Approximating Edit Distance in Truly Subquadratic Time:
Quantum and MapReduce

MAHDI BOROUJENI, Sharif University of Technology, Iran

SOHEIL EHSANI, University of Maryland, USA

MOHAMMAD GHODSI, Sharif University of Technology, Iran, and Institute for Research in Fundamen-
tal Sciences (IPM), Iran

MOHAMMADTAGHI HAJIAGHAYI, University of Maryland, USA

SAEED SEDDIGHIN, Toyota Technological Institute at Chicago, USA

The edit distance between two strings is defined as the smallest number of insertions, deletions, and substi-
tutions that need to be made to transform one of the strings to another one. Approximating edit distance
in subquadratic time is “one of the biggest unsolved problems in the field of combinatorial pattern match-
ing” [37]. Our main result is a quantum constant approximation algorithm for computing the edit distance in
truly subquadratic time. More precisely, we give an O(n'-31%) quantum algorithm that approximates the edit
distance within a factor of 3. We further extend this result to an O(n!-7) quantum algorithm that approxi-
mates the edit distance within a larger constant factor.

Our solutions are based on a framework for approximating edit distance in parallel settings. This frame-
work requires as black box an algorithm that computes the distances of several smaller strings all at once.
For a quantum algorithm, we reduce the black box to metric estimation and provide efficient algorithms for
approximating it. We further show that this framework enables us to approximate edit distance in distributed
settings. To this end, we provide a MapReduce algorithm to approximate edit distance within a factor of 1+,
with sublinearly many machines and sublinear memory. Also, our algorithm runs in a logarithmic number
of rounds.

CCS Concepts: « Computing methodologies — MapReduce algorithms; Massively parallel algorithms; «
Theory of computation — Quantum computation theory; Approximation algorithms analysis; Pattern
matching; Dynamic programming;

Additional Key Words and Phrases: Edit distance, approximation algorithm, subquadratic time algorithm,
quantum algorithm, parallel algorithm, MapReduce

Portions of this research were completed while the Soheil Ehsani, MohammadTaghi HajiAghayi, and Saeed Seddighin were
visitors at the Simons Institute for the Theory of Computing.

A preliminary version of this article was presented at SODA 2018 [15].

Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant 1IS-1546108, NSF AF:Medium grant CCF-
1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant.

Authors’ addresses: M. Boroujeni, Sharif University of Technology, Azadi St., Tehran, Iran; email: safarnejad@ce.sharif.edu;
S. Ehsani and M. HajiAghayi, University of Maryland, College Park, Maryland; emails: {ehsani, hajiagha}@cs.umd.edu; M.
Ghodsi, Sharif University of Technology, Azadi St., Tehran, Iran, Institute for Research in Fundamental Sciences (IPM),
Rocquencourt, Tehran, Iran; email: ghodsi@sharif.edu; S. Seddighin, Toyota Technological Institute at Chicago, Chicago,
Illinois; email: saeedreza.seddighin@ttic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2021/05-ART19 $15.00

https://doi.org/10.1145/3456807

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3456807

19:2 M. Boroujeni et al.

ACM Reference format:

Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed Seddighin.
2021. Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce. . ACM 68, 3,
Article 19 (May 2021), 41 pages.

https://doi.org/10.1145/3456807

1 INTRODUCTION

The edit distance (a.k.a Levenshtein distance) is a well-known metric to measure the similarity of
two strings. This metric has been extensively used in several fields such as computational biology,
natural language processing, and information theory. The algorithmic aspect of the problem is
even more fundamental; the problem of computing the edit distance is a textbook example for
dynamic programming. Therefore, edit distance has been subject to a plethora of studies in the
past few decades (see e.g. [2-5, 8-12, 24, 35, 37, 39, 43, 45, 48, 53, 57]).

The edit distance between two strings is defined as the smallest number of insertions, deletions,
and substitutions that need to be made on one of the strings to transform it to another one. For
two strings s; and s; with n characters in total (|s;| + [sz| = n), a classic dynamic program finds
the edit distance between them in time O(n?). The idea is to define auxiliary variables d; ;s, which
denote the edit distance between the first i characters of s; and the first j characters of s,. Next,
we iteratively determine the values of the auxiliary variables based on the following formula:

{di—l,j—l if s1[i] = s2[J1,
1+ min{d;j—1,j-1,di j-1.di—1,j} if s1[i] # s2[j].

ij =
Despite the simplicity of the above solution, it has remained one of the most efficient algorithms
from a theoretical standpoint to this day. Since the 1970s, several researchers aimed to improve the
quadratic running time of the problem; however, thus far, the best-known algorithm runs in time
O(n?/log® n) [48]. The shortcoming of these studies is partly addressed by the work of Backurs
and Indyk [10], wherein the authors show that a truly subquadratic time algorithm is impossible
to achieve unless a widely believed conjecture (SETH!) fails.

Unfortunately, the quadratic dependency of the running time on the size of the input makes it
impossible to use such algorithms for large inputs in practice. For example, a human genome con-
sists of almost 3 billion base pairs that need to be incorporated in similarity measurements. There-
fore, several studies were focused on improving the running time of the algorithm by considering
approximation solutions. A trivial 4/n approximation algorithm follows from an O(n + d?) exact
algorithm of Landau et al. [45], where d is the edit distance between the two strings. Subsequent

research improved this to n*7 [11], to n'/3*°(M [12], to 20(\logm) [8], and to the latest of which
provides a polylogarithmic approximation guarantee in subquadratic time [5]. Note that although
the running times of these algorithms are almost linear, even if one favors the approximation fac-
tor over the running time, slowing down the algorithms to barely subquadratic doesn’t yield an
asymptotically better approximation guarantee. Despite persistent studies, finding a subquadratic
algorithm with a constant approximation factor, which is the “holy grail” here, is still open (see
Section 6 of Indyk [37]). You can see an overview of recent works in this field in Section 1.1.
Quantum computation provides a strong framework to substantially improve the running time
of many algorithmic problems. This includes a long list of problems from algebraic computational
problems, to measuring graph properties, to string matching, to searching, to optimizing programs,

The strong exponential time hypothesis states that no algorithm can solve the satisfiability problem in time 27(1~€)

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

https://doi.org/10.1145/3456807

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:3

etc. [13, 14, 28, 35, 38, 44, 47, 56]. However, quantum techniques can only be applied to limited struc-
tures. For instance, many classic problems such as sorting or even counting the number of 1s in a
0-1 array are still as time-consuming even with quantum computation. Indeed, existing quantum
techniques offer no immediate improvement to the running time of edit distance. Likewise, no
improved quantum algorithm is known for many classic DP-type problems such as finding the Ics
(longest common subsequence) or dtw (dynamic time warping) of two strings, or determining the
Fréchet distance between two polylines. To the best of our knowledge, no exact or approximation
algorithm is known for edit distance in subquadratic time via quantum computation.

In this work, we provide a framework to approximate the edit distance between two strings
within a constant factor. This framework requires as black box a procedure that takes several
smaller strings as input and approximates their distances all at once. For quantum computers,
we reduce this black box to finding the distances of a metric, namely metric estimation. In this
problem, we are given a metric space where any distance is available by a query from a distance
oracle. We show that metric estimation cannot be approximated within a factor better than 3 with
a subquadratic number of quantum queries. On the contrary, we provide positive results for ap-
proximation factor 3 and also larger constant factors. We show our bounds are tight up to constant
factors by proving lower bounds on the query complexity of metric estimation. Our metric estima-
tion quantum algorithms are general tools and may find their applications in other distance-related
problems as well. Combining this black box with our framework yields subquadratic quantum al-
gorithms for approximation edit distance within a constant factor. Our work is similar in spirit to
the work of Le Gall [47] and Diirr et al. [25], where combinatorial techniques are used to obtain ef-
ficient quantum algorithms. We believe that our work opens an avenue to further investigation of
edit distance in the quantum setting and perhaps achieving a near-linear-time quantum algorithm
for edit distance.

As another application of our framework, we design a MapReduce algorithm for approximat-
ing edit distance within an approximation factor of 1 + €. MapReduce is one of the most recent
developments in the area of parallel computing. It has the benefits of both sequential and paral-
lel computation. Many tech companies such as Google, Facebook, Amazon, and Yahoo designed
MapReduce frameworks and have used them to implement fast algorithms to analyze their data.
In this article, we focus on the well-known MapReduce theoretical framework initiated by Karloff
et al. [40] (and later further refined by Andoni et al. [6]). Our algorithm runs in a logarithmic
number of rounds with a sublinear number of machines and sublinear memory of each machine.
Moreover, the running time of each machine is subquadratic.

To the best of our knowledge, both our quantum algorithms and our MapReduce algorithm are
the first to improve upon the trivial O(n?) classical algorithm beyond subpolynomial factors for
approximating edit distance? in these settings. We believe that our framework can be useful to
better understand edit distance in other models, such as the streaming and the semi-streaming
models.

1.1 Related Work

Prior Work. The closest works to our results are [4] and [8]. In particular, they use a space
embedding approach from [53] with dividing the string into blocks of smaller size, but our main
observations and structural lemmas are completely different from their approach. We note that to
the best of our knowledge, the ideas of our framework are novel and have not been used in any of
the previous work. Moreover, our combinatorial ideas have an advantage over previous approaches

2within a constant factor.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:4 M. Boroujeni et al.

including [8], since these approaches have at least log n levels of recursion, and therefore having
a logarithmic approximation factor is their inherent bottleneck.

A similar approach is taken in the work of Nayebi and Williams [52], wherein the authors study
the computational complexity of APSP on quantum computers. They give an APSP algorithm for
graph instances with small integer weights. They also give a fine-grained reduction from APSP to
negative triangle via quantum computing.

In [9], the authors give a parallel algorithm for determining the edit distance between two
strings. Their algorithm uses O(n?) processors and a shared memory of O(n?). Note that their
algorithm cannot be used in MapReduce models, since the number of machines and memory of
each machine in a MapReduce algorithm should be sublinear, and the number of rounds should be
O(polylog(n)) [40]. The major advantage of our MapReduce algorithm over the algorithm of [9] is
that both the number of machines and the memory of each machine is sublinear in our algorithm.
Moreover, the number of rounds in our algorithm is O(log(n)).

Designing MapReduce algorithms for simulating sequential dynamic programs for important
problems was recently initiated by Im et al. [36]. They study DP-type problems with two key
properties, monotonicity and decomposability. Their framework does not apply here since edit
distance is neither monotone nor decomposable.

Subsequent Work. Following the publication of the conference version of this article [15], a num-
ber of follow-up works pursued our approach.

Many subsequent works use the framework of this article to approximate edit distance and other
string similarity problems. The most notable work is done by Chakraborty et al. [22, 23], in which
they present the first constant approximation algorithm with truly subquadratic running time for
edit distance. They use the same framework as our article, cover input strings with smaller win-
dows, and then use triangle inequality to approximate the edit distance between many pairs of
windows. Hence, two out of three steps of their algorithm are similar to ours [55]. However, they
replace the third step of our framework, which is done by Grover’s search here, by a novel ran-
domized approach, which makes the algorithm entirely classical. A series of works then improve
the running time of the algorithm. Koucky and Saks [42] and Brakensiek and Rubinstein [20] in-
dependently provide a near-linear-time constant-factor approximation algorithm for edit distance
where the input strings are far from each other. Finally, Andoni and Nosatzki [7] present a simi-
lar near-linear-time algorithm that does not impose any condition on input strings. Note that the
approximation factors of these near-linear-time algorithms are (exponentially or doubly exponen-
tially) large constants. The best algorithm in terms of running time that approximates edit distance
within a factor of 3 + € is presented by Goldenberg et al. [30] with a running time of O(n"-6+o),

Furthermore, several works customize the framework of this article to solve other problems [19,
26, 29, 32, 41, 49]. Notably, Rubinstein et al. [54] modify the framework of this article and use an
extension of triangle inequality that is applicable to non-metric settings. By doing so, they provide
approximation algorithms for LCS and LIS. Moreover, Boroujeni et al. [16] replaced the triangle
inequality by a randomized technique and give 1+ 0(1) approximation algorithms for edit distance
and longest common subsequence when one of the input strings is randomly perturbed.

Moreover, HajiAghayi et al. [34] substantially improve our massively parallel (MapReduce) al-
gorithm for edit distance in terms of approximation factor, round complexity, number of machines,
and total running time. Roughly speaking, we construct a set of (not necessarily disjoint) windows
for both strings and show that by computing the edit distances of the windows, one can approxi-
mate the solution. Our algorithm uses matrix multiplication in the (max, +) setting, which is time-
consuming and requires O(log n) rounds of computation. In contrast, HajiAghayi et al. [34] take a
rather different approach and break only one of the strings into disjoint blocks of size n!™*. Then,

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:5

based on the properties of edit distance, they seek to find appropriate intervals of the other string
that are potential matches for each block. Once the candidate intervals are selected, they show that
one can solve the problem in a single round. Thus, their algorithm only needs two rounds of com-
putation. Furthermore, they present a massively parallel algorithm for LCS. In addition, Boroujeni
and Seddighin [17] improve the running time and the memory of this algorithm and give the first
parallel constant-factor approximation algorithm for edit distance that has a truly subquadratic
total running time. Their main contribution is parallelizing the framework of this article.

2 OUR RESULTS AND TECHNIQUES

In this section, we explain the ideas and techniques of our framework and show how we obtain a
subquadratic algorithm for approximating the edit distance on quantum computers. The basis of
our MapReduce algorithm is similar to what we explain here, though some details are modified to
run the algorithm in a logarithmic number of MapReduce rounds. More details about the MapRe-
duce algorithm can be found in Section 6. Our quantum algorithm is based on several known
techniques of quantum computing, algorithm design, and approximation algorithms. On the quan-
tum side, we take advantage of Grover’s search [31] and amplitude amplification [21] to improve
the lookup time on an unordered set. On the algorithmic side, we benefit from classical algorithmic
tools such as dynamic programming techniques, divide and conquer, and randomized techniques.
In addition to this, we leverage the bootstrapping technique to further improve the running time of
our algorithm, by allowing the approximation guarantee to grow to larger constant numbers.

Recall that the edit distance between two strings is defined as the smallest number of insertions,
deletions, and substitutions that one needs to perform on one of the strings to obtain the other one.
For two strings s; and s;, we denote their edit distance by edit(s;, s2). By definition, edit distance
meets all of the identity of indiscernibles,® symmetry,* and triangle inequality’ properties, and thus
for any set of strings M, (M, edit) forms a metric space.6 Following this intuition, our algorithm
is closely related to the study of the metric spaces.

In the following, we outline our algorithm in three steps. First, we define an auxiliary prob-
lem, namely metric estimation, and present efficient approximation algorithms for this problem
accompanied by tight bounds on its quantum complexity. Roughly speaking, in this problem, we
are given a metric space with n points and oracle access to the distances, and the goal is to out-
put an n X n matrix that is an estimate to the distances between the points. One may think of
the oracle as an ordinary computer program that we then convert to the corresponding quantum
code and unitary operator using a quantum compiler [27]. We give two approximation algorithms
that solve the metric estimation problem with approximation factors 3 + ¢ and e, (€) = O(1/€)
with 5(n5/3po|y(1/e)) and 5(n3/2+€p0|y(1/e)) oracle queries, respectively. Notice that the running
times of the algorithms are O(n?poly(1/¢)), but the query complexities are subquadratic. This al-
lows us to approximate metric spaces with sublinear points for which answering an oracle query is
time-consuming. We also consider A-neighboring metric estimation where we output the distance
of two points only if their indices differ by at most A, where A < n is a positive integer. Similar to
to metric estimation, we give two approximation algorithms that solve A-neighboring metric esti-
mation with the same approximation factors 3+¢ and e, (€) = O(1/¢) with 5(nA2/3p0Iy(l/e)) and
O(nAY 2*¢poly(1/€)) oracle queries, respectively. Moreover, the running times of the algorithms
are O(nApoly(1/€)). We emphasize that our metric estimation results are general and can be used

Sedit(sy, s2) =0 & 51 = s5.

dedit(sy, s2) = edit(sy, s1).

Sedit(sy, s2) + edit(sy, s3) > edit(sy, s3).

