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“Being good is easy, what is difficult is being just.” [36] (Victor Hugo, 1862)

Abstract

We study the problem of fair allocation for indivisible goods. We use the the maxmin share
paradigm introduced by Budish [15] as a measure for fairness. Procaccia and Wang [46] (EC’14)
were first to investigate this fundamental problem in the additive setting. In contrast to what
real-world experiments suggest, they show that a maxmin guarantee (1-MMS allocation) is not
always possible even when the number of agents is limited to 3. While the existence of an
approximation solution (e.g. a 1/2-MMS allocation) is quite straightforward, improving the
guarantee becomes subtler for larger constants. Procaccia and Wang [46]1 provide a proof for
existence of a 2/3-MMS allocation and leave the question open for better guarantees.

Our main contribution is an answer to the above question. We improve the result of Procac-
cia and Wangto a 3/4 factor in the additive setting. The main idea for our 3/4-MMS allocation
method is clustering the agents. To this end, we introduce three notions and techniques, namely
reducibility, matching allocation, and cycle-envy-freeness, and prove the approximation guaran-
tee of our algorithm via non-trivial applications of these techniques. Our analysis involves
coloring and double counting arguments that might be of independent interest.

One major shortcoming of the current studies on fair allocation is the additivity assumption
on the valuations. We alleviate this by extending our results to the case of submodular, frac-
tionally subadditive, and subadditive settings. More precisely, we give constant approximation
guarantees for submodular and XOS agents, and a logarithmic approximation for the case of
subadditive agents. Furthermore, we complement our results by providing close upper bounds
for each class of valuation functions. Finally, we present algorithms to find such allocations for
additive, submodular, and XOS settings in polynomial time. The reader can find a summary of
our results in Tables 1 and 2.

1 Introduction

Suppose we have a set of m indivisible items, and wish to distribute them among n agents. Agents
have valuations for each set of items that are not necessarily identical. How hard is it to divide the
items between the agents to make sure everyone receives a fair share?

∗Sharif University of Technology
†University of Maryland
‡Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF AF:Medium

grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant.
Portions of this research were completed while the first and the second authors were visitors at the Simons Institute
for the Theory of Computing.

1Recipient of the best student paper award at EC’14.

ar
X

iv
:1

70
4.

00
22

2v
3 

 [c
s.G

T]
  2

3 
Ju

l 2
01

7



Fair division problems have been vastly studied in the past 60 years, (see, e.g. [2, 4, 11, 15,
21, 46, 47, 1]). This line of research was initiated by the work of Steinhaus in 1948 [47] in which
the author introduced the cake cutting problem as follows: given a heterogeneous cake and a set
of agents with different valuation functions, the goal is to find a fair allocation of the cake to the
agents.

In order to study this problem, several notions of fairness are proposed, the most famous of
which are proportionality and envy-freeness, introduced by Steinhaus in 1948 [47] and Foley in
1967 [30]. A division is called proportional, if the total value of the allocated pieces to each agent
is at least 1/n fraction of his total value for the entire cake, where n is the number of agents. In
an envy-free division, no agent wishes to exchange his share with another agent, i.e., every agent’s
valuation for his share is at least as much as his valuation for the other agents’ shares. Clearly,
proportionality is implied by envy-freeness.

Dubins and Spainer in 1961 [21] propose a simple moving knife procedure that can guarantee
a proportional division of the cake. For envy-freeness, Selfridge and Conway design an algorithm
that guarantees envy-freeness when the number of agents is limited to 3. Later, Brams and Taylor
extend this guarantee to an arbitrary number of agents in the additive setting [12].

The problem becomes even more subtle when we assume the items are indivisible. It is not hard
to show that for indivisible items, neither of proportionality nor envy-freeness can be guaranteed;
for instance, when the number of items is smaller than the number of agents, at least one agent
receives no items.

From a theoretical standpoint, proportionality and envy-freeness are too strong to be delivered
in the case of indivisible goods. Therefore, Budish [15] proposed a newer notion of fairness for
indivisible goods, namely the maxmin share, which attracted a lot of attention in recent years
[46, 2, 39, 11, 16, 7, 48, 23]. Imagine that we ask an agent ai to partition a set M of m items into
n bundles and collect the bundle with the smallest value. To maximize his profits, agent ai tries to
divide M in a way that maximizes the value of the bundle with the lowest value to him. Based on
this, the maxmin share of an agent ai, denoted by MMSi, is the value of the least valuable bundle
in agent ai’s allocation; that is, the maximum profit ai can obtain in this procedure. Clearly, MMSi
is the most that can be guaranteed to an agent, since if all valuations are the same, at least one
agent obtains a valuation of at most MMSi from his allocated set. The question is then, whether
MMSi is a feasible guarantee? Therefore, we call an allocation MMS, if every agent ai receives a
collection of items that are together worth at least MMSi to him. Bouverret [11] showed that for
the restricted cases, when the valuations of the items for each agent are either 0 or 1, or when
m ≤ n + 3, an MMS allocation is guaranteed to exist. In other words, each ai can be guaranteed
to receive a profit of at least MMSi from his allocated items.

While the experiments support the existence of an MMS allocation in general [11], this theory
was refuted by the pioneering work of Procaccia and Wang [46]. Procaccia and Wang [46] provided
a surprising counter-example that admits no MMS allocation. They also show that a 2/3-MMS
allocation always exists, i.e. there exists an algorithm that allocates the items to the agents in such
a way that every agent ai receives a share that is worth at least 2/3MMSi to him. In particular,
they show for n ≤ 4, their algorithm finds a 3/4-MMS allocation. However, their algorithm does not
run in polynomial time unless we assume the number of agents is bounded by a constant number.
In a recent work, Amanatidis, Markakis, Nikzad, and Saberi [2], improve this result by presenting
a PTAS algorithm for finding a (2/3 − ε)-MMS allocation to any number of agents. However, the
heart of their algorithm is the same as [46]. In addition to this, Amanatidis et al. prove that
for n = 3, a 7/8-MMS allocation is always possible. Note that, the counter example provided by
Procaccia and Wang [46] requires a number of goods that is exponential to the number of agents.
Kurokawa, Procaccia, and Wang in [39] provided a better construction for the counter-example
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with a linear number of goods.
In this work, we improve the result of Procaccia and Wang [46] by proving that a 3/4-MMS

allocation always exists. We also give a PTAS algorithm to find such an allocation in polynomial
time. Of course, this only holds if the valuation of the agents for the items are additive. We further
go beyond the additive setting and extend this result to the case of submodular, XOS, and sub-
additive settings. More precisely, we give constant approximation algorithms for submodular and
XOS settings that run in polynomial time. For the subadditive case, we prove that a 1/10dlogme-
MMS allocation is guaranteed to exist. We emphasize that finding the exact value of MMSi for an
agent is NP-hard. Furthermore, to the best of our knowledge, no PATS is known for computing
the MMS values in non-additive settings. Thus, any α-MMS allocation algorithm in non-additive
settings must overcome the difficulty that the value of MMSi is not known in advance. Therefore,
our algorithms don’t immediately follow from our existential proofs.

In order to present the results and techniques, we briefly state the fair allocation problem. Note
that you can find a formal definition of the problem with more details in Section 2. The input to a
maxmin fair allocation problem is a setM of m items and a set N of n agents. Fix an agent ai ∈ N
and let Vi : 2M → R+ be the valuation function of ai. Consider the set Πr of all partitionings of
the items in M into r non-empty sets. We define MMSrVi(M) as follows:

MMSrVi(M) = max
P ∗=〈P ∗1 ,P ∗2 ,...,P ∗r 〉∈Πr

min
1≤j≤r

Vi(P
∗
j ).

In the context of fair allocation, we denote the maxmin value of an agent ai by MMSi = MMSnVi(M).
The fair allocation problem is defined as follows: for a given parameter α, can we distribute the
items among the agents in such a way that every agent ai receives a set of items with a value of
at least αMMSi to him? Such an allocation is called an α-MMS allocation. We consider the fair
allocation problem in both additive and non-additive settings (including submodular, XOS, and
subadditive valuations). For non-additive settings, we use oracle queries to access the valuations.
Note that, for non-additive settings, eliciting the exact valuation function of each agent needs an
exponential number of queries. However, our methods for allocating the items in non-additive
settings only uses a polynomial number of queries.

There are many applications for finding fair allocations in the additive and non-additive settings.
For example, spliddit, a popular fair division website2 suggests indisputable and provably fair
solutions for many real-world problems such as sharing rents, distributing tasks, dividing goods,
etc. For dividing goods, spliddit uses the maximum Nash welfare allocation (the allocation that
maximizes the product of utilities). In [16] (EC’17), Caragiannis et.al., proved with a tight analysis
that a maximum Nash welfare allocation is a 2/(1+

√
4n− 3)-MMS allocation. However, the current

best approximation gurantee and the state-of-the-art method for allocating indivisible goods is
based on the result of [46] that guarantees a 2/3-MMS allocation. We believe our results can
improve their performance. It is worth mentioning that despite the complexity of analysis, the
idea behind our algorithm is simple and it can be easily implemented. The reader can find a
set of materials including the implementation of our method and an animated explanation of our
algorithm in https://www.cs.umd.edu/∼saeedrez/fair.html.

1.1 Relation to other Fundamental Problems

In this work, we study the allocation of indivisible items to maximize fairness. However, maximizing
fairness is not the only goal that has been considered in the literature. In the following, we briefly

2 http://www.spliddit.org
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explain other variants of this problem that are very fundamental and have received a lot of attention
in recent years.

Welfare maximization: Perhaps the simplest version of the resource allocation problem with
indivisible goods is the welfare maximization problem. In this problem, we are given a set M
of goods, and the goal is to allocate the items to a number of agents to maximize the welfare.
The problem is trivial if we assume the agents to be additive. Therefore, the main focus has
been on submodular, XOS, and subadditive agents [19, 20, 25, 41](STOC’05, SODA’06, STOC’06).
Feige [25] gives tight algorithms that solve the problem in the subadditive and XOS settings with
approximation factors 1/2 and 1− 1/e, respectively. The approximation factors match the existing
lower bounds for these settings.

Max-min allocation: Another variant of this problem is to maximize the least value that any
agent obtains from the allocation. Asadpour and Saberi [4](STOC’07) give the first polynomial time
algorithm for this problem that approximates the optimal solution within a factor of O(

√
n log3 n) in

the additive setting. This was later improved by Chakrabarty, Chuzhoy,and Khanna [17](FOCS’09)
to an O(mε) approximation factor. This problem has also been studied with non-additive agents by
Goemans et al. [33](SODA’09). They give an O(

√
mn1/4 log n log3/2m) approximation algorithm

that runs in polynomial time and solves the problem when the agents valuations are submodular.
Santa Claus: A special case of the above problem in which the valuation of every agent for an

item is either 0, or a fixed value is called the Santa Claus problem. This problem was first introduced
by Bansal and Sviridenko [6] in STOC’09. In this paper, they give an O(log log n/ log log log n)
approximation algorithm for this problem that runs in polynomial time. Later Feige [24](SODA’08)
showed that the objective value of the problem can be approximated within a constant factor in
polynomial time. This was later turned into a constructive proof by Annamalai et al. [3](SODA’14).

1.2 Our Results and Techniques

Throughout this paper, we study the fair allocation problem for additive and non-additive agents.
Procaccia and Wang [46] study the fair allocation problem and show a 2/3-MMS allocation is
guaranteed to exist for any number of additive agents. We improve this result in two different
dimensions: (i) we improve the factor 2/3 to a factor 3/4 for additive agents. (ii) we provide
similar guarantees for submodular, fractionally subadditive, and subadditive agents. Moreover, we
provide algorithms that find such allocations in polynomial time. A brief summary of our results
is illustrated in Tables 1 and 2.

1.2.1 Additive Setting

While the existence of a 1/2-MMS allocation is trivial in additive setting (see the rest of this
section for more details), obtaining a better bound is more complicated. As mentioned before, the
pioneering work of Procaccia and Wang [46] presented the first proof to the existence of a 2/3-MMS
allocation in the additive setting. On the negative side, they show that their analysis is tight, i.e.
their method cannot be used to obtain a better approximation guarantee. However, whether or
not a better bound could be achieved via a more efficient algorithm remains open as Procaccia and
Wang [46] pose this question as an open problem.

We answer the above question in the affirmative. Our main contribution is a proof to the
existence of a 3/4-MMS allocation for additive agents. Furthermore, we show that such an allocation
can be found in polynomial time. This result improves the work of Procaccia and Wang [46] and
Amanatidis et al. [2] where the former gives a proof to the existence of a 2/3-MMS allocation and
the latter presents a PTAS algorithm for finding a 2/3-MMS allocation.
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Table 1: Summary of the results

Additive Submodular XOS Subadditive

Previous work (existential proof) 2/3-MMS [46] 1/10-MMS [7]3 - -
Previous work (polytime algorithm) 2/3− ε-MMS [2] 1/31-MMS [7] - -
Previous work (upper bound) 1− ε-MMS [46] - - -

Our results (existential proof) 3/4-MMS 1/3-MMS 1/5-MMS 1/10dlogme-MMS
Theorem 3.39 Theorem 4.7 Theorem 5.4 Theorem 6.3

Our results (polytime algorithm) 3/4− ε-MMS 1/3-MMS 1/8-MMS -
Theorem 3.40 Theorem 4.8 Theorem 5.5

Our results (upper bound) - 3/4-MMS 1/2-MMS 1/2-MMS
Theorem 4.2 Theorem 4.1 Theorem 4.1

Table 2: Results for a limited number of agents in the additive setting

n = 3 n = 4

Procaccia and Wang [46] 3/4-MMS 3/4-MMS

Amanatidis et al. [2] 7/8-MMS -

Our result - 4/5-MMS
Theorem A.6

Theorem 3.40 [restated]. Any fair allocation problem with additive agents admits a 3/4-MMS
allocation. Moreover, a (3/4− ε)-MMS allocation can be found in time poly(n,m) for any ε > 0.

The result of Theorem 3.40 is surprising, since most of the previous methods provided for
proving the existence of a 2/3-MMS allocation were tight. This convinced many in the community
that 2/3 is the best that can be guaranteed. This shows that the current techniques and known
structural properties of maxmin share are not powerful enough to prove the bounds better than
2/3. In this paper, we provide a better understanding of this notion by demonstrating several
new properties of maxmin share. For example, we introduce a generalized form of reducibility and
develop double counting techniques that are closely related to the concept of maxmin-share.

For a better understanding of our algorithm, we start with the case where valuations of the
agents for all items are small enough. More precisely, let 0 < α < 1 be a constant number and
assume for every agent ai and every item bj , the value of agent ai for item bj is bounded by αMMSi.
In this case, we propose the following simple procedure to allocate the items to the agents.

• Arrange the items in an arbitrary order.

• Start with an empty bag and add the items to the bag one by one with respect to their order.

• Every time the valuation of an agent ai for the set of items in the bag reaches (1− α)MMSi,
give all items of the bag to that agent, and continue with an empty bag. In case many agents

3In a parallel work to ours, Barman and Murthy in [7] (EC’17) considered the submodular case and proposed a
1/31 approximation guarantee.
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are qualified to receive the items, we choose one of them arbitrarily. From this point on, we
exclude the agent who received the items from the process.

We call this procedure the bag filling algorithm. One can see this algorithm as an extension of
the famous moving knife algorithm for indivisible items. It is not hard to show that the bag filling
algorithm guarantees a (1−α)-MMS allocation to all of the agents. The crux of the argument is to
show that every agent receives at least one bag of items. To this end, one could argue that every
time a set of items is allocated to an agent ai, no other agent aj loses a value more than MMSj .
This, together with the fact that Vi(M) ≥ nMMSi, shows that at the end of the algorithm, every
agent receives a fair share ((1 − α)-MMS) of the items.

This observation sheds light on the fact that low-value items can be distributed in a more
efficient way. Therefore, the main hardness is to allocate the items with higher values to the
agents. To overcome this hardness, we devise a clustering method. Roughly speaking, we divide
the agents into three clusters according to their valuation functions. We prove desirable properties
for the agents of each cluster. Finally, via a procedure that is similar in spirit to the bag filling
algorithm but more complicated, we allocate the items to the agents.

Our clustering method is based on three important principles: reducibility, matching allocation,
and cycle-envy-freeness. We give a brief description of each principle in the following.

Reducibility: The reducibility principle is very simple and elegant but plays an important
role in the allocation process. Roughly speaking, consider a situation where for an agent ai and a
set S of items we have the following properties:

Vi(S) ≥ αMMSi

and
∀aj 6= ai MMSn−1

j (M\ S) ≥ MMSj ,

where Vi(S) is the valuation of agent ai for subset S of items. Intuitively, since the maxmin shares
of all agents except ai for the all items other than set S are at least as much as their current maxmin
shares, allocating set S to ai cannot hurt the guarantee. In other words, given that an α-MMS
allocation is possible for all agents except ai with items not in S, we can allocate set S to agent ai
and recursively solve the problem for the rest of the agents. Although the definition of reducibility
is more general than what mentioned above, the key idea is that reducible instances of the problem
can be transformed into irreducible instances. More precisely, we show that in order to prove the
existence of an α-MMS allocation, it only suffices to show this for α-irreducible instances of the
problem (see Observation 2.1). This makes the problem substantially simpler, since α-irreducible
instances of the problem have many desirable properties. For example, in such instances, the value
of every agent ai for each item is less than αMMSi (see Lemma 3.1). By setting α = 1/2, this
observation along with the analysis of the bag filling algorithm, proves the existence of a 1/2-MMS
allocation. It is worth to mention that a special form of reducibility, where |S| = 1 is used in the
previouse works [2, 46].

Matching allocation: At the core of the clustering part, we use a well-structured type of
matching to allocate the items to the agents. Intuitively, we cluster the agents to deal with high-
value or in other words heavy items. In order to cluster a group of agents, we find a subset T
of agents and a subset S of items, together with a matching M from S to T . We choose T , S,
and M in a way that (i) every item assigned to an agent has a value of at least β to him, (ii)
agents who do not receive any items have a value less than β for each of the assigned items. Such
an allocation requires careful application of several properties of maximal matchings in bipartite
graphs described in Section 3.2. A matching with similar structural properties is previousely used
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by Procaccia and Wang [46] to allocate the bundles to the agents. In this paper, we reveal more
details and precisely characterise the structure of such matchings. We use such matchings in two
main steps: selecting the agents for the first and second clusters and merging the items.

Cycle-envy-freeness: Envy-freeness is itself a well-known notion for fairness in the resource
allocation problems. However, this notion is perhaps more applicable to the allocation of divisible
goods. In our algorithm, we use a much weaker notion of envy-freeness, namely cycle-envy-freeness.
A cycle-envy-free allocation contains no cyclic permutation of agents, such that each agent envies
the next agent in the cycle. In the clustering phase, we choose a matching M in a way that preserves
cycle-envy-freeness for the clustered agents. More details about this can be found in Section 3.3.

Cycle-envy-freeness plays a key role in the second phase of the algorithm. As aforementioned,
our method in the assignment phase is closely related to the bag filling procedure described above.
The difference is that the efficiency of our method depends on the order of the agents who receive
the items. Based on the notion of cycle-envy-freeness, we prioritize the agents and, as such, we
show the allocation is fair. An analogous concept is previousely used in [43], albeit with a different
application than ours.

As mentioned before, our algorithm consists of two phases: (i) clustering the agents and (ii)
satisfying the agents. In the first phase, we cluster the agents into three sets namely C1,C2, and
C3. In addition to this, for C1 and C2 we also have refinement procedures to make sure the rest of
the unallocated items have a low value to the agents of these clusters. In the second phase, based
on a method similar to the bag filling algorithm described above, we allocate the rest of the items
to the agents. A flowchart of our algorithm is depicted in Figure 1. The main steps along with
brief descriptions of each step are highlighted in the flowchart. In section 3.1, we present the ideas
behind each of these steps and show how the entire algorithm leads to a proper allocation.

In Appendix A, we study the case where we only have four additive agents. Procaccia and
Wang [46] showed that in this case a 3/4-MMS allocation is possible. We improve this result by
giving an algorithm that finds a 4/5-MMS allocation in this restricted setting. Note that this
also leads to an algorithm that finds a 4/5 − ε-MMS allocation in polynomial time. Amanatidis
et al. [2] also show that a 7/8-MMS allocation is possible when the number of agents is equal to
3. These results indicate that better bounds can be achieved for the additive setting. We believe
our framework can be used as a building block to obtain better bounds (see Section 3.1 for more
details).

1.2.2 Submodular, XOS, and Subadditive Agents

Although the problem was initially proposed for additive agents, it is very well-motivated to ex-
tend the definition to other classes of set functions. For instance, it is quite natural to expect an
agent prefers to receive two items of value 400, rather than receiving 1000 items of value 1. Such a
constraint cannot be imposed in the additive setting. However, submodular functions which encom-
pass k-demand valuations are strong tools for modeling these constraints. Such generalizations have
been made to many similar problems, including the Santa Claus max-min fair allocation, welfare
maximization, and secretary problems [8, 25, 26, 34]. The most common classes of set functions
that have been studied before are submodular, XOS, and subadditive functions. We consider the
fair allocation problem when the agents’ valuations are in each of these classes. In contrast to
the additive setting in which finding a constant MMS allocation is trivial, the problem becomes
much more subtle even when the agents’ valuations are monotone submodular. For instance, the
bag filling algorithm does not promise any constant approximation factor for submodular agents,
while it is straight-forward to show it guarantees a (1 − α)-MMS allocation for additive agents.

We begin with submodular set functions. In Section 4, we show that the fair allocation problem
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Instance

Building Cluster C1

Refining Cluster C1

Building Clusters C2

Refining Cluster C2

and C3

bag filling

Every item assigned to the agents of C1 is

worth less than 1/2 to other agents (see Lemma 3.16).

All agents of C3 have a valuation less than 1/2

for the item or items assigned to every agent in C3.

No remaining free item can satisfy the agents of C1

No remaining free item alone can satisfy the agents in C2

Remaining free items are small enough to run bag filling.

One item is assigned to every agent of C1.

One item or a pair of items is assigned to each agent of C2.

(see Observation 3.3).

(see Observation 3.4).

(see Observations 3.3, 3.4 and Corollary 3.27).

Agents are prioritized by:

• The cluster they belong to

• Cycle-envy-free property

No

Yes

No

Reduction
(based on

Yes
Reduce

No

Yes

The instance is reduced if the condition of Lemma 3.1
is violated.

The instance is reduced if the condition of Lemma 3.2
is violated.

The instance is reduced if the condition of Lemma 3.15
is violated (see Lemma 3.3).

Lemma 3.1)

Reduction
(based on

Lemma 3.2)

Reduction
(based on

Lemma 3.3)

Figure 1: A flowchart of the 3/4-MMS allocation algorithm
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with submodular agents admits a 1/3-MMS allocation. In addition, we show, given access to query
oracles, one can find such an allocation in polynomial time. We further complement our result by
showing that a 3/4-MMS is the best guarantee that one can hope to achieve in this setting. This
is in contrast to the additive setting for which the only upper bound is that 1-MMS allocation is
not always possible. We begin by stating an existential proof.

