/video data collection, extraction, analysis
and signal transmission is faster than the operation speed of
mechanical devices (damper, valve, VSD fan, etc.) in demand based
HVAC systems. Mismatch or even wrong adjustment may happen,
which impeded the practical applications of demand based HVAC
technologies and image/video based non-contact sensing technolo-
gies. Performance improvement of corresponding mechanical
devices is necessary. New technologies were tried, such as energy
efficient fans working together with less intensified air condition-
ing system. Room temperature setpoint is unchanged, which
avoids the limitation of slow adjustment speed of the air condi-
tioning system. Quick adjustment of energy efficient fan speed
can be achieved, which is matched with the speed of image/video
based non-contact sensing technologies. Room size, room irregular
shape, mutual blockage among occupants are also the important
influential factors for the image/video based non-contact sensing
technologies.

Considering the too cold thermal condition in commercial office
buildings, frequently witnessed during the cooling season, an opti-
mal setpoint temperature provides an opportunity to enhance
energy efficiency. The collected image/video data and information
provide a reasonable accuracy to estimate individual building
occupants. Based on the composite information of individual users,
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an optimally estimated set point temperature could be overridden
depending on the occupants’ physiological conditions and status
with the consideration of seasonal, monthly, and daily effects.
For example, a higher setpoint temperature has potential to con-
tribute to 1 to 1.5% cooling energy saving per degree change, and
vice versa for heating conditions.
6. Conclusions

Rapid developments of new technologies in computer vision,
image/video processing, infrared imaging fields promotemeasuring
and sensing methods from contact manner to non-contact manner.
Main achievements and future directions are summarized as
follows.

1. Low cost and miniaturized thermal camera, with uncooled
infrared detectors, were integrated into smartphone. Cooled
infrared detectors can be further miniaturized in the future.
More intelligent correction method will be developed to
improve accuracy of thermal image.

2. Euler video magnification technology was used to detect the
skin temperature variation from weak thermal stimulus to
strong thermal stimulus. Image/video processing technologies
were improved to isolate unwanted skin regions, improve accu-
racy and avoid influences from human movements.

3. Skeleton keypoints model was applied to test human thermal
discomfort/comfort poses, a library of which was established.
Cross validation methods should be developed to test whether
poses in the library are really correlated to certain thermal dis-
comfort. More occupants with one same thermal discomfort
pose and one occupant with more thermal discomfort poses
can be used to validate the correction. The technology can also
be used for sending feedback signals to control the demand
based HVAC.

Overall, this review paper has a large potential to guide future
study directions with consideration of the current research out-
comes and their technical merits and limitations. It also confirms
the research parameters to investigate further in the Building
Technology domain. However, Due to restricted access to the
detailed data of individual case studies selected in this review,
comprehensive assessment was not be able to conduct, especially
on detailed technical features, such as the sensing frequency, gen-
erated signal noise and filtration strategies, and potential compat-
ibility to existing building systems, etc. Therefore, additional
review research should be conducted to investigate specified com-
putational and sensing processes, and effective data acquisition
methods, as well as thermal perception estimation per individual
and general occupants with the consideration of practical func-
tional merits in terms of cost, usability, and practicality.
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