®A set of points M and a distance function d form a metric space (M, d), if d meets all of the aforementioned properties.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:6 M. Boroujeni et al.

for any metric. In the second step, we show that any algorithm that solves the metric estimation
problem within an approximation factor & can be used as a black box to obtain an « + € approx-
imation solution for edit distance. As we show, the reduction takes a subquadratic time and thus,
using our 3 + € approximation algorithm for metric estimation, we obtain a 3 + € approximation
algorithm for edit distance. Finally, in Section 5, we devise a bootstrapping technique to further
improve the running time of the algorithm by taking a hit on the approximation guarantee. In
what follows, we explain each of the steps in more detail. Before we delve into the algorithm, we
would like to note some comments.

e The only step of the algorithm where quantum computation plays a role is the first step
where we discuss metric estimation. Nevertheless, everywhere we use the term algorithm,
we mean a quantum algorithm unless otherwise stated.

e In this section, we explain the abstract ideas and steps of the algorithm. Therefore, sometimes
we do not provide formal proofs for some of the arguments that we make. The reader can
find a detailed discussion of all statements and proofs in Sections 3, 4, 5, and 6.

e Everywhere we use the word operation, we refer to insertion, deletion, or substitution.

2.1 Metric Estimation

As mentioned earlier, in the metric estimation problem, we are given a metric space (M, d) and
an oracle O that reports d(x, y) for two points x and y in an invocation. The goal of the problem
is to estimate the distance matrix of the points with as few oracle calls as possible. Due to the
impossibility results for exact or even solutions with small approximation factors for this problem
(see the rest for more details), our aim is to find an approximation solution.

Metric Estimation

Input: a metric space (M, d) with n points where M = {py,ps,...,pn} and an oracle function
O to access the distances.

Guarantee: all the distances are integer numbers in the interval [0,u]. We assume u is
O(poly(n)).

An output (with approximation factor @ > 1): an n X n matrix A, where d(p;,p;) < Ali][j]
ad(p;, pj) holds for every 1 < i,j < n.

IA

Before we state the main ideas and results, we briefly explain two key tools that we borrow
from previous work and use as black boxes in our algorithms. The first tool is the seminal work of
Grover [31] for making fast searches in an unordered database. Suppose we are given a function
f :[n] — {0,1}, where [n] = {1,2,3,...,n}, and we wish to list up to m distinct indices for which
the value of the function is equal to 1. We refer to this problem as element listing.

Element Listing

Input: integers n and 0 < m < n, and access to an oracle that, upon receiving an integer i, reports
the value of f(i). f is defined over [n] and maps each index to either 0 or 1.

Output: a list of up to m indices for which the value of f is equal to 1. If the total number of
such indices is not more than m, the output should contain all of them.

The pioneering work of Grover [31] implies that the element listing problem can be solved with
only O(y/nm) oracle calls via quantum computation. We subsequently make use of this algorithm
in this section.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:7

THEOREM 2.1 (PROVEN IN [18]). The listing problem can be solved with O(y/nm) oracle queries via
quantum computation.

The second quantum technique that we use in this article is a tool for proving lower bounds
on the quantum complexity of the problems. Let f : [n] — {—1,1} be a function defined over the
numbers 1,2, ..., n that maps each index to either —1 or 1 and par(f) = [[;c[n) f (7). In the parity
problem, we are given oracle access to f and the goal is to determine par(f) with as few oracle
calls as possible.

Parity

Input: an integer n, and access to an oracle O that upon receiving an integer i reports the value
of f(i). f is defined over [n] and maps each index to either —1 or 1.

Output: par(f) = [1ie[n ()

Of course, if the numbers of —1s or 1s are substantially smaller than n (i.e., o(n)), one can use
Grover’s search to list all of such indices and compute the parity with fewer than Q(n) oracle calls.
However, if this is not the case for either —1 or 1, such an approach fails. The seminal work of
Farhi et al. [27] showed that at least Q(n) queries are necessary for solving the parity problem and
thus quantum computation offers no speedup in this case.

THEOREM 2.2 (PROVEN IN [27]). The parity problem cannot be solved with fewer than Q(n) queries
with quantum computation.

Based on the result of Farhi et al. [27], we begin with showing an impossibility result. Our
first result for metric estimation is a hardness of approximation for factors smaller than 3 using a
subquadratic number of queries. More precisely, in Section 3, we show that any quantum algorithm
that approximates metric estimation within a factor smaller than 3 needs to make at least Q(n?)
oracle queries.

THEOREM 3.1 [RESTATED]. Any quantum algorithm for solving the metric estimation problem with
an approximation factor smaller than 3 needs to make at least Q(n?) oracle calls.

The idea is to show a reduction from parity to metric estimation. Suppose we are given an
instance | of the parity problem. Roughly speaking, we construct an instance Cor(l) of the metric
estimation and prove that Cor(l) has a valid metric as input. Next, we show that any algorithm that
approximates metric estimation within a factor smaller than 3 with o(n?) queries can be turned
into a quantum algorithm for solving parity with o(n) queries, which is impossible due to Farhi
et al. [27].

Despite this hardness of approximation for factors better than 3, we show the problem is signif-
icantly more tractable when we allow the approximation guarantee to be slightly more than 3. In
Section 3, we show that for any € > 0, a 3 + € approximation of metric estimation is possible via
O(n°*poly(1/€)) queries.

THEOREM 3.3 [RESTATED]. For any € > 0, there exists a quantum algorithm that solves metric
estimation with 5(n5/3poly(1/e)) queries within an approximation factor of 3 + €. Moreover, the
running time of the algorithm is 5(n2poly(1/6)).

Our first take on the solution is to discretize the problem at the expense of imposing an additional
1+ € factor to our guarantee. Notice that all of the distances of the metric are non-negative integers
no more than u. Therefore, one can divide the distances into log;, s u = 5(poly(1/e)) disjoint
intervals where the distances within each interval differ in at most a multiplicative factor of 1+¢€/3.
For every interval [x, (1 + €/3)x] we can set a threshold ¢t = (1 + €/3)x and find all pairs within

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:8 M. Boroujeni et al.

a distance of at most ¢ with an approximation factor of 3. Then, based on all these solutions, one
can find a 3 + € approximation distance for every pair of the points.

Now the problem boils down to the following: given a threshold t, find all pairs (p;,p;) such
that d(p;, pj) < t. Of course, an exact solution for this problem is hopeless due to our impossibility
result. Therefore, we allow some false positive in our solution as well. More precisely, we restrict
our solution to contain all pairs (p;, p;) such that (p;, p;) < d, but additional pairs are also allowed
to appear, if (p;, p;) < 3d. It is easy to show that any solution that solves the above problem via
o’/ 3poly(1/€)) queries yields a 3 + € approximation factor algorithm for metric estimation that
uses at most O(n*/*poly(1/e)) oracle calls.

In what follows, we describe the ideas to solve the problem for a fixed threshold ¢. The algorithm
is explained in detail in Section 3; therefore, here we just mention the tools and techniques. For
convenience, we construct a graph G with n nodes and correspond every point p; of the metric
to a vertex v; of the graph. For a pair of points (p;, p;), we add an undirected edge (v;, v;) to the
graph, if d(p;, pj) < t. Notice that the oracle function O provides us the exact value of d(p;, p;) for
any p; and p;; therefore, we can examine whether an edge exists between two vertices v;, v; with
a single oracle call. Recall that Grover’s search allows us to find as many as m elements with value
1 of a function of size n via O(+y/nm) oracle calls. Therefore, if the number of the edges of the graph
is O(n*/?), we can use Grover’s search (Theorem 2.1) to list all of the edges with O(Vn? - n#/3) =
O(n®/®) queries and solve the problem. Therefore, the non-trivial part of the problem is the case
where the graph is dense. In this case, the average degree of the vertices is at least Q(n'/®). Now,
suppose we select a vertex v; whose degree is at least n!/3, and with n — 1 query calls, find the
distances of its corresponding point p; from all other points of the metric. Let set D’ be the set
of all points that have a distance of at most ¢ from p; and D? be the points with a distance of
at most 2t from p;. Trivially, D' € D?’. Due to the triangle inequality, all of the edges incident
to the vertices corresponding to set D’ are from the vertices corresponding to D?/. Moreover, the
distances of all points of D! from points of D?* are bounded by 3t. Therefore, one can report all
such pairs in the solution and proceed by removing D’ from the graph (however, some vertices
of D* remain in the graph). Thus, all that remains is to solve the problem for an instance with at
most n—n'/3 nodes recursively. Since we make at most O(n) query calls for every n'/3 vertices (an
amortized of n?/3 per vertex), the total number of queries is O(n°/%). More details about this can
be found in Section 3.

In addition to Theorem 3.3, we show in Section 3 that with a deeper analysis, one can use
the same ideas to further improve the query complexity to on? €poly(1/€)) by allowing the
approximation guarantee to grow up to e, (€) = O(1/e€).

THEOREM 3.5 [RESTATED]. For any € > 0, there exists a quantum algorithm that solves metric esti-
mation with 5(n3/2+5poly(l/e)) queries within an approximation factor ofen, (€) = O(1/€). Moreover,
the running time of the algorithm is O(n®poly(1/€)).

Moreover, we show that the query complexity of any algorithm that approximates metric esti-
mation within a constant factor is at least Q(n*?). We prove this lower bound using a technique
of Ambainis [1].

THEOREM 3.8 [RESTATED]. Any quantum algorithm that estimates distances of a metric space of n
points with a constant approximation factor has a query complexity of at least Q(n*/?).

Furthermore, we define A-neighboring metric estimation. In this problem, for a given A, we
output an estimate of d(p;,p;) only if |i — j| < A. Therefore, instead of outputting the whole
distance matrix, we only output a diagonal band of the distance matrix (i.e., the main diagonal and
A diagonals on either side). A matrix A where A[i][j] = 0if |i —j| > A is called a band matrix with
a bandwidth of A.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:9

Table 1. Quality of the Approximation Algorithms for Metric Estimation

ApproX. a<3 a=3+¢€ a =em(e) o = Any

Factor Constant

queries Q(n?) O(n**poly(1/€)) O(n***¢poly(1/€)) Qn%'?)

without A (Theorem 3.1) (Theorem 3.3) (Theorem 3.5) (Theorem 3.8)

queries Q(nA) O(nA*3poly(1/€)) O(nAY?*€poly(1/€)) Q(nA/?)
with A (Corollary 3.9) (Corollary 3.11) (Corollary 3.13) (Corollary 3.14)

A-Neighboring Metric Estimation

Input: a metric space (M, d) with n points where M = {p1,p,,...,pn}, an oracle function O to
access the distances, and a positive integer A < n.

Guarantee: all the distances are integer numbers in the interval [0,u]. We assume u is
O(poly(n)).

An output (with approximation factor ¢ > 1): an n X n band matrix A with bandwidth A, where
d(pi, pj) < Ali][j] < ad(p;,p;) holds for every 1 < i,j < n where |i — j| < A.

We prove the following four results for A-neighboring metric estimation using similar tech-
niques to that of metric estimation.

COROLLARY 3.9 [RESTATED]. Any quantum algorithm for solving the A metric estimation problem
with an approximation factor smaller than 3 needs to make at least Q(nA) oracle calls.

COROLLARY 3.11 [RESTATED]. For any € > 0, there exists a quantum algorithm that solves param-
eterized metric estimation with O(nA*/*poly(1/€)) queries within an approximation factor of 3 + €.
Moreover, the running time of the algorithm is O(nApoly(1/€)).

COROLLARY 3.13 [RESTATED]. For any € > 0, there exists a quantum algorithm that solves metric
estimation with O(nAY/?*€poly(1/€)) queries within an approximation factor of em(e) = O(1/€).
Moreover, the running time of the algorithm is O(nApoly(1/¢)).

COROLLARY 3.14 [RESTATED]. Any quantum algorithm that estimates distances of a metric space
of n points with a constant approximation factor has a query complexity of at least Q(nA'/?).

You can find a summary of the results explained in this section in Table 1.

2.2 Approximating Edit Distance within a Factor 3 + ¢

In the second step, we provide an algorithm to approximate the edit distance between two strings
in subquadratic time, based on a reduction to metric estimation. Our approach here is twofold.
Suppose we are given a guess d on the actual edit distance between the strings, and we want
to find an approximation proof to the guess. More precisely, we wish to find out whether d is
smaller than the actual distance of the strings or report a transformation of the strings with at
most ad operations,” where « is given as an approximation factor. If d is substantially smaller
than n, then the O(n + d?) exact algorithm of Landau et al. [45] solves the problem in subquadratic
time. Therefore, the only hard instances of the problem are when d is asymptotically close to n.
Therefore, we define a subtask of the edit distance problem, in which we are given two strings s;

7insertion, deletion, or substitution.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:10 M. Boroujeni et al.

and s, and guaranteed that the edit distance between the strings is at most §(|s;| + |sz|), where §
is not too small. The goal is to find a transformation of the strings with at most (5 - @)(|s1] + [s2|)
operations, where « is the approximation factor of the algorithm. We refer to this subtask of edit
distance as the §-bounded edit distance problem.

6-bounded edit distance
Input: two strings s; and s;, and a real number 0 < § < 1.
Guarantee: edit(sy,s2) < 6(|s1] + [s2]).

Output (with an approximation factor ¢ > 1): a sequence of operations with size at most
(8 - @)(|s1] + |s2|) that transforms s; into s.

We combine a divide-and-conquer technique with dynamic programming in order to approx-
imate d-bounded edit distance. In addition to this, we subsequently make use of the quantum
techniques mentioned earlier in our solution. Recall that the total number of characters in the in-
put is equal to n, i.e., |s1]| + |s2| = n. For clarity, we define three parameters 0 < f < 1, u > 0, and
y > 1.y is an integer number, but and y are real numbers. We use f3, i1, and y as three parameters
of our algorithm, and after the analysis, we show which values for f, y, and y give us the best
guarantee.

We begin by defining the notion of a window and construct a set of windows for each string. Let
I = |n'"#] be the maximum window size and define a window of s; as a substring of s;. Moreover,
define g = [I/y] = O(n'~#/y) as the gap size and construct a collection W; of windows for s;
as follows: First, for every 0 < i < Llslg#J, put a window s1[ig + 1,ig + [] (i.e., a window from

index ig + 1 to index ig + [of s7) in W;. In other words, W contains tentatively y(|s;]/]) = O(ynﬁ)
windows of length [where the gap between the neighboring windows is equal to g. Second, for
every 0 < i < LIS‘TJ_IJ and every 0 < j < log,, , [, we add a window s [ig + 1,ig + [— (1 +p)’]. The

total number of windows in W is (1 + loglﬂl I)-O(ynf) = 5((1/p)ynﬁ). Figure 1 illustrates how
the windows of W span over the characters of s;. Notice that some of the windows overlap.

Similar to this, we construct a collection W, of windows for s, using the same parameters [and
g. We define a transformation of s; into s, as a sequence of insertions, deletions, and substitutions
that turns s; into s,. After a transformation of s; into s,, we call a character of s, old if it either is
substituted by a character of s; or remained intact during the transformation. In other words, if
a character is not inserted during a transformation, it is called old. Based on this, we define the
notion of a window-compatible transformation as follows:

Definition 2.3. Let S = (wy,wy,...,wr) and " = (w],w,, ... ,w,’() be two sequences of size k
of non-overlapping windows from W; and W, respectively. We call a transformation of s; into s
window compatible with respect to S and S’ if (1) all old characters of s, are in the windows of S’
and (2) every old character of s, that is in a window w;] was placed in window w; of s; prior to
the transformation. We call a transformation window compatible if it is window compatible with
respect to at least a pair of sequences of non-overlapping windows from W; and W, respectively.

Intuitively, a window-compatible transformation with respect to two sequences of windows S
and S’ does not allow the characters to move in between the windows; if a character is initially
placed in a window wj, it should be either deleted or placed in window w; of s, and vice versa.
We emphasize that in order for a transformation to be window compatible, the corresponding
windows should be selected from W; and Wa, respectively. A few examples of window-compatible
and window-incompatible transformations are illustrated in Figure 2.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:11

} a window of the maximum size = [|

— a window of size = [— (1 + p)’

,,,

,,,

v layers

,,,

,,

S1

Fig. 1. s1 is shown with a solid rectangle and [-sized windows of W; are depicted via dashed rectangles. Next
to each window of size [, we have log;, . I windows of smaller sizes, which is shown for one window at the
top of the figure.

*\
&___
ﬂ-— ‘

cablaaabb]

(a) An example of a window-
compatible transformation.

(c) The transformation is not
window compatible since charac-
ter 1 of the second string is old, but
prior to the transformation, it was
not placed in any windows.

(b) The transformation is not
window compatible since charac-
ter 5 of the second string is old, but
doesn’t lie in any windows.

z,,é,,,x{v RN

(d) The transformation is not
window compatible since charac-
ter 3 of the second string is old,
but prior to the transformation, it
was not placed in the correspond-
ing window.