Theorem 4.7 [restated]. The fair allocation problem with submodular agents admits a 1/3-MMS
allocation.

Our proof for submodular agents is fundamentally different from that of the additive setting.
First, without loss of generality, we assume MMSi = 1 for every agent ai ∈ N . Moreover, we
assume the problem is 1/3-irreducible since otherwise we can reduce the problem. Next, given a
function f(.), we define the ceiling function fx(.) as follows:

fx(S) = min{x, f(S)} ∀S ⊆ ground(f).

An important property of the ceiling functions is that they preserve submodularity, fractionally
subadditivity, and subadditivity (see Lemma 4.4). We define the bounded welfare of an allocation

A as
∑
V

2/3
i (Ai). Given that, we show an allocation that maximizes the bounded welfare is 1/3-

MMS. To this end, let A be an allocation with the maximum bounded welfare and suppose for
the sake of contradiction that in such an allocation, an agent ai receives a bundle of worth less
than 1/3 to him. Since MMSi = 1, agent ai can divide the items into n sets, where each set is of
worth at least 1 to him. Now, we randomly select an element bj which is not allocated to ai. By
the properties of submodular functions, we show the expected contribution of bj to the valuation
function of ai is more than the expected contribution of bj to the bounded welfare of the allocation.
Therefore, there exists an item bj such that if we allocate that item to agent ai, the total bounded
welfare of the allocation will be increased. This contradicts the maximality of the allocation.

Notice that Theorem 4.7 is only an existential proof. A natural approach to find such a solution
is to start with an arbitrary allocation and iteratively increase its bounded welfare until it becomes
1/3-MMS. The main challenge though is that we do not even know what the MMS values are.
Furthermore, unlike the additive setting, we do not have any PTAS algorithm that provides us a
close estimate to these values. To overcome this challenge, we propose a combinatorial trick to
guess these values without incurring any additional factor to our guarantee. The high level idea is
to start with large numbers as estimates to the MMS values. Every time we run the algorithm on
the estimated values, it either finds a desired allocation, or reports that the maxmin value of an
agent is misrepresented by at least a multiplicative factor. Given this, we divide the maxmin value
of that agent by that factor and continue on with the new estimates. Therefore, at every step of the
algorithm, we are guaranteed that our estimates are not less than the actual MMS values. Based
on this, we show that the running time of the algorithm is polynomial, and that the allocation it
finds in the end has the desired properties. The reader can find a detailed discussion in Section
5.2.2.

Theorem 4.8 [restated]. Given access to query oracles, one can find a 1/3-MMS allocation to
submodular agents in polynomial time.

Finally, we show that in some instances with submodular agents, no allocation is better than
3/4-MMS.

Theorem 4.1 [restated]. For any integer number c > 0, there exists an instance of the fair
allocation problem with n ≥ c submodular agents for which no allocation is better than 3/4-MMS.

9



We show Theorem 4.1 by a counter-example. In this counter-example we have n agents and 2n
items. Moreover, the valuation functions of the first n− 1 agents are the same, but the last agent
has a slightly different valuation function that makes it impossible to find an allocation which is
better than 3/4-MMS. The number of agents in this example can be arbitrarily large.

In Section 5, we study the problem with fractionally subadditive (XOS) agents. We first give
a 1/2 upper bound on the quality of any allocation. In other words, we show that for some
instances of the problem, no allocation can guarantee anything better than 1/2-MMS when the
agents valuations are XOS. This is followed by a proof to the existence of a 1/5-MMS allocation
for any instance of the problem with XOS agents.

Similar to the submodular setting, we also provide an upper bound on the quality of any
allocation in the XOS setting. We show Theorem 4.2 by a counter-example.

Theorem 4.2 [restated]. For any integer number c, there is an instance of the fair allocation
problem with XOS agents where n ≥ c and no allocation is better than 1/2-MMS.

Next, we state the main theorem of this section.

Theorem 5.4 [restated]. The fair allocation problem with XOS agents admits a 1/5-MMS
allocation.

Our approach for proving Theorem 5.4 is similar to the proof of Theorem 4.7. Again, we scale
the valuations to make sure MMSi = 1 all agents and define the notion of bounded welfare, but this

time as
∑
V

2/5
i (Ai). However, as XOS functions do not adhere to the nice structure of submodular

functions, we use a different analysis to prove this theorem. Let A be an allocation with the
maximum bounded welfare. In case all agents receive a value of at least 1/5, the proof is complete.
Otherwise, let ai be an agent that receives a set of items whose value to him is less than 1/5. In
contrast to the submodular setting, giving no item alone to ai can guarantee an increase in the
bounded welfare of the allocation. However, this time, we show there exists a set S of items such
that if we take them back from their recipients and instead allocate them to agent ai, the bounded
welfare of the allocation increases. The reason this holds is the following: since MMSi = 1, agent ai
can split the items into 2n sets where every set is worth at least 2/5 to ai, otherwise the problem
is 1/5-reducible (see Lemma 5.3). Moreover, since the valuation functions are XOS, we show that
giving one of these 2n sets to ai will increase the bounded welfare of the allocation. Therefore, if
A is maximal, then A is also 1/5-MMS.

Finally, we show that a 1/8-MMS allocation in the XOS setting can be found in polynomial time.
Our algorithm only requires access to demand and XOS oracles. Note that this bound is slightly
worse than our existential proof due to some computational hardnesses. However, the blueprint of
the algorithm is based on the proof of Theorem 5.4.

Theorem 5.5 [restated]. Given access to demand and XOS oracles, we can find a 1/8-MMS
allocation for the problem with XOS agents in polynomial time.

We start with an arbitrary allocation and increase the bounded welfare until the allocation
becomes 1/8-MMS. The catch is that if the allocation is not 1/8-MMS, then there exists an agent
ai and a set S of items such that if we take back these items from their current recipients and
allocate them to agent ai, the bounded welfare of the allocation increases. In order to increase the
bounded welfare, there are two computational barriers that need to be lifted. First, similar to the
submodular setting, we do not have any estimates to the MMS values. Analogously, we resolve the
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first issue by iteratively guessing the MMS values. The second issue is that in every step of the
algorithm, we have to find a set S of items to allocate to an agent ai that results in an increase in
the bounded welfare. Such a set S cannot be trivially found in polynomial time. That is where the
demand and XOS oracles take part. In Section 5.2.1 we show how to find such a set in polynomial
time. The high-level idea is the following: first, by accessing the XOS oracles, we determine the
contribution of every item to the bounded welfare of the allocation. Next, we set the price of every
element equal to three times the contribution of that element to the bounded welfare and run the
demand oracle to find which subset has the highest profit for agent ai. We show this subset has a
value of at least 1/4 to ai. Next, we sort the elements of this set based on the ratio of contribution
to the overall value of the set over the price of the item, and select a prefix for them that has a value
of at least 1/4 to ai. Finally, we argue that allocating this set to ai increases the bounded welfare
of the allocation by at least some known lower bound. This, married with the combinatorial trick
to guess the MMS values, gives us a polynomial time algorithm to find a 1/8-MMS allocation.

Note that an immediate corollary of Theorems 5.5 and 4.8 is a polynomial time algorithm for
approximating the maxmin value of a submodular and an XOS function within factors 1/3 and
1/8, respectively.

Corollary 1.1 Let f be a submodular/XOS function on a set of ground elements S, and let n be
an integer number. Given access to query oracle/demand and XOS oracles of f , we can partition
the elements of S into n disjoint subsets S1, S2, . . . , Sn such that

n
min
i=1

f(Si) ≥ c ·MMSnf

where MMSnf denotes the maxmin value for function f on n subsets. Constant c equals 1/3 if f is
submodular and is equal to 1/8 for the XOS case.

Finally, we investigate the problem when the agents are subadditive and present an existential
proof based on a reduction to the XOS setting. In Section 6, we present a lemma that enables us
to reduce the problem with subadditive agents to the case where agents are XOS.

Lemma 1.2 Given a subadditive set function f(.) which is defined on a set ground(f) and an
integer number n, there exists an XOS function g(.) such that

MMSng ≥ MMSnf/

(
2dlog |ground(f)|e

)
and g(S) ≤ f(S) for every set S ⊆ ground(f).

Proof of Lemma 1.2 follows from the known techniques for reducing subadditive valuations to XOS.
For the sake of completeness, we bring a formal proof in Section 6.

Theorem 6.3 [restated]. The fair allocation problem with subadditive agents admits a 1/10dlogme-
MMS allocation.

2 Preliminaries

Throughout this paper we assume the set of agents is denoted by N and the set of items is referred
to by M. Let |N | = n and |M| = m, we refer to the agents by ai and to the items by bi, i.e.,
N = {a1, a2, . . . , an} and M = {b1, b2, . . . , bm}. We denote the valuation of agent ai for a set S of
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items by Vi(S). Our interest is in valuation functions that are monotone and non-negative. More
precisely, we assume Vi(S) ≥ 0 for every agent ai and set S ⊆ M, and for every two sets S1 and
S2 we have

∀ai ∈ N Vi(S1 ∪ S2) ≥ max{Vi(S1), Vi(S2)}.
Due to obvious impossibility results for the general valuation functions4, we restrict our attention

to four classes of set functions:

• Additive: A set function V (.) is additive if V (S1) + V (S2) = V (S1 ∪ S2) − V (S1 ∩ S2) for
every two sets S1, S2 ∈ ground(V ).

• Submodular: A set function V (.) is submodular if V (S1)+V (S2) ≥ V (S1∪S2)−V (S1∩S2)
for every two sets S1, S2 ∈ ground(V ).

• Fractionally Subadditive (XOS): An XOS set function V (.) can be shown via a finite set
of additive functions {V1, V2, . . . , Vα} where V (S) = maxαi=1 Vi(S) for any set S ⊆ ground(V ).

• Subadditive: A set function V (.) is subadditive if V (S1) + V (S2) ≥ V (S1 ∪ S2) for every
two sets S1, S2 ⊆ ground(V ).

For additive functions, we assume the value of the function for every element is given in the input.
However, representing other classes of set functions requires access to oracles. For submodular
functions, we assume we have access to query oracle defined below. Query oracles are great identifier
for submodular functions, however, they are too weak when it comes to XOS and subadditive
settings. For such functions, we use a stronger oracle which is called demand oracle. It is shown
that for some functions, such as gross substitutes, a demand oracle can be implemented via a query
oracle in polynomial time [42]. In addition to this, we consider a special oracle for XOS functions
which is called XOS oracle. Access to query oracles for submodular functions, XOS oracle for XOS
functions, and demand oracles for XOS and subadditive functions are quite common and have been
very fruitful in the literature [19, 25, 26, 27, 29, 42, 50]. In what follows, we formally define the
oracles:

• Query oracle: Given a function f , a query oracle O is an algorithm that receives a set S as
input and computes f(S) in time O(1).

• Demand oracle: Given a function f , a demand oracle O is an algorithm that receives a
sequence of prices p1, p2, . . . , pn as input and finds a set S such that

f(S)−
∑
e∈S

pe

is maximized. We assume the running time of the algorithm is O(1).

• XOS oracle: (defined only for an XOS functions f) Given a set S of items, it returns the
additive representation of the function that is maximized for S. In other words, it reveals the
contribution of each item in S to the value of f(S).

4If the valuation functions are not restricted, no approximation guarantee can be achieved. For instance consider
the case where we have two agents and 4 items. Agent a1 has value 1 for sets {b1, b2} and {b3, b4} and 0 for the rest
of the sets. Similarly, agent a2 has value 1 for sets {b1, b3} and {b2, b4} and 0 for the rest of the sets. In this case, no
allocation can provide both of the agents with sets which are of non-zero value to them.
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Let Πr be the set of all partitionings of M into r disjoint subsets. For every r-partitioning
P ∗ ∈ Πr, we denote the partitions by P ∗1 , P

∗
2 , . . . , P

∗
r . For a set function f(.), we define MMSrf (M)

as follows:
MMSrf (M) = max

P ∗∈Πr

min
1≤j≤r

f(P ∗j ).

For brevity we refer to MMSnfi(M) by MMSi.
An allocation of items to the agents is a vector A = 〈A1, A2, . . . , An〉 where

⋃
Ai = M and

Ai ∩ Aj = ∅ for every two agents ai, aj ∈ N . An allocation A is α-MMS, if every agent ai receives
a subset of the items whose value to that agent is at least α times MMSi. More precisely, A is
α-MMS if and only if Vi(Ai) ≥ αMMSi for every agent ai ∈ N .

We define the notion of reducibility for an instance of the problem as follows.

Definition 2.1 We say an instance of the problem is α-reducible, if there exist a set T ⊂ N of
agents, a set S of items, and an allocation A = 〈A1, A2, . . . , An〉 of S to agents of T such that

∀ai ∈ T Vi(Ai) ≥ αMMSi

and
∀ai /∈ T MMS

n−|T |
Vi

(M\ S) ≥ MMSi.

Similarly, we call an instance α-irreducible if it is not α-reducible. The intuition behind Definition
2.1 is the following: In order to prove the existence of an α-MMS allocation for every instance of
the problem, it only suffices to prove this for the α-irreducible instances.

Observation 2.1 Every instance of the fair allocation problem admits an α-MMS allocation if this
holds for all α-irreducible instances.

Proof. Suppose for the sake of contradiction that all α-irreducible instances of the problem admit
an α-MMS allocation, but there exists an α-reducible instance of the problem which does not admit
any α-MMS allocation. Among all such instances, we consider the one with the lowest number of
agents. Since this instance is α-reducible, there exists a subset T of agents and a subset S of items
such that an allocation of S to agents of T provides each of them with a valuation of at least
αMMSi. Moreover, the rest of the items and agents make an instance of the problem with a smaller
n. Thus, an α-MMS allocation can satisfy the rest of the agents and hence the instance admits an
α-MMS allocation. This contradicts the assumption. �

The reducibility argument plays an important role in both the existential proofs and algorithms
that we present in the paper. As we see in Sections 3.2 and 5, irreducible instances of the problem
exhibit several desirable properties for additive and non-additive agents. We take advantage of
these properties to improve the approximation guarantee of the problem for different classes of set
functions.

3 Additive Agents5

In this section we study the fair allocation problem in the additive setting. We present a proof
to the existence of a 3/4-MMS allocation when the agents are additive. This improves upon the
work of Procaccia and Wang [46] wherein the authors prove a 2/3-MMS allocation exists for any

5We have created a website at https://www.cs.umd.edu/∼saeedrez/fair.html for the implemented algorithm and
all related materials.
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combination of additive agents. As we show, our proof is constructive; given an algorithm that
determines the MMS of an additive set function within a factor α, we can implement an algorithm
that finds a 3/(4α)-MMS allocation in polynomial time. This married with the PTAS algorithm of
Epstein and Levin [22] for finding the MMS values, results is an algorithm that finds a 3/(4+ε)-MMS
allocation in polynomial time.

The main idea behind the 3/4-MMS allocation is clustering the agents. Roughly speaking,
we categorize the agents into three clusters, namely C1, C2, and C3. We show that the valuation
functions of the agents within each cluster show similar behaviors. Along the clustering process,
we allocate the heavy items (the items that have a valuation of at least 1/4 to some agents) to
the agents. By Observation 2.1, proving a 3/4-MMS guarantee can be narrowed down to only 3/4-
irreducible instances. The 3/4-irreducibility of the problem guarantees that after the clustering
process, the remaining items are light. This enables us to run a bag filling process to satisfy the
agents. In order to prove the correctness of the algorithm, we take advantage of the properties of
each cluster separately.

The organization of this section is summarized in the following: we start by a brief and abstract
explanation of the ideas in Section 3.1. In Section 3.2 we study the properties of the additive
setting and state the main observations that later imply the correctness of our algorithm. Next,
in Section 3.3 we discuss a method for clustering the agents and in Section 3.4 we show how we
allocate the items to the agents of each cluster to ensure a 3/4-MMS guarantee. Finally, in Section
3.6 we explain the implementation details and prove a polynomial running time for the proposed
algorithm.

Throughout this section, we assume MMSi = 1 for all agents ai ∈ N . This is without loss
of generality for the existential proof since one can scale the valuation functions to impose this
constraint. However, the computational complexity of the allocation will be affected by this as-
sumption since determining the MMS of an additive function is NP-hard [22]. That said, we show
in Section 3.6 that this challenge can be overcome by incurring an additional 1 + ε factor to the
approximation guarantee.

For brevity, we defer the proofs of Sections 3.2, 3.3, 3.4, and 3.5 to Appendices B,C,D, and E,
respectively.

3.1 A Brief Overview of the Algorithm

The purpose of this section is to present an abstract overview over the ideas behind our algorithm
for finding a 3/4-MMS allocation in the additive setting. For simplicity, we start with a simple
1/2-MMS algorithm mentioned in Section 1.2. Recall that the bag filling procedure guarantees a
1 − α approximation solution when the valuations of the agents for each item is smaller than α.
Furthermore, we know that in every α-irreducible instance, all the agents have a value less than α
for every items. Thus, the following simple procedure yields a 1/2-MMS allocation:

(i). Reduce the problem until no agent has a value more than 1/2 for any item.

(ii). Allocate the items to the agents via a bag filling procedure.

Figure 2 shows a flowchart for this algorithm.

bag filling
instance

1/2-irreducible

Figure 2: 1/2-MMS Algorithm
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We can extend the idea in 1/2-MMS algorithm to obtain a more efficient algorithm. Here is
the sketch of the 2/3-MMS algorithm: consider a 2/3-irreducible instance of the problem. In this
instance, we have no item with a value more than or equal to 2/3 to any agent. Nevertheless, the
items are not yet small enough to run a bag filling procedure. The idea here is to divide the agents
into two clusters C1 and C2. Along this clustering, the items with a value in range [1/3, 2/3) are
given to the agents. In particular, one item is allocated to every agent in C1 that is worth at least
1/3 to him. Next, we refine Cluster C1. In the refining procedure, if any remaining item could
singly satisfy an agent in C1, we do so. After building C1 and C2 and refining C1, the remaining
items preserve the following two invariants:

(i). Value of every remaining item is less than 1/3 to every remaining agent.

(ii). No remaining item can singly satisfy an agent in C1 (regarding the item that is already
allocated to them)

These two invariants enable us to run a bag filling procedure over the remaining items. For this case,
the bag filling procedure must be more intelligent: in the case that multiple agents are qualified
to receive the items of the bag, we prioritize the agents. Roughly speaking, the priorities are
determined by two factors: the cluster they belong to, and the cycle-envy-freeness property of the
agents in C1. In Figure 3 you can see a flowchart for this algorithm.

Building

C1 and C2

Refining

C1

instance

2/3-irreducible
bag filling

Figure 3: 2/3-MMS Algorithm

Our method for a 3/4-MMS allocation takes one step further from the previous 2/3-MMS
algorithm. Again, we assume that the input is 3/4-Irreducible since otherwise it can be further
simplified. Via similar ideas, we build Cluster C1 and refine it. Next, we build Clusters C2 and C3

and refine C2. After refining Cluster C2, the following invariants are preserved for the remaining
items:

(i). Almost every remaining item has a value less than 1/4 to every remaining agent. More
precisely, for every remaining agent ai, there is at most one remaining item bj with Vi({bj}) ≥
1/4.

(ii). No remaining item can singly satisfy an agent in C1 and C2 (regarding the item that is already
allocated to them).

Finally, we run a bag filling procedure. Again, in the bag filling procedure, the priorities of the
agents are determined by the cluster they belong to, and the cycle-envy-freeness of the clusters. In
Figure 4 you can see the flowchart of the algorithm.

Our assumption is that the input is 3/4-irreducible. Hence, we describe our algorithm in two
phases: a clustering phase and the bag filling phase, as shown in Figure 5. In Section 3.6 we show
that all the steps of the algorithm can be implemented in polynomial time. Furthermore, we show
that the assumption that the input is 3/4-irreducible is without loss of generality. In fact, in Section
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Refining

C1

Building

C1
Building

C2 and C3

Refining

C2

instance

3/4-irreducible
bag filling

Figure 4: 3/4-MMS Algorithm

Phase1: Clustering Phase2: bag filling

Refining

C1

Building

C1
Building

C2 and C3

Refining

C2

instance

3/4-irreducible

bag filling

Figure 5: Algorithm Phases

3.6 we show that it suffices to check some invariants of irreducibility to be held in certain points of
the algorithm. In Figure 1, these steps are specified with caption Reduction.

As a future work, one can consider a more generalized form of this algorithm, where the agents
are divided into more than 3 clusters (see Figure 6). We believe that this generalization might
yield a (1 − ε)-MMS allocation, where ε is a small value that depends on the number of agents.
However, such a generalization is faced with two main barriers. First, In order to extend the idea to
more than 3 clusters, we need a generalized form of Lemmas 3.2 and 3.3 for more than two items.
Furthermore, a challenging part of our approximation proof is to show that the second cluster is
empty at the end of the algorithm. For this, we define a graph on the items in the second cluster
and prove some bounds on the number of edges in this graph. To extend the idea for more clusters,
we need to define hypergraphs on the items in the clusters and show similar bounds, which requires
deeper and more complicated techniques..

Refining

C1

Building

C1
Building

C2

Refining

C2

instance

irreducible

(1− ε)
Building

Ck−1 and Ck

Refining

Ck−1

bag filling

Figure 6: Generalizing the algorithm into k clusters

Before presenting the algorithm, in Section 3.2 we discuss the consequences of irreducibility
and techniques to build the clusters and preserving cycle-envy-freeness in each cluster. Next, we
describe the algorithm in more details.
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3.2 General Definitions and Observations

Throughout this section we explore the properties of the fair allocation problem with additive
agents.

3.2.1 Consequences of Irreducibility

Since the objective is to prove the existence of a 3/4-MMS allocation, by Observation 2.1, it
only suffices to show every 3/4-irreducible instance of the problem admits a 3/4-MMS allocation.
Therefore, in this section we provide several properties of the 3/4-irreducible instances. We say a set
S of items satisfies an agent ai if and only if Vi(S) ≥ 3/4. Perhaps the most important consequence
of irreducibility is a bound on the valuation of the agents for every item. In the following we show
if the problem is 3/4-irreducible, then no agent has a value of 3/4 or more for an item.

Lemma 3.1 For every α-irreducible instance of the problem we have

∀ai ∈ N , bj ∈M Vi(bj) < α.

In other words, Lemma 3.1 states that in a 3/4-irreducible instance of the problem, no item
alone can satisfy an agent.

It is worth mentioning that the proof for Lemma 3.1 does not rely on additivity of the valuation
functions and holds as long as the valuations are monotone. Thus, regardless of the type of the
valuation functions, one can assume that in any α-irreducible instance, value of any item is less
than α for any agent. Hence the statement carries over to the submodular, XOS, and subadditive
settings.