Fig. 2. Figure 2(a), (b), (c), and (d) show a few examples of window-compatible and window-incompatible
transformations. Solid arrows show substitutions, dashed arrows show the characters that remain in the
string, and other characters are either inserted or deleted.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:12 M. Boroujeni et al.

As we show in the following, window-compatible transformations are well structured. In fact,
we show in Section 4 that if the edit distances of the windows are accessible in time O(1), a dynamic
program can find an optimal® window-compatible transformation of s; into s, in time O(n + A -
min(|Wi|, [W;])). Here, A is the maximum difference between the indices of two windows that
match to each other.

LEMMA 4.1 [RESTATED]. Given a matrix of edit distances between the substrings corresponding to
every pair of windows of Wy and W, and a positive integer A, one can compute an optimal window-
compatible transformation of s; into s, where a window in sy can map to a window in s, only if their
indices do not differ by more than A in time O(n + A - min(|W;], [W2])).

Lemma 4.1 shows that window-compatible transformations are easy to find. It also follows from
Lemma 4.1 that any a approximation matrix for the edit distances of the windows suffices to find an
approximately optimal window-compatible transformation (with the same approximation factor)
in time O(n+A-min(|W;|, |W;|)). This makes the connection of edit distance and metric estimation
more clear.

We complement this observation by a structural proof. In Section 4, we show that the length
of the shortest window-compatible transformation of s; into s, is not far from §(|s;| + |sz|). This
enables us to use the previously mentioned algorithms to find an approximately optimal window-
compatible transformation and show this is in fact a constant approximation away from &(|s;| +
[s2]). Moreover, in cases in which the solution is small, a window in s; can map to a window in s;
only if their indices do not differ by more than o((1/ w)on/g).

LEMMA 4.3 [RESTATED]. Given thatedit(sy, s2) < n, there exists a window-compatible transforma-
tion of s into s; with at most ((1+2p)8 + 1/y)n + 21 operations. Moreover, for each window w; € W;
that matches to a window wy € Ws, their indices do not differ by more than A = O((1/p)dén/g).

Now we can put things in perspective. Lemma 4.1, in light of the results of metric estimation,
provides us a nice tool for finding an approximately optimal window-compatible transformation,
and Lemma 4.3 argues that such a transformation is to some extent optimal. Based on this, we
outline our algorithm for §-bounded edit distance as follows:

(1) Construct the windows of W; and W, for both s; and ss.

(2) Construct a metric (M, edit), where M = W; U W, and the distance of two points in M
is equal to the edit distance between their corresponding windows. We use the classic al-
gorithm of edit distance to answer every oracle invocation for reporting the edit distance
between two windows. Using the quantum approximation algorithm of A-neighboring met-
ric estimation, find a 3 + € approximation solution to the edit distances for every pair of
windows (Corollary 3.11).

(3) Based on the estimated distances, find a 3 + € approximately optimal window-compatible
transformation (Lemma 4.1).

(4) Report the transformation as an approximation proof for the §-bounded edit distance prob-
lem.

We show in Section 4 that by setting f = 6/7, u = €/5, and y = 1/¢J, the above algorithm runs
in time O(n?~*/2! poly(1/€)) and has an approximation factor of 3 + €.

LEMMA 4.4 [RESTATED]. There exists a quantum algorithm that solves the 5-bounded edit distance
problem within an approximation factor of 3 + € in time O(n®~**'poly(1/€)).

8a transformation with the smallest number of operations.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

O(nA*?poly(1/c)) o(n?)
POy ~ - —2/21 3+€ :
O(n***poly(1/e)) O((1/8)n2poly(1/e)) 97 2 Dynamic
A_’boun,dEd . Programming
Metric Estimation
Edit Distance d-bounded B O(n+d*)

Edit Distance

§<n2/21

Landau et al.

1
1
1
1
1
1
1
1
1
:
1
! 3+ 3+e
1
1
1
1
1
1
1
1
1
1
1

Fig. 3. The diagram depicts the components of the 3 + € algorithm for edit distance. x — y shows that
component x uses component y as a black box.

By Lemma 4.4, we can approximate the §-bounded edit distance problem in truly subquadratic
time in case the guarantee holds. Of course, if this algorithm provides a larger or invalid transfor-
mation, one can immediately imply that the guarantee edit(sy, sz) < §(|s1] + [sz|) is violated. The
rest of the solution for edit distance follows from a simple multiplicative method. In order to solve
edit distance, we first check whether the two strings are equal, and in that case, we report that their
distance is equal to 0. Otherwise, edit(sy, s) > 1. Now, we start with p = 1/n and every time run
our solution for §-bounded edit distance with parameter § = p to find an approximation proof for
edit(sy, sz) = pn. If our algorithm finds a proper transformation with at most (3p + €)n operations,
then we report that solution. Otherwise, we know that edit(s;, s2) > pn and thus multiply p by a
factor 1 + €. Of course, this comes at the expense of an additional multiplicative factor of 1 + € to
the approximation factor; however, the running time remains O(n?"*/?!poly(1/e)). We later refer
to this technique as guess and multiply.

THEOREM 4.5 [RESTATED]. There exists a quantum algorithm that solves edit distance within an
approximation factor of 3 + € in time O(n®>~*/?'poly(1/€)).

2.3 Improving the Running Time via Bootstrapping

So far, we have discussed how to use divide and conquer and metric estimation to approximate
edit distance in subquadratic time. In this section, we explain the ideas to improve the running
time of the algorithm by taking a hit on its approximation factor.

Recall that, in order to approximate the edit distance, we first construct a set of windows. Next,
we use metric estimation to estimate the edit distances of the windows, and finally, we use a
dynamic programming algorithm to find an almost optimal window-compatible transformation.
As discussed before, such a solution approximates the edit distance within a constant factor. The
components of this algorithm are illustrated in Figure 3.

Now, we show that we can improve the algorithm at two points. First, instead of using the 3 + ¢
approximation algorithm for metric estimation, we can lose a factor of e, (€) in the approximation
and estimate the distances in time 5(nA1/Z+€ poly(1/€)) (Corollary 3.13). In addition to this, as an
oracle function for metric estimation, we do not really need to compute the exact edit distances of
the windows; a constant estimation to the distances suffices. Therefore, one can use our algorithm
for approximating edit distance to implement the oracle in subquadratic time. Of course, this again
comes at the expense of deteriorating the approximation guarantee, but the running time improves.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:14 M. Boroujeni et al.

In this section, we show how we combine these ideas to achieve an 5(n2_(5_‘/ﬁ)/3+5poly(1/e)) ~
O(n'7%%)-time algorithm. As to why the exponent converges to 2— (5—V17)/3, we refer the reader
to a discussion in Section 5.

To formalize the above ideas, suppose we are given two strings s; and s, and would like to
approximate the edit distance between the strings in time O(n2~=V1)/3+¢poly(1/€)). We call our
algorithm for this problem A(e) and refer to its time complexity and approximation factor with
te(€) and ee(€), respectively. We inductively show that

te(€) = O (nz_(s_‘/ﬁ)““poly(l/e))

and e (e) = O(1/€)°U°81/€) Notice that if 2—(5-V17)/3+€ > 2, A(e) can be trivially implemented
with the classic O(n?) algorithm and the approximation factor e.(¢) = 1. Now, assume that 2 —
(5-V17)/3+e<2.

An 5((1/5)n2_(5“/ﬁ)/2+35/2poly(l/(—:))-time algorithm for §-bounded edit distance suffices to
design Ae). If § < n~G=VIN/6+€/2 e run the O(n + §2n?) algorithm of Landau et al. [45];
otherwise, the running time of our algorithm is 5(n2_(5_‘/ﬁ)/ 3*¢poly(1/€)). Moreover, a sim-
ilar guess-and-multiply method explained in Section 2.2 extends this solution to edit dis-
tance. Therefore, all we need is to approximate the §-bounded edit distance problem in time
O((1/8)n?~(5=VID/2+3€/2p5]y (1 /€)). To this end, we again define three parameters f, 1, and y and
set the window size equal to |n'~#], ji to €/5, and the gap size equal to g = |I/y]. Similar to what
we explained before, we construct two sets of windows W; and W, for s; and s; based on the win-
dows size and gap size. Now, we use the same algorithm for finding the edit distance between s,
and sy, with two modifications.

(1) Construct the windows of W; and W5 for both s; and s,.

(2) Construct a metric (M, edit), where M = W; U W, and the distance of two points in M is
equal to the edit distance between their corresponding windows. We use A(2¢) (a slightly
slower version of our algorithm) for estimating the edit distances of the windows in time
te(2€) = O(n?~6-VIN/3+2¢ 01y (1/€)) as on oracle function. Using the approximation algo-
rithm of metric estimation, find an e, (¢)e.(2€) approximation solution to the edit distances
for every pair of windows (Theorem 3.5).

(3) Based on the estimated distances, find an ep(€)e.(2€) approximately optimal window-
compatible transformation (Lemma 4.1).

(4) Report the transformation as an approximation proof for the §-bounded edit distance
problem.

Notice that there are two modifications to the previous algorithm. First, instead of using the
3 + € factor algorithm for A-neighboring metric estimation, here, we use an en,(€) approximation
factor algorithm that runs in time 5(nA1/ 2*¢poly(1/€)). Moreover, instead of implementing the
oracle function via the classic O(n?) algorithm, we use A (2¢) for approximating the edit distances.
In Section 5, we show that by setting the right values for parameters f, j1, and y, the running time
and approximation factor of algorithm 7A(e) would be O(n2~~VID/3+€poly(1/€)) and ec(e) =
0(1/€)OU0g1/€) respectively.

THEOREM 5.1 [RESTATED]. There exists an O(n2~¢~V1)/3+¢)_time quantum algorithm that ap-
proximates edit distance within a factor e.(e) = O(1/¢)OUos1/€),

Figure 4 shows the components of A(e).

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

O(n! 7078 <poly(1/e)) O((1/8)n'- 2+ <poly(1/c)) O(nAY/ZF<poly(1/c))

1
1
1
1
X 1
' 1
X 1
X 1
: 0(1/e) ! '
Ae) ce(©) Ao b as Aughte s
1
' ee(e) Edit Distance — d-bounded A-bounded :) : :
: . .
1
1
1
1
1
1
1

Edit Distance Metric Estimation

5 < n(5-VIT)/6+e/2

Fig. 4. The diagram illustrates the bootstrapping technique to achieve an O(n'-7%8)-time quantum algorithm
for approximating edit distance. x — y shows that component x uses component y as a black box.

3 METRIC ESTIMATION

In this section, we discuss the metric estimation problem. Although the results of this section are
only auxiliary observations to be later used for edit distance, these results are of independent in-
terest and may apply to future work. As defined previously, in this problem, we wish to estimate
the distance matrix of a metric space (M, d) with n points. Notice that an estimation of a dis-
tance d(p;,p;) with approximation factor « lies in the range [d(p;,p;), ad(pi, p;)]; therefore, the
estimated value cannot be less than the actual distance. However, it can be more than the actual
distance by a multiplicative factor of &. We tend to minimize the query complexity and the approx-
imation factor; however, our algorithm is allowed to run in time 5(n2) Throughout this section,
we show a tradeoff between the approximation factor and the quantum query complexity of metric
estimation. First, we present an impossibility result that shows the approximation factor cannot
be less than 3 unless we make a quadratic number of queries. Next, in Section 3.2, we present our
desired 3 + € approximation algorithm for metric estimation with a subquadratic query complexity.
Afterward, we adjust our algorithm to make as few as O(n*/?*€poly(1/e)) oracle calls for a larger
constant approximation ey, (€) = O(1/€). Next, we show that Q(n%/?) quantum queries are neces-
sary for any constant factor approximation algorithm. Last but not least, we give similar results
for A-neighboring metric estimation, where we output the distance between two points only if
their indices do not differ by more than A.

3.1 Hardness of Approximation for ¢ < 3

As aforementioned, the purpose of this section is to show an impossibility result for approximating
metric estimation within a factor smaller than 3 with subquadratic query complexity. To this end,
we give a reduction from the well-known parity problem to the metric estimation problem. Parity is
one of the problems for which quantum computers cannot perform better than classical computers.
Recall the definition of the parity problem from Section 2.1.

Parity

Input: an integer n, and access to an oracle O that upon receiving an integer i reports the value
of f(i). f is defined over [n] and maps each index to either —1 or 1.

Output: par(f) = [Tiefn) f ().

Note that par(f) is either +1 or —1 for every function f. Farhi et al. [27] proved that at least
Q(n) oracle queries are necessary to find par(f). A classic method to show lower bounds on the

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:16 M. Boroujeni et al.

time/query complexity of problems is via a reduction from parity. This method has been used to
show lower bounds on the quantum query complexity of many problems [25, 50].

The idea is to construct a metric space from a given function f and show that any estimation
of the metric with an approximation factor smaller than 3 can be used to compute the parity
of f. A metric space should satisfy three properties: identity of indiscernibles, symmetry, and
triangle inequality. Keep in mind that our construction should be in such a way that the metric
meets all of the mentioned properties. For a function f : [n?] — {-1, 1}, we construct a metric
M ={ay,az,...,an,b1,by,...,b,} with 2n points. We divide the points into two groups, namely
a;s and b;s, where the distances of the points within each group are all equal to 1. Moreover, for
every pair of points (a;, b;), the distance of a; from b; is either 1/2 or 3/2, depending on function f.
We show that, given an @ < 3 approximation estimation for the distances of M, one can determine

par(f) uniquely.

THEOREM 3.1. Any quantum algorithm that approximates the metric estimation problem with an
approximation factor smaller than 3 needs to make at least Q(n?) oracle calls.

Proor. As promised, we prove this theorem by reducing the parity problem to the metric
estimation problem. Suppose we are given an instance | of the parity problem consisting of
f : [m] — {0,1} and an oracle O to access f. We assume w.l.o.g that m = n? and construct
an instance Cor(l) of metric estimation as follows: let (M, d) be a set of 2n points, where the
distance of the points p; and p; is denoted by d(p;, p;). We divide the points of the metric into
two groups, {aj,az,...,an} and {b1, b, ..., b,}. As mentioned before, the distances within the
points of each group are equal to 1. Moreover, for every pair of points a; and b;, we set d(a;, b;) as
follows:

3/2 f((-Dn+j)=1,
1/2 otherwise.

d(ai’bj) ={

The identity and symmetry conditions are met by definition. We show that the triangle inequality
also holds. If all three points of a triangle are in the same group (either a;s or b;s), then their
distances are all 1. If they are in different groups, the distances are one of these cases, (1,1/2,1/2),
(1,1/2,3/2),0r(1,3/2,3/2), all of which meet the triangle inequality. Thus, (M, d) is a valid metric
space. One can trivially construct an oracle Q for Cor(l) that reports the distance of a pair of points
with a single query to O.

Now, suppose for the sake of contradiction that there exists a quantum algorithm that estimates
the distances within a factor smaller than 3 with o(n?) query calls of Q. We show we can use this
algorithm to find par(f) as follows. We first run the algorithm to approximate all of the distances
via 0(n?) query calls to Q. This costs us a total of o(n?) queries to O since every query of Q makes
a call to O. Next, for every pair of points (a;, b;) we determine f((i — 1)n + j) as follows:

d*(a,—, bj) > 3/2,

otherwise,

fli-Dn+)) = {il

where d*(a;, b;) is the estimated distance of point a; from point b;. The correctness of our reduction
follows from the fact that the approximation factor of the algorithm for metric estimation is smaller
than 3 and thus if d*(a;, b;) > 3/2, the actual distance d(a;, b;) is more than 1/2. Finally, we take
the multiplication of all determined values for f and compute par(f) with o(n?) = o(m) queries.
This contradicts the observation of Farhi et al. [27]. O

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:17

3.2 A3 +e Approximation Algorithm with O(n%/*poly(1/€)) Queries

In this section, we present a quantum algorithm to estimate the distances of a metric space within
an approximation factor of 3 + €. Our algorithm makes o(n’/ 3poly(1/€)) oracle calls.

The first idea of our algorithm is to discretize the distances. Recall that the distances of the metric
are non-negative integers in the interval [0, u]. We separate the numbers into disjoint intervals.
We put a separate interval [0, 0] for 0 and continue on with the numbers in [1, u]. Every time, we
find the smallest number 1 < x < u that is not covered in the previous intervals and add a new
interval [x, (1 + €)x] to the list. Since u = poly(n), the number of intervals is polylognpoly(1/€) =
5(p0|y(1 /€)). Now, by losing a factor 1 + ¢ in the approximation, we can round up all of the
numbers within an interval to its highest value and solve the problem for each interval separately.
Therefore, the problem boils down to the following: given a threshold t, find all pairs of the points
with a distance of at most ¢. We call this problem threshold estimation. Note that since we wish
to find a 3 approximation solution for threshold estimation, a false positive is also allowed in the
solution. More precisely, the solution should contain all pairs of points within a distance of at most
t, but pairs within distances up to 3t are also allowed to be included.

In order to approximate threshold estimation, we subsequently make use of Grover’s search
algorithm [18]. Think of the metric as a graph G where every point corresponds to a vertex of the
graph and two vertices are adjacent if the distance of their corresponding points is at most ¢. Let
0 < 7 < 1 be a fixed parameter. We call a vertex v of the graph low degree if the number of edges
incident to v are bounded by n* and high degree otherwise. Our algorithm deals with low-degree
vertices and high-degree vertices differently. We set the value of 7 after the analysis and show it
gives us the best bound.

In our algorithm, we iterate over the vertices of the graph and find their neighbors one by one.
To this end, fix a vertex v; and suppose we wish to find all of its neighbors. Due to Grover’s
search (Theorem 2.1), we can list up to n” neighbors of v; with Va7n = n(1*7)/2 queries. Moreover,
with an additional Grover’s search, we can determine whether the degree of v; is more n* with
O(+/n) queries. If v; is low degree, we already have all its neighbors, and thus we can report those
edges and remove v; from the graph. Otherwise, the degree of v; is more than n’. In this case, we
make O(n) oracle calls and find the distances of all other points from the corresponding point of
v;, namely p;. Based on these distances, we construct two sets of vertices N(v;, t) and N(v;, 2t),
where the former contains all vertices corresponding to points within a distance of at most ¢ of p;
and the latter contains all of the vertices corresponding to points within a distance of at most 2¢
from p;. We then proceed by reporting all the edges between N (v;,t) and N(v;, 2t) and removing
N(v;, t) from the graph. A pseudocode for this algorithm is shown in Algorithm 1.

LEMMA 3.2. Fort = 1/3, Algorithm 1 approximates threshold estimation within a factor of 3 with
O(n®/®) oracle calls. Moreover, the running time of Algorithm 1 is O(n?).

Proor. The correctness of our algorithm follows from the triangle inequality. We first show that
for every pair of points p; and p; such that d(p;,p;) < t, A;;j = 1 at the end of the algorithm. To
this end, consider the first time that we remove either v; or v; from the vertices. This could happen
in two ways: either one of v; or v; is removed from the graph as a low-degree vertex or any of
them is removed in an iteration of the algorithm for some high-degree vertex. In the former case,
since we find all neighbors of the low-degree vertices, we detect the edge between them, and thus
A;,j = 1. Now, suppose that one of these vertices, say, v;, is removed from the graph in an iteration
for a vertex v, of the graph. Therefore, d(v;, vy) < t. Moreover, due to the triangle inequality,
d(vj,vx) < d(vj,v;) +d(vi,vx) < 2t and thus v; € N(vy, 2t). Thus, we set A; ; = 1. Moreover, it

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:18 M. Boroujeni et al.

ALGORITHM 1: EstimateWithThreshold(n, O, t)
Data: The number of points in the metric space M = {p1, p2,...,pn}, oracle access to the distances
between points, and a threshold ¢.
Result: A 0-1 matrix A of size n X n, where for each d(p;,p;) < t we have A; ; = 1, and for each
Ajj = 1 we have d(p;,pj) < 3t.
1 Initialize a graph G with n vertices;
2 while V(G) is not empty do

3 Select a vertex v; from V(G);

4 List up to n” neighbors of v; and find out whether v; is high degree or low degree;
5 if v; is low degree then

6 Update the matrix A according to the edges of v;;

7 | Remove v; from V(G);

8 else

9 Find the distances of p; from all other points;

10 Construct N(v;, t) and N(vj, 2t) based on the distances;
11 For every x € N(v;,t) and y € N(v;,2t), set Ay y = 1;
12 V(G) « V(G) \ N(vj,t);

13 Output A;

follows from the triangle inequality that if we set A; ; = 1 for some i and j, then the distance of
the points p; and p; is bounded by 3t¢.

Trivially, the running time of the algorithm is O(n?). In what follows we show the query com-
plexity of the algorithm is bounded by O(n°/3). Let Q(n) denote the query complexity of the
algorithm for the case where |V(G)| = n. To compute Q(n), we consider two cases separately:
(1) when we select a vertex v; that is low degree and (2) when we select a vertex v; that is high de-
gree. In any case, we make a search to list up to n” neighbors of v; and we make at least O(n1*7)/2)
oracle calls. In addition to this, we make O(~4/n) more oracle calls to find out whether v; is low de-
gree. In case v; is low degree, we remove v; from the graph and continue on with an instance
with n — 1 vertices. Otherwise, we make O(n) more oracle calls and then remove N(v;, t) from the
graph, which leaves us an instance with at most n — n” vertices. Therefore, we formulate Q(n) as

follows:

B O(n"*9/2) £ O(+fn) + Q(n — 1) if v; is low degree,
Qm) = {O(n(l”)/z) +0(n) +0(n) + Q(n—n*) otherwise.
Now we set 7 = 1/3 and thus we obtain
O(n*?) + 0(vn) + O(n—1) = 0(n*?) + Q(n — 1) if v; is low degree,
Qm) = {O(n2/3) +0(n) + 0(n) + Q(n — n'?) = O(n) + Q(n — n'/?) otherwise.

A trivial analysis shows that for every vertex that we remove from V(G), we make O(n?/*) amor-
tized query calls and thus the total number of queries is bounded by n - O(n?/3) = O(n®/3). m

Now, we are ready to present our 3 + ¢ approximation algorithm with query complexity
O(n°*poly(1/€)). For each i, using Algorithm 1, we can find all distances in range [0, [(1+¢/3)"*!]
with some false-positive distances in range [I(1+¢€/3)"*!,31(1 + €/3)"*!]. By knowing the same in-
formation for i — 1, we have all points in range [0, [(1+ €/3)’] with some false-positive distances in
range [[(1+€/3)’,31(1+¢€/3)']. Thus, we can find all points in range [[(1+€/3)], [(1+€/3)""!], some

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:19

false positives in range [[(1 + €/3)"*!,31(1 + €/3)'*!], and some false negatives that estimated cor-
rectly before. All of these distances are in range [I(1+¢/3)%, 31(1+€/3)"1]. Therefore, we can esti-
mate these distances as 3/(1+¢/3)*! and the approximation factor is % =3(1+€¢/3) = 3+e.
The time and query complexity of this algorithm is the time and query complexity of Algorithm 1
times log,, .3 (u/l) = O(1/€). We handle zero distances separately. You can find the pseudocode

of this algorithm in the following.

ALGORITHM 2: EstimateMetric(n, O, €, 1, u)
Data: The number of points in the metric space M = {p1,p2,...,pn}, oracle access to the distances
between points, a small number € > 0, a lower bound, and an upper bound for the distances.
Result: An n x n matrix A, where A; j is a 3 + € approximation of d(p;, p;j)
1 Initialize three matrices A, A°, and A®;
2 A° « EstimateWithThreshold(n, O, 0);
3 Initialize the threshold: t « max(1,1);
4 while t <udo
5 te—t-(1+€/3);
6 A® «EstimateWithThreshold(n, O, t);
7 A— A+ (A®*-A°) -3t
8 A° — A%V A°

9 output A

THEOREM 3.3. Algorithm 2 solves the metric estimation problem with approximation factor 3 + e,
quantum query complexity O(n*/*poly(1/€)), and time complexity of O(n’*poly(1/€)) for an arbitrary
small constant € > 0.

Proor. The correctness of Algorithm 2 follows from that of Algorithm 1. Moreover, Algo-
rithm 2 runs Algorithm 1 O(poly(1/e€)) times; therefore, the query complexity of Algorithm 2
is O(n*/3poly(1/€)). Furthermore, the running time of Algorithm 2 is O(n?poly(1/€)). O

In this section, we achieved an algorithm with subquadratic query complexity and approxima-
tion factor 3+€ for any € > 0 that is nearly optimal due to Theorem 3.1. In Section 3.3, we reduce the
quantum query complexity to O(n3/?+€), but the approximation factor grows to a larger constant.

3.3 A Constant Approximation Algorithm with O(n*/%*“poly(1/¢)) Queries

In Sections 3.1 and 3.2, we showed that the best approximation factor that we can get with sub-
quadratic oracle calls are bounded from below by 3 and that a 3 + € approximation is possible. In
this section, we complement this result by showing that the query complexity can be further re-
duced to O(n*/ 2*¢poly(1/€)), and moreover, we show that the required query complexity is at least
Q(n*/?) for any constant approximation factor. To this end, we present a quantum algorithm with
expected query complexity O(n***¢poly(1/€)), where the approximation factor and the expected
running time are ey, (€) = O(1/€) and 5(n2poly(l/e)), respectively.

As stated before, the problem reduces to threshold estimation. Similar to what we did for The-
orem 3.3, we divide the vertices into two categories, low degree and high degree. Low-degree ver-
tices are easy to deal with; we simply list all of their neighbors using Grover’s search and report
all of them. If a vertex is high degree though, the algorithm needs to be more intelligent.

The overall idea is summarized in the following: we find a small group of vertices, namely repre-
sentatives, that hits at least one vertex from the neighborhood of any large degree vertex. Using a

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:20 M. Boroujeni et al.

standard argument of hitting sets, we can show that a subset of O(n/n) vertices chosen uniformly at
random, as representatives, hits every neighborhood of size at least with high probability. Notice
that these neighborhoods are at most n fixed but unknown subsets. Other vertices outside represen-
tatives are either low-degree vertices or followers that have at least one neighbor in representatives,
or both. Next, we run the following procedure: for every vertex v; that is not in representatives, we
first check if it is a follower. For a follower vertex that has at least one neighbor in representatives,
we select one such vertex and call that the leader of v;. Otherwise, if there is no such neighbor,
we conclude that v; is indeed low degree; thus, we can find all its neighbors via Grover’s search
and update the solution. Next, we solve the problem recursively for all of the representatives. For
any v; and v; that are connected, we want the leader of v; and the leader of v; to become con-
nected in the recursive result. As a consequence of the triangle inequality, we can achieve this by
tripling the threshold. Finally, we construct our solution based on the approximated solution of
the representatives and the leader-follower relations, simply by connecting any two vertices where
their leaders are connected. The approximation factor increases with each recursion, but since the
number of recursions is a constant, we achieve a constant approximation factor. Furthermore, in
each recursion call, we can increase the degree threshold as long as it does not increase the query
complexity too much. By increasing the degree threshold to its third power, we have this property.
The number of vertices in each nested recursion decreases. When the degree threshold becomes
larger than the number of vertices, all vertices are considered low degree; thus, the next recursion
call has zero vertices, and the process finishes.
The pseudocode of the algorithm is shown below.

ALGORITHM 3: FastEstimateWithThreshold(M, O, t,e,n¢%)
Data: The number of points in the metric space M = {p1,p2, ..., pn}, oracle access to the distances
between points, a threshold ¢, a small number ¢, and a degree threshold ny®
Result: An n X n matrix A, where A; ; is an e (€) approximation of d(p;, p;)
1 if n = 0 then
2 L Output an empty matrix;

3 else

4 Sample a hitting set R with O((n/no") log n) points;

5 Initialize an n X n matrix A;

6 for all points in M asv; do

7 Find a neighbor of v; or v; itself in R and save it as [(v;) (the leader of v;);
8 if no such neighbor of v; exists and v; is not in R then

9 L List all neighbors of v;;

10 A’ « FastEstimateWithThreshold(R, O, 3t, 3¢, (no%)3);

1 for all pairs of points in M as (vi, v;), where [(v;) # @ and [(vj) # @ do
12 if A’(I(v;),1(vj)) = 1 then

13 L A(Ui,Uj) —1;

14 A—AVA,
15 Output A;

LEMMA 3.4. Algorithm 3 called with the threshold t, the parameter €, and the degree threshold
n%¢ finds all distances less than t with some false-positive distances in range [t,en(€) - t], where
em(€) = O(1/¢€), in expected query complexity O(n®?*€) and expected time complexity O(n?).

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:21

Proor. As aforementioned, we deal with three groups of vertices: representatives, followers, and
low-degree vertices. Low-degree vertices may intersect with the other two, but each vertex is at
least in one group. Here, for any low-degree vertex outside the other two groups, we find its neigh-
borhood explicitly. Therefore, to show the correctness of the algorithm, we focus on two groups
of followers and representatives. First, we show that we correctly find the group of representa-
tives. A subset R of size 2(n/ny") Inn chosen uniformly at random misses one fixed neighborhood
of size at least ny? with a probability of at most (1 — '%1)2("/"01)1“” ~ 1/e?n" = 1/p2. For all
neighborhoods, which are at most n fixed subsets of size at least ny’, the probability of missing at
least one neighborhood is at most n - (1/n?) = 1/n by the union bound. If R misses at least one
large neighborhood, we can reset the algorithm. A standard argument of Las Vegas algorithms
ensures that the expected query complexity and expected running time is no more than -*; times
the query complexity and running time of one execution, respectively (Exercise 1.3 of [51]). Now
we can continue assuming we have leader-follower relations. Recall that for every follower v; we
select one of its neighbors in R and call that vertex the leader of v;. To simplify the last part of the
algorithm, for any v; in R, we call v; as the leader of itself. Thus, all followers and representatives
have leaders.

Furthermore, we solve the problem for the group of representatives recursively, with different
parameters. We triple the threshold in each recursion. Call the leader of two connected vertices v;
and v; as r; and r}, respectively. By the triangle inequality we have d(r;, r;) < d(r;, v;) +d(v;, v;) +
d(vj,rj) < 3t. Thus, the leader of any two connected vertices is connected by the new threshold;
hence, we find all distances less than ¢, perhaps with some false positives.

Before we compute the approximation factor e, (€), we determine the number of nested recur-
sion calls. We call the number of vertices in the ith recursion call n;. Note that n; is the size of the
representatives group of the (i — 1)’th recursion. Thus, we have n; = O((n;-1/n¢™) log n;_1). Using
induction, we can show that the degree threshold in the ith recursion call is ny% = n@39% and
therefore, n; = O(n'~G'~D¢.0(log’ (n))). The number of vertices becomes zero in the ith recursion,
where 1 — (3" = 1)e < Oori > log,(1 + 1/€). Hence, we have at most k(e) = log;(1/€) + 1 nested
recursion calls, which is independent of n. Notice that k(3¢) = k(e) — 1 and k(3(€)¢) = 0.

What remains is to compute the approximation factor e, (€). The maximum distance of a pair
of vertices that we report an edge between them is at most 2(1 + 3e,(3¢)) times the threshold. We
know that e, (3K(€)¢€) = 1; therefore, em(€) < 9/€ = O(1/€).

The query complexity of Grover’s search in the ith recursion is at most n;O(V[|R]) to find the
leader of each point, plus n;0(v/n; - ny%) to find all neighbors of some low-degree points. This is

equal to O(n3/2‘(5‘3273)6polylog(n)) + O(n3/2‘(y?3)epolylog(n)). Notice that the latter term domi-

nates the former, and the query complexity for i = 0 dominates all of the recursions; therefore, the
query complexity of Algorithm 3 is at most O(n*/?*€).

The time complexity is at most O(n?) in each phase. Thus, the time complexity is
O(n’polylog(n)). O

In what follows, we complete our algorithm using Algorithm 3 with several thresholds. This is
the same as Algorithm 2 with minor differences such as line 8, where 3 has been replaced with
em(€).

THEOREM 3.5. Algorithm 4 solves the metric estimation with approximation factoreg, (€) = O(1/¢),
with query complexity O(n3/**¢poly(1/€)) in time O(n’poly(1/e)).

Proor. The correctness of Algorithm 4 follows from that of Algorithm 3, the same as we did
in Theorem 3.3. Moreover, Algorithm 4 runs Algorithm 3 O(poly(1/¢€)) times; therefore, the query

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:22 M. Boroujeni et al.

ALGORITHM 4: FastEstimateMetric(M, O, €, 1, u)
Data: The number of points in the metric space M, oracle access to the distances between points, a
small number € > 0, a lower bound, and an upper bound for the distances

Result: An n x n matrix A, where A; j is an ey, (€) approximation of d(p;, p;) in (M, d)

1 Initialize the distance estimation matrix A, A°, and A®;

2 A° «—FastEstimateWithThreshold(n, O, 0, €, n€);

3 Initialize the threshold: < max(1,l);

4+ while t <udo

5 te—t-(1+e);

6 A® «FastEstimateWithThreshold(n, O, t, €, nze);

7 Ae— A+ (A®—A°) -em(e);

8 A° — A° Vv A®;

9 Output A;

complexity of Algorithm 2 is o(n®! 2*¢poly(1/€)). Furthermore, the running time of Algorithm 2

is O(n®poly(1/€)). |

3.4 An Q(n%?) Time Lower Bound

Last but not least, we show that the query complexity of metric estimation cannot be reduced
any further, so long as the approximation factor is constant; i.e., we need at least Q(n*?) queries
to approximate metric estimation within a constant factor. We use Ambainis’s lower-bound tech-
nique [1].