As a natural generalization of Lemma 3.1, we show a similar observation for every pair of items.
However, this involves an additional constraint on the valuation of the other agents for the pertinent
items. In contrast to Lemma 3.1, Lemmas 3.2 and 3.3 are restricted to additive setting and their
results do not hold in more general settings.

Lemma 3.2 If the problem is 3/4-irreducible and Vi({bj , bk}) ≥ 3/4 holds for an agent ai ∈ N
and items bj , bk ∈M, then there exists an agent ai′ 6= ai such that

Vi′({bj , bk}) > 1

According to Lemma 3.2, in every 3/4-irreducible instance of the problem, for every agent
ai and items bj , bk, either Vi({bj , bk}) < 3/4 or there exists another agent ai′ 6= ai, such that
Vi′({bj , bk}) > 1. Otherwise, we can reduce the problem and find a 3/4-MMS allocation recursively.
More generally, let S = {bj1 , bj2 , . . . , bj|S|} be a set of items in M and T = {ai1 , ai2 , . . . , ai|T |} be a
set of agents such that

(i) |S| = 2|T |

(ii) For every aia ∈ T we have Via({bj2a−1 , bj2a}) ≥ 3/4.

(iii) For every ai /∈ T we have Vi({bj2a−1 , bj2a}) ≤ 1 for every 1 ≤ a ≤ |T |.

then the problem is 3/4-reducible.

Lemma 3.3 In every 3/4-irreducible instance of the problem, for every set T = {ai1 , ai2 , . . . , ai|T |}
of agents and set S = {bj1 , bj2 , . . . , bj|S|} of items at least one of the above conditions is violated.

17



0.2

0.2

0.4

0.4

0.1

0.5

H

0.4

0.4

0.5

H0.4

0.5

H0.5

x1 x1 x1x2 x2

y1 y2 y2y3 y3 y3

Figure 7: An example of β-filtering on a graph. After removing the edges with a value smaller than
β, some vertices may become isolated. All such vertices are removed from the filtered graph.

3.2.2 Modeling the Problem with Bipartite Graphs

In our algorithm we subsequently make use of classic algorithms for bipartite graphs. Let G =
〈V (G), E(G)〉 be a graph representing the agents and the items. Moreover, let V (G) = X ∪ Y
where Y corresponds to the agents and X corresponds to the items. More precisely, for every agent
ai we have a vertex yi ∈ Y and every item bj corresponds to a vertex xj ∈ X . For every pair of
vertices yi ∈ Y and xj ∈ X , there exists an edge (xj , yi) ∈ E(G) with weight w(xj , yi) = Vi({bj}).
We refer to this graph as the value graph.

We define an operation on the weighted graphs which we call filtering. Roughly speaking, a
filtering is an operation that receives a weighted graph as input and removes all of the edges with
weight less than a threshold from the graph. Next, we remove all of the isolated6 vertices and report
the remaining as the filtered graph. In the following we formally define the notion of filtering for
weighted graphs.

Definition 3.4 A β-filtering of a weighted graph H〈V (H), E(H)〉, denoted by Hβ〈Vβ(H), Eβ(H)〉,
is a subgraph of H where Vβ(H) is the set of all vertices in V (H) incident to at least one edge of
weight β or more and

Eβ(H) = {(u, v) ∈ E(H)|w(u, v) ≥ β}.

For the case of the value graph, we also denote by Yβ and Xβ the sets of agents and items corre-
sponding to vertices of Vβ(G). Figure 7 illustrates an example of a graph H, together with H0.4

and H0.5. Note that none of the vertices in H0.4 or H0.5 are isolated.
Denote by a maximum matching, a matching that has the highest number of edges in a graph.

In definition 3.5, we introduce our main tool for clustering the agents.

Definition 3.5 Let H〈V (H), E(H)〉 be a bipartite graph with V (H) = X̂ ∪ Ŷ and let M be a
maximum matching of H. Define Ŷ1 as the set of the vertices in Ŷ that are not saturated by M .
Also, define Ŷ2 as the set of vertices in Ŷ that are connected to Ŷ1 by an alternating path and let
X̂2 = M(Ŷ2), where M(Ŷ2) is the set of vertices in X̂ that are matched with the vertices of Ŷ2 in
M . We define FH(M, X̂ ) as the set of the vertices in X̂ \ X̂2.

For a better understanding of Definition 3.5, consider Figure 8. By the definition of alternating
paths, there is no edge between the saturated vertices of FH(M, X̂ ) and Ŷ1 ∪ Ŷ2. On the other
hand, since M is maximum, the graph doesn’t have any augmenting path. Thus, there is no edge
between unsaturated vertices in FH(M, X̂ ) and Ŷ1 ∪ Ŷ2. As a result, there is no edge between
FH(M, X̂ ) and Ŷ1 ∪ Ŷ2. Furthermore, FH(M, X̂ ) has another important property: there exists a
matching from N(FH(M, X̂ )) to FH(M, X̂ ), that saturates all the vertices in N(FH(M, X̂ )), where
N(FH(M, X̂ )) is the set of neighbors of FH(M, X̂ ).

6A vertex is called isolated if no edge is incident to that vertex.
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Ŷ1

X̂2 = M(Ŷ2)

N(FH(M, X̂ )) = Ŷ \ (Ŷ1 ∪ Ŷ2) Ŷ2

FH(M, X̂ ) = X̂ \ X̂2

Figure 8: Definition of FH

In Lemmas 3.7 and 3.6, we prove two remarkable properties for bipartite graphs. As a conse-
quence of these two lemmas, Corollary 3.8 holds for every bipartite graph. We leverage the result
of Corollary 3.8 in the clustering phase.

Lemma 3.6 Let H(V,E) be a bipartite graph with V = X̂ ∪ Ŷ and let M be a maximum matching
of H. Then, for every set T ⊆ X̂ \ FH(M, X̂ ) we have |N(T )| > |T |, where N(T ) is the set of
neighbors of T .

Lemma 3.7 For a bipartite graph H(V,E) with V = X̂ ∪ Ŷ, FH(M, X̂ ) = ∅ holds, if and only if
for all T ⊆ X̂ we have |N(T )| > |T |, where N(T ) is the set of neighbors of T .

Corollary 3.8 (of Lemmas 3.7 and 3.6) Let H(V,E) be a bipartite graph with V = X̂ ∪ Ŷ and
let M be a maximum matching of H. Furthermore, let H ′(V ′, E′) be the induced sub-graph of H,
with V ′ = X̂ ′∪Ŷ ′, where X̂ ′ = X̂ \FH(M, X̂ ) and Ŷ ′ = Ŷ \N(FH(M, X̂ )). Then, for any maximum
matching M ′ of H ′, FH′(M

′, X̂ ′) = ∅ holds.

3.2.3 Cycle-envy-freeness and MCMWM

In the algorithm, we satisfy each agent in two steps. More precisely, we allocate each agent two sets
of items that are together of worth at least 3/4 to him. We denote the first set of items allocated
to agent ai by fi and the second set by gi. Moreover, we attribute the agents with labels satisfied,
unsatisfied, and semi-satisfied in the following way:

(i). An agent ai is satisfied if Vi(fi ∪ gi) ≥ 3/4.

(ii). An agent ai is semi-satisfied if fi 6= ∅ but gi = ∅. In this case we define εi = 3/4− Vi(fi).

(iii). An agent ai is unsatisfied if fi = gi = ∅.

As we see, the algorithm maintains the property that for every semi-satisfied agent ai, Vi(fi) ≥ 1/2
holds and hence, εi < 1/4.

To capture the competition between different agents, we define an attribution for an ordered
pair of agents. We say a semi-satisfied agent envies another semi-satisfied agent, if he prefers to
switch sets with the other agent.

Definition 3.9 Let T be a set of semi-satisfied agents. An agent ai ∈ T envies an agent aj ∈ T ,
if Vi(fj) ≥ Vi(fi). Also, we call an agent ai ∈ T a winner of T , if ai envies no other agent in T .
Similarly, we call an agent ai a loser of T , if no other agent in T envies ai.
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Note that it could be the case that an agent ai is both a loser and a winner of a set T of agents.
Based on Definition 3.9, we next define the notion of cycle-envy-freeness.

Definition 3.10 We call a set T of semi-satisfied agents cycle-envy-free, if every non-empty subset
of T contains at least one winner and one loser.

Let C be a cycle-envy-free set of semi-satisfied agents. Define the representation graph of C as

a digraph GC(V (GC),
−→
E (GC)), such that for any agent ai ∈ C, there is a vertex vi in V (GC) and

there is a directed edge from vi to vj in
−→
E (GC), if ai envies aj . In Lemma 3.11, we show that GC

is acyclic.

Lemma 3.11 For every cycle-envy-free set of semi-satisfied agents C, GC is a DAG.

Definition 3.12 A topological ordering of a cycle-envy-free set C of semi-satisfied agents, is a total
order ≺O corresponding to the topological ordering of the representation graph GC . More formally,
for the agents ai, aj ∈ C we have ai ≺O aj if and only if vi appears before vj, in the topological
ordering of GC .

Note that in the topological ordering of a cycle-envy-free set C of semi-satisfied agents, if ai ∈ C
envies aj ∈ C, then ai ≺O aj .

Observation 3.1 Let C be a cycle-envy-free set of semi-satisfied agents. Then, for every agent
ai ∈ C such that aj ≺O ai, we have:

Vi(fj) ≤ 3/4− εi.

We define a maximum cardinality maximum weighted matching of a weighted graph as a match-
ing that has the highest number of edges and among them the one that has the highest total sum
of edge weights. For brevity we call such a matching an MCMWM. In Lemma 3.13, we show that
an MCMWM of a weighted bipartite graph has certain properties that makes it useful for building
cycle-envy-free clusters.

Lemma 3.13 Let H〈V (H), E(H)〉 be a weighted bipartite graph with V (H) = X̂ ∪ Ŷ and let
M = {(x̂1, ŷ1), ..., (x̂k, ŷk)} be an MCMWM of H. Then, for every subset T ⊆ {ŷ1, ŷ2, . . . , ŷk}, the
following conditions hold:

(i). There exists a vertex ŷj ∈ T which is a winner in T , i.e., w(x̂j , ŷj) ≥ w(x̂i, ŷj), for all
x̂i ∈M(T ) and (x̂i, ŷj) ∈ E(H).

(ii). There exists a vertex ŷj ∈ T which is a loser in T , i.e., w(x̂i, ŷi) ≥ w(x̂j , ŷi), for all
ŷi ∈ T and (x̂j , ŷi) ∈ E(H).

(iii). For any vertex ŷi ∈ T and any unsaturated vertex x̂j ∈ X̂ such that (x̂j , ŷi) ∈ E(H),
w(x̂i, ŷi) ≥ w(x̂j , ŷi).

where M(T ) is the set of vertices which are matched by the vertices of T in M .

Notice the similarities of the first and the second conditions of Lemma 3.13 with the conditions
of the winner and loser in Definition 3.9. In Section 3.3, we assign items to the agents based
on an MCMWM of the value-graph. Lemma 3.13 ensures that such an assignment results in a
cycle-envy-free set of semi-satisfied agents.
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3.3 Phase 1: Building the Clusters

In this section, we explain our method for clustering the agents. Intuitively, we divide the agents
into three clusters C1, C2 and C3. As mentioned before, during the algorithm, two sets of items fi, gi
are allocated to each agent ai. Throughout this section, we prove a set of lemmas that are labeled
as value-lemma. In these lemmas we bound the value of fi and gi allocateed to any agent for other
agents. A summary of these lemmas is shown in Tables 3, 4 and 5.

After constructing each cluster, we refine that cluster. In the refinement phase of each cluster,
we target a certain subset of the remaining items. If any item in this subset could satisfy an agent
in the recently created cluster, we allocate that item to the corresponding agent. The goal of the
refinement phase is to ensure that the remaining items in the targeted subset are light enough for
the agents in that cluster, i.e., none of the remaining items can satisfy an agent in this cluster.

We denote by S, the set of satisfied agents. In addition, denote by S1,S2, and S3 the subsets
of S, where Si refers to the agents of S that previously belonged to Ci. Furthermore, we use Sr1
and Sr2 to refer to the agents of S1 and S2 that are satisfied in the refinement phases of C1 and C2,
respectively.

3.3.1 Cluster C1

Consider the filtering G1/2〈V1/2(G), E1/2(G)〉 of the value-graph G and let M be an MCMWM of
G1/2. We define Cluster C1 as the set of agents whose corresponding vertex is in N(FG1/2

(M,X1/2)).
For brevity, denote by VC1 the set of vertices in V (G) that correspond to the agents of C1. In

other words:
VC1 = N(FG1/2

(M,X1/2)).

Also, let FG1/2
(M,X1/2) be U1∪S1, where U1 is the set of unsaturated vertices in FG1/2

(M,X1/2)
and S1 is the set of the saturated vertices. For each edge (xj , yi) ∈M such that xj ∈ S1, we allocate
item bj to agent ai. More precisely, we set fi = {bj}. Since w(xj , yi) ≥ 1/2, we have:

∀ak ∈ C1 Vk(fk) ≥ 1/2.

According to the definition of εi, we have

∀ak ∈ C1 εk ≤ 1/4. (1)

By the definition of FG1/2
, for every agent which is not in C1, the condition of Lemma 3.14

holds. Note that all the agents that are not in C1, belong to either C2 or C3.

Lemma 3.14 (value-lemma) For all ai ∈ C2 ∪ C3 we have:

∀aj ∈ C1 Vi(fj) < 1/2.

For each vertex yi ∈ VC1 , denote by Nyi the set of vertices xj ∈ X \ X1/2, where w(xj , yi) ≥ εi
and let

W1 = U1 ∪
⋃

yi∈VC1

Nyi .

Note that by definition, for any vertex xj ∈ U1 and yi /∈ VC1 , there is no edge between xj and yi
in G1/2 and hence w(xj , yi) < 1/2. Also, since the rest of the vertices in W1 are from X \ X1/2, for
any vertex yi and xj ∈ (W1 \ U1), w(xj , yi) < 1/2 holds. Thus, we have the following observation:

Observation 3.2 For every item bj with xj ∈W1 and every agent ai with yi /∈ VC1, Vi({bj}) < 1/2.
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Now, define X ′ and Y ′ as follows:

X ′ = X \ (W1 ∪ S1),

Y ′ = Y \ VC1 .
Let G′〈V (G′), E(G′)〉 be the induced subgraph of G on V (G′) = Y ′ ∪ X ′. We use graph G′ to

build Cluster C2.

3.3.2 Cluster C1 Refinement

Before building Cluster C2, we satisfy some of the agents in C1 with the items corresponding to the
vertices of W1. Consider the subgraph G1〈V (G1), E(G1)〉 of G with V (G1) = W1 ∪ VC1 . In G1,
There is an edge between yi ∈ VC1 and xj ∈ W1, if Vi({bj}) ≥ εi. Note that G1〈V (G1), E(G1)〉 is
not necessarily an induced subgraph of G. We use G1 to satisfy a set of agents in C1. To this end,
we first show that G1 admits a special type of matching, described in Lemma 3.15.

Lemma 3.15 There exists a matching M1 in G1, that saturates all the vertices of W1 and for any
edge (xi, yj) ∈M1 and any unsaturated vertex yk ∈ N(xi), ak does not envy aj.

Let M1 be a matching of G1 with the property described in Lemma 3.15. For every edge
(yi, xj) ∈ M1, we allocate item bj to agent ai i.e., we set gi = {bj}. By the definition, ai is now
satisfied. Thus, we remove ai from C1 and add it to S. Note that, after refining C1, none of the
items whose corresponding vertex is in X ′ \ X ′1/2 can satisfy any remaining agent in C1. Thus,
Observation 3.3 holds.

Observation 3.3 For every item bj such that xj ∈ X ′, either xj ∈ X ′1/2 or for all ai ∈ C1,

Vi({bj}) < εi.

At this point, all the agents of S belong to Sr1 . Each one of these agents is satisfied with two
items, i.e., for any agent aj ∈ Sr1 , |fj | = |gj | = 1. In Lemma 3.16 we give an upper bound on Vi(gj)
for every agent aj ∈ Sr1 and every agent ai in C2 ∪ C3.

Lemma 3.16 (value-lemma) For every agent ai ∈ C2 ∪ C3, we have

∀aj ∈ Sr1 Vi(gj) < 1/2.

Lemmas 3.16 and 3.14 state that for every agent ai ∈ C2 ∪ C3 and every agent aj ∈ Sr1 , Vi(fj)
and Vi(gj) are upper bounded by 1/2. This, together with the fact that |fj | = |gj | = 1, results in
Lemma 3.17.

Lemma 3.17 For all ai /∈ C1, we have

MMS
|N\Sr1 |
Vi

(M\
⋃

yj∈Sr1

fj ∪ gj) ≥ 1.
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Figure 9: Merging x1 and x2

3.3.3 Cluster C2

Recall graph G′〈V (G′), E(G′)〉 as described in the last part of Section 3.3.1 and let
G′1/2〈V1/2(G′), E1/2(G′)〉 be a 1/2-filtering of G′. Lemma 3.6 states that the size of the maximum

matching between X ′1/2 and Y ′1/2 is |X ′1/2|. Also, according to Corollary 3.8, for any maximum

matching M ′ of G′1/2, FG′
1/2

(M ′,X ′1/2) is empty. In what follows, we increase the size of the maxi-

mum matching in G′1/2 by merging the vertices of X ′ \ X ′1/2 as described in Definition 3.18.

Definition 3.18 For merging vertices xi, xj of G′(X ′,Y ′), we create a new vertex labeled with xi,j.
Next, we add xi,j to X ′ and for every vertex yk ∈ Y ′, we add an edge from yk to xi,j with weight
w(yk, xi) + w(yk, xj). Finally we remove vertices xi and xj from X . See Figure 9.

In Lemmas 3.19 and 3.20, we give upper bounds on the value of the pair of items corresponding
to a merged vertex. In Lemma 3.19, we show that the value of a merged vertex is less than 2εi to
every agent ai ∈ C1. This fact is a consequence of Observation 3.3. Also, in Lemma 3.20, we prove
that the value of the items corresponding to a merged vertex is less than 3/4 to any agent. Lemma
3.20 is a direct consequence of 3/4-irreducibility. In fact, we show that if the condition of Lemma
3.20 does not hold, then the problem can be reduced.

Lemma 3.19 For any agent ak ∈ C1 and any pair of vertices xi, xj ∈ X ′ \ X ′1/2, Vk({bi, bj}) < 2εk
holds. In particular, total value of the items that belong to a merged vertex is less than 2εk for ak.

Lemma 3.20 For any pair of vertices xi, xj ∈ X ′ \ X ′1/2 and any vertex yk ∈ Y, we have

Vk({bi, bj}) < 3/4.

Corollary 3.21 (of Lemma 3.20) For any agent ai with yi ∈ Y, there is at most one item bj,
with xj ∈ X ′ \ X ′1/2 and Vi({bj}) ≥ 3/8.

Consider the vertices in X ′\X ′1/2. We call a pair (xi, xj) of distinct vertices in X ′\X ′1/2 desirable

for yk ∈ Y ′, if w(yk, xi) + w(yk, xj) ≥ 1/2. With this in mind, consider the process described in
Algorithm 1.

In each step of this process, we find an MCMWM M ′ of G′1/2. Note that M ′ changes after each

step of the algorithm. Next, we find a pair (xi, xj) of the vertices in X ′ \X ′1/2 that is desirable for at

least one agent in T = Y ′ \N(FG′
1/2

(M ′,X ′1/2)). If no such pair exists, we terminate the algorithm.

Otherwise, we select an arbitrary desirable pair (xi, xj) and merge them to obtain a vertex xi,j .
According to the definition of T in Algorithm 1, merging a pair (xi, xj) results in an augmenting
path in G′1/2. Hence, the size of the maximum matching in G′1/2 is increased by one. Note that

after the termination of Algorithm 1, either T = ∅ or no pair of vertices in X ′ \ X ′1/2 is desirable
for any vertex in T .
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Algorithm 1: Merging vertices in G′

Data: G′(V (G′), E(G′))
1 while True do
2 M ′ = MCMWM of G′1/2;

3 Find FG′
1/2

(M ′,X ′1/2);

4 T = Y ′ \N(FG′
1/2

(M ′,X ′1/2));

5 Q = Set of all desirable pairs in X ′ \ X ′1/2 for the agents in T ;

6 if Q = ∅ then
7 STOP;
8 else
9 Select an arbitrary pair xi, xj from Q;

10 Merge(xi, xj);

Lemma 3.22 After running Algorithm 1, we have

|FG′
1/2

(M ′,X ′1/2)| = |N(FG′
1/2

(M ′,X ′1/2))|.

We define Cluster C2 as the set of agents that correspond to the vertices of N(FG′
1/2

(M ′,X ′1/2)).

Also, denote by VC2 the vertices in N(FG′
1/2

(M ′,X ′1/2)). For each agent ai ∈ C2, we allocate the

item corresponding to M ′(yi) (or pair of items in case M ′(yi) is a merged vertex) to ai.
Note that we put the rest of the agents in Cluster C3. Therefore, Lemma 3.23 holds for all the

agents of C3.

Lemma 3.23 (value-lemma) For all ai ∈ C3 we have

∀aj ∈ C2, Vi(fj) < 1/2.

3.3.4 Cluster C2 Refinement

The refinement phase of C2, is semantically similar to the refinement phase of C1. In the refinement
phase of C2, we satisfy some of the agents of C2 by the items with vertices in X ′ \ X ′1/2. Note that

none of the vertices in X ′ \ X ′1/2 is a merged vertex.
The refinement phase of C2 is presented in Algorithm 2. Let ai1 , ai2 , . . . , aik be the topological

ordering of the agents in C2 as described in Section 3.2.3 . In Algorithm 2, We start with yi1 and
W2 = ∅ and check whether there exists a vertex xj ∈ X ′ \ (X ′1/2 ∪W2) such that Vi1({bj}) ≥ εi1 .
If so, we add xj to W2 and satisfy ai1 by allocating bj to ai1 . Next, we repeat the same process
for yi2 and continue on to yik . Note that at the end of the process, W2 refers to the vertices whose
corresponding items are allocated to the agents that are satisfied during the refinement step of C2.
For convenience, let S2 = FG′

1/2
(M ′,X ′1/2) and define X ′′ and Y ′′ as follows:

X ′′ = X ′ \ (W2 ∪ S2),

Y ′′ = Y ′ \ VC2 .
Let G′′〈V (G′′), E(G′′)〉 be the induced subgraph of G′ on V (G′′) = X ′′ ∪ Y ′′. We use G′′ to

build Cluster C3.
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Algorithm 2: Refinement of C2

Data: G′(V (G′), E(G′))
Data: ai1 , ai2 , . . . , aik = Topological ordering of agents in C2

1 for l : 1→ k do
2 if ∃xj ∈ X ′ \ (X ′1/2 ∪W2) s.t. Vi1({bj}) ≥ εil) then

3 gil = bj ;
4 W2 = W2 ∪ xj ;
5 C2 = C2 \ ail ;
6 S = S ∪ ail ;

Observation 3.4 After running Algorithm 2, For every item bj with xj ∈ X ′′ \ X ′′1/2 and every

agent ai ∈ C2, we have Vi({bj}) < εi.