THEOREM 3.6 (PROVEN IN [1], THEOREM 6). Let f(x1,...,x,) be a function of n variables with
values from some finite set and X, Y be two sets of inputs such that f(x) # f(y) ifx € X andy € Y.
Let R C X X Y be such that

(1) For every x € X, there exist at least m different y € Y such that (x,y) € R.
(2) For everyy € Y, there exist at least m” different x € X such that (x,y) € R.

Let Ly ; be the number of y € Y such that (x,y) € R and x; # y; and l,,; be the number of x € X such
that (x,y) € R and x; # y;. Let Ly qx be the maximum of I ;1 ; over all (x,y) € Randi € {1,...,N}

such that x; # y;. Then, any quantum algorithm computing f uses Q(%) queries.

Now we use an intermediate problem to prove the desired lower bound. A permutation matrix is
a Boolean n X n matrix, which has exactly one entry 1 in each row and each column. It corresponds
to a permutation 7 where entries of 1 are in the form of (i, 7(i)). The sign of a permutation matrix
is defined as the sign of its corresponding permutation. The next lemma about the problem of
determining the sign of a permutation matrix is the main part of our lower bound.

LEMMA 3.7. Any quantum algorithm that takes an n X n permutation matrix as the input and
outputs the sign of the permutation matrix has a query complexity of at least Q(n3/?).

Proor. To apply Theorem 3.6, we use a single index to address an entity instead of two indices.
Assume f(x1, Xz, ...,x,2) is a function that takes a permutation matrix as input and outputs a
value in {—1, 1} as the sign of the matrix. Define X as the set of permutation matrices with sign
—1, Y as the set of permutation matrices with sign 1, and R € X X Y such that (x,y) € R iff their
corresponding matrices can be transformed to the other with a swap of just two rows. Therefore,
we have m = m’ = (;) Foraniwehave l,; = n-1and/l,; = 1ifx; = 1and I,; = 1 and

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:23

ly,; = n—1if x; = 0; thus, l,;;4x = n — 1. Therefore, by Theorem 3.6, every quantum algorithm to

2
solve this problem has a query complexity of at least Q % = Q(n®?). O

The problem of determining the sign of an n X n permutation matrix can be easily reduced to
our problem, by constructing a bipartite graph with parts X and Y, n vertices in each part, and
n edges that form a complete matching between X and Y. Every matching has a corresponding
permutation and vice versa. Therefore, we have the following theorem.

THEOREM 3.8. Any quantum algorithm that estimates distances of a metric space of n points with
a constant approximation factor has a query complexity of at least Q(n*/?).

Proor. We simply reduce the problem of determining the sign of a permutation matrix to this
problem. Assume n is an even number. For an instance of an n/2 X n/2 permutation matrix A,
we construct a metric space M with n points, r; for row i, and c; for column j of the matrix.
Make the distance between r; and c¢; equal to 1, where A; ; = 1 and a distance of n® otherwise.
The distances meet the necessary conditions. Notice that we do not construct the distances; we
construct an oracle that invokes the oracle of A at most one time. Using Lemma 3.7, the query
complexity is at least Q((n/2)*/?) = Q(n%?). m]

3.5 A-Neighboring Metric Estimation

In A-neighboring metric estimation, for a metric M = {p1, ps, ..., pn}, we output d(p;, p;) only if
|i—jl < A.For A = n this problem is equivalent to metric estimation. However, when A = o(n), we
can improve the running times of the algorithms. To this end, we prove similar hardness results
and approximation algorithm for A-neighboring metric estimation. In the following, we prove four
main corollaries, similar to the previous four theorems.

To prove a similar lower bound on the query complexity of A-neighboring metric estimation, we
again use a reduction from the parity problem. For a function f : [O(An)] — {-1, 1}, we construct
a metric M = {ay, by, a3, bs, . .., an, by} with 2n points. Here, we map the function into d(a;, b;)s,
where |i — j| < A. Using a similar construction as Section 3.1, given an a < 3 approximation
estimation for 2A-neighboring metric estimation, one can determine par(f) uniquely.

COROLLARY 3.9. Any quantum algorithm that approximates the A-neighboring metric estimation
problem with an approximation factor smaller than 3 needs to make at least Q(nA) oracle calls.

Proor. Suppose for the sake of contradiction that there exists a quantum algorithm that esti-
mates the distances within a factor smaller than 3 with o(nA) query calls of Q. Using the same con-
struction as Theorem 3.1, for a given instance | of the parity problem consisting of f : [m] — {0, 1}
and an oracle O to access f, we construct an instance Cor(l) of A-neighboring metric estimation.
Without loss of generality, we can assume m = A% + (n — A)(2A — 1) = O(nA). Let (M, d) where
M ={ay,by,a3,b,...,a,, by} be a set of 2n points where the distance of the points p; and p; is
denoted by d(p;, pj). As mentioned before, all d(a;, a;)s and d(b;, b;)s are equal to 1. We then map
f(k)s to d(a;, bj)s, where |i — j| < A, similar to Theorem 3.1. The identity, symmetry, and trian-
gle inequality conditions are met as before. Thus, (M, d) is a valid metric space. One can trivially
construct an oracle Q for Cor(l) that reports the distance of a pair of points with a single query
to O.

We first run the algorithm to approximate all of the distances via o(nA) query calls to Q. This
costs us a total of o(nA) queries to O since every query of Q makes a call to O. Next, for every
pair of points (a;, b;) we determine the corresponding f (k) the same as before. Finally, we take

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:24 M. Boroujeni et al.

the multiplication of all determined values for f and compute par(f) with o(nA) = o(m) queries.
This contradicts the observation of Farhi et al. [27]. O

Next, we solve threshold estimation within an approximation factor of 3 using O(nA%/3) quan-
tum queries. Note that in threshold estimation of A-neighboring metric estimation, every vertex
has at most 2A + 1 potential neighbors. Therefore, here we call a vertex v low degree if the num-
ber of edges incident to v are bounded by A” and high degree otherwise. Moreover, we solve the
problem similar to Algorithm 1, taking into account the potential neighbors.

COROLLARY 3.10. We can approximate threshold estimation within a factor of 3 with O(nA?/3)
oracle calls. Moreover, the running time of our solution is O(nA).

Proor. The correctness of our solution is analogous to Lemma 3.2. Moreover, the running time
of the algorithm is O(nA). In what follows we show that the query complexity of the algorithm is
bounded by O(nA%3). Let Q(n) denote the query complexity of the algorithm for the case where
|[V(G)| = n. To compute Q(n), we consider two cases separately: (1) when we select a vertex v;
that is low degree and (2) when we select a vertex v; that is high degree. In any case, we make a
search to list up to A” neighbors of v; and we make at least O(A*7)/2) oracle calls. In addition
to this, we make O(VA) more oracle calls to find out whether v; is low degree or not. In the case
where v; is low degree, we remove v; from the graph and continue on with an instance with n—1
vertices. Otherwise, we make O(A) more oracle calls and then remove N(v;,t) from the graph,
which leaves us an instance with at most n — A" vertices. Therefore, we formulate Q(n) as follows:

) = O(A1*9/2) £ O(VA) + Q(n - 1) if v; is low degree,
Qn) = O(A1+)/2) L O(WA) + O(A) + Q(n— AT) otherwise.

Now we set 7 = 1/3 and thus we obtain

(n) = O(A??) + O(WA) + Q(n— 1) = O(A*?) + Q(n — 1) if v; is low degree,
Qn) = O(A??) + O(VA) + O(A) + Q(n — AY3) = O(A) + Q(n — A'/3) otherwise.

A trivial analysis shows that for every vertex that we remove from V(G), we make O(A%/?) amor-
tized query calls and thus the total number of queries is bounded by n - O(A%3) = O(nA%3). o

Using the same technique, we can solve A-neighboring metric estimation using the solution of
Corollary 3.10.

COROLLARY 3.11. We can solve the A-neighboring metric estimation problem with approximation
factor 3 + €, quantum query complexity O(nA**poly(1/€)), and time complexity O(nApoly(1/€))
for an arbitrary small constant € > 0.

Next, we improve the query complexity by increasing the approximation factor, similar to
Section 3.3.

COROLLARY 3.12. For a threshold t, a parameter €, and a degree threshold n*¢ we can find all
distances less than t with some false-positive distances in the range [t, e (€)-t], whereep (€) = O(1/e),
in expected query complexity O(nA"/?*€) and expected time complexity O(nA).

PrOOF. We use a solution similar to Algorithm 3, where we start with degree threshold A%¢. The
correctness and approximation factor of our solution are the same as Lemma 3.4.

To prove the query complexity, note that n; = O((n;—1/A%")/logn;_1) and A7 = A®@39€ There-
fore, n; = O(n/AG'~Ve . O(log’(n))). The expected query complexity of Grover’s search in the
ith recursion is at most n;O0(~/(A/n)|R]) to find the leader of each point, plus n;O(vn; - AT7)

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:25

to find all neighbors of some low-degree points. This is equal to O(nAl/z_(“z#)epolylog(n)) +

O(nAY 2‘(312_73)epolylog(n)). Notice that the latter term dominates the former, and the query com-
plexity for i = 0 dominates all of the recursions; therefore, the query complexity of Algorithm 3 is
at most O(nA*?*€poly(1/e)).

The time complexity is at most O(nA) in each phase. Thus, the time complexity is
O(nApoly(1/¢)). O

Using Corollary 3.12, we can solve A-neighboring metric estimation using the same technique
as before.

CoROLLARY 3.13. We can solve A-neighboring metric estimation with approximation factor
em(€) = O(1/€) and query complexity O(nA'Y?**<poly(1/e€)) in time O(nApoly(1/€)).

Finally, we can show a lower bound on the query complexity of any algorithm that approximates
A-neighboring metric estimation within a constant factor using similar techniques.

COROLLARY 3.14. Any quantum algorithm that solves A-neighboring metric estimation within a
constant approximation factor has a query complexity of at least Q(nA'/?).

Proor. In Lemma 3.7, instead of making a general permutation matrix, we make a block di-
agonal matrix, having n/A blocks, where each block is a A X A permutation matrix. Therefore,
m=m' = (n/A) (%) Moreover, for an i we have I, ; =k —1and [, ; = 1ifx; = 1,and [, ; = 1 and
ly,i = k—1if x; = 0; thus, l;yax = k — 1. Therefore, by Theorem 3.6, every quantum algorithm to

Ive this problem h lexity of at least @[/ P26 | _ q(uat2)
solve this problem has a query complexity of at leas =) =Q(n .

Next, we reduce it to an instance of A-neighboring metric estimation with 2n points similar
to Theorem 3.8. Note that if A; ; = 1, then |i — j| < A. Therefore, we have a metric similar to
Theorem 3.1, and we conclude that solving A-neighboring metric estimation within a constant
approximation factor needs at least Q(nA!/?) queries. O

4 EDIT DISTANCE

In this section, we use the results of Section 3 to design a quantum approximation algorithm for the
edit distance problem. Our algorithm has an approximation factor of 3 + € for an arbitrarily small
number e > 0 and time complexity O(n?"*/2!poly(1/¢)). The outline of the algorithm is presented
in Section 2. Here, we provide detailed proofs of the lemmas and theorems we used previously for
edit distance. The first lemma states that given the distances between windows, we can find an
optimal window-compatible transformation using a DP-based algorithm.

LEMMA 4.1. Given a positive integer A and edit distances between pairs of windows of Wy and W,
in which their indices do not differ by more than A, one can compute an optimal window-compatible
transformation of sy into s, in time O(n+ A - min(|W;|, |Wz|)), where two windows can match only if
their indices do not differ by more than A.

Proor. We take a dynamic programming approach to find an optimal window-compatible trans-
formation of the two strings. Recall that Wi = (wy, wy,..., wi) and Wy = (wj,wj,..., WI,<'> are
collections of windows for s; and s;, respectively, with maximum window size [, positive param-
eter y1, and gap size g. We note that every window w corresponds to a subinterval of [1,n], and
thus we can use a linear time sorting algorithm, such as bucket-sort, and sort all the windows in
time O(n). Therefore, we can assume that the windows in W; and W, are sorted according to their
right side. For a window w of a string s, we denote the index of its left character in s by left(w)

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:26 M. Boroujeni et al.

and the index of its right character in s by right(w). Additionally, for a window w; (w}) we define
prev(w;) (prev(w]’.)) to be the last window in W; (W;) before w; (w]’.) that does not overlap with w;
(w}). Assuming the windows are sorted according to their right side, we can compute all prev(w;)s
and prev(w}f)’s in linear time (i.e., O(|Wy| + |[Wz])).

Forevery 1 < i < kand 1 < j < k' we define auxiliary variables c; ;s as the cost of an
optimal window-compatible transformation of s;[1, right(w;)] into s, [1, right(w]’.)], corresponding
to (wi, wz, ..., w;) and (wi,w,, ... ,wj’.). For the sake of simplicity, we define c; o = right(w;),
which is the cost of deleting all characters of s;[1, right(w;)], and ¢ ; = right(wJ’.), which is the
cost of inserting all characters of s[1, right(w})]. For every 1 <i < kand 1 < j < k’ the following
recursive formula holds:

¢;; =min {ci,l,j + (right(w;) — right(wi_1)), cij-1 + (right(w]) — right(w}_;)), d(wi, w})
(1)
+ Cprev(wy).prev(w)) + (left(w;) — right(prev(w;)) — 1) + (Ieft(wj'-) - right(prev(wj'-)) - 1)}

To compute c; ; recursively, we have three possibilities in an optimal window-compatible trans-
formation. In particular, either w; is matched with w]’. or at least one of w; and WJ’. is unmatched.
If we match w; to w]f, then there is a cost of d(w;, w]f) for transforming w; to w]f. Also, the other
windows that overlap with w; or wj’. cannot be used. Consequently, the problem reduces to finding
an optimal window-compatible transformation of s;[1, right(prev(w;))] into s;[1, right(prev(w]’.))]

with respect to (wi, wa, ..., Wprev(w,)) and (wj, w, ..., w;rev(w})). This subproblem is captured by

Cprev(w;). prev(w!)- Moreover, some characters in between prev(w;) and w; (and between prev(wj’.)
and w]'.) may exist that should be deleted (inserted). For the case that w; is unmatched, we need
(right(w;) — right(w;_1)) operations to remove every character after w;_; in s;[1, right(w;)]. This
is because no other window can cover these characters. For the remaining characters the prob-
lem reduces to finding an optimal window-compatible transformation for s;[1, right(w;_;)] into
so[1, right(w}f)] with respect to (wy, wa, ..., w;_1) and (w], wy, ..., w]’.), which is captured by ¢;_q ;.
Likewise, we can formulate the case where w’ is unmatched.

Note that cx g +(|s1|—right(wk))+(Isz|—right(wy,)) is the cost of an optimal window-compatible
transformation from s; to s;. W.l.g. assume k < k’. By iterating through i from 1 to k and j from
max(1,i — A) to min(k’, i + A), one can simply calculate each c; ; where |i — j| < A in time O(1)
using Equation (1). We can assume c; ; = oo, where |i — j| > A. Therefore, we can compute cj ;- in
time O(A - min(k, k”)), which completes the proof. O

If we are not given the exact distances between the windows but rather an « approximation of
them, the algorithm of Lemma 4.1 also finds an o approximation of the optimal window-compatible
transformation due to the linearity of Equation (1).

COROLLARY 4.2. Given a positive integer A and an a-approximation of edit distances between pairs
of windows of Wy and W, in which their indices do not differ by more than A, one can compute an
a-approximation of s into sy in time O(n+ A - min(|W; |, [W;1)), where two windows can match only
if their indices do not differ by more than A.

Lemma 4.3 presents our main argument to prove the approximation factor of our algorithm.
Roughly speaking, it states that the cost of an optimal window-compatible transformation is close
to the cost of the optimal transformation, i.e., edit distance between s; and s;.

LEmMMA 4.3. Given that edit(sy,s2) < n, there exists a window-compatible transformation of s
into s, with respect to Wy and W,, in which for each window w; € W; that matches to a window

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:27

S1 o . :/_ I _q‘_:_xﬁ_-__ x _[_: s //.‘.:‘..o..."',-.‘;,,' '

59 A R S PR .

Fig. 5. An edge from x € s; to y € sy shows that opt transforms x into y with either no change or a
substitution. Dashed edges represent those with one covered endpoint. Dotted edges represent those that
remained at the end of the iteration.

wy € Wy, their indices do not differ by more than A = O(logn(1/u)dn/g), and have at most ((1 +
2p1)8 + 1/y)n + 21 operations.

Proor. Recall that [is the maximum length of the windows and y is the number of layers. Let
opt be a minimum size transformation of s; into s,. The overall idea of the proof is as follows. We
first show that there exists a set of non-overlapping windows of maximum length [, such that a
window-compatible transformation with respect to them approximates opt. Next, by shifting those
windows and losing a small fraction on the approximation factor, we fit them to those in W; and
Ws.

Consider a pair of characters x € s; and y € s;, such that opt transforms x into y either with
no change or through a substitution. We call such a pair an edge. Note that there is no collision in
the set of all edges in opt (or generally in any transformation); i.e., for edges (x1, y1) and (x2, y2), if
X1 < xy, then y; < y,. Let M = ((x1,y1), - - ., (Xm> Um)) be the sequence of all edges in opt in order
from left to right.

First, we find a set of windows as follows. Roughly speaking, we iterate through M and at each
step put as many edges as possible in two windows of length [, in s; and sz, and shrink one of the
windows if necessary. This step is shown in Figure 6. In particular, let p(i) be the smallest index in
M such that x,,(;y and y,(;) are not covered by any window up to step i. We first create a window v;
of length [starting from x,,(;y and window v; of length [starting from y,(;), and we stop when any
such window goes beyond the length of the strings. In this way, when we create v; and v; of size [,
there might be some edges that have one endpoint in v; and one endpoint beyond v; or vice versa.
Consider the case in which these edges have one endpoint in v;. We then shrink v; by removing
(1 + p)/ characters from its right side, where j is the minimum value such that all half-covered
edges are not covered anymore. Now, we may have some edges that have one endpoint in v and
one endpoint beyond the newly shrunk v;. Let k(i) be the number of such edges, and let p(i) be the
number of characters in v} that opt transforms them through insertion. We claim that h(i) < pup(i).
This is because v has at most |v;| + h(i) edges in opt; hence, p(i) > [— |v;| — h(i). Also note that
a shrinkage of size (1 + p)/~! would not delete any of these h(i) endpoints. Therefore, we have
(14 p)/™' < I—|v;| = h(i). Also, note that [— |v;| = (1 + p)’. This implies that

h(i) < (14 Y = (4™ = 1+) (14 p = 1) < (- oil = Rk < p(i)p.

In comparison to opt, a transformation with respect to v; and v] can keep all the edges between
v; and v] and apply deletion and insertion for those edges that have one endpoint in v; and one
endpoint out of v]. This costs at most 2h(i) more.

Besides, the number of remaining edges at the end of the iteration on M is at most I. Such edges
can be transformed by at most 2/ insertions and deletions. Hence, requiring the transformation to
be with respect to all v;s and v}s adds at most 2[+2 3} h(i) < 2[+2p 3’ p(i) < 2l+2plopt| < 2[+2udn

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:28 M. Boroujeni et al.

Fig. 6. Dotted rectangles represent v;s and v/s. Dashed rectangles represent shifted windows that are in W
or Wy. Dashed lines represent edges that are left outside of windows after shifting.

more operations to the optimum solution. Equivalently, the optimum transformation with respect
to these windows has at most (1 + 2u)Sn + 2[operations.

Finally, we note that the gap size between the windows in Wj is g = [/y; therefore, one can
shift v;s by at most g/2 to the right or left in order to map them to non-overlapping windows in
W,. Likewise, one can find non-overlapping windows for vs in W5. This step is shown in Figure 6.
Every shift of a window leaves at most g/2 of the edges outside, which costs an extra g operations.
Since there are at most n/I windows since |v;| + |0/| > [in each step, the overall cost of shifting
the windows is n/y. Therefore, there exists a subset of W; and W, such that the optimum window-
compatible transformation of s; into s; with respect to them has at most 21 + (1 + 2u)dn + n/y =
((1+2p)8 + 1/y)n + 21 operations.

The remaining part is to prove that the indices of any two matching windows in our solution
do not differ by more than O(log n(1/¢)dn/g). We already know that (e.g., see Corollary 1 of [57])
for any edge (xp,,y,,) € M, their indices differ by at most edit(sy,s;) < dn. Therefore, for any v;
and v}, positions of their first characters differ by at most én + g after shifting the windows. From
this, we can directly conclude that the indices of the corresponding shifted windows in W; and W,
differ by at most (logHH n) - (dn+g)/g = O(logn(1/u)(dn/g)). O

The next lemma proves the approximation factor and time complexity of our 3+€ approximation
algorithm for the 6-bounded edit distance problem.

LEMMA 4.4. There exists a quantum algorithm that solves the 5-bounded edit distance problem
within an approximation factor of 3 + € in time 5(n2_4/21p0|y(1/6)).

PrOOF. We can assume that § > n2/2!; otherwise, one can use the O(n+d?) algorithm of Landau
et al. [45] for strings of distance at most d and find the exact edit distance in time O(n + §2n?%) =
O(n>-4/21),

We prove that the algorithm discussed in Section 2 leads to an approximation factor of 3 + € in
quantum running time O(n?~*/#'poly(1/¢)). To this end, let us go through the algorithm step by
step.

Note that the total number of windows is equal to o ((1/p)n/g), where g is the gap size. Therefore,
Step (i) of the algorithm takes time 5((1/y)n/g). In Step (ii), we use the 3 + ¢ approximation
algorithm for A-neighboring metric estimation to approximate the distances between the windows.
The running time of each oracle invocation is at most O(I?) since the length of windows is at most
I. Also, there are 5((1 /u)n/g) points in this metric estimation instance. Moreover, according to
Lemma 4.3, we can set A = O(logn(1/1)dn/g). Therefore, due to Corollary 3.11, the total running
time of Step (ii), assuming p = O(e), is equal to

O((I*(n/g)(5n/9)*® + (n/g)(5n/g))poly(1/e)).

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:29

Note that g = [/y. By assigning | = n'#, the overall running time of Step (i) is
O((n*P823y513 1 5n*Py?)poly(1/e)).

Step (iii) tgkes time O(n + A - min(|W;]|, (W, [)) due to Lemma 4.1, and thus the running time of
this step is O(n + ((1/p)dn/g9)((1/p)n/g) = O(n + (1/€)*(ynf)(5yn”)). Thus, the overall running
time of the algorithm up to Step (iii) is

5((n2_ﬁ/352/3y5/3 +n+ (Syznzﬁ)poly(l/e)).
By assigning f = 6/7, the running time of the algorithm becomes
O(n?217(8%%y°% + 5y%)poly(1/€)).

Recall that § > n~%/?!, By choosing €’ = €/5 and y = (¢’8)7", the overall running time of the
algorithm becomes O(n®>*/*'poly(1/€)). What remains is to show that assigning such values for [
and y gives the 3 + ¢ approximation factor. Due to Lemma 4.3, there exists a window-compatible
transformation of s; into s, with respect to W; and W, that has at most ((1 + 2u)d + 1/y)n + 21
operations. In other words, restricting the transformation to be window compatible with respect
to W) and W, leads to an additive error of at most ((1 + 2u)d + 1/y)n + 2l. Therefore, a (3 +
€’)-approximation of the distances between the windows in Step (iii) of the algorithm gives us a
transformation with at most (dn)(3 + €’) + (2ud + 1/y)n + 21 operations. This can be simplified as
follows:

(8n)(3 + €') + (248 + 1/y)n + 21 < 36n + €'8n + 2un + - + 21
y

1
< (35 +e'5+2u8+ — + 2n‘6/7) n
Y

, 1 2n 7
<|3+€ +2u+—+ on

dy é
< (3 +e +2u+e + 2n_16/21) én §>n24
2 \21/16
< (3+3€" +2u)dn for every n > (—,)
€
< (3+¢€)dn.

In the last line, we fix €’ = p = €/5. Therefore, the algorithm finds a window-compatible trans-
formation of s; into s, with respect to Wy and W, that is (3+¢€)-approximation and runs in quantum
time O(n?~*/?!poly(1/e)).]

Recall that, using the technique of guess and multiply, we design an algorithm for edit distance
by our algorithm for §-bounded edit distance, with similar running time and approximation factor.

THEOREM 4.5. There exists a quantum algorithm that solves edit distance within an approximation
factor of 3 + € in time O(n*~*/?poly(1/e)).

Proor. Let opt be the edit distance between the two strings. We can check if opt = 0 in time
O(n). Assume that opt > 1. We guess a value p for opt by iterating through different multiplicative
ranges from 1 to n. Let €’ = €/9. In particular, in every step i > 0 we guess a range [dn, (1+¢€")dn)
for opt, where § = (1+¢’)?/n, and run the algorithm of Lemma 4.4 with parameters ¢’ and (1+¢’)3.
Note that at each step we can verify whether the output of the algorithm is a valid transformation
or not. We get the first valid transformation as soon as opt lies within the range of our guess. This
valid transformation is of size at most (3+¢€”)(1+¢€’)d, which is no more than (3 + €)dn. Also, there

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:30 M. Boroujeni et al.

are at most log,, . (n) € O(1/€) ranges for which we run the algorithm of Lemma 4.4. Hence, the
overall time for the search is O(n?~*/?'poly(1/¢)). m

5 BOOTSTRAPPING
Recall that in Section 2.3, we described our bootstrap algorithm that uses itself as the oracle of the

metric distance algorithm. Here, we compute the time complexity and the approximation factor of
the algorithm.

THEOREM 5.1. There exists an O(n2=V1)/3+¢ poly(1/€))-time quantum algorithm that approxi-
mates edit distance within a factor e.(¢) = O(1/¢)OUog1/e),

Proor. The algorithm is presented in Section 2.3. Here we prove the claimed time complex-
ity and approximation factor. We first solve d-bounded edit distance. We can assume § >
n~G-VID/6te/2, otherwise, we use the O(n + 82n?) of Landau et al. [45]. Suppose the time com-
plexity of our algorithm for the edit distance problem is te(e) = O(n2 %< poly(1/€)) and the time
complexity of our algorithm for the bounded edit distance problem is O((1/8)n%3%</2poly(1/e)).
Notice that the total number of windows is equal to o((1/ p)n/g) and thus Step (i) of the algorithm
can be easily done in time o((1/ u)n/g). In Step (ii), we use the O(1/€) approximation algorithm of
A-neighboring metric estimation to approximate the distances of the windows. Using Lemma 4.3,
we set A = O((1/ 1)on/g). Moreover, we use our algorithm of edit distance A(2¢) recursively for
the oracle of metric estimation. Notice that the length of every window is at most . Furthermore,
the number of points in the metric is equal to the number of windows, namely o((1/ u)n/g). Note
that the running time and query complexity of the O(1/¢) algorithm of A-neighboring metric es-
timation are 5(nApoly(l/e)) and 5(nA3/2+5 poly(1/e)), respectively. Therefore, the total running
time of this step is

O((te(2€) (1) - (n/g)(5n/(gu))"**€ + (n/g)(5n/(gp)))poly(1/e)).
Since I = O(n'~P<) and n/g = O(yn/l) = O(ynP<), and assuming y = e, the total running time is
equal to
5((n(l—ﬁe)(2—¢ze)+(3/2)ﬁe+€ﬁe 5},(3/2)% + n2Pe 5)/2)POIY(1/€))-

Step (iii) takes time O(n+A-min(|W;|, [W;])) due to Lemma 4.1 and thus the running time of this
step is O(n+n?$8y?). Thus, if we set fe = (V17—1)/4+¢€, ¢ = 1, and y = (e5)7", the running
time of the algorithm for 5-bounded edit distance would be O((1/8)n?~=VIN/2t3¢/2p5]y (1 /).
Assuming § > n~6~V10/6+¢/2 the running time of our algorithm for §-bounded edit distance is

equal to O(n2~G=VID/3+€poly(1/€)). Using the technique of guess and multiply, the running time
of the algorithm for the edit distance problem is also

O(n*~END3*poly (1/€)) = O(n" 7).

To compute the approximation ratio, we should first compute the number of nested levels we
use in the algorithm itself. In the ith recursion, we use A (2/"1¢), as it works better than an O(n?)
algorithm. Thus, we have

2-(5-V17)/3+2 e <2 = 27le < (5-V17)/3 = 2/ < Cle = i<log,(1/€) + O(1),

where C is a constant independent of n. Hence, we have at most log(1/€) + O(1) levels of recur-
sion. We know that e.(€) = en(€)e.(2€) + €, because if we get an « approximate of the optimal
window-compatible transformation, it is an « + € approximate of the optimal solution, as discussed

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:31

in Lemma 4.4. We also know that e, (¢) = O(1/¢). Hence, we can compute the approximation fac-
tor as follows:

Ci
ec(€) = em(€)ee(2€) + € < (Cle)ec(2¢) = ——
1-2-..-270. ¢l
C/
_ (1(6) = 0(1/)0%E /),
(1/€)(i-D/2 . ¢i
where C’ is also a constant independent of n. This completes the proof. O

At last, we discuss why the exponent of our algorithm converges to 2 — (5 — V17)/3. Recall that
the recursive formula for computing the running time of the algorithm is

5(n2—¢e poly(1/€)) = 5((n(l_ﬁe)(2_¢26)+(3/2)ﬁ6+6ﬁ65Y(3/2)+5 + n2ﬂ55y2)poly(1/e)).

Intuitively, the running time is the maximum of two terms, and the best is when these terms are
equal. Thus, when € — 0, we can roughly tell: 2 — (3/2)¢o = 2y = (1 — fo)(2 — ¢o) + 1.55,. This
equation has only one positive answer, which is S = (V17 — 1)/4 and ¢y = 4(1 — f)/3; therefore,
the exponent is equal to 2 — ¢ = 2 — (5 — V17)/3.

6 APPROXIMATING EDIT DISTANCE IN MAPREDUCE

Edit distance has been studied in parallel and distributed models since the 1990s. However, the
sequential nature of the dynamic programming solution makes it difficult to parallelize; therefore,
most of these solutions are slow or require lots of memory/communication. Using our framework,
we give a somewhat balanced parallel algorithm for the edit distance problem in the MapReduce
model. More precisely, we give a (1+¢€)-approximation algorithm that uses O(n®°) machines, each
with a memory of size O(n®?). Moreover, our algorithm runs in a logarithmic number of rounds
and has time complexity O(n'-"**) on one machine, which is truly subquadratic. The overall com-
munication and total memory of our algorithm are also truly subquadratic, due to the sublinearity
of the number of machines and the memory of each machine.

Our algorithm is significantly more efficient than previous PRAM algorithms, for instance [9], in
terms of the number of machines, the overall memory, and the overall communication. In addition,
this is the first result of its kind for edit distance in the MapReduce model. Although this subject
has been studied before, previous studies targeted a different aspect of the problem, such as giving
a heuristic algorithm, an algorithm for inputs from a particular distribution model, or an algorithm
for edit distance between all pairs of several strings [39].

We begin by stating some of the MapReduce notions and definitions in Section 6.1 and next
explain our algorithm is Section 6.2.

6.1 MapReduce Basics

In this section, we give a brief overview of the MapReduce setting and later show how our frame-
work can be used to design a MapReduce algorithm for edit distance.

In the MapReduce model, an algorithm consists of several rounds. Each round has a mapping
phase and a reducing phase. Every unit of information is represented in the form of a (key; value)
pair in which both key and value are strings. The input, therefore, is a sequence of (key;value)
pairs specifying the input data and their corresponding positions. For instance, in the case of edit
distance, we assume the input pairs are either in the form of ((s1, i); s1[i]) or ((s2,); s2[i]), where
the value represents a character, and the key shows the position of this character in either s;
or s;.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:32 M. Boroujeni et al.