In the following two lemmas, we give upper bounds on the value of gi for every agent ai ∈ Sr2 .
First, in Lemma 3.24, we show that for every agent aj ∈ C1, Vj(gi) is upper bounded by εj .
Furthermore, by the fact that the agents that are not selected for Clusters C1 and C2 belong to
Cluster C3, we show that Vj(gi) is upper bounded by 1/2 for every agent aj ∈ C3.

Lemma 3.24 (value-lemma) Let ai ∈ Sr2 be an agent that is satisfied in the refinement phase of
Cluster C2 and aj be an agent in C1. Then, Vj(gi) < εj.

Lemma 3.25 (value-lemma) Let ai ∈ Sr2 be an agent that is satisfied in the refinement phase of
Cluster C2 and aj be an agent in C3. Then, Vj(gi) < 1/2.

3.3.5 Cluster C3.

Finally, Cluster C3 is defined as the set of agents corresponding to the vertices of Y ′′. Let M ′′ be
an MCMWM of G′′1/2. Note that by Lemma 3.6, all the vertices in X ′′1/2 are saturated by M ′′. For

each vertex yi that is saturated by M ′′, we allocate the item (or pair of items in a case that M ′′(yi)
is a merged vertex) corresponding to M ′′(yi) to ai. Unlike the previous clusters, this allocation is
temporary. A semi-satisfied agent ai in C3 may lend his fi to the other agents of C3. Therefore, we
have three type of agents in C3:

(i). The semi-satisfied agents: we denote the set of semi-satisfied agents in C3 by Cs3
(ii). The borrower agents: the agents that may borrow from a semi-satisfied agent. An agent

aj in C3 is a borrower, if aj /∈ Cs3 and maxai∈CS3
Vj(fi) ≥ 1/2. We denote the set of borrower

agents in C3 by Cb3.

(iii). The free agents: the remaining agents in C3. We denote the set of free agents by Cf3 .

So far, the agents corresponding to unsaturated vertices in Y ′′1/2 belong to Cb3 and the agents

corresponding to the vertices in Y ′′ \ Y ′′1/2 are in Cf3 . As we see, during the second phase, agents

in C3 may change their type. For example, an agent in Cs3 may move to Cf3 or vice versa. For
convenience, for every agent ai ∈ Cb3, we define εi as follows:

3/4− max
aj∈Cs3

Vi(fj) (2)
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Figure 10: Overview on the state of the algorithm

Note that by the definition, εi ≤ 1/4 holds for every agent of Cb3.
In Lemma 3.26, we show that the remaining items are not heavy for the agents in C3. The main

reason that Lemma 3.26 holds, is the fact that no pair of vertices is desirable for any agents in C3

at the end of Algorithm 1.

Lemma 3.26 For all ai ∈ C3 and xj , xk ∈ X ′′ \ X ′′1/2, we have Vi({bj , bk}) < 1/2.

Corollary 3.27 (of Lemma 3.26) For any agent ai ∈ C3, there is at most one vertex xj ∈ X ′′ \
X ′′1/2, such that Vi({bj}) ≥ 1/4.

3.4 Phase 2: Satisfying the Agents

3.4.1 An Overview on the State of the Algorithm

Before going through the second phase, we present an overview of the current state of the agents
and items. In Figure 10, for every agent ai ∈ C1 ∪ C2 ∪ S, fi is shown by a gray rectangle and for
every agent ai ∈ S, gi is shown by a hatched rectangle.

Currently, we know that every agent in S belongs to Sr1 or Sr2 . These agents are satisfied in the
refinement phases of C1 and C2. The rest of the agents will be satisfied in the second phase. For
brevity, for i ≤ 2 we use Ssi to refer to the agents in Si that are satisfied in the second phase. More
formally,

for i = 1, 2 Ssi = Si \ Sri .
Since we didn’t refine Cluster C3, all the agents in the Cluster C3 are satisfied in the second

phase. As mentioned in the previous section, the item allocation to the semi-satisfied agents in C3

is temporary; That is, we may alter such allocations later. Therefore, in Figure 10 we illustrate
such allocations by dashed lines.

In this section, we denote the set of free items (the items corresponding to the vertices in
X ′′ \X ′′1/2 at the end of the first phase) by F . By Observations 3.3, 3.4 and Corollary 3.27, we know
that the items in F have the following properties:

(i). For every agent ai in C1, Vi({bj}) < εi holds for all bj ∈ F (Observation 3.3).

(ii). For every agent ai in C2, Vi({bj}) < εi holds for all bj ∈ F (Observation 3.4).
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Table 3: Summary of value lemmas for fi

∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ C1 - Vi(fj) < 1/2 (?) Vi(fj) < 1/2 (?)

∀aj ∈ C2 Vi(fj) < 3/4 (‡) - Vi(fj) < 1/2 (†)
∀aj ∈ Cs3 Vi(fj) < 3/4(‡) Vi(fj) < 3/4(‡) -

?: Lemma 3.14 †: Lemma 3.23 ‡: Lemma 3.28

Table 4: Summary of value lemmas for the agents in Sri

∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ Sr1 - Vi(gj) < 1/2 (?) Vi(gj) < 1/2 (?)

∀aj ∈ Sr2 Vi(gj) < εi(†) - Vi(gj) < 1/2 (‡)

?: Lemma 3.16 †: Lemma 3.24 ‡: Lemma 3.25

(iii). For every agent ai in C3, there is at most one item bj ∈ F , such that Vi({bj}) ≥ 1/4 (Corollary
3.27).

In summary, items of F are small enough, therefore we can run a process similar to the bag filling
algorithm described earlier to allocate them to the agents. Recall that our clustering and refinement
methods preserve the conditions stated in Lemmas 3.14, 3.16, 3.23, 3.24 and 3.25. In addition to
this, we state Lemma 3.28 as follows.

Lemma 3.28 (value-lemma) For every agent ai ∈ C1 ∪ C2 ∪ Cs3, we have

∀aj ∈ C1 ∪ C2 ∪ C3 Vj(fi) < 3/4.

A brief summary of Lemmas 3.14, 3.16, 3.23, 3.24, 3.25 and 3.28 is illustrated in Tables 3 and 4.
Moreover, since sets C1, C2 and Cs3 are cycle-envy-free, Observation 3.1 holds for these sets.

3.4.2 Second Phase: bag filling

We begin this section with some definitions. In the following, we define the notion of feasible
subsets and, based on that, we define φ(S) for a feasible subset S of items.

Definition 3.29 A subset S of items in F is feasible, if at least one of the following conditions are
met:

(i). There exists an agent ai ∈ Cf3 such that Vi({S}) ≥ 1/2.

(ii). There exists an agent ai ∈ C1 ∪ C2 ∪ Cs3 ∪ Cb3 such that Vi({S}) ≥ εi.
Definition 3.30 For a feasible set S, we define Φ(S) as the set of agents, that set S is feasible for
them.

Recall the notion of cycle-envy-freeness and the topological ordering of the agents in a cycle-
envy-free set of semi-satisfied agents. Based on this, we define a total order ≺pr to prioritize the
agents in the bag filling algorithm.
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Definition 3.31 Define a total order ≺pr on the agents of C1 ∪ C2 ∪ C3 with the following rules:

(i). ai5 ≺pr ai1 ≺pr ai2 ≺pr ai3 ≺pr ai4 ∀ai1 ∈ C1, ai2 ∈ C2, ai3 ∈ Cs3, ai4 ∈ Cb3, ai5 ∈ Cf3
(ii). ai ≺pr aj ⇔ ai ≺o aj ∀ai, aj ∈ C1 ∪ C2 ∪ Cs3, ai, aj in the same cluster

(iii). ai ≺pr aj ⇔ i < j ∀ai, aj ∈ Cb3 ∨ ai, aj ∈ Cf3
Recall that ≺o refers to the topological ordering of a semi-satisfied set of agents. Roughly

speaking, for the semi-satisfied agents in the same cluster, ≺pr behaves in the same way as ≺o.
Furthermore, for the agents in different clusters, agents in Cf3 , C1, C2, Cs3, Cb3 have a lower priority,

respectively. Finally, the order of the agents in Cb3 and Cf3 is determined by their index, i.e., the
agent with a lower index has a lower priority.

The second phase consists of several rounds and every round has two steps. Each of these two
steps is described below. We continue running this algorithm until F is no longer feasible for any
agent.

• Step1: In the first step, we run a process very similar to the bag filling algorithm described
in Section 1. That is, we find a feasible subset S ⊆ F , such that |S| is minimal. Such a subset
can easily be found, using a slight modification of the bag filling process (see Section 3.6.2).

• Step2: In the second step, we choose an agent to allocate set S to him. In contrast to the
bag filling algorithm, we do not select an arbitrary agent. Instead, we select the agent in Φ(S)
with the lowest priority regarding ≺pr, i.e., smallest element in Φ(S) regarding ≺pr. Let ai
be the selected agent. We consider three cases separately:

(i). ai ∈ Cf3 : temporarily allocate S to ai, i.e., set fi = S.

(ii). ai ∈ Cb3: let aj be the agent that Vi(fj) = 3/4− εj . Take back fj from aj and
allocate fj ∪ S to ai i.e. set fi = fj , fj = ∅ and gi = S. Remove ai from C3

and add it to S.

(iii). ai ∈ C1 ∪ C2 ∪ Cs3: satisfy agent ai by S, i.e., set gi = S and remove ai from
its corresponding cluster and add it to S.

By the construction of Cs3, Cb3, and Cf3 , the above process may cause agents in C3 to move in

between Cs3, Cb3 and Cf3 . For example, if the first case happens, then ai is moved from Cf3 to

Cs3. In addition, all other agents in Cf3 for which S is feasible are moved to Cb3. For the second

case, aj is moved to one of Cf3 or Cb3, based on Vj(fk) for every ak ∈ Cs3; that is, if there exists

an agent ak ∈ Cs3 such that Vj(fk) ≥ 1/2, aj is moved to Cb3. Otherwise, aj is moved to Cf3 .

For both the second and the third cases, some of the agents in Cb3 may move to Cf3 .

The second phase terminates, when F is no longer feasible for any agent. More details about the
second phase can be found in Algorithm 3. In Algorithm 3, we use Update(C3) to refer the process

of moving agents among Cs3, Cb3 and Cf3 .

In each round of the second phase, either an agent is satisfied or an agent in Cf3 becomes semi-

satisfied. In Lemma 3.32, we show that if an agent ai ∈ Cf3 is selected in some round of the second
phase, then Vj(fi) is upper bounded by 2εj for every agent aj ∈ C3∪C2∪Cs1 ∪Cb1. As a consequence
of Lemma 3.32, in Lemma 3.33 we show that sets C1, C2 and C3 remain cycle-envy-free during the
second phase. For convenience, we use Rz to refer to the z’th round of the second phase.
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Algorithm 3: The Second Phase

Data: F , C1, C2, C3

1 while F is feasible do
2 S = a minimal feasible subset of F ;
3 ai = agent in Φ(S) with lowest order regarding ≺pr;
4 if ai ∈ Cf3 then
5 fi = S ;
6 Update(C3) ;

7 if ai ∈ Cb3 then
8 Let aj be the agent that Vi(fj) = 3/4− εi ;
9 fi = fj ;

10 gi = S ;
11 S = S ∪ ai ;
12 fj = ∅;
13 C3 = C3 \ ai ;
14 Update(C3) ;

15 if ai ∈ Cs3 then
16 gi = S;
17 S = S ∪ ai;
18 C3 = C3 \ ai ;
19 Update(C3) ;

20 if ai ∈ C1 ∪ C2 then
21 gi = S;
22 remove ai from its corresponding cluster ;
23 S = S ∪ ai;

Lemma 3.32 Let Rz be a round of the second phase that an agent ai ∈ Cf3 is selected. Then, for
every agent aj ∈ C3 ∪ C2 ∪ Cs1 ∪ Cb1, we have Vj(fi) < 2εj < 3/4.

Lemma 3.33 During the second phase, the C1, C2 and Cs3 maintain the property of cycle-envy-
freeness.

Finally, for the rounds that an agents ai is satisfied, Lemmas 3.34 and 3.35 give upper bounds
on the value of gi for remaining agents in different clusters.

Lemma 3.34 (value-lemma) Let ai ∈ S be an agent that is satisfied in the second phase. Then,
for every other agent aj ∈ C1 ∪ C2 we have:

(i). If aj ≺pr ai, then Vj(gi) < εj.

(ii). If ai ≺pr aj, then Vj(gi) < 2εj.

Lemma 3.35 (value-lemma) Let ai be an agent in Ss1 ∪ Ss2. Then, for every agent aj ∈ C3, we
have Vj(gi) < 1/2.

The results of Lemmas 3.34 and 3.35 are summarized in Table 5.
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Table 5: Summary of value lemmas for gi

∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ Ss1 - Vi(gj) < 2εi(?) Vi(gj) < 1/2(†)
∀aj ∈ Ss2 Vi(gj) < εi(?) - Vi(gj) < 1/2(†)
∀aj ∈ S3 Vi(gj) < εi(?) Vi(gj) < εi(?) -

? : Lemma 3.34 †: Lemma 3.35

3.5 The Algorithm Finds a 3/4-MMS Allocation

In the rest of this section, we prove that the algorithm finds a 3/4-MMS allocation. For the sake of
contradiction, suppose that the second phase is terminated, which means F is not feasible anymore,
but not all agents are satisfied. Such an unsatisfied agent belongs to one of the Clusters C1 or C2, or
C3. In Lemmas 3.36, 3.37, and 3.38, we separately rule out each of these possibilities. This implies
that all the agents are satisfied and contradicts the assumption. For brevity the proofs are omitted
and included in Appendix E. We begin with Cluster C3.

Lemma 3.36 At the end of the algorithm we have C3 = ∅.
To prove Lemma 3.36 we consider two cases separately. If C3 6= ∅, either there exists an agent
ai ∈ Cs3 ∪ Cb3 or all the agents of C3 are in Cf3 . If the former holds, we show Cs3 is non-empty and
assume ai is a winner of Cs3. We bound the total value of ai for all the items dedicated to other
agents and show the value of the remaining items in F is at least εi for ai. This shows set F is
feasible for ai and contradicts the termination of the algorithm. In case all agents of C3 are in
Cf3 , let ai be an arbitrary agent of Cf3 . With a similar argument we show that the value of ai for
the remaining unassigned items is at least 3/4 and conclude that F is feasible for ai which again
contradicts the termination of the algorithm.

Next, we prove a similar statement for C1.

Lemma 3.37 At the end of the algorithm we have C1 = ∅.
Proof of Lemma 3.37 follows from a coloring argument. Let ai be a winner of C1. We color all
items in either blue or white. Roughly speaking, blue items are in a sense heavy, i.e., they may
have a high valuation to ai whereas white items are somewhat lighter and have a low valuation to
ai. Next, via a double counting argument, we show that ai’s value for the items of F is at least
εi and thus F is feasible for ai. This contradicts C1 = ∅ and shows at the end of the algorithm all
agents of C1 are satisfied.

Finally, we show that all the agents in Cluster C2 are satisfied by the algorithm.

Lemma 3.38 At the end of the algorithm we have C2 = ∅.
The proof of Lemma 3.38 is a similar to both proofs of Lemmas 3.36 and 3.37. Let ai be winner of
Cluster C2. We consider two cases separately. (i) εi ≥ 1/8 and (ii) εi < 1/8. In case εi ≥ 1/8, we
use a similar argument to the proof of Lemma 3.36 and show F is feasible for ai. If εi < 1/8 we
again use a coloring argument, but this time we color the items with 4 different colors. Again, via
a double counting argument we show F is feasible for ai and hence every agent of C2 is satisfied
when the algorithm terminates.

Theorem 3.39 All the agents are satisfied before the termination of the algorithm.
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Proof. By Lemmas 3.36, 3.37, and 3.38, at the end of the algorithm all agents are satisfied which
means each has received a subset of items which is worth at least 3/4 to him. �

3.6 Algorithm

In this section, we present a polynomial time algorithm to find a (3/4 − ε)-MMS allocation in
the additive setting. More precisely, we show that our method for proving the existence of a
3/4-MMS allocation can be used to find such an allocation in polynomial time. Recall that our
algorithm consists of two main phases: The clustering phase and the bag filling phase. In Sections
3.6.1 and 3.6.2 we separately explain how to implement each phase of the algorithm in polynomial
time. Given this, there are still a few computational issues that need to be resolved. First, in
the existential proof, we assume MMSi = 1 for every agent ai ∈ N . Second, we assume that
the problem is 3/4-irreducible. Both of these assumptions are without loss of generality for the
existential proof due to Observation 2.1 and the fact that one can scale the valuation functions to
ensure MMSi = 1 for every agent ai. However, the computational aspect of the problem will be
affected by these assumptions. The first issue can be alleviated by incurring an additional 1 + ε
factor to the approximation guarantee. Epstein and Levin [22] show that for a given additive
function f , MMSnf can be approximated within a factor 1 + ε for constant ε in time poly(n). Thus,
we can scale the valuation functions to ensure MMSi = 1 while losing a factor of at most 1 + ε.
Therefore, finding a (3/4 − ε)-MMS allocation can be done in polynomial time if the problem is
3/4-irreducible. Finally, in Section 3.6.3 we show how to reduce the 3/4-reducible instances and
extend the algorithm to all instances of the problem. The algorithm along with the reduction yields
Theorem 3.40

Theorem 3.40 For any ε > 0, there exists an algorithm that finds a (3/4− ε)-MMS allocation in
polynomial time.

3.6.1 The Clustering Phase

Recall that in the clustering phase we cluster the agents into three sets C1,C2, and C3. In order to
build Cluster C1, we find an MCMWM of the 1/2-filtering of the value graph. This can be trivially
done in polynomial time since finding an MCMWM is polynomially tractable [51]. However, the
refinement phase of Cluster C1 requires finding FG(X ,M) for a giving graph G and a matching M .
In what follows, we show this problem can also be solved in polynomial time.

Notice that finding an MCMWM of G can be done in polynomial time [51]. Therefore, in
order to determine FH(M, X̂ ), it only suffices to find the vertices of X̂ that are reachable from the
unmatched vertices of Ŷ by an alternating path. Let X̂ be the set of these vertices. We can find
X̂ using a depth-first-search from the unmatched vertices of Ŷ. By definition, FH(M, X̂ ) = Ŷ \ X̂.
Therefore, FH(M, X̂ ) can be found in polynomial time.

In addition to FG(X ,M), we also need to find a matching of the graph which satisfies the
conditions of Lemma 3.15. We show in the following that this problem also can be solved in
polynomial time. First, note that in Lemma C.1 we prove that G1 has a matching that saturates
all the vertices of W1. Now, let pak be the position of ak in the topological ordering of C1, as
described in the proof of Lemma 3.15. Furthermore, Let M1 be a matching that minimizes the
following expression. ∑

(xj ,yi)∈M1

pi.
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Recall that in the proof Lemma 3.15, we show that M1 satisfies the condition described in Lemma
3.15. Here, we show that M1 can be found in polynomial time. To this end, we model this with a
network design problem.

Orient every edge (xj , yi) ∈ G1 from yi to xj and set the cost of this edge to pai . Also, add
a source node s and add a directed edge from s to every vertex of VC1 with cost 0. Furthermore,
add a sink node t and add directed edges from the vertices of W1 to t with cost 0. Finally, set the
capacity of all edges to 1.

One can observe that in a minimum cost maximum flow from s to t in this network, the edges
with non-zero flow between VC1 and W1 form a maximum matching M1. In addition to this, since
the cost of the flow is minimal,

∑
(xj ,yi)∈M1

cost(xj , yi) is minimized. Therefore, in this matching,∑
(xj ,yi)∈M1

pi is minimized. Thus, the matching with desired properties of Lemma 3.15 can be
found in polynomial time.

The same algorithms can be used to compute Cluster C2. Finally, we put the rest of the agents
in Cluster C3.

3.6.2 The bag filling Phase

In each round of the second phase, we iteratively find a minimal feasible subset of F and allocate
its items to the agent with the lowest priority in Φ(S). Note that for a feasible set S, one can
trivially find the agent with lowest priority in Φ(S) in polynomial time. Thus, it only remains to
show that we can find a minimal feasible subset of F in polynomial time.

Consider the following algorithm, namely reverse bag filling algorithm: Start with a bag con-
taining all the items of F and so long as there exists an item bj in the bag such that after removing
bj , the set of items in the bag is still feasible, remove bj from the bag. After this process, the
remaining items in the bag form a minimally feasible subset of F . Therefore, this phase can be run
in polynomial time.

3.6.3 Reducibility

The most challenging part of our algorithm is dealing with the 3/4-irreducibility assumption. The
catch is that, in order to run the algorithm, we don’t necessarily need the 3/4-irreducibility as-
sumption. Recall that we leverage the following three consequences of irreducibility to prove the
existential theorem.

• The value of every item in M is less that 3/4 to every agent.

• Every pair of items in X ′′ \ X ′′1/2 is in total worth less than 3/4 to any agent.

• The condition of Lemma C.1 holds.

Therefore, the algorithm works so long as the mentioned conditions hold. Note that, although
it is not clear whether determining if an instance of the problem is 3/4-reducible is polynomially
tractable, all of the above conditions can be validated in polynomial time. This is trivial for the
first two conditions; we iterate over all items or pairs of items and check if the condition holds for
these items. The last condition, however, is harder to validate.

The condition of Lemma C.1 holds if for all S ⊆ W1, |N(S)| > |S|. Recall that in the proof of
Lemma C.1 we showed that if this condition does not hold, then FG1(M,X ) is non-empty. Next,
we showed that if FG1(M,X ) is non-empty, then we can reduce the problem via satisfying every
agents of FG1(M,X ) by his matched item in M . Therefore, on the computational side, we only
need to find whether FG1(M,X ) is empty which indeed can be determined in polynomial time.
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Note that every time we reduce the problem, |N | is decreased by at least 1, which implies
the number of times we reduce the problem is no more than n. Moreover, our reduction takes a
polynomial time. Thus, the running time of the algorithm is polynomial.

4 Submodular Agents

Previous work on the fair allocation problem was limited to the additive agents [2, 46]. In real-
world, however, valuation functions are usually more complex than additive ones. As an example,
imagine an agent is interested in at most k items. More precisely, he is indifferent between receiving
k items or more than k items. Such a valuation function is called k-demand and cannot be modeled
by additive functions. k-demand functions are a subclass of submodular set functions which have
been extensively studied the literature of different contexts, e.g., optimization, mechanism design,
and game theory [13, 14, 32, 35, 37, 38, 40, 45, 50].