Each round of a MapReduce algorithm is performed as follows: every single input pair is given
to a mapper separately, and depending on the mapping algorithm, a sequence of (key; value)s is
generated with respect to the input key. Note that the mappers have to be stateless in the sense that
the output of every mapper is only dependent on the single (key; value) pair given to it. Since the
mappers are stateless, parallelism in the mapping phase is straightforward; all the inputs are evenly
distributed between the machines. Moreover, there is no limit on the types of the (key;value)
outputs that the mappers generate. Once all the mapper jobs are finished, the reducers start to run.
Let K be the set of all keys generated by the mappers in the mapping stage. In the reducing stage,
every key € K along with all its associated values is given to a single machine. Note that there is no
limit on the number of keys generated in the mapping phase as long as all the outputs together fit
in the total memory of all machines. However, the values associated with every key should fit in the
memory of a single machine since all such values are processed at once by a single reducer. Every
reducer, upon receiving a key and a sequence of values associated to it (key; vy, vs, Us, ..., 0p),
runs a reducer-specific algorithm and generates a sequence of output pairs. Unlike the mapping
phase, the output keys of a reducer should be identical to the input key given to them. Moreover,
the reducers are not stateless since they have access to all values of a key at once, but they can
only access their given key and the values associated with it and should be regardless of the other
(key;value) pairs generated in the mapping phase. Similar to the mapping phase, the total size of
the outputs generated by all reducers should not exceed the total memory of all machines together.
In addition to this, the total outputs of a reducer should not be more than its memory. Once all
reducers finish their jobs, the outputs are fed to the mappers for the next round of the algorithm.

For a problem with input length n, the goal is to design a MapRuduce algorithm running on N,
machines each having a memory of N;,. N,, and Ny, have to be sublinear in n since the input is
assumed to be huge in this setting. Moreover, since the overhead of a MapReduce round is time-
consuming, the number of MapReduce rounds of the algorithms should be small (either constant
or polylogarithmic). Many classic computational problems have been studied in the MapReduce
setting. For instance, Karlo et al. [40] provide a MapReduce algorithm to compute an MST of a
graph with a sublinear number of machines and a sublinear memory for every machine. Lattanzi
et al. [46] design a filtering method and, based on that, provide MapReduce algorithms for funda-
mental graph problems such as maximal matchings, weighted matchings, vertex cover, edge cover,
and minimum cuts.

We show in Section 6.2 that using O(n®°) machines and O(n®/?) memory on each machine,
one can design a MapReduce algorithm for edit distance that runs in O(log n) MapReduce rounds.
Moreover, the running time of the algorithm is subquadratic.

6.2 Edit Distance in MapReduce

Our solution for approximating edit distance in MapReduce uses the same framework explained in
Section 4. Therefore, we solve the problem by solving the §-bounded edit distance problem several
times. The difference is that here we solve all of these subproblems simultaneously. This only
imposes a multiplicative factor of O((1/¢) logn) to the number of machines and a multiplicative
factor of 1 + € to the approximation factor; hence, in the following, we focus on solving the §-
bounded edit distance problem.

We use two different approaches for large ds and small Js. For large &s, we use our framework
and compute the edit distance between some pairs of windows of s; and s; all at once. For small
ds, though, we use a new method based on (min, +) matrix multiplication, also known as distance
multiplication. We denote (min, +) matrix multiplication by *. We separate the large and the small
s with a critical value-based N, (i.e., the number of machines).

°For Ny = n8/? machines we have §* = n=8/27.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:33

For (min, +) matrix multiplication in the MapReduce model, we use a parameterized version of
an algorithm of [33].

THEOREM 6.1 (PROVED IN [33]). For any two n X n matrices A and B and 0 < x < 2, Ax B can
be computed with n*1=*/?) machines and memory O(n*) in 1 + [(1 — x/2)/x] MapReduce rounds.
Moreover, the total running time of the algorithm is O((1/x)n®).

Given that we have a chain of matrices to be multiplied instead of just two matrices, we can
use Theorem 6.1 to halve the number of matrices in two rounds; therefore, we have the following
corollary.

COROLLARY 6.2 (OF THEOREM 6.1). The (min, +) multiplication of n® matrices of size n® x n® can

be computed in 2[alog, n] rounds of MapReduce with nY machines for any 0 < y < a + 3b/2, with
a memory of O(n?(¢+3=9)/3) for each machine. Moreover, the running time of the algorithm (for one
machine) is O(n%+3b=Y).

Notice that for two nxn matrices in Corollary 6.2, we have a = 0 and b = 1; hence, the number of
machines is n¥ and the memory of each machine is O(n?=2¥/3), which is the same as Theorem 6.1,
where x = 2 — 2y/3. Also note that for 0 < y < a + 3b/2, we use Theorem 6.1 with 1 < x < 2;
hence, we can safely ignore all 1/x terms.

In Sections 6.2.1 and 6.2.2, we discuss our approach for large §s and small Js, respectively. In
Section 6.2.3, we discuss the remaining details of our algorithm.

6.2.1 Our Approach for Large §s. The overall idea of our solution for large Js is to use our
framework as follows: we first construct some windows for each string, then we find the edit
distance between some pairs of windows, and afterward we find a window-compatible transfor-
mation, which is a good approximation to the desired edit distance between two input strings.

The first step of our approach is to find the edit distance between useful pairs of windows, which
are in fact the pairs with an edit distance of at most A = o((1/ 1)én/g). Previously, we found an
approximated edit distance between all pairs of windows using A-neighboring metric estimation.
Here, we find the distances between useful pairs of windows by running several instances of the
naive DP-based algorithm simultaneously on different machines.

We find the edit distance between useful pairs of windows in the first round. To do this, we
give some pairs of windows to a machine and use the naive DP-based algorithm to find the edit
distance between them. In the next round, we combine the results of the first round to find the
best window-compatible transformation. The second round is similar to Lemma 4.1, which runs
on only one machine.

We have the following lemma for large ds (or small as). To simplify the notation, let § = n=%.

LEMMA 6.3. Forax, 0 < x < 7/6, we can solve the 5-bounded edit distance problem for

e 0 < x <13/20 and & < 3(x +1)/16 with n* machines, and O((1/€)>n11=5)/3+¢"y memory for
each machine in time O((1/€)*n®>~13%)/18) (for one machine), and for

e 13/20 < x < 7/6 and a < 2(4 — x)/21 with n* machines, and O((1/€)>n?(4=2)/7+€") memory
for each machine in time O((1/€)>n®*=23¥)/21) (for one machine)

in two MapReduce rounds, where €’ > 0 is an arbitrary constant.

Proor. We already stated the sketch of our algorithm. To analyze the algorithm, we define and
set some parameters carefully.

Recall that we used three parameters of f, y, and y to construct the windows of length at most
I = |n'#] with a gap size g = |I/y] for each of the two input strings. Lemma 4.3 states that
given edit(sy,sz) < dn = n'~%, there exists a window-compatible transformation with at most

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:34 M. Boroujeni et al.

((1+ p)d + 1/y)n + 2l operations. To keep the approximation factor as small as 1 + €, we should
have n/y < én, u = O(e), and 2] < Sn. Setting y = 1/de, p = €/5, and f > « suffice. By doing
this, the number of windows for each string is at most

[Wil, [Wa| = O((1/p)my /1) = O((1/€)*n™*F).

In the first round, we find the edit distance between all useful pairs of windows. By Lemma 4.3,

the number of such useful pairs is at most
O(log n(1/p)8n/g) - min([Wal, [Wa]) = O((1/€)*n*?F).

Therefore, if we have n* machines, every machine gets O((1/€)3n**2f=) pairs. The edit distance
between a pair of windows can be computed in time at most O(/?) and memory at most O(l) where
I = |n'"#]. Hence, the memory of each machine in round 1 is O((1/€)>n'***#=*). Moreover, the
time complexity of each machine in this round is O((1/€)*n?**™*),

In the second round, we only use one machine to combine the results of the first round. This ma-
chine has to get edit distance between all pairs from all machines; hence, it needs O((1/€)>n**2F)
memory. The time complexity of this round is also O((1/€)3n**?f).

By setting f = a + €’/2 for an arbitrary constant €’ > 0 and setting « as stated in the lemma,
we get the desired result.]

6.2.2 Our Approach for Small §s. The other side of the edit distance problem is the case when
the two given strings are similar. In this case, if we try to use our framework, we would encounter
too many windows, and this exceeds the time and memory given to the algorithm. Previously,
in this case, we used the algorithm of Landau et al. [45] with running time O(n + d?). This solu-
tion cannot (trivially) become parallel. Here, we instead use a novel approach based on (min, +)
matrix multiplication. We again use the fact that a character c¢; from s; can only be transformed
(with no change or a substitution) to a character ¢, in s, only if their positions differ by at most
edit(sy, sz) (Corollary 1 of [57]).

Letd(i,j+ 1,i’,j + 1) be equal to edit(s;[i, j], s2[i’, j']). We have the following lemma.

LEMMA 6.4. For an arbitrary k, i < k < j, we have
dij+ 1,17 +1) = p_ B0 pdlik + 1,17, K + 1) +d(k + 1, + LK +1,j+ 1)}
Proor. Forafixed k’,i’—1 < k’ < j/, we can construct a transformation from s;[i, j] to s»[i’, j’]

using two transformations: one from s;[i, k] to s;[i’, k'] and the other from s;[k+1, j] to sp[k'+1, j'];
therefore,

edit(s1[i, j1, s2[i,7']) < edit(si[i, k], s2[i", k']) + edit(si[k + 1,7], s2[K" + 1,']),
which means
di,j+ 1,i',j+1) <d(i,k+1,i", k' +1)+d(k+1,j + 1,Lk' +1,j + 1).
Therefore, for all k’s we have
(i j+ 1,77 +1) < o (50 dlk+ 1,k + 1) +d(k+ 1)+ LK +1,j+1)}.

Moreover, if we define k™ as the largest index that a character from s, [, . . ., k] transfers into s, [k*]
in an optimal transformation, or k* = i’ — 1 if no such index exists, we have

edit(s1[i, j], s2[i’,j']) < edit(s[i, k], s2[i’, k*]) + edit(s;[k + 1,], s2[K" + 1,']);
therefore,
di,j+1,i,j+1)=d(i,k+1,i", k" + 1) +d(k+1,j + Lk" + 1,j + 1),

which completes the proof. O

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:35

Moreover, computing d(i, j+1,i’, j’+1) is useful only when |i—i’| < d and |j—j’| < d (Corollary 1
of [57]); therefore, for a fixed i and j, all of these useful values form a (26n + 1) X (25n + 1) matrix,
namely D*/. Rewriting Lemma 6.4 using matrices, we have the following corollary.

COROLLARY 6.5 (OF LEMMA 6.4). For an arbitrary k, i < k < j, we have Db = DK % DRI wwhere
* is the (min, +) matrix multiplication operator.

Notice that edit(s,s2) = d(1,[si| + 1,1, s3] + 1), which is an element of DUIsil To compute
this matrix, we do as follows: for a parameter y, 0 < y < 1, which we’ll fix later, we parti-
tion s; into nY substrings of length at most n'™%. Each of these substrings has a matching sub-
string in s, with a length at most n'~Y + 26n. Using the naive DP-based algorithm, we construct
a (26n + 1) X (26n + 1) matrix for each of these n¥ substrings in the first round. The matrices are
pvt prrtet o pUlsi/E=DiLIst where t = n'~Y. By Corollary 6.5 we have

Dl,lsl‘ - Dl,t *Dt+1,2t * - - ,*D(H51|/t-|—1)f+1»|51|'

Therefore, we obtain the result in remaining rounds by the matrix multiplication algorithm of
Corollary 6.2.

LEMMA 6.6. We can solve the §-bounded edit distance problem for

e 0 < x < 13/20 and a > 3(x + 1)/16 with n* machines, and O(n"'=)/8) memory of each
machine in time O(n®1-29%)/16) (for one machine), and for
® 13/20 < x < 7/6 and a > 2(4 — x)/21 with n* machines, and O(n*“=/7) memory of each

machine in time O(n®8=25%)/21) (for one machine)

in O(log n) MapReduce rounds.

Proor. We already described our algorithm. Here, we analyze the described algorithm in more
detail. In the first round, constructing the full matrix is a time-consuming process for one machine;
therefore, we break this job into n’ parts. More precisely, we partition rows of the solution matrix
into n’ parts and give the task of computing each part to one machine. Therefore, in the first round,
the number of machines is equal to n¥** = n*. The memory of each machine is the maximum of
its input size, its running memory, and its output size, which are equal to 2n'™Y + 2d, O(n'7Y),
and n?72¢~! respectively. The time complexity of one machine using the DP-based algorithm is
O(nl—y .nly. nl—a—t) — O(n3—2y—a—t).

The second part of the algorithm is analogous to Corollary 6.2, where a = yand b = 1 -
a; therefore, if the number of machines is n*, the memory of each machine is n?(¥*+3(1-®)=x)/3,
Moreover, the time complexity of one machine is O(n3-3a+y—x),

Setting y = (6a + 2x — 3)/5 and t = x — y gives us the desired result. Also, note that the range
of x is consistent with Corollary 6.2. O

6.2.3 Conclusion. We compute edit distance by solving the §-bounded edit distance problems
for several ds in parallel. For each 6 = n™* we use the appropriate MapReduce algorithm based on
the value of x and . When all subproblems are finished, we also have a final round for combining
the results of these subproblems to obtain the final (approximated) edit distance. Therefore, the
desired MapReduce 1 + € approximation algorithm for edit distance is as follows.

THEOREM 6.7. We can solve the edit distance problems in the MapReduce model in at most O(log n)
MapReduce rounds with O((1/€)n*) machines and for

e 0 < x < 13/20 with a memory of at most O((1/€)>n11=5%)/8+€') for one machine in time
O(n®1-29%)/16) (for one machine), and for

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:36 M. Boroujeni et al.

The trade-off between the number of machine and memory of each machine

1.4 T T T T T T

1.2

0.8 -

0.6 |-

exponent of memory

|

L I 1 1
0 02 04 06 038 1 1.2

0.2 — L

x (exponent of the number of machines)

Fig. 7. The trade-off between the number of machines and memory of each machine is shown. In x = 8/9
the maximum of the number of machines and the memory of each machine is minimized.

e 13/20 < x < 7/6 with a memory of at most O((1/€)>n?“=)/7+€") in time O(n®8=250)/21) (for
one machine).

Proor. We solve the problem for § = 0 and § = (1 + €/3)F/n for 0 < k < O((1/€) logn) in
parallel machines. For each subproblem, we use [n*] machines.

In the zero case, we only check whether s; = s, or not. This can be done with at most n
memory and O(n'™) for each machine. We handle other subproblems by Lemmas 6.3 or 6.4.1°
Therefore, the memory of each machine is at most O((1/€)>n1=5¥)/8+€) for 0 < x < 13/20 and
O((1/€)*n?4=x)/7+€") for 13/20 < x < 7/6.

The time complexity of each machine is the maximum time of Lemmas 6.3 and 6.4, which is at
most O(n®1729%)/16) for 0 < x < 13/20 and O(n®*~%*)/21) for 13/20 < x < 7/6. The number of
rounds is O(log n) in total.]

1-x

By setting x = 8/9, we can minimize the maximum of the number of machines and the memory
of each machine. This is shown in Figure 7.

COROLLARY 6.8. We can solve the edit distance problems in the MapReduce model with an approxi-
mation factor of 1+ € in O(log n) rounds with O((1/€)n®/°) machines, a memory of O((1/€)*n®/°+€")
for each machine, and in time O(n®>~8/%") (for one machine), where ¢’ > 0 is an arbitrary constant.

7 OTHER SIMILARITY MEASURES

Edit distance is one of many similarity measures for comparing two strings. Furthermore, it is
one of many problems with a simple two-dimensional DP solution. Other measures and similar
problems include longest common subsequence (Ics), Fréchet distance (fre), and dynamic time
warping (dtw). While the O(n?) solutions for these problems are very analogous, unfortunately,

101n fact, for small §s we can run our algorithm just once for the largest &.

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:37

our approach does not directly apply to them. In the following, we discuss some reasons behind
this difficulty. The update rule of these measures are defined as follows:

edit(i,j) = min{edit(i — 1,j) + 1, edit(i,j — 1) + Ledit(i — 1,j = 1) + (s: [i] # s2[J])}
les(i,j) = max{les(i = 1)) les(i,j = 1), les(i = 1.j = 1) + (s [1] # s2])
dtw(i, j) = min{dtw(i - 1,j), dtw(i,j - 1), dtw(i — 1,j - 1)} + dis(i. J)
fre(i, j) = max{min{fre(i — 1,j), fre(i,j — 1), fre(i — 1,j — 1)}, dis(i. j) }.

Our framework for approximating edit distance is based on two assumptions. First is the usabil-
ity of Lemma 4.3, which states that there is a window-compatible solution that is a good approxi-
mation to the optimal solution. Second, to use the metric estimation, the desired measure should
be a distance function, namely a metric.

Two similarity measures dtw and Ics are not metric; moreover, they cannot be approximated
by a metric. For example, for dtw consider s; = a***1 s, = aFba*, and s3 = ab®**1g. We have
dtw(sy, s2) = 1 and dtw(sz, s3) = 0, but dtw(sy, s3) = 2k — 1. Therefore, the triangle inequality does
not hold here.