In this section, we study the fair allocation problem where the valuations of agents are sub-
modular. We begin by presenting an impossibility result; We show in Section 4.1 that the best
guarantee that we can achieve for submodular agents is upper bounded by 3/4. Next, we give a
proof to the existence of a 1/3-MMS allocation in this setting. This is followed by an algorithm
that finds such an allocation in polynomial time. This is surprising since even finding the MMS of
a submodular function is NP-hard and cannot be implemented in polynomial time unless P=NP
[22]. In our algorithm, we assume we have access to query oracle for the valuation of agents; That
is, for any set S and any agent ai, Vi(S) can be computed via a given query oracle in time O(1).

4.1 Upper Bound

We begin by providing an upper bound. In this section, we show for some instances of the problem
with submodular agents, no allocation can be better than 3/4-MMS. Our counter-example is
generic; We show this result for any number of agents.

Theorem 4.1 For any n ≥ 2, there exists an instance of the fair allocation problem with n sub-
modular agents where no allocation is better than 3/4-MMS.

Proof. We construct an instance of the problem that does not admit any 3/4 + ε-MMS allocation.
To this end, let n be the number of agents and M = {b1, b2, . . . , bm} where m = 2n. Furthermore,
let f : 2M → R be as follows:

f(S) =



0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i, b2i+1} for some i

3/2, if |S| = 2 and S 6= {b2i, b2i+1} for any i.

Notice that MMSnf = 2. Moreover, in what follows we show that f is submodular. To this end,
suppose for the sake of contradiction that there exist sets S and S′ such that S ⊆ S′ and for some
element bi we have:

f(S′ ∪ {bi})− f(S′) > f(S ∪ {bi})− f(S). (3)

Since f is monotone and S′ 6= S, f(S′ ∪ {bi}) − f(S′) > 0 holds and thus S′ cannot have more
than two items. Therefore, S′ contains at most two items and thus S is either empty or contains a
single element. If S is empty, then adding every element to S has the highest increase in the value

33



of S and thus Inequality (3) doesn’t hold. Therefore, S contains a single element and S′ contains
exactly two elements. Thus, f(S) = 1 and f(S′) ≥ 3/2. Therefore, f(S ∪{bi}) − f(S) ≥ 1/2 and
f(S′ ∪ {bi})− f(S′) ≤ 1/2 which contradicts Inequality (3).

Now, for agents a1, a2, . . . , an−1 we set Vi = f and for agent an we set Vn = f(inc(S)) where bi
is in inc(S) if and only if either i > 1 and bi−1 ∈ S or i = 1 and bm ∈ S.

The crux of the argument is that for any allocation of the items to the agents, someone receives
a value of at most 3/2. In case an agent receives fewer than two items, his valuation for his items
would be at most 1. Similarly, if an agent receives more than two items, someone has to receive
fewer than 2 items and the proof is complete. Therefore, the only case to investigate is where
everybody receives exactly two items. We show in such cases, min Vi(Ai) = 3/2 for all possible
allocations. If all agents a1, a2, . . . , an−1 receive two items whose value for them is exactly equal to
2, then by the construction of f , the value of the remaining items is also equal to 2 to them. Thus,
an’s valuation for the items he receives is equal to 3/2. �

Remark that one could replace function f with an XOS function

g(S) =



0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i, b2i+1} for some i

1, if |S| = 2 and S 6= {b2i, b2i+1} for any i.

and make the same argument to achieve a 1/2-MMS upper bound for XOS and subadditive agents.

Theorem 4.2 For any n > 1, there exists an instance of the fair allocation problem with n XOS
agents where no allocation is better than 1/2-MMS.

4.2 Existential Proof

In this section we provide an existential proof to a 1/3-MMS allocation. Due to the algorithmic
nature of the proof, we show in Section 4.3 that such an allocation can be computed in time
poly(n,m). For simplicity, we scale the valuation functions to ensure MMSi = 1 for every agent ai.

We begin by introducing the ceiling functions.

Definition 4.3 Given a set function f(.), we define fx(.) as follows:

fx(S) =

{
f(S), if f(S) ≤ x
x, if f(S) > x.

A nice property of the ceiling functions is that they preserve submodularity, fractionally subaddi-
tivity, and sub-additivity as we show in Appendix F.

Lemma 4.4 For any real number x ≥ 0, we have:

(i). Given a submodular set function f(.), fx(.) is submodular.

(ii). Given an XOS set function f(.), fx(.) is XOS.

(iii). Given an subadditive set function f(.), fx(.) is also subadditive.
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The idea behind the existence of a 1/3-MMS allocation is simple: Suppose the problem is 1/3-
irreducible and let A = 〈A1, A2, . . . , An〉 be an allocation of items to the agents that maximizes the
following expression: ∑

ai∈N
V

2/3
i (Ai) (4)

We refer to Expression (4) by ex(2/3)(A). We prove Vi(Ai) ≥ 1/3 for every agent ai ∈ N . By the
reducibility principal, it only suffices to show every 1/3-irreducible instance of the problem admits
a 1/3-MMS allocation. The main ingredients of the proof are Lemmas 3.1, 4.5 and 4.6. For brevity
we skip the proofs and include them in Appendix F.

Lemma 4.5 Let S1, S2, . . . , Sk be k disjoint sets and f1, f2, . . . , fk be k submodular functions. We
remove an element e from

⋃
Si uniformly at random to obtain sets S∗1 = S1 \ {e}, S∗2 = S2 \

{e}, . . . , S∗k = Sk \ {e}. In this case we have

E[
∑

fi(S
∗
i )] ≥

∑
fi(Si)

|⋃Si| − 1

|⋃Si| .

The high-level intuition behind the proof of Lemma 4.5 is as follows: For submodular functions,
the smaller the size of a set is, the higher the marginal values for adding items to that set will
be. Based on that, we show the summation of marginal decreases for removing each element is
bounded by the total value of the set and that completes the proof. A complete proof is included
in Appendix F.

Lemma 4.6 Let f be a submodular function and S1, S2, . . . , Sk be k disjoint sets such that f(Si) ≥
1 for every set Si. Moreover, let S ⊆ ⋃Si be a set such that f(S) < 1/3. If we pick an element
{e} of

⋃
Si \ S uniformly at random, we have:

E[f(S ∪ {e})− f(S)] ≥ 2k/3

|⋃Si \ S| .
The proof of Lemma 4.6 is very similar to that of Lemma 4.5. The main point is that in submodular
functions, the marginal increase decreases as the sizes of sets grow.

Next, we show the fair allocation problem with submodular agents admits a 1/3-MMS alloca-
tion7.

Theorem 4.7 The fair allocation problem with submodular agents admits a 1/3-MMS allocation.

Proof. By Lemma 2.1, the problem boils down to the case of 1/3-irreducible instances. Let the
problem be 1/3-irreducible and A be an allocation that maximizes ex(2/3). Suppose for the sake of
contradiction that Vi(Ai) < 1/3 for some agent ai. In this case we select an item br from M\ Ai
uniformly at random to create a new allocation Ar as follows:

Arj =

{
Aj \ {br}, if i 6= j

Aj ∪ {br} if i = j.

7Almost one year after the first draft of our work, the existense of a 1/10-MMS allocation in the submodular case
along with an algorithm to find a 1/31 approximation algorithm for the submodular case is also proved in [7]. They
also study the problem in the additive setting and present another 2/3-MMS algorithm. This work is completely
parallel to and independent of our paper. Moreover, their analysis is fundamentally different from our analysis and
also their bounds are looser.
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In the rest we show E[ex(2/3)(Ar)] > ex(2/3)(A) which contradicts the maximality of A. Note
that by Lemma 4.5 the following inequality holds:

E[
∑
j 6=i

V
2/3
j (Arj)] ≥

∑
j 6=i

V
2/3
j (Aj)

|M \Ai| − 1

|M \Ai|
. (5)

Moreover, by Lemma 4.6 we have

E[Vi(A
r
i )− Vi(Ai)] ≥

2n/3

|M \Ai|
. (6)

Inequality (5) along with Inequality (6) shows

E[ex(2/3)(Ar)] = E[
∑
j 6=i

V
2/3
j (Arj)] + E[Vi(A

r
i )]

≥
∑
j 6=i

V
2/3
j (Aj)

|M \Ai| − 1

|M \Ai|
+ E[Vi(A

r
i )]

≥
∑
j 6=i

V
2/3
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ Vi(Ai)

≥
∑
j 6=i

V
2/3
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ V

(2/3)
i (Ai)

≥
∑
j 6=i

V
2/3
j (Aj)

|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
+ V

(2/3)
i (Ai)

|M \Ai| − 1

|M \Ai|

= ex(2/3)(A)
|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|
.

(7)

Recall that by Lemma 3.1, the value of agent ai for any item alone is bounded by 1/3 and thus

E[Vi(A
r
i )−Vi(Ai)] = E[V

2/3
i (Ari )−V

2/3
i (Ai)]. Notice that by the definition, V

(2/3)
j is always bounded

by 2/3 and also Vi(Ai) < 1/3, therefore, ex(2/3)(A) ≤ 2n/3− 1/3 and thus

E[ex(2/3)(Ar)] ≥ ex(2/3)(A)
|M \Ai| − 1

|M \Ai|
+

2n/3

|M \Ai|

≥ ex(2/3)(A) +
1/3

|M \Ai|
≥ ex(2/3)(A) + 1/3m.

(8)

�

4.3 Algorithm

In this section we give an algorithm to find a 1/3-MMS allocation for submodular agents. We show
our algorithm runs in time poly(n,m).

For simplicity, we assume for every agent ai, MMSi is given as input to the algorithm. However,
computing MMSi alone is an NP-hard problem. That said, we show in Section 5.2.2 that such a
computational barrier can be lifted by a combinatorial trick. We refer the reader to Section 5.2.2
for a more detailed discussion. The procedure is illustrated in Algorithm 4: Based on Theorem
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Algorithm 4: Finding a 1/3-MMS allocation for submodular agents

Data: N ,M, 〈V1, V2, . . . , Vn〉, 〈MMS1,MMS2, . . . ,MMSn〉
1 For every aj , scale Vj to ensure MMSj = 1;
2 while there exist an agent ai and an item bj such that Vi({bj}) ≥ 1/3 do
3 Allocate {bj} to ai;
4 M =M\ bj ;
5 N = N \ ai;
6 A = an arbitrary allocation of the items to the agents;

7 while minV
2/3
j (Aj) < 1/3 do

8 i = the agent who receives the lowest value in allocation A;
9 Find an item be such that:

ex(〈A1\{be}, A2\{be}, . . . , Ai−1\{be}, Ai∪{be}, Ai+1\{be}, . . . , An\{be}〉) ≥ ex(A)+1/3m;
10 A = 〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉;
11 For every ai ∈ N allocate Ai to ai;

4.7, one can show that in every iteration of the algorithm value of ex2/3(A) is increased by at
least 1/3m. Moreover, such an element be can be easily found by iterating over all items in time
O(m). Furthermore, the number of iterations of the algorithm is bounded by 2nm, since ex2/3(A)
is bounded by 2n/3. Therefore, Algorithm 4 finds a 1/3-MMS allocation in time poly(n,m).

Theorem 4.8 Given access to query oracles, one can find a 1/3-MMS allocation for submodular
agents in polynomial time.

As a corollary of Theorem 4.8, one can show that the problem of finding the maxmin value of
a submodular function admits a 3 approximation algorithm.

Corollary 4.9 For a given submodular function f , we can in polynomial time split the elements
of ground set into n dijsoint sets S1, S2, . . . , Sn such that

f(Si) ≥ MMSnf/3

for every 1 ≤ i ≤ n.

5 XOS Agents

Class of fractionally subadditive (XOS) set functions is a super class of submodular functions. These
functions too, have been subject of many studies in recent years [18, 9, 25, 10, 49, 28, 31, 29, 44].
Similar to sub-modular functions, in this section we show a 1/5-MMS allocation is possible when
all agents have XOS valuations. Furthermore, we complement our proof by providing a polynomial
algorithm to find a 1/8-MMS allocation in Section 5.2.

5.1 Existential Proof

In this section we show every instance of the fair allocation problem with XOS agents admits a
1/5-MMS allocation. Without loss of generality, we assume MMSi = 1 for every agent ai. Recall
the definition of ceiling functions.
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Definition 5.1 Given a set function f(.), we define fx(.) as follows:

fx(S) =

{
f(S), if f(S) ≤ x
x, if f(S) > x.

As stated in Lemma 4.4, for every XOS function and every real number x ≥ 0, fx is also XOS.
The proof of this section is similar to the result of Section 4. However, the details are different since
XOS functions do not adhere to the nice structure of submodular functions. For every allocation
B, we define ex2/5(B) as follows:

ex2/5(B) =
∑
ai∈N

V
2/5
i (Bi).

Now Let A = 〈A1, A2, . . . , An〉 be an allocation of items to the agents that maximizes ex2/5.
Provided that the problem is 1/5-irreducible, we show A is a 1/5-MMS allocation. Before we
proceed to the main proof, we state Lemmas 5.2, and 5.3 as auxiliary observations.

Lemma 5.2 Let f(.) be an XOS set function and f(S) = β for a set S ⊆ ground(f). If we divide
S into k (possibly empty) sets S1, S2, . . . , Sk then

k∑
i=1

(
f(S)− f(S \ Si)

)
≤ f(S).

The complete proof of Lemma 5.2 is included in Appendix G. Roughly speaking, the proof follows
from the fact that for at least one of the additive set functions in the representation of f , we have
gj(S) = β. The rest of the proof is trivial by the additive properties of gj .

By Lemma 3.1, we know that in every 1/5-irreducible instance of the problem, the value of
every item for a person is bounded by 1/5. For XOS functions, we again, leverage the reducibility
principal to show another important property of the 1/5-irreducible instances of the problem.

Lemma 5.3 In a 1/5-irreducible instance of the problem, for a given agent ai we can divide the
items into 2n sets S1, S2, . . . , S2n such that

Vi(Si) ≥ 2/5

for every 1 ≤ i ≤ 2n.

We first apply Lemma 3.1 and show in such instances of the problem the valuation of every agent
for every item is bounded by 1/5. We remark that for every agent ai, one can split the items into
n partitions such that each partition is worth at least 1 to ai. Combining the two observations, we
conclude that such a decomposition is possible for every agent ai. The full proof of this lemma is
included in Appendix G. Next we prove the main theorem of this section.

Theorem 5.4 The fair allocation problem with XOS agents admits a 1/5-MMS allocation.

Proof. Similar to what we did in Section 1, we only prove this for 1/5-irreducible instances of the
problem. By Observation 2.1, we can extend this result to all instances of the problem.

Consider an allocation A = 〈A1, A2, . . . , An〉 of items to the agents that maximizes ex2/5. We
show that such an allocation is 1/5-MMS. Suppose for the sake of contradiction that there exists
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an agent ai who receives a set of items which are together of worth less than 1/5 to him. More
precisely,

V
2/5
i (Ai) = Vi(Ai) < 1/5.

Since the problem is 1/5-irreducible, by Lemma 5.3, we can divide the items into 2n sets

S1, S2, . . . , S2n such that Vi(Sj) ≥ 2/5 for every 1 ≤ j ≤ 2n. Note that in this case, V
2/5
i (Sj) = 2/5

follows from the definition. Moreover by monotonicity, V
2/5
i (Sj ∪Ai) = 2/5 holds for every j.

Now consider 2n allocations A1,A2, . . . ,A2n such that

Aj = 〈Aj1, Aj2 . . . , Ajn〉

for every 1 ≤ j ≤ 2n where

Ajk =

{
Ak ∪ Sj , if k = i

Ak \ Sj , if k 6= i.

We show at least one of these allocations has a higher for ex2/5 than A. Since V
2/5
i is XOS, by

Lemma 5.2 we have
2n∑
j=1

(
V

2/5
k (Ak)− V 2/5

k (Ak \ Sj)
)
≤ V 2/5

k (Aj)

for every ak 6= ai and thus

2n∑
j=1

V
2/5
k (Ajk) =

2n∑
j=1

V
2/5
k (Aj \ Sj)

≥ 2nV
2/5
k (Ak)− V 2/5

k (Ak)

= (2n− 1)V
2/5
k (Ak)

(9)

Moreover, since V
2/5
i (Ai) < 1/5, we have∑

aj 6=ai

V
2/5
j (Aj) >

∑
aj∈N

V
2/5
j (Aj)− 1/5

= ex2/5(A)− 1/5.

(10)

Furthermore, since V
2/5
i (Sj ∪Ai) = 2/5 for every 1 ≤ j ≤ 2n, we have∑

ak 6=ai

V
2/5
k (Ajk) =

∑
ak∈N

V
2/5
k (Ajk)− 2/5

= ex2/5(Aj)− 2/5

(11)
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Finally, by combining Inequalities (9), (10), and (11) we have

2n∑
j=1

ex2/5(Aj) =
2n∑
j=1

(2/5 +
∑
ak 6=ai

V
2/5
k (Ajk))

= 4n/5 +
2n∑
j=1

∑
ak 6=ai

V
2/5
k (Ajk)

≥ 4n/5 +
∑
ak 6=ai

(2n− 1)V
2/5
k (Ak)

≥ 4n/5 + (2n− 1)(ex2/5(A)− 1/5)

≥ 2n · ex2/5(A) + (4n− 2n+ 1)/5− ex2/5(A)

≥ 2n · ex2/5(A) + (2n+ 1)/5− ex2/5(A)

Now notice that since V
2/5
k (Ak) ≤ 2/5, we have

ex2/5(A) =
n∑
k=1

V
2/5
k (Ak)

≤
n∑
k=1

2/5

≤ 2n/5.

and thus

2n∑
j=1

ex2/5(Aj) ≥ 2n · ex2/5(A) + (2n+ 1)/5− ex2/5(A)

≥ 2n · ex2/5(A) + (2n+ 1)/5− 2n/5

≥ 2n · ex2/5(A) + 1/5.

Therefore, ex2/5(Aj) > ex2/5(A)+1/10n holds for at least one Aj which contradicts the maximality
of A. �

5.2 Algorithm

In this section we provide a polynomial time algorithm for finding a 1/8-MMS allocation for the
fair allocation problem with XOS agents. The algorithm is based on a similar idea that we argued
for the proof of Theorem 5.4. Remark that our algorithm only requires access to demand and XOS
oracles. It does not have any additional information about the maxmin values. This makes the
problem computationally harder since computing the maxmin values is NP-hard [22]. We begin by
giving a high-level intuition of the algorithm and show the computational obstacles can be overcome
by combinatorial tricks. Consider the pseudo-code described in Algorithm 5.

As we show in Section 5.2.1, Command 9 of the algorithm is always doable. More precisely,
there always exists a set S that holds in the condition of Command 9. Notice that in every step of
the algorithm, ex1/4(A) is increased by at least 1/12n and this value is bounded by 1/4 · n = n/4.
Therefore the algorithm terminates after at most 3n2 steps and the allocation is guaranteed to be
1/8-MMS.
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Algorithm 5: Algorithm for finding a 1/8-MMS allocation

Data: N ,M, 〈V1, V2, . . . , Vn〉
1 For every aj , scale Vj to ensure MMSj = 1;
2 while there exist an agent ai and an item bj such that Vi({bj}) ≥ 1/8 do
3 Allocate {bj} to ai;
4 M =M\ bj ;
5 N = N \ ai;
6 A = an arbitrary allocation of the items to the agents;

7 while minV
1/4
j (Aj) < 1/8 do

8 i = the agent who receives the lowest value in allocation A;
9 Find a set S such that:

ex1/4(〈A1 \ S,A2 \ S, . . . , Ai−1 \ S,Ai ∪ S,Ai+1 \ S, . . . , An \ S〉) ≥ ex1/4(A) + 1/12n;
10 A = 〈A1 \ S,A2 \ S, . . . , Ai−1 \ S,Ai ∪ S,Ai+1 \ S, . . . , An \ S〉;
11 For every ai ∈ N allocate Ai to ai;

That said, there are two major computational obstacles in the way of running Algorithm 5.
Firstly, finding a set S that holds in the condition of Command 9 can not be trivially done in
polynomial time. Second, scaling the valuation functions to ensure MMSi = 1 for all agents is
NP-hard and cannot be done in polynomial time unless P=NP. To overcome the former, in Section
5.2.1 we provide an algorithm for finding such a set S in polynomial time. Next, in Section 5.2.2,
we present a combinatorial trick to run the algorithm in polynomial time without having to deal
with NP-hardness of scaling the valuation functions.

5.2.1 Executing Command 9 in Polynomial Time

In this section we present an algorithm to execute Command 9 of Algorithm 5. We show that such
a procedure can be implemented via demand oracles.

Let for every bj /∈ Ai, cj be the amount of contribution that bj makes to ex1/4(A). We set
pe = 3(n/(n−1))ce and ask the demand oracle of Vi to find a set S that maximizes Vi(S)−∑bj∈S pj .

Via a trivial calculation, one can show that Vi(S) −∑bj∈S pj ≥ 1/4 holds for at least one set
of items. The reason this is correct is that one can divide the items into n partitions where
each is worth at least 1 to ai. Moreover, the summation of prices for the items is bounded by

3n/(n−1) ·(∑j 6=i V
1/4
j (Aj)) ≤ 3n/4. Therefore, for at least one of those partitions Vi(S)−∑bj∈S pj

is at least 1/4. Thus, the set that the oracle reports is worth at least 1/4 to ai.
Now, let S∗ be the set that the oracle reports and for every bj ∈ S∗, c∗j be the contribution

of bj to Vi(S
∗). We sort the items of S∗ based on c∗j − pj in non-increasing order. Next, we start

with an empty bag and add the items in their order to the bag until the total value of the items in
the bag to ai reaches 1/4. Since the value of every item alone is bounded by 1/8, the total value
of the items in the bag to ai is bounded by 3/8. Thus the contribution of those items to ex1/4(A)
is at most (3/8)/(3n/(n − 1)) ≤ 1/8 − 1/(10n). Therefore, removing items of the bag from other
allocations and adding them to Ai, increases ex1/4(A) by at least 1/10n.

Remark that one can use the same argument to prove this even if MMSi ≥ 1/(1 + 1/10n).
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5.2.2 Running Algorithm 5 in Polynomial Time

As aforementioned, scaling valuation functions to ensure MMSi = 1 for every agent ai is an NP-
hard problem since determining the maxmin values is hard even for additive agents [46]. Therefore,
unlike Section 5.2.1, in this section we massage the algorithm to make it executable in polynomial
time.

Suppose an oracle gives us the maxnmin values of the agents. Provided that we can run Com-
mand 9 of Algorithm 5 in polynomial time, we can find a 1/8-MMS allocation in polynomial time.
Therefore, in case the oracle reports the actual maxmin values, the solution is trivial. However,
what if the oracle has an error in its calculations? There are two possibilities: (i) Algorithm 5 ter-
minates and finds an allocation which is 1/8-MMS with respect to the reported maxmin values. (ii)
The algorithm fails to execute Command 9, since no such set S holds in the condition of Command
9. The intellectual merit of this section boils down to investigation of the case when algorithm fails
to execute Command 9. We show, this only happens due to an overly high misrepresentation of
the maxmin value for agent ai. Note that ai is the agent who receives the lowest value in the last
cycle of the execution.

Observation 5.1 Given 〈d1, d2, . . . , dn〉 as an estimate for the maxmin values, if Algorithm 5 fails
to execute Command 9 for an agent ai, then we have

di ≥ (1 + 1/10n)MMSi.

Proof of Observation 5.1 follows from the argument of Section 5.2.1. More precisely, as mentioned
in Section 5.2.1, such a set S exists, if MMSi ≥ 1/(1 + 1/10n). Thus, given that the procedure
explained in Section 5.2.1 fails to find such a set, one can conclude the the reported value for MMSi
is at least (1/(1 + 1/10n)) times its actual value. Based on Observation 5.1, we propose Algorithm
6 for implementing a maxmin oracle.

Algorithm 6: Implementing a maxmin oracle

Data: N ,M, 〈V1, V2, . . . , Vn〉
1 for every ai ∈ N do
2 di ← Vi(M);

3 while true do
4 Run Algorithm 5 assuming maxmin values are d1, d2, . . . , dn;
5 if the Algorithm fails to run Command 9 for an agent ai then
6 di ← di/(1 + 1/10n);

7 else
8 Report the allocation and terminate the algorithm;

Note that in the beginning of the algorithm, we set di = Vi(M) which is indeed greater than
or equal to MMSi. By Lemma 5.1, every time we decrease the value of di for an agent ai, we
preserve the condition di ≥ MMSi for that agent. Therefore, in every step of the algorithm, we
have di ≥ MMSi and thus the reported allocation which is 1/8-MMS with respect to di’s is also
1/8-MMS with respect to true maxmin values. Thus, the algorithm provides a correct 1/8-MMS
allocation in the end. All that remains is to show the running time of the algorithm is polynomial.

Notice that every time we decrease di for an agent ai, we multiply this value by 1/(1 + 1/10n),
hence the number of such iterations is polynomial in n, unless the valuations are super-exponential
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in n. Since we always assume the input numbers are represented by poly(n) bits, the number of
iterations is bounded by poly(n) and hence the algorithm terminates after a polynomial number of
steps.

Theorem 5.5 Given access to demand and XOS oracles, there exists a polynomial time algorithm
that finds a 1/8-MMS allocation for XOS agents.

An elegant consequence of Theorem 5.5 is a 8-approximation algorithm for determining the
maxmin value of an XOS function with r partitions.

Corollary 5.6 Given an XOS function f , an integer number r, and access to demand and XOS
oracles of f , there exists a 8-approximation polytime algorithm for determining MMSrf .

Proof. We construct an instance of the fair allocation problem with r agents, all of whom have
a valuation function equal to f . We find a 1/8-MMS allocation of the items to the agents in
polynomial time and report the minimum value that an agent receives as output.

The 1/8 guarantee follows from the fact that every agent receives a subset of values that are
worth 1/8-MMSi to him, and since MMSi is exactly equal to MMSrf , every partition has a value of
at least MMSrf/8. �

Remark 5.7 A similar procedure can also be used to overcome the challenge of computing the
maxmin values for the algorithm described in Section 4.3.

6 Subadditive Agents

In this section we present a reduction from subadditive agents to XOS agents. More precisely, we
show for every subadditive set function f(.), there exists an XOS function g(.), where g is dominated
by f but the maxmin value of g is within a logarithmic factor of the maxmin value of f . We begin
by an observation. Suppose we are given a subadditive function f on set ground(f), and we wish
to approximate f with an additive function g which is dominated by f . In other words, we wish to
find an additive function g such that

∀S ⊆ ground(f) g(S) ≤ f(S)

and g(ground(f)) is maximized. One way to formulate g is via a linear program. Suppose
ground(f) = {b1, b2, . . . , bm} and let g1, g2, . . . , gm be m variables that describe g in the follow-
ing way:

∀S ⊆ ground(f) g(S) =
∑
bi∈S

gi.

Based on this formulation, we can find the optimal additive function g by LP 12.

maximize:
∑

bi∈ground(f)

gi (12)

subject to:
∑
bi∈S

gi ≤ f(S) ∀S ⊆ ground(f)

gi ≥ 0 ∀bi ∈ ground(f)

We show the objective function of LP 12 is lower bounded by f(ground(f))/ logm. The basic idea is
to first write the dual program and then based on a probabilistic method, lower bound the optimal
value of the dual program by f(ground(f))/ logm.
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Lemma 6.1 The optimal solution of LP 12 is at least f(ground(f))/ logm.

Proof. To prove the lemma, we write the dual of LP 12 as follows:

minimize:
∑

S⊆ground(f)

αSf(S) (13)

subject to:
∑
S3bi

αS ≥ 1 ∀bi ∈ ground(f)

αS ≥ 0 ∀S ⊆ ground(f)

By the strong duality theorem, the optimal solutions of LP 12 and LP 13 are equal [5]. Next, based
on the optimal solution of LP 13, we define a randomized procedure to draw a set of elements: We
start with an empty set S∗ and for every set S ⊆ ground(f) we add all elements of S to S∗ with
probability αS . Since f is subadditive, the marginal increase of f(S∗) by adding elements of a set
S to S∗ is bounded by f(S) and thus the expected value of f(S∗) is bounded by the objective of
LP 13. In other words:

E[f(S∗)] ≤
∑

S⊆ground(f)

αSf(S) (14)

Remark that we repeat this procedure for all subsets of ground(S) independently and thus for every
bi ∈ ground(f),

∑
S3bi αS ≥ 1 holds we have

PR[bi ∈ S∗] ≥ 1− 1/e ' 0.632121 > 1/2 (15)

for every element bi ∈ ground(s). Now, with the same procedure, we draw dlogme + 2 sets
S∗1 , S

∗
2 , . . . , S

∗
dlogme+2 independently. We define Ŝ =

⋃
S∗i . By Inequality (15) and the union bound

we show

PR[Ŝ = ground(f)] ≥ 1−
∑

bi∈ground(i)

PR[bi /∈ Ŝ]

= 1−
∑

bi∈ground(i)

PR[bi /∈ S∗1 and bi /∈ S∗1 and . . . and bi /∈ S∗dlogme+2]

= 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

PR[bi /∈ S∗j ]

≥ 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

1/2

= 1−
∑

bi∈ground(i)

dlogme+2∏
j=1

PR[bi /∈ S∗j ]

≥ 1−
∑

bi∈ground(i)

1/4m

= 1− 1/4

= 3/4
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and thus E[f(Ŝ)] ≥ 3/4f(ground(f)). On the other hand, by the linearity of expectation and the
fact that f is subadditive we have:

E[f(Ŝ)] = E[f(
⋃
S∗i )]

≤ E[
∑

f(S∗i )]

≤ (dlogme+ 2)(
∑

S⊆ground(f)

αSf(S))

Therefore
∑

S⊆ground(f) αSf(S) ≥ 3/4f(ground(f))/(dlogme+ 2), which means∑
S⊆ground(f)

αSf(S) ≥ f(ground(f))/(2dlogme)

for big enough m. This shows the optimal solution of LP 12 is lower bounded by
f(ground(f))/(2dlogme) and the proof is complete. �

In what follows, based on Lemma 6.1, we provide a reduction from subadditive agents to XOS
agents. An immediate corollary of Lemma 6.1 is the following:

Corollary 6.2 (of Lemma 6.1) For any subadditive function f and integer number n, there ex-
ists an XOS function g such that

g(S) ≤ f(S) ∀S ⊆ ground(f)

and
MMSng ≥ MMSnf/2dlog ne.

Proof. By definition, we can divide the items into n disjoint sets such that the value of f for every
set is at least MMSnf . Now, based on Lemma 6.1, we approximate f for each set with an additive
function gi wile losing a factor of at most d2| log ground(f)|e and finally we set g = max gi. Based
on Lemma 6.1, both conditions of this lemma are satisfied by g. �

Based on Theorem 5.4 and Lemma 6.2 one can show that a 1/10dlogme-MMS allocation is
always possible for subadditive agents.

Theorem 6.3 The fair allocation problem with subadditive agents admits a 1/10dlogme-MMS al-
location.
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A A 4/5-MMS Allocation for Four Agents

In this section we propose an algorithm to find a 4/5-MMS for n = 4 in the additive setting. Since
the number of agents is exactly 4, we assume N = {a1, a2, a3, a4}. Again, for simplicity we assume
MMSi = 1 for every ai ∈ N . In general, our algorithm is consisted of three main steps: first, a1

optimally partitions the items into 4 bundles with values at least 1 to him. Next, a2 selects three of
the bundles and repartitions them. Finally, we satisfy one of a1 or a2 with a bundle and solve the
problem for remaining agents and items via Lemma A.4. Without loss of generality, we assume
the valuation of every agent ai for every bundle in his optimal n-partitioning is exactly equal to 1.
Therefore, from here on, we assume that the summation of the values of the items within the same
bundle for every agent is at most 1. In addition, we suppose that the problem is 4/5-irreducible,
since Lemma 2.1 narrows down the problem into such instances. Thus, by Lemma 3.1, the value of
every item is less than 4/5 to any agent. We begin this section by stating a number of definitions
and observations. In this section, we use the term bundle to refer to a set of items.

Definition A.1 A set S of bundles is perfect for a set T of agents, if (i) |S| = |T | and (ii) there
exists an allocation of the bundles in S to the agents of T such that all the agents in T are satisfied
by their allocated bundle.

Observation A.1 Let ai be an agent and S be a set of items where Vi({bj}) ≤ v for every item
bj ∈ S. If Vi(S) > v, then there exists a subset S′ ⊆ S of items such that v ≤ Vi(S′) < 2v.

Proof. We begin with an empty set S′ and add the items of S to S′ one by one, until Vi(S
′)

exceeds v. Before adding the last element to S′, the valuation of ai for S′ was no more than v and
every item alone is of value less than v to ai. Therefore, after adding the last item to S, its value
is less than 2v to ai. �

Definition A.2 For a bundle B of items that satisfies ai, the core of B with respect to agent ai,
denoted by Ci(B), is defined as follows: let m1,m2, ..,mk be the items of B in the increasing order
of their values to ai. Then Ci(B) = {mj ,mj+1, ...,mk} , where j is the highest index, such that set
of items {mj ,mj+1, ...,mk} satisfies ai.

Note that for every subset B with Vi(B) ≥ 4/5, Ci(B) is a subset of B with the minimum size
that satisfies ai. Since the items in Ci(B) satisfy ai, we have Vi(Ci(B)) ≥ 4/5. On the other hand,
by the fact that |Ci(B)| is minimal, removing any item from Ci(B) results in a subset that no
longer satisfies ai. Thus, Observation A.2 holds.

Observation A.2 If Vi(Ci(B)) = 4/5 + β, then the value of every item in Ci(B) is more than β
for ai.

By the fact the value of every item in B is less than 4/5 we have Observation A.3.

Observation A.3 For every agent ai and any subset B of items, Vi(Ci(B)) < 8/5.

Lemma A.3 Suppose that S = {X,Y, Z} is a 3-partitioning of a set of items with the following
properties for an agent ai:

(i). Vi(X) < 4/5 and Vi(Y ) < 4/5.

(ii). Vi(X ∪ Y ∪ Z) > 16/5.

Then we can move some items from Z to an arbitrary bundle of {X,Y }, such that, both Z and
the corresponding bundle will be worth at least 4/5 to ai.
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Proof. Since Vi(X ∪ Y ∪ Z) > 16/5, Vi(Z) > 8/5 holds. Moreover, by Observation A.3, we have
Vi(Ci(Z)) ≤ 8/5. Considering Z ′ = Z \ Ci(Z), we have

Vi(X ∪ Y ∪ Z ′) ≥ 8/5.

According to the fact that Vi(X) < 4/8 and Vi(Y ) < 4/5, we have

Vi(X ∪ Z ′) ≥ 4/5

and
Vi(Y ∪ Z ′) ≥ 4/5.

�

Lemma A.4 Let S = {X,Y, Z} be a set of three bundles of items, such that

(i). V1(X) ≥ 4/5, V1(Y ) ≥ 4/5, V1(Z) ≥ 4/5.

(ii). V2(X ∪ Y ∪ Z) > 16/5.

(iii). V3(X ∪ Y ∪ Z) ≥ 3.

Then a 4/5-MMS allocation of X ∪ Y ∪ Z to the agents a1, a2, a3 is possible.

Proof. If a2 can be satisfied with two different bundles, then trivially S is perfect. Otherwise, a2

is satisfied with only one bundle, say Z. By Lemma A.3, a2 can transfer some items from Z to Y ,
such that both bundles satisfy him. After moving the items, both Y and Z satisfy a2, and bundle
X and Y , satisfy a1. One the other hand, since V3(X ∪Y ∪Z) ≥ 3, a3 is satisfied with at least one
bundle. Its easy to observe that for any valuation of bundles X,Y, Z for a3, the set of bundles is
perfect. �

Lemma A.5 Let S = {X,Y, Z, T} be a 4-partitioning of M and ai be an arbitrary agent. Then ai
can select 3 bundles and re-partition them into three new bundles in such a way that each bundle
will be worth at least 4/5 to ai.

Proof. Consider bundles X,Y, Z, T . If more than two of them satisfy ai, then the selection is
trivial. Furthermore, if only one bundle satisfies ai, then by Lemma A.3, we can move some items
from the satisfying bundle to another bundle, such that both bundles satisfy ai. Thus, without loss
of generality, we assume that bundles Z and T satisfy ai.

Let Z ′ = Z \ Ci(Z) and T ′ = T \ Ci(T ). Without loss of generality, we assume Vi(X) ≥ Vi(Y )
and let X ′ = X∪Z ′∪T ′. If Vi(X

′) ≥ 4/5, then the proof is trivial. Thus, suppose that Vi(X
′) < 4/5.

Consider the value of bundles as

Vi(X) = 4/5− ε1,

Vi(Y ) = 4/5− ε2,
Vi(Ci(Z)) = 6/5 + ε3,

and
Vi(Ci(T )) = 6/5 + ε4
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where ε1 ≤ ε2 and ε3 ≤ ε4. Note that ε3 can be negative. By the fact that total value of the items
equals 4 for all of the agents, we assume that

ε1 + ε2 = ε3 + ε4

and hence
ε1 ≤ ε4.

Now, we explore the properties of the items in Ci(T ). Regarding Observation A.2, every item in
Ci(T ) is worth more than 2/5+ε4 to ai. Hence, Ci(T ) cannot contain more than 2 items, since value
of every pair of items in Ci(T ) is more than 4/5. Moreover, Ci(T ) cannot contain one item and
hence, Ci(T ) contains exactly two items. Let b1 and b2 be these two items. Since Vi(T ) = 6/5 + ε4,
at least one of these two items, say b2 is worth at least 3/5 + ε4/2 to ai. Thus, in summary, Ci(T )
contains two items b1 and b2 with

Vi({b1}) > 2/5 + ε4,

Vi({b2}) ≥ 3/5 + ε4/2.

Next, we characterise the items in X ′. For Bundle X ′, let B be the set of items with a value
less than 1/5− ε4/2. If Vi(B) ≥ 1/5− ε4/2, then Observation A.1 states that there exists a subset
B′ of B, such that:

1/5− ε4/2 ≤ Vi(B′) < 2/5− ε4.
Therefore, Bundles B′ ∪ {b2} and (X ′ \B′) ∪ {b1} satisfy ai. These two bundles together with

Ci(Z) result in three bundles that satisfy ai. Thus, Vi(B) < 1/5− ε4/2.
Finally, regarding the fact that Vi(B) < 1/5− ε4/2, we have

Vi(X
′ \B) > 3/5− ε1 + ε4/2

For this case, we show that X ′ \ B contains exactly one item. Otherwise, at least one of these
items, say b3, is worth less than 3/10 − ε1/2 + ε4/4 and therefore, for the bundles {b3} ∪ {b2} and
(X ′ \ {b3}) ∪ {b1} we have:

Vi({b3} ∪ {b2}) ≥ 1/5− ε4/2 + 3/5 + ε4/2 ≥ 4/5

and
Vi((X

′ \ {b3}) ∪ {b1}) ≥ 4/5− ε1 − 3/10 + ε1/2− ε4/4 + 2/5 + ε4 ≥ 4/5

respectively. These two bundles along with Ci(Z) form 3 bundles that satisfy ai. Therefore, we
conclude that X ′ \B contains an item b3 with a value more than 3/5− ε1 + ε4/2 to ai. The rest of
the items in X ′ belong to B that are in total worth less than 1/5− ε4/2.

Note that X ⊆ X ′. Therefore, consider the 4−partitioning of ai and remove the bundle contain-
ing b3. Also, remove the items with value less than 1/5− ε4/2 to ai in X, from their corresponding
bundles. Three bundles with value of each to ai more than

1− 1/5 + ε4/2 ≥ 4/5,

with all of their items from Y,Z and T remain. Thus, ai can make three satisfying bundles with
items in Y, Z, T . � Based on what we showed so far, we prove Theorem A.6.

Theorem A.6 A 4/5-MMS allocation for n = 4 is possible in the additive setting.
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Proof. Consider the optimal 4-partitioning of M with respect to a1. Now, ask a2 to select 3
bundles and re-partition them, such that he can be satisfied with all the three bundles. Based on
Lemma A.5, such a repartitioning is always possible. Due to the Pigeonhole principle, at least one
of these three bundles still satisfies a1. Let S = {X,Y, Z, T} be the resulting bundles and without
loss of generality, suppose that bundles X,Y satisfy a1 and bundles Y,Z, T satisfy a2.

Now, consider agents a3 and a4 and let φ be the set of bundles that satisfy a3 or a4. There are
only two cases, in which S is not perfect (recall definition A.1):

(i). φ ⊆ {X,Y } : a1, selects three bundles X,Y and one of Z or T , say Z and re-partitions them
to three satisfying bundles. Now, give bundle T to a2. According to Lemma A.4, items of
X,Y, Z can satisfy the remaining three agents.

(ii). |φ| = 1, φ /∈ {X,Y } : give X to a1 and allocate the items of Y ∪ Z ∪ T to a2, a3, a4, using
Lemma A.4.

�

B Omitted Proofs of Section 3.2

Proof of Lemma 3.1: The key idea is that given MMSi ≥ 1 for an agent ai, then for every item
bj ∈ M we have MMSn−1

i (M\ bj) ≥ 1. This holds since removing an item from M will diminish
the value of at most one partition in the optimal n partitioning of the items. Therefore, at least
n − 1 partitions have a value of 1 or more to ai and thus MMSn−1

i (M\ bj) ≥ 1. The rest of the
proof follows from the definition of α-irreducibility. If the valuation of an item bj to an agent ai is
at least α, then the problem is α-reducible since if we allocate bj to ai, we have

MMSn−1
Vk

(M\ {bj}) ≥ 1

for every agent ak 6= ai. This contradicts with the α-irreducibility assumption. �

Proof of Lemma 3.2: Suppose for the sake of contradiction that for every agent ai′ 6= ai we have
Vi′({bj , bk}) ≤ 1. By this assumption, we show

MMSn−1
i′ (M\ {bj , bk}) ≥ 1 (16)

holds. This is true since removing two items bj and bk from M decreases the value of at most
two partitions of the optimal partitioning of M for MMSi′ . If n− 1 partitions remain intact, then
Inequality (16) trivially holds. If not, merging the two partitions that initially contained bj and bk
results in a partition with value at least 1 to ai. This partition together with the n− 2 remaining
partitions result in a desirable partitioning of M into n− 1 partitions. Therefore, Inequality (16)
holds for any agent ai′ , and this implies that by allocating S = {bj , bk} to ai, not only does
Vi(S) ≥ 3/4 hold, but also for every ai′ 6= ai we have

MMSn−1
i′ (M\ {bj , bk}) ≥ 1

which means the problem is 3/4-reducible, and it contradicts our assumption. �

Proof of Lemma 3.3: The proof for this lemma is obtained by applying Lemma 3.2, |T | times.
Consider an agent ai /∈ T . According to the argument in Lemma 3.2, if we assign bj1 and bj2 to
ai1 , ai can partition the items in M\{bj1 bj2} into n− 1 partitions with value at least 1 to ai, i.e.

MMSn−1
i (M\ {bj1 , bj2}) ≥ 1.

52



Ŷ1
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Figure 11: Alternating path P connects Ŷ1 to Ŷ2 and intersects T

By the same deduction, after assigning bj3 and bj4 to ai2 , we have

MMSn−2
i (M\ {bj1 , bj2 , bj3 , bj4}) ≥ 1.

By repeating above argument |T | times, we have:

MMS
n−|T |
i (M\ S) ≥ 1.

On the other hand, by condition (II), every agent aik satisfies with items bj2k−1
and bj2k . This

means that we can reduce the instance by satisfying the agents in T by the items in S, which is a
contradiction by the irreducibility assumption.

�

Proof of Lemma 3.6: We define Ŷ1 as the set of vertices in Ŷ that are not saturated by M ,
and Ŷ2 as the set of vertices in Ŷ that are connected to Ŷ1 by an alternating path. Moreover,
let X̂2 = M(Ŷ2). By definition, FH(M, X̂ ) = X̂ \ X̂2 (See Figure 8). As discussed before, all the
vertices in X̂2 are saturated by M . Consequently, all the vertices of T are saturated by M and
|N(T )| ≥ |T |.

Let M(T ) be the set of vertices which are matched to the vertices of T in M . We know that
every vertex of T is present in at least one of the alternating paths which connect Ŷ1 to Ŷ2. Let

P = 〈ŷ0, x̂1, ŷ1, x̂2, ŷ2, . . . , x̂k, ŷk〉

be one of these paths that includes at least one of the vertices of T . Since P is an alternating
path which connects Ŷ1 to Ŷ2, ŷ0 ∈ Ŷ1 (see Figure 11). In addition, according to the definition of
alternating path, every edge (x̂j , ŷj) of P belongs to M and every edge (x̂j , ŷj−1) does not belong
to M .

Let x̂i be the first vertex of T that appears in P . We know that the edge (x̂i, ŷi−1) does not
belong to M . On the other hand, since x̂i is the first vertex of T in M , x̂i−1 /∈ T . Note that ŷi−1

does not belong to M(T ), since every vertex of M(T ) is matched with a vertex of T in M and
(x̂i−1, ŷi−1) is in M . The fact that ŷi−1 /∈M(T ) means N(T ) contains at least one vertex that is not
in M(T ). Since all the vertices in M(T ) are in N(T ), |N(T )| > |M(T )| and hence, |N(T )| > |T |.

�

Proof of Lemma 3.7: If FH(M, X̂ ) = ∅, according to Lemma 3.6,

∀T ⊆ X̂ |N(T )| > |T |.