The similarity measure Ics is, in fact, the opposite of a metric function; i.e., for two similar strings,
their Ics is large, and for two different strings, their Ics is small. The first property of a distance
function does not hold here, for a non-empty string s, lcs(s, s) # 0. The other part of our approach
where Ics has a drawback is Lemma 4.3. For a window size [, one can consider s; = (ab'~'a!™!)?
and s, = (alc/™!)t. We have lcs(sy, sp) = It, but Ics of a window-compatible transformation is at
most t.

Likewise, approximating Ics in classical computers is also harder than edit. None of the results
for approximating edit is shown for Ics, unless when Ilcs(sy, sz) = Q(n). Another way around this
is to approximate co-lcs instead of Ics, where co-lcs(sy, s2) = [s1| + |s2| — les(sy, s2). This measure
is very similar to edit distance but without the substitution operation. Using our framework, we
can approximate co-lcs with the same approximation factor of 3 + € in quantum computers and an
approximation factor of 1 + € in MapReduce.

Fréchet distance is rather a similarity measure for curves instead of strings. For strings, the
problem becomes trivial, i.e., zero for same strings and one for different strings. However, fre on
curves has a similar dynamic programming solution to edit. This similarity in solution leads us to
consider this problem too. If we study the problem regardless of its geometric properties, i.e., all
distances are given as a matrix, we can prove that approximating fre is as hard as computing its
exact value.

THEOREM 7.1. If there exists a quantum (or MapReduce) approximation algorithm for Fréchet dis-
tance with a constant approximation factor in time O(n*~€), which takes distances as a matrix in the
input, there also exists a quantum or MapReduce algorithm that computes the exact Fréchet distance
in time O(n®€).

Proor. The idea is a gap-producing reduction from the problem to itself. We can do a binary
search on the actual value of Fréchet distance; thus, in each step for a threshold ¢, we want to know
whether fre(a, b) < t or not. We define a new distance function as

dis'(a.b) = {12 dis(a,b) <t

n“ otherwise.

If fre(a, b) < t, then we have fre’(a,b) = 1 and fre’(a,b) = n? otherwise. Therefore, if we solve
the new instance with an approximation algorithm with a constant factor, we can decide whether

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

19:38 M. Boroujeni et al.

fre’(a,b) = 1 or not. Thus, we can decide whether fre(a,b) < t or not. Hence, we can find the
exact value of Fréchet distance by executing the approximation algorithm in O(log n) round. This
argument works for both quantum algorithms and MapReduce algorithms.]

Theorem 7.1 does not rule out the possibility of a subquadratic quantum algorithm or MapRe-
duce algorithm for Fréchet distance, but it states that relaxing the problem in this way does not
make the problem easier.

8 CONCLUSION AND OPEN PROBLEMS

Indeed, the most important open problem concerning edit distance is whether a subquadratic time
algorithm in classical computers can approximate the edit distance of two strings within a constant
factor. In this regard, our article proposes the following approach. Suppose we want to approxi-
mate the pairwise edit distance between m given strings, each of size n, within a constant factor.
We call this problem pairwise edit distance. A naive solution for pairwise edit distance has running
time O(m?n?). Obviously, any subquadratic time algorithm for approximating edit distance within
a constant factor improves upon this running time. In this article, we show that an improvement
in the running time of pairwise edit distance also leads to a subquadratic time algorithm for ap-
proximating edit distance within a constant factor. We believe this actually opens a new direction
for approximating edit distance for classical computers.

In addition to this, our work gives rise to a number of questions that we believe are important
to study in future work:

e How efficiently can we approximate metric estimation in classical computers with a sub-
quadratic number of queries, when the distance function is edit distance?

o [s there subquadratic quantum algorithms that approximate other similarity measures within
a constant factor, lcs in particular?

e Can a quantum algorithm approximate the edit distance of two strings within a constant factor
in near-linear time?

e [s it possible to show a non-trivial lower bound on the quantum computational complexity of
computing edit distance?

ACKNOWLEDGMENTS

We would like to thank Andrew Childs, Omid Etesami, Salman Beigi, and Mohammad Ali Abam
for their comments on an earlier version of the article.

REFERENCES

[1] Andris Ambainis. 2002. Quantum lower bounds by quantum arguments. J. Comput. System Sci. 64, 4 (2002), 750-767.
https://doi.org/10.1006/jcss.2002.1826

[2] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. 2009. Overcoming the £; non-embeddability barrier: Algo-
rithms for product metrics. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09).
SIAM, 865-874. https://doi.org/10.1137/1.9781611973068.94

[3] Alexandr Andoni and Robert Krauthgamer. 2010. The computational hardness of estimating edit distance. SIAM J.
Comput. 39, 6 (April 2010), 2398-2429. https://doi.org/10.1137/080716530

[4] Alexandr Andoni and Robert Krauthgamer. 2012. The smoothed complexity of edit distance. ACM Trans. Algorithms
8, 4 (Oct. 2012), Article 44, 25 pages. https://doi.org/10.1145/2344422.2344434

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarithmic approximation for edit distance
and the asymmetric query complexity. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’10). IEEE, 377-386. https://doi.org/10.1109/FOCS.2010.43

[6] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. 2014. Parallel algorithms for geo-
metric graph problems. In Proceedings of the 46th Annual ACM SIGACT Symposium on Theory of Computing (STOC’14).
ACM, 574-583. https://doi.org/10.1145/2591796.2591805

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1137/1.9781611973068.94
https://doi.org/10.1137/080716530
https://doi.org/10.1145/2344422.2344434
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1145/2591796.2591805

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:39

[7] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit distance in near-linear time: It’s a constant factor.
arXiv:cs.DS/2005.07678
[8] Alexandr Andoni and Krzysztof Onak. 2012. Approximating edit distance in near-linear time. SIAM J. Comput. 41, 6
(2012), 1635-1648. https://doi.org/10.1137/090767182
[9] Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin. 1990. Efficient parallel algorithms
for string editing and related problems. SIAM . Comput. 19, 5 (1990), 968-988. https://doi.org/10.1137/0219066
[10] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in strongly subquadratic time (unless SETH
is false). In Proceedings of the 47th Annual ACM SIGACT Symposium on Theory of Computing (STOC’15). ACM, 51-58.
https://doi.org/10.1145/2746539.2746612
[11] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. 2004. Approximating edit distance efficiently.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04). IEEE, 550-559.
https://doi.org/10.1109/FOCS.2004.14
Tugkan Batu, Funda Ergun, and Cenk Sahinalp. 2006. Oblivious string embeddings and edit distance approx-
imations. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA’06). SIAM,
792-801.
[13] Robert Beals. 1997. Quantum computation of Fourier transforms over symmetric groups. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC’97). ACM, 48-53. https://doi.org/10.1145/258533.258548
Aleksandrs Belovs. 2012. Learning-graph-based quantum algorithm for k-distinctness. In Proceedings of the 53rd An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE, 207-216. https://doi.org/10.1109/FOCS.
2012.18
[15] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed Seddighin. 2018. Ap-
proximating edit distance in truly subquadratic time: Quantum and MapReduce. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’18). SIAM, 1170-1189. https://doi.org/10.1137/1.9781611975031.
76
[16] Mahdi Boroujeni, Masoud Seddighin, and Saeed Seddighin. 2020. Improved algorithms for edit distance and LCS:
Beyond worst case. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20). SIAM,
1601-1620. https://doi.org/10.1137/1.9781611975994.99
[17] Mahdi Boroujeni and Saeed Seddighin. 2019. Improved MPC algorithms for edit distance and Ulam distance. In The
31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’19). ACM, 31-40. https://doi.org/10.1145/
3323165.3323205
[18] Michel Boyer, Gilles Brassard, Peter Hoyer, and Alain Tapp. 1998. Tight bounds on quantum searching. Fortschritte der
Physik 46, 4-5 (1998), 493-505. https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;
2-P
[19] Joshua Brakensiek, Moses Charikar, and Aviad Rubinstein. 2020. A simple sublinear algorithm for gap edit distance.
arXiv:cs.DS/2007.14368
[20] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation of near-linear edit distance in near-
linear time. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC’20). ACM, 685-698.
https://doi.org/10.1145/3357713.3384282
[21] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. 2002. Quantum amplitude amplification and estimation.
Contemp. Math. 305 (2002), 53-74. https://doi.org/10.1090/conm/305/05215
Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks. 2018. Approximating edit
distance within constant factor in truly sub-quadratic time. In Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’18). IEEE, 979-990. https://doi.org/10.1109/FOCS.2018.00096
Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks. 2020. Approximating edit
distance within constant factor in truly sub-quadratic time. 7. ACM 67, 6, Article 36 (Oct. 2020), 22 pages. https:
//doi.org/10.1145/3422823
[24] Moses Charikar and Robert Krauthgamer. 2006. Embedding the Ulam metric into ¢;. Theory Comput. 2, 11 (2006),
207-224. https://doi.org/10.4086/toc.2006.v002a011
Christoph Diirr, Mark Heiligman, Peter Hoyer, and Mehdi Mhalla. 2006. Quantum query complexity of some graph
problems. STAM J. Comput. 35, 6 (2006), 1310-1328. https://doi.org/10.1137/050644719
[26] Alireza Farhadi, MohammadTaghi HajiAghayi, Aviad Rubinstein, and Saeed Seddighin. 2020. Asymmetric streaming
algorithms for edit distance and LCS. arXiv:cs.DS/2002.11342
[27] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 1998. A limit on the speed of quantum computa-
tion in determining parity. Phys. Rev. Lett. 81 (1998), 5442-5444. https://doi.org/10.1103/PhysRevLett.81.5442
Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 1999. Invariant quantum algorithms for insertion
into an ordered list. arXiv:quant-ph/9901059

[12

—

(14

flans)

[22

—

[23

—_

[25

—

[28

[}

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

http://arxiv.org/abs/cs.DS/2005.07678
https://doi.org/10.1137/090767182
https://doi.org/10.1137/0219066
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/258533.258548
https://doi.org/10.1109/FOCS.2012.18
https://doi.org/10.1137/1.9781611975031.76
https://doi.org/10.1137/1.9781611975994.99
https://doi.org/10.1145/3323165.3323205
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://arxiv.org/abs/cs.DS/2007.14368
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1145/3422823
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1137/050644719
http://arxiv.org/abs/cs.DS/2002.11342
https://doi.org/10.1103/PhysRevLett.81.5442
http://arxiv.org/abs/quant-ph/9901059

19:40 M. Boroujeni et al.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. 2019. Sublinear algorithms for gap edit distance. In Pro-
ceedings of the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS’19). IEEE, 1101-1120.
https://doi.org/10.1109/FOCS.2019.00070

Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. 2020. Does preprocessing help in fast sequence comparisons?
In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC’20). ACM, 657-670. https://doi.
org/10.1145/3357713.3384300

Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC’96). ACM, 212-219. https://doi.org/10.1145/237814.237866

Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. 2019. Near-linear time insertion-deletion codes
and (1+ ¢)-approximating edit distance via indexing. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing (STOC’19). ACM, 697-708. https://doi.org/10.1145/3313276.3316371

MohammadTaghi HajiAghayi, Silvio Lattanzi, Saeed Seddighin, and Cliff Stein. 2019. MapReduce meets fine-grained
complexity: MapReduce algorithms for APSP, matrix multiplication, 3-SUM, and beyond. arXiv:cs.DS/1905.01748
MohammadTaghi HajiAghayi, Saeed Seddighin, and Xiaorui Sun. 2019. Massively parallel approximation algorithms
for edit distance and longest common subsequence. In Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’19). SIAM, 1654-1672. https://doi.org/10.1137/1.9781611975482.100

Ramesh Hariharan and V. Vinay. 2003. String matching in O(yn + Vm) quantum time. J. Discrete Algorithms 1, 1
(2003), 103-110. https://doi.org/10.1016/S1570-8667(03)00010-8

Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient massively parallel methods for dynamic programming.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC’17). ACM, 798-811. https:
//doi.org/10.1145/3055399.3055460

Piotr Indyk. 2001. Algorithmic applications of low-distortion geometric embeddings. In Proceedings of the 42nd An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’01). IEEE, 10-33. https://doi.org/10.1109/SFCS.2001.
959878

Stacey Jeffery, Robin Kothari, and Frédéric Magniez. 2013. Nested quantum walks with quantum data structures. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13). SIAM, 1474-1485. https:
//doi.org/10.1137/1.9781611973105.106

Shagun Jhaver, Latifur Khan, and Bhavani Thuraisingham. 2014. Calculating edit distance for large sets of string pairs
using MapReduce. Paper presented at ASE International Conference on Big Data.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of computation for MapReduce. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). SIAM, 938-948. https://doi.org/10.1137/
1.9781611973075.76

Tomasz Kociumaka and Barna Saha. 2020. Sublinear-time algorithms for computing & embedding gap edit distance.
In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS’20). IEEE, Virtual Con-
ference.

Michal Koucky and Michael Saks. 2020. Constant factor approximations to edit distance on far input pairs in nearly
linear time. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC’20). ACM, 699-712.
https://doi.org/10.1145/3357713.3384307

Robert Krauthgamer and Yuval Rabani. 2009. Improved lower bounds for embeddings into Ly. SIAM J. Comput. 38, 6
(2009), 2487-2498. https://doi.org/10.1137/060660126

Hari Krovi and Alexander Russell. 2015. Quantum Fourier transforms and the complexity of link invariants for quan-
tum doubles of finite groups. Comm. Math. Phys. 334, 2 (2015), 743-777. https://doi.org/10.1007/s00220-014-2285-5
Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental string comparison. SIAM J. Comput. 27,
2 (1998), 557-582. https://doi.org/10.1137/S0097539794264810

Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011. Filtering: A method for solving graph
problems in MapReduce. In Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA’11). ACM, 85-94. https://doi.org/10.1145/1989493.1989505

Francois Le Gall. 2014. Improved quantum algorithm for triangle finding via combinatorial arguments. In Proceedings
of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS’14). IEEE, 216-225. https://doi.org/10.
1109/FOCS.2014.31

William J. Masek and Michael S. Paterson. 1980. A faster algorithm computing string edit distances. 7. Comput. Syst.
Sci. 20, 1 (1980), 18-31. https://doi.org/10.1016/0022-0000(80)90002- 1

Michael Mitzenmacher and Saeed Seddighin. 2020. Dynamic algorithms for LIS and distance to monotonicity. In
Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC’20). ACM, 671-684. https://doi.org/
10.1145/3357713.3384240

Ashley Montanaro, Richard Jozsa, and Graeme Mitchison. 2015. On exact quantum query complexity. Algorithmica
71, 4 (2015), 775-796. https://doi.org/10.1007/s00453-013-9826-8

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/3313276.3316371
http://arxiv.org/abs/cs.DS/1905.01748
https://doi.org/10.1137/1.9781611975482.100
https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1109/SFCS.2001.959878
https://doi.org/10.1137/1.9781611973105.106
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1137/060660126
https://doi.org/10.1007/s00220-014-2285-5
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1109/FOCS.2014.31
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1145/3357713.3384240
https://doi.org/10.1007/s00453-013-9826-8

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce 19:41

[51] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press, UK.

[52] Aran Nayebi and Virginia Vassilevska Williams. 2014. Quantum algorithms for shortest paths problems in structured
instances. arXiv:quant-ph/1410.6220

[53] Rafail Ostrovsky and Yuval Rabani. 2007. Low distortion embeddings for edit distance. . ACM 54, 5 (Oct. 2007), Article
23, 16 pages. https://doi.org/10.1145/1284320.1284322

[54] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. 2019. Approximation algorithms for LCS and LIS
with truly improved running times. In Proceedings of the 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’19). IEEE, 1121-1145. https://doi.org/10.1109/FOCS.2019.00071

[55] Aviad Rubinstein and Virginia Vassilevska Williams. 2019. SETH vs approximation. ACM SIGACT News 50, 4 (2019),
57-76. https://doi.org/10.1145/3374857.3374870

[56] Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM . Comput. 26, 5 (1997), 1484-1509. https://doi.org/10.1137/S0097539795293172

[57] Esko Ukkonen. 1985. Algorithms for approximate string matching. Inf. Control 64, 1-3 (1985), 100-118. https://doi.
0rg/10.1016/S0019-9958(85)80046- 2

Received April 2018; revised September 2020; accepted January 2021

Journal of the ACM, Vol. 68, No. 3, Article 19. Publication date: May 2021.

http://arxiv.org/abs/quant-ph/1410.6220
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1109/FOCS.2019.00071
https://doi.org/10.1145/3374857.3374870
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1016/S0019-9958(85)80046-2