On the other hand, suppose that for all T ⊆ X̂ we have |N(T )| > |T |. We show that FH(M, X̂ ) =
∅. For the sake of contradiction, assume that FH(M, X̂ ) 6= ∅ and let T = FH(M, X̂ ). Since there
exists a matching from T to N(T ) that saturates all the vertices of N(T ), we have |T | ≥ |N(T )|,
which is a contradiction. Hence, FH(M, X̂ ) = ∅. �
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Proof of Lemma 3.11: Consider a cycle L in GC . For each vertex vj ∈ L, there is at least one
vertex vi ∈ L such that ai envies aj . Therefore, Considering S as the set of agents with vertices in
L, none of the agents of S is a loser. By the same deduction, none of the agents of S is a winner.
But this contradicts the fact that the set C is cycle-envy-free. �

Proof of Lemma 3.13: We describe the proof for the first condition in more details. The proof
for the second condition is almost the same as the first condition.

The first condition: Suppose that there exists no such vertex. Our goal is to find a new
matching of H with the same cardinality, but with more weight. To this end, we construct a directed
graph H ′ from H as follows: for each ŷj ∈ T we consider a vertex vj in V (H ′). Furthermore, there
is a directed edge from vj to vi in H ′, if and only if w(x̂j , ŷj) < w(x̂i, ŷj) in H.

If there exists a vertex vj with out-degree zero in H ′, then ŷj is the desired winner in T , since

∀ŷi ∈ H,w(x̂j , ŷj) ≥ w(x̂i, ŷj).

Otherwise, the out-degree of every vertex in T is non-zero. Therefore, H ′ has at least one cycle
L = 〈vl1 , vl2 , . . . , vl|L|〉. Now, if we change matching M by removing the set of edges

{(ŷl1 , x̂l1), (ŷl2 , x̂l2), . . . , (ŷl|L| , x̂l|L|)}

from M and adding
{(ŷl1 , x̂l2), (ŷl2 , x̂l3), . . . , (ŷl|L| , x̂l1)}

to M , the weight of our matching will be increased. Note that by the definition of an edge in H ′,
we have

w(x̂l2 , ŷl1) > w(x̂l1 , ŷl1), w(x̂l3 , ŷl2) > w(x̂l2 , ŷl2), . . . , w(x̂l1 , ŷl|L|) > w(x̂l|L| , ŷl|L|).

But this contradicts the fact that M was MCMWM of H.
The second condition: Similar to the proof of the first condition, we construct a new directed

graph H ′ from H where we have a vertex vj in H ′ for each vertex ŷj in T . For every pair ŷi and
ŷj which are members of T we connect vi to vj with a directed edge in H ′ if

w(x̂j , ŷi) > w(x̂i, ŷi)

in H and (x̂j , ŷi) ∈ E(H). Note that if H ′ contains a vertex vi with in-degree equal to zero, then
ŷi is the desired loser in T . Thus, suppose that no vertex in H ′ has in-degree zero and hence, H ′

has a directed cycle. Let L = 〈ŷl1 , ŷl2 , . . . , ŷl|L|〉 be a directed cycle in H ′. Similar to the proof of
the previous condition, we leverage L to alter M to a new matching with more weight, which is a
contradiction by the maximality of M .

The third condition: If w(x̂i, ŷi) < w(x̂j , ŷi), we can replace the edge between x̂i and ŷi by
(x̂j , ŷi) in M which yields a matching with a greater weight. This contradicts the maximality of
M . �

C Omitted Proofs of Section 3.3

Proof of Lemma 3.14: By definition, there is no edge between the vertices of FG1/2
(M,X1/2)

and Y1/2 \N(FG1/2
(M,X1/2)) in G1/2. Furthermore, all the items are in worth less than 1/2 for the

agents corresponding to the vertices in Y \ Y1/2. Thus, for every agent ai and every item bj with
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yi ∈ Y \N(FG1/2
(M,X1/2)) and xj ∈ FG1/2

(M,X1/2), we have Vi(bj) < 1/2. According to the fact
that the agents that are not selected in the clustering of C1 either belong to C2 or C3, we have:

∀aj ∈ C1 Vi(fj) < 1/2.

�

Proof of Lemma 3.15: First, we prove Lemma C.1. This lemma ensures that there exists a
matching in G1 that saturates all the vertices in W1. Lemma C.1 is a consequence of irreducibility.
In fact, we show that if the condition in Lemma C.1 does not hold, the instance is reducible.

Lemma C.1 For graph G1, we have

∀R ⊆W1, |N(R)| > |R|.

Proof. Let M1 a matching with the maximum number of edges in G1 . Regarding Lemma 3.7,
it only suffices to show that FG1(M1,W1) is empty. For the sake of contradiction, suppose that
FG1(M1,W1) is not empty. As mentioned before, there exists a matching between FG1(M1,W1)
and N(FG1(M1,W1)) that saturates all the vertices in N(FG1(M1,W1)). Let

MS = {(xj1 , yi1), (xj2 , yi2), . . . , (xjk , yik)}

be this matching. We show that the set of agents

T = {ai1 , ai2 , . . . , aik}

and the set of items
S = {fi1 , bj1 , fi2 , bj2 , . . . , fik , bjk}.

have all three conditions in Lemma 3.3 (Note that fil contains exactly one item). The first condition
is trivial: |S| = 2|T |. Regarding the definition of an edge in G1, we know that fil ∪ {bjl} satisfy ail
and hence, the second condition is held as well. For the third condition, we should prove that for
every agent ail in T ,

Vi′(fil ∪ {bjl}) < 1 ∀ai′ /∈ T.
To show this, we consider two cases separately. First, if ai′ /∈ C1, by Lemma 3.14, Vi′(fil) < 1/2
and by Observation 3.2, Vi′({bjl}) < 1/2, which means Vi′(fil ∪ {bjl}) < 1.

Moreover, consider the case that ai′ ∈ C1. Note that since ai′ /∈ T , it’s corresponding vertex yi′

is not in N(FG1(M1,W1)), which means:

yi′ ∈ VC1 \N(FG1(M1,W1)).

By the definition of N(FG1(M1,W1), there is no edge between yi′ and xjl and hence, Vi′({bjl}) <
εi′ ≤ 1/4. On the other hand, by the irreducibility assumption and the fact that fil contains exactly
one item, Vi′(fil) < 3/4. Thus, Vi′(fil ∪ {bjl}) < 1.

As a result, Vi′(fil∪{bjl}) < 1 for every agent ai′ /∈ T which means the third condition of Lemma
3.3 is held as well. Thus, regarding Lemma 3.3, the instance is reducible. But this contradicts the
irreducibility assumption. �

The rest of the proof of Lemma 3.15 is as follows. Since we used MCMWM to build cluster C1,
regarding Lemma 3.13, C1 is cycle-envy-free. Consider the topological ordering of C1 and let pai be
the position of ai in this ordering. More precisely, pai = k if ai is the k-th agent in the topological
ordering of C1.
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According to Lemma C.1, the condition of Halls Theorem holds for graph G1 and as a result
there exists a matching in G1 that saturates all the vertices in W1. Among all possible maximum
matchings of G1, let M1 be a maximum matching that minimizes

pM1 =
∑
yi∈M1

pai .

We claim that M1 is the desired matching described in Lemma 3.15. To prove our claim, we must
show that for any edge (xi, yj) ∈ M1 and any unsaturated vertex yk ∈ N(xi), aj is a loser for the
set {aj , ak}, which means ak does not envy aj . Note that if ak envies aj , ak appears before aj in
the topological ordering of C1 which means pak < paj . Therefore, if we replace (xi, yj) by (xi, yk)
in M1, pM1 will be decreased that contradicts the minimality of pM1 . �

Proof of Lemma 3.16: Let bk be the item assigned to aj in the refinement of C1. Since xk ∈W1,
according to Observation 3.2, Vi(gj) < 1/2. �

Proof of Lemma 3.17: Let aj be an agent in Sr1 . First, note that |fj | = |gj | = 1. Lemma 3.14
together with Observation 3.2 state that Vi(fj ∪ gj) < 1. According to Inequality (16), we have

MMS
|N\aj |
Vi

(M\ fj ∪ gj) ≥ 1. (17)

Note that Equation (17) holds for every agent in Sr1 . Applying Equation (17) to all the agents of
Sr1 yields

MMS
|N\Sr1 |
Vi

(M\
⋃
yi∈Sr1

fi ∪ gi) ≥ 1.

�

Proof of Lemma 3.19: According to Observation 3.3, for any agent ak ∈ C1 and for every
xj ∈ X ′ \ X ′1/2 we have Vk({bj}) < εk. By additivity assumption, for any ak ∈ C1 we have

∀xi, xj ∈ X ′ \ X ′1/2 Vk({bi, bj}) < 2εk.

�

Proof of Lemma 3.20: Suppose for the sake of contradiction that the problem is 3/4-irreducible,
and there exists a vertex yk ∈ Y such that Vk({bi, bj}) ≥ 3/4. According to Lemma 3.2 there exists
an agent ak′ 6= ak such that

Vk′({bi, bj}) ≥ 1.

Since the valuations are additive, we know that one of the inequalities Vk′({bi}) ≥ 1/2 or Vk′({bj}) ≥
1/2 are held, which is contradiction, since we know both xi and xj belong to X ′ \ X ′1/2. �

Proof of Lemma 3.22: We prove Lemma 3.22 in two steps. Firstly, we show that

|FG′
1/2

(M ′,X ′1/2)| ≤ |N(FG′
1/2

(M ′,X ′1/2))|. (18)

Furthermore, we prove
|FG′

1/2
(M ′,X ′1/2)| ≥ |N(FG′

1/2
(M ′,X ′1/2))|. (19)

Inequalities (19) and (19) yields

|FG′
1/2

(M ′,X ′1/2)| = |N(FG′
1/2

(M ′,X ′1/2))|. (20)
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To show Inequality (18), argue that before Algorithm 1 starts, we have

FG′
1/2

(M ′,X ′1/2) = ∅

and
N(FG′

1/2
(M ′,X ′1/2)) = ∅

and all the vertices in X ′1/2 are saturated by M ′. In each step of Algorithm 1, we add a new vertex

to X ′1/2, and the size of the maximum matching M ′ is increased by one. Therefore, after each step

of Algorithm 1, all of the vertices in X ′1/2 remain saturated by M ′. Since FG′
1/2

(M ′,X ′1/2) ⊆ X ′1/2,

all the vertices of FG′
1/2

(M ′,X ′1/2) are also saturated by M ′, which means

|FG′
1/2

(M ′,X ′1/2)| ≤ |N(FG′
1/2

(M ′,X ′1/2))|.

To prove Inequality (19), note that by definition, FG′
1/2

(M ′,X ′1/2) has a property that there

exists a matching from FG′
1/2

(M ′,X ′1/2) to N(FG′
1/2

(M ′,X ′1/2)) that saturates all the vertices of

N(FG′
1/2

(M ′,X ′1/2)). Therefore, we have

|FG′
1/2

(M ′,X ′1/2)| ≥ |N(FG′
1/2

(M ′,X ′1/2))|.

This completes the proof. �

Proof of Lemma 3.23: Firstly, we clarify what agents are in C3. Roughly speaking, the agents
that are not selected for Clusters C1 and C2 are in C3. Thus, the agents in C3 correspond to the
vertices in

Y ′ \N(FG′
1/2

(M ′,X ′1/2))

=
(
Y ′ \ Y ′1/2

)
∪
(
Y ′1/2 \N(FG′

1/2
(M ′,X ′1/2))

)
.

The term Y ′ \ Y ′1/2 refers to the vertices that are filtered in G′1/2 which means no edge with

weight at least 1/2 is incident to any of these vertices. On the other hand, for every agent aj ∈ C2,
fj corresponds to a vertex in FG′

1/2
(M ′,X ′1/2). Hence, for every agent aj ∈ C2 and every agent ai

with corresponding vertex in Y ′ \ Y ′1/2 we have Vi(fj) < 1/2

Next, consider the term Y ′1/2 \ N(FG′
1/2

(M ′,X ′1/2)). By definition, the vertices of

FG′
1/2

(M ′,X ′1/2) are only incident to the vertices of N(FG′
1/2

(M ′,X ′1/2)) in G′1/2. Regarding the def-

inition of an edge in G′1/2, for every agent aj ∈ C2 and agent ai with yi ∈ Y ′1/2 \N(FG′
1/2

(M ′,X ′1/2))

we have Vi(fj) < 1/2.
Therefore, for all ai ∈ C3 we have:

∀aj ∈ C2 Vi(fj) < 1/2.

�

Proof of Lemma 3.24: Regarding Observation 3.3, after refinement of C1, all the items with
vertex in X ′ \ X ′1/2 are in worth less than εj for every agent aj ∈ C1. Furthermore, note that for

every agent ai ∈ Sr2 , gi is a single item with vertex in X ′ \ X ′1/2. Thus, Vj(gi) < εj for every agent
aj ∈ C1. �
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Proof of Lemma 3.25: According to Algorithm 2, for any agent ai ∈ Sr2 , the corresponding
vertex of the only member of gi is in X ′ \ X ′1/2. Therefore, for any agent aj /∈ C1 ∪ C2 we have

Vj(gi) < 1/2. Finally, note that the remaining agents that are not in C1 and C2 belong to C3. �

Proof of Lemma 3.26: The algorithm 1 terminates when there is no desirable pair for the agents
in T = Y ′ \N(FG′

1/2
(M ′,X ′1/2)). Furthermore, by definition, for every agent ai ∈ C3 we have

yi ∈ Y ′ \N(FG′
1/2

(M ′,X ′1/2)).

But at the end of Algorithm 1, no pair of vertices is desirable for ai which means for every xj , xk ∈
X ′′ \ X ′′1/2, we have Vi({bj , bk}) < 1/2 (note that X ′′ \ X ′′1/2 ⊆ X ′ \ X ′1/2). �

D Omitted Proofs of Section 3.4

Proof of Lemma 3.28: At this point, for every agent ai ∈ C1 ∪C2 ∪Cs3, |fj | ≤ 2. If |fi| = 1 holds,
then according to Lemma 3.1, value of the item in fi is less than 3/4 to all other agents. Moreover,
if |fi| = 2, then fi corresponds to a merged vertex. In this case, by Lemmas 3.19 and 3.20, value
of fi is less than 3/4 to all other agents. �

Proof of Lemma 3.32: According to Lemma 3.26, value of every pair of items in F is less than
1/2 to ai. Therefore, fi contains at least three items. Let bk be an arbitrary item in fi. Since
|fi| ≥ 3, fi \ {bk} is non-empty. On the other hand, S is minimal and hence, none of the sets
fi \ bk and {bk} is feasible for any agent. According to the definition of feasibility for the agents of
C1 ∪ C2 ∪ Cs3 ∪ Cb3, we have

∀aj ∈ C1 ∪ C2 ∪ Cs3 ∪ Cb3 Vj(fi \ {bk}) < εj

and
∀aj ∈ C1 ∪ C2 ∪ Cs3 ∪ Cb3 Vj({bk}) < εj

which means
∀aj ∈ C1 ∪ C2 ∪ Cs3 ∪ Cb3 Vj(fi) < 2εj .

�

Proof of Lemma 3.33: The Lemma trivially holds for C1 and C2, since removing an agent from
a cycle-envy-free set preserves this property. For Cs3, there may be multiple rounds that an agent
is added to Cs3. We show that adding an agent to Cs3 preserves cycle-envy-freeness as well.

For the sake of contradiction, let Rz be the first round in which adding an agent ai to Cs3 results
in a set, that is no longer cycle-envy-free. Since Cs3 \{ai} is cycle-envy-free, every subset of Cs3 \{ai}
contains at least one winner and one loser. Moreover, by Lemma 3.32 we have:

∀aj ∈ Cs3, j 6= i, Vj(fi) < 2εj . (21)

Note that ai previously belonged to Cf3 . By definition of Cf3

∀aj ∈ Cs3, j 6= i, Vi(fj) < 1/2. (22)

Inequalities (21) and (22) together imply that ai is both a winner and a loser for every subset
of Cs3 that contains ai. This means that every subset of Cs3 contains at least one winner and one
loser, which is a contradiction.
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�

Proof of Lemma 3.34:
If aj ≺pr ai, then gi is not feasible for aj , since the agent with the lowest priority is satisfied

in each round of the second phase. Thus, Vj(gi) < εj . For the case where ai ≺pr aj , let bk be
an arbitrary item of gi. According to the fact that gi is minimal, gi \ {bk} is not feasible for any
agent. Hence, Vj(gi \ {bk}) < εj . On the other hand, by Observations 3.3 and 3.4, Vj({bk}) < εj .
Therefore, Vj(gi) < 2εj . �

Proof of Lemma 3.35: Let Rz be the round, in which ai is satisfied. At that point, if aj ∈ Cf3
then Vj(gi) < 1/2 trivially holds. Since in round Rz, aj ≺pr ai holds, gi was not feasible for aj in
the first place. Recall that in each round, the agent with lowest order in Φ(S) is selected.

Furthermore, if in round Rz, aj was in Cs3 ∪ Cb3, according to Observations 3.3 and 3.4, |S| ≥ 2,
since no item alone can satisfy ai. If |S| = 2, then by Observation 3.26, Vj(gi) < 1/2. For the
case of |S| > 2, let bk be the item in S with the minimum value to aj . According to Corollary
3.27, Vj({bk}) < 1/4. Also, since S is minimal, S \ {bk} is not feasible for any agent and hence,
Vj(S \ {bk}) < εj ≤ 1/4. Thus, Vj(S) < 1/2. �

E Omitted Proofs of Section 3.5

Before proceeding to the proof of Lemma 3.36, we show Lemmas (E.1, E.2 and E.3).

Lemma E.1 Let ai be an agent in S3 and let Rz be the round of the second phase in which ai is
satisfied. Then, for any other agent aj that is in Cf3 in Rz, Vj(gi) < 1/2 holds.

Proof. In Rz, ai either belongs to Cs3 or Cb3. Thus, aj ≺pr ai, and thus gi is not feasible for aj in
that round. Therefore, Vj(gi) < 1/2. �

Lemma E.2 Let ai ∈ S3 be a satisfied agent and let Rz be the round in which ai is satisfied. Then,
for every other agent aj that belongs to Cs3∪Cb3 in that round, either Vj(gi) < εj or Vj(fi) ≤ 3/4−εj.

Proof. If gi is not feasible for aj , then the condition trivially holds. Moreover, by the definition,
the statement is correct for the agents of Cb3. Therefore, it only suffices to consider the case that
aj ∈ Cs3 and gi is feasible for aj . Due to the priority rules for satisfying the agents in the second
phase, ai ≺pr aj and hence, ai cannot be in Cb3. Thus, ai ∈ Cs3. According to Observation 3.1 and
the fact that ≺pr is equivalent to ≺o for the agents in Cs3, we have Vj(fi) ≤ 3/4− εj . �

Lemma E.3 During the second phase, for any agent ai in C3, we have:∑
aj∈S3

Vi(fj ∪ gj) < |S3|+ 1/4.

Proof. To show Lemma E.3, we show that for all the agents aj ∈ S3 except at most one agent,
Vi(fj ∪ gj) < 1 holds. To show this, let Rz be an arbitrary round of the second phase, in which
an agent aj ∈ C3 is satisfied. First, note that in Rz, aj belongs to Cs3 ∪ Cb3. Also, in round Rz, ai
belongs to one of Cs3, Cb3, or Cf3 .

If ai ∈ Cf3 , then by Lemma E.1, Vi(gj) < 1/2 holds. On the other hand, by definition, Vi(fj) <
1/2 and hence, Vi(fj ∪ gj) < 1.
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Now, consider the case, where ai ∈ Cb3 ∪ Cs3. Note that by Lemma E.2, either Vi(fj) ≤ 3/4− εi
or Vi(gj) < εi. If Vi(gj) < εi, then by Lemmas 3.28 and 3.32, we know Vi(fj) < 3/4 and hence,
Vi(fj ∪ gj) < 3/4 + εi < 1.

For the case where Vi(fj) ≤ 3/4− εi, let bl be the item in gj with the maximum value to ai. By
minimality of gj , gj\{bl} is not feasible for any agent, including ai and thus, Vi(gj\{bl}) < εi. Recall
that by Corollary 3.27, there is at most one item bk in F , such that Vi(bk) ≥ 1/4. In addition to
this, Vi(bk) < 1/2 trivially holds, since bk is not assigned to any agent during the clustering phase.
If bl 6= bk, Vi(gj) < 1/4 + εi holds and hence,

Vi(fj ∪ gj) < 3/4− εi + 1/4 + εi < 1.

Moreover, If bl = bk, Vi(gj) < 1/2 + εi holds and thus, Vi(fj ∪ gj) < 3/4 − εi + 1/2 + εi < 5/4.
But, this can happen at most one round. Therefore, for all the agents aj ∈ S3 except at most one,
Vi(fj ∪ gj) < 1. Also, for at most one agent aj ∈ S3, Vi(fj ∪ gj) < 5/4. Thus,∑

aj∈S3

Vi(fj ∪ gj) < |S3|+ 1/4.

�

Proof of Lemma 3.36: Suppose for the sake of contradiction that C3 6= ∅. Note that, by the
definition of Cb3, if Cs3 = ∅ holds, then consequently Cb3 = ∅. Therefore, since we have C3 = Cs3∪Cb3∪Cf3 ,

if C3 is non-empty, at least either of the two sets Cs3 or Cf3 is non-empty. In case Cs3 is non-empty,

let ai be a winner of Cs3, otherwise let ai be an arbitrary agent of Cf3 .
According to Lemma 3.35, for every agent aj ∈ Ss1 ∪ Ss2 , Vi(gj) < 1/2 holds. Also, by Lemmas

3.16 and 3.25, for every agent aj ∈ Sr1 ∪ Sr2 , we have Vi(gj) < 1/2. Therefore,

∀aj ∈ S1 ∪ S2 Vi(gj) < 1/2.

Also, by Lemmas 3.14 and 3.23 we know that Vi(fj) < 1/2 for every aj ∈ S1 ∪ S2. Thus, for
every satisfied agent aj ∈ S1 ∪ S2, Vi(fj ∪ gj) < 1 holds, and hence∑

aj∈S1∪S2

Vi(fj ∪ gj) < |S1 ∪ S2|. (23)

Moreover, by Lemma E.3, the total value of items assigned to the agents in S3 to ai is less than
|S3|+ 1/4. More precisely, ∑

aj∈S3

Vi(fj ∪ gj) ≤ |S3|+ 1/4. (24)

Inequality (23) along with Inequality (24) implies:∑
aj∈S

Vi(fj ∪ gj) =
∑

aj∈S1∪S2

Vi(fj ∪ gj) +
∑
aj∈S3

Vi(fj ∪ gj)

< |S1 ∪ S2|+ |S3|+ 1/4

= |S|+ 1/4

(25)

Recall that the total sum of the item values for ai is equal to n. In addition to this, since every
agent belongs to either of the Clusters C1, C2, C3, or S we have

|S|+ |C1|+ |C2|+ |C3| = n.
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Furthermore, every item bj ∈M either belongs to F or one of the sets fj′ and gj′ for an agent aj′ .
More precisely,

F =M\
[ ⋃
aj∈S∪C1∪C2∪Cs3

fj ∪
⋃
aj∈S

gj

]
.

Therefore ∑
aj∈C1

Vi(fj) +
∑
aj∈C2

Vi(fj) +
∑
aj∈Cs3

Vi(fj) + Vi(F) = Vi(M)−
∑
aj∈S

Vi(fj ∪ gj)

= n−
∑
aj∈S

Vi(fj ∪ gj)

≥ n− (|S|+ 1/4)

= |C1|+ |C2|+ |C3| − 1/4

(26)

According to Lemmas 3.14 and 3.17,∑
aj∈C1

Vi(fj) < 1/2|C1| (27)

and ∑
aj∈C2

Vi(fj) < 1/2|C2| (28)

hold. Inequalities (26), (27), and (28) together prove

Vi(F) ≥ |C1|+ |C2|+ |C3| − 1/4−
[ ∑
aj∈C1

Vi(fj) +
∑
aj∈C2

Vi(fj) +
∑
aj∈Cs3

Vi(fj)
]

≥ |C1|+ |C2|+ |C3| − 1/4−
[
1/2|C1|+ 1/2|C2|+

∑
aj∈Cs3

Vi(fj)
]

≥ 1/2|C1|+ 1/2|C2|+ |C3| − 1/4−
∑
aj∈Cs3

Vi(fj).

(29)

Now, we consider two cases separately: (i) ai ∈ Cs3 and (ii) ai ∈ Cf3 .
In case ai ∈ Cs3, since ai is a winner of Cs3, we have∑

aj∈Cs3

Vi(fj) ≤
∑
aj∈Cs3

Vi(fi)

=
∑
aj∈Cs3

3/4− εi

= (3/4− εi)|Cs3|.

(30)

This combined with Inequality (29) concludes

V (F) ≥ 1/2|C1|+ 1/2|C2|+ |C3| − 1/4−
∑
aj∈Cs3

Vi(fj)

≥ 1/2|C1|+ 1/2|C2|+ |C3| − 1/4− (3/4− εi)|Cs3|
≥ 1/2|C1|+ 1/2|C2|+ (1/4 + ε)|C3| − 1/4.
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On the other hand, since ai ∈ Cs3, |C3| ≥ 1 and hence, Vi(F) ≥ 1/4 + εj − 1/4 = εj . This means
that F is feasible for ai, which contradicts the termination of the algorithm.

In case ai ∈ Cf3 , by the definition of Cf3 we know that
∑

aj∈Cs3
Vi(fj) < 1/2|Cs3|, which by

Inequality (29) implies:

Vi(F) > 1/2|Cs3|+ |Cb3|+ |Cf3 |+ 1/2|C2|+ 1/2|C1| − 1/4.

Since ai ∈ Cf3 , we have |Cf3 | ≥ 1 and hence, Vi(F) > 3/4. Again, this contradicts the termination
of the algorithm since F is feasible for ai. �

Proof of Lemma 3.37: By Lemma 3.36, we already know C3 = ∅. Now, let ai be a winner of the
remaining agents in C1. For convenience, we color the items in either blue or white. Intuitively, blue
items may have a high value for ai whereas white items are always of lower value to ai. Initially,
all items are colored in white. For each aj ∈ N , if |fj | = 1, then we color the item in fj in blue.
Moreover, for every aj ∈ S, if |gj | = 1 and Vi(gj) ≥ εi, then we color the item in gj in blue.

Now, let P = 〈P1, P2, . . . , Pn〉 be the optimal n-partitioning of the items in M for ai, that is,
the value of every partition Pk to ai is at least 1. Based on the coloring procedure, we have three
types of partitions in P:

• B2: the set of partitions with at least two blue items

• B1: the set of partitions with exactly one blue item

• B0: the set of partitions without any blue items

Note that every partition in P belongs to one of B0, B1 or B2. Hence,

|B0|+ |B1|+ |B2| = n (31)

As declared, all the items in the partitions of B0 are white. The total value of these items to ai is
at least |B0| ≥ 4εi|B0|, which is ∑

Pk∈B0

∑
bj∈Pk

Vi(bj) ≥ 4εi|B0|. (32)

Also, each partition in B2 has at least two blue items, each of which is singly assigned to another
agent. We decompose the partitions of B1 into two disjoint sets, namely B̂1 and B̃1. More precisely,
let B̂1 be the partitions in B1, in which the blue item is worth more than Vi(fi) to ai and B̃1 =
B1 \ B̂1. As such, for each partition Pk ∈ B̃1, the white items in Pk are worth at least

1− Vi(fi) = 1− (3/4− εi)
= 1/4 + εi

≥ 2εi

to ai. Therefore, ∑
Pk∈B̃1

Vi(W(Pk)) ≥ 2|B̃1|εi (33)

where W(S) stands for the set of white items in a set S of items. On the other hand, since the
problem is 3/4-irreducible, by Lemma 3.1, no item alone is of worth 3/4 to ai and thus for each
partition Pk ∈ B̂1, the white items in Pk have a value of at least 1/4 ≥ εi to ai. This implies that∑

Pk∈B̂1

Vi(W(Pk)) ≥ |B̂1|εi. (34)
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By Inequalities (31),(32), (33), and (34) we have

Vi(W(M)) =
∑
Pj∈B0

Vi(W(Pj)) +
∑
Pj∈B1

Vi(W(Pj)) +
∑
Pj∈B2

Vi(W(Pj))

≥
∑
Pj∈B0

Vi(W(Pj)) +
∑
Pj∈B1

Vi(W(Pj))

≥
∑
Pj∈B0

Vi(W(Pj)) +
∑
Pj∈B̂1

Vi(W(Pj)) +
∑
Pj∈B̃1

Vi(W(Pj))

≥ |B0|4εi + |B̂1|εi + |B̃1|2εi
≥ |B0|4εi + |B1|2εi − |B̂1|εi
≥ |B0|4εi + |B1|4εi + |B2|4εi − |B1|2εi − |B2|4εi − |B̂1|εi
= (2n− 2|B2| − |B1| − |B̂1|)2εi + (|B̂1|)εi

(35)

Note that the total value of white items that are assigned to the agents during the algorithm is
equal to Vi(W(M\F)). The rest of the white items are still in F . Thus, we have

Vi(W(M)) = Vi(W(M\F)) + Vi(F) (36)

Now, we provide an upper bound on the value of Vi(W(M\F)). As a warm up, one can trivially
prove an upper bound of 2εi(2n− 1− |B1| − 2|B2|) on Vi(W(M\F)). This follows from the fact
that two sets of items are assigned to any agent and hence we have a total of 2n disjoint sets.
Among these 2n sets, at least one of them is empty (since gi = ∅) and at least |B1|+ 2|B2| of the
sets contain a single blue item. On the other hand, by Lemmas 3.19, 3.24, 3.32 and 3.34 every set
with white items is of worth at most 2εi to ai. Therefore, the total value of the white items in
M\F to ai is less than 2εi(2n− 1− |B1| − 2|B2|) and thus

Vi(W(M\F)) ≤ 2εi(2n− 1− |B1| − 2|B2|).

However, in order to complete the proof, we need a stronger upper bound on Vi(W(M\ F)).
To this end, we provide the following auxiliary lemma.

Lemma E.4 Let aj be an agent such that |fj | = 1 and Vi(fj) > Vi(fi). Then, Vi(gj) < εi.

Proof. First, note that if aj is not satisfied yet, then gj = ∅ and therefore Vi(gj) < εi. Otherwise,
we argue that agent aj is either satisfied in the second phase, or in the refinement phases of C1 or
C2.

Consider the case that aj is satisfied in the second phase. If aj ∈ Ss2 ∪ S3, then by Lemma
3.34, Vi(gj) < ε holds. Also, if aj ∈ Ss1 , considering the fact that ai envies aj , ai ≺pr aj . Thus, by
Lemma 3.34, we have Vi(gj) < εi.

Next, consider the case that aj is in Sr1 ∪ Sr2 . Note that the matching of the refinement phase
of C1 preserves the property described in Lemma 3.15. Hence, if aj belongs to Sr1 , then either
aj ≺pr ai or there is no edge between yi and M1(yj) in G1, where M1(yj) is the vertex matched
with yj in M1. If aj ≺pr ai, according to Observation 3.1, Vi(fj) ≤ 3/4 − εi holds. On the other
hand, by the definition, if no edge exists between yi and M1(yj) in G1, Vi(gj) < εi. In addition to
this, if aj belongs to Sr2 , according to Lemma 3.24, Vi(gj) < εi holds. Therefore, Lemma E.4 holds
for the agents in Sr1 ∪ Sr2 .

�
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Note that since matching M of G1/2 for building Cluster C1 is MCMWM according to condition
(iii) of Lemma 3.13, there exists no agent ak, such that |gk| = 1 and Vi(gk) > 3/4− εi. Otherwise,
by assigning the item in gj to ai instead of the item in fi, we can increase the total weight of the
matching, that contradicts the maximality of M .

According to Lemma E.4, for all the agents aj with the property that fj is a blue item that
belongs to a partition in B̂1, Vi(gj) < εi holds. The number of such agents is at least |B̂1|. Therefore,
the total value of Vi(W(M\F)) is less than 2εi · (2n−1−|B1|−2|B2|− |B̂1|)+ εi · |B̂1|. Combining
the bounds obtained in Observation 35 and Lemma E.4 by Inequality (36), we have:

Vi(F) ≥ 2εi · (2n− 2|B2| − |B1| − |B̂1|) + εi · (|B̂1|)− 2εi · (2n− 1− |B1| − 2|B2| − |B̂1|)− εi · |B̂1|

That is:
Vi(F) ≥ 2εi

This contradicts the fact that the set F is not feasible for ai.
�

Proof of Lemma 3.38: Lemmas 3.36 and 3.37 state that at the end of the algorithm, C1 = C3 = ∅.
Now, let ai be a winner of C2. We consider two cases separately: εi ≥ 1/8 and εi < 1/8.

If εi ≥ 1/8, the proof follows from a similar argument we used to prove Lemma 3.37.

Lemma E.5 If εi ≥ 1/8, then the following inequality holds:∑
aj∈S

Vi(fj ∪ gj) ≤ |S|+ 1/8.

Proof. We know S = S1 ∪ S2 ∪ S3. For every agent aj in S3, by Lemmas 3.28 and 3.32, we know
Vi(fj) < 3/4. Also, according to Lemma 3.34, Vi(gj) < εi ≤ 1/4. Therefore,∑

aj∈S3

Vi(fj ∪ gj) ≤
∑
aj∈S3

(3/4 + 1/4) = |S3|. (37)

Now, consider an agent aj ∈ S1. Note that by Lemma 3.14, Vi(fj) < 1/2. Also, remark that either
aj ∈ Sr1 or aj ∈ Ss1 . If aj ∈ Sr1 then according to Lemma 3.16, Vi(gj) < 1/2 holds and hence
Vi(fj ∪ gj) < 1. Also, If aj ∈ Ss1 , then according to Lemma 3.34, Vi(gj) < 2εi < 1/2. Thus, in both
cases, Vi(fj ∪ gj) < 1 and hence: ∑

aj∈S1

Vi(fj ∪ gj) ≤
∑
aj∈S1

1 = |S1|. (38)

Finally consider a satisfied agent aj ∈ S2. Again, remark that either aj ∈ Sr2 or aj ∈ Ss2 holds.
Consider the case that aj ∈ Ss2 . If aj ≺pr ai, then by Observation 3.1, Vi(fj) ≤ 3/4− εi and by

Lemma 3.34, Vi(gj) < 2εi ≤ 1/4 + εi which means Vi(fj ∪ gj) < 1. Moreover, if ai ≺pr aj , according
to Lemmas 3.28 and 3.34, Vi(fj ∪ gj) < 3/4 + εi ≤ 1. Thus, we have:∑

aj∈Ss2

Vi(fj ∪ gj) ≤
∑
aj∈Ss2

1 = |S1| (39)

It only remains to investigate the case where aj ∈ Sr2 . Note that since ai is not satisfied in the
refinement phase of C2, if ai ≺pr aj , then Vi(gj) < εi ≤ 1/4. Otherwise, we could assign the item
in gj to ai in the refinement phase of C2. Also, by Lemma 3.28, Vi(fj) < 3/4 holds which yields
Vi(fj ∪ gj) < 1.
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Finally, if aj ≺pr ai, by Observation 3.1 Vi(fj) ≤ 3/4− εi holds. Corollary 3.21 states that there
is at most one item bk with Mk ∈ X ′ \ X ′1/2 and Vi(bk) ≥ 3/8. Also, note that since bk belongs

to X ′ \ X ′1/2, Vi({bk}) < 1/2 holds. For agent aj , let bl be the item that is assigned to aj in the

refinement of C2, i.e., gj = {bl}. We have

Vi(fj ∪ gj) ≤ 3/4− εi + Vi({bl}).

If bl 6= bk, Vi(fj ∪ gj) ≤ 3/4− εi + 3/8 holds which by the fact that εi ≥ 1/8, implies Vi(fj ∪ gj) ≤
3/4− 1/8 + 3/8 ≤ 1. In addition to this, If bl = bk, Vi(fj ∪ gj) ≤ 3/4− 1/8 + 4/8 ≤ 1 + 1/8. But
this can happen for at most one agent. Thus, for every agent aj in Sr2 , Vi(fj ∪ gj) ≤ 1 holds and
for at most one agent aj ∈ Sr2 , Vi(fj ∪ gj) ≤ 1 + 1/8. Thus, we have∑

aj∈Sr2

Vi(fj ∪ gj) ≤ |Sr2 |+ 1/8. (40)

Inequality (40) together with Inequality (39) yields∑
aj∈S2

Vi(fj ∪ gj) ≤ |S2|+ 1/8. (41)

Furthermore, by Inequalities (37), (38) and (41) we have∑
aj∈S

Vi(fj ∪ gj) =
∑
aj∈S1

Vi(fj ∪ gj) +
∑
aj∈S2

Vi(fj ∪ gj) +
∑
aj∈S3

Vi(fj ∪ gj)

≤ |S1|+ |S2|+ 1/8 + |S3|
≤ |S|+ 1/8.

(42)

�

By Lemma E.5, value of agent ai for the items assigned to the satisfied agents is less than
|S|+ 1/8. Recall that C2 = C3 = ∅ and hence |S| = n− |C2|. Therefore,∑

aj∈S
Vi(fj ∪ gj) ≤ n− |C2|+ 1/8. (43)

Since ai is a winner of C2, for all aj ∈ C2, we have Vi(fj) ≤ Vi(fi). On the other hand, since the
total value of all items for ai is equal to n we have

Vi(F) = Vi(M)−
∑
aj∈C2

Vi(fj)−
∑
aj∈S

Vi(fj ∪ gj)

= n−
∑
aj∈C2

Vi(fj)−
∑
aj∈S

Vi(fj ∪ gj)

≥ n−
∑
aj∈C2

Vi(fj)−
[
n− |C2|+ 1/8

]
= |C2| − 1/8−

∑
aj∈C2

Vi(fj).

(44)
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Also, Vi(fi) = 3/4− εi holds and Vi(fj) ≤ Vi(fi) for any aj ∈ C2 follows from the fact that ai is
a winner of C2. Therefore by Inequality (44) we have

Vi(F) ≥ |C2| − 1/8−
∑
aj∈C2

Vi(fj)

≥ |C2| − 1/8−
∑
aj∈C2

Vi(fi)

= |C2| − 1/8− |C2|Vi(fi)
= |C2| − 1/8− |C2|(3/4− εi)
= |C2|(1/4 + εi)− 1/8.

Recall that by the assumption εi ≥ 1/8 holds. Moreover, εi ≤ 1/4, and thus

Vi(F) ≥ |C2|(1/4 + εi)− 1/8

≥ |C2|2εi − 1/8

≥ |C2|2εi − εi

and since |C2| ≥ 1,

Vi(F) ≥ |C2|2εi − εi
≥ 2εi − εi
≥ εi

and thus F is feasible for ai. This contradicts the termination of the algorithm.
Next, we investigate the case where ε < 1/8. Our proof for this case is similar to the one for

C1. Let Sr1 be the agents in S1 that are satisfied in the refinement phase and let

Mr
1 =

⋃
aj∈Sr1

fj ∪ gj .

Lemma 3.17 states that the maxmin value of the agents in C2 ∪ C3 for the items in M′ =M\Mr
1

is at least 1. More precisely for every aj ∈ C2:

MMS
n−|Sr1 |
j (M\Mr

1) ≥ 1 (45)

We color the items of M′ in one of four colors blue, red, green, or white. Initially, all the items
are colored in white. For each agent aj ∈ N \ Sr1 , if |fj | = 1, then we color the item in fj in blue.
Also, if |fj | = 2 (which means fj is corresponding to a merged vertex), color both the elements of
fj in red. In addition to this, if |gj | = 1 then color the item in gj in green. For any set S ⊆ M,
we denote the subset of blue, red, green, and white items in S by B(S),R(S), G(S), and W(S),
respectively. Recall that by Lemma 3.20, every pair of items in red or green are worth less that
3/4 in total to ai. In other words,

Vi({bj , bk}) ≤ 3/4.

for any two different items bj , bk ∈ B(M)∪G(M). Also, according to Lemmas 3.34 and 3.32, every
set including white items is worth less than 2εi < 1/4 to ai.

Now, let n′ = n− |Sr1 |. Let P = 〈P1, P2, . . . , Pn′〉 be the optimal n′−partitioning of M′ for ai.
Recall that by Inequality (45) the value of every partition in P is at least 1 for ai. Based on the
number of blue and red items in every partition, we define three sets of partitions:
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• B00 : Partitions with no red or blue items.

• B10 : Partitions with blue items, but without any red items.

• B01 : Partitions that contain at least one red item.

Next we prove Lemmas E.6 and E.7 to be used later in the proof.

Lemma E.6 Let |G(B00)| be the number of green items in the partitions of B00. Then,

Vi(W(B00)) ≥ (3|B00| − |G(B00)|) · 1/4.

Proof. Let Bj
00 be the set of partitions in B00 that contain exactly j green items. We have:

|G(B00)| =
∑

1≤j<∞
j|Bj

00| ≥ |B1
00|+ 2|B2

00|+
∑

3≤j<∞
3|Bj

00| (46)

Also, we have:

3|B00| =
∑

0≤j<∞
3|Bj

00| = 3|B0
00|+ 3|B1

00|+ 3|B2
00|+

∑
3≤j<∞

3|Bj
00| (47)

Finally, we argue that the value of white items in B00 is at least |B0
00|+ |B1

00| ·1/2+ |B3
00| ·1/4. This

follows from the fact that every green item in Pk ∈ B1
00 has a value less than 1/2 and by Lemma

3.20, every pair of green items in Pk ∈ B2
00 are worth less than 3/4 to aj . According to the fact

that the value of every partition Pk is at least 1, we have:

Vi(W(B00)) ≥ |B0
00|+ |B1

00| · 1/2 + |B3
00| · 1/4 =

(
4|B0

00|+ 2|B1
00|+ |B2

00|
)
· 1/4 (48)

According to Equations (46) and (47), we have:

3|B00| − |G(B00)| ≤ 3|B0
00|+ 2|B1

00|+ |B2
00| ≤ 4|B0

00|+ 2|B1
00|+ |B2

00| (49)

Next we combine Equations (48) and (49) to obtain:

Vi(W(B00)) ≥
(
3|B00| − |G(B00)|

)
· 1/4 (50)

�

Lemma E.7 Vi(W(B10)) ≥ (2|B10| − |B(B10)| − |G(B10)|) · 1/4

Proof. First, note that every partition in B10 contains at least one blue item. Let Bw
10 be the

partitions in B10 that contains exactly one blue item and no green item. The other items in each
partition of Bw

10, are white. Since the problem is 3/4-irreducible, the value of every blue item to ai
is less than 3/4 and therefore we have:

Vi(W(B10)) ≥ |Bw
10| · 1/4

or
4Vi(W(B10)) ≥ |Bw

10|. (51)

Moreover, let Bw̄
10 = B10 \ Bw

10. Since every partition in B10 contains at least one blue item, every
partition in Bw̄

10 contains at least two items with colors blue or green. Thus, we have:

|G(Bw̄
10)|+ |B(Bw̄

10)| ≥ 2|Bw̄
10| (52)
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Summing up Equations (51) and (52) results in

4Vi(W(B10)) + |G(Bw̄
10)|+ |B(Bw̄

10)| ≥ 2|Bw̄
10|+ |Bw

10|

which means:
4Vi(W(B10)) ≥ 2|Bw̄

10| − |G(Bw̄
10)| − |B(Bw̄

10)|+ |Bw
10|. (53)

Morover, we have |B(B10)| = |B(Bw
10)|+ |B(Bw̄

10)|. According to the fact that every partition in
Bw

10 contains exactly one blue item, |B(Bw
10)| = |Bw

10| and hence, |B(B10)| = |Bw
10| + |B(Bw̄

10)|. By
Equation (53), we have:

4Vi(W(B10)) ≥ 2|Bw̄
10| − |G(Bw̄

10)| − |B(B10)|+ |Bw
10|+ |Bw

10|.

Finally by the fact that 2|Bw
10|+ 2|Bw̄

10| = 2|B10|, we have:

4Vi(W(B10)) ≥ 2|B10| − |G(Bw̄
10)| − |B(B10)|

which is:
Vi(W(B10)) ≥

(
2|B10| − |B(B10)| − |G(Bw̄

10)|
)
· 1/4

�

For the partitions in B01, we construct a graph G01〈V01, E01〉, where every vertex vj ∈ V01

corresponds to a partition Pj ∈ B01. Consider an agent aj such that fj consists of a pair of red
items bk, bk′ and let bk ∈ Pl and bk′ ∈ Pl′ . We add an edge (vl, vl′) to E01. By the definition of B01,
Pl, Pl′ ∈ B01 holds. Note that bk and bk′ might belong to the same partition, i.e., Pl = Pl′ . In this
case, we add a loop to G01. Furthermore, for every item bk ∈ B(B01), we add a loop to the vertex
vl, where bk ∈ Pl.

Next, define Rj as the set of partitions in B01, such that the degree of their corresponding
vertices in V01 are equal to j. In other words:

Pk ∈ Rj ⇐⇒ d(vk) = j

Next we prove Lemma E.8.

Lemma E.8 For R1, we have:

Vi(W(R1)) ≥ (2|R1| − |G(R1)|) · 1/4

Proof. Consider a partition Pj ∈ R1. Since d(vj) = 1, Pj contains exactly one red item and no
blue item. Thus, other items in Pj are either green or white. We show that

|G(Pj)|+ 4.Vi(W(Pj)) ≥ 2. (54)

First, argue that if |G(Pj)| ≥ 2, then Inequality (54) holds. Also, if |G(Pj)| = 0, then Vi(W(Pj)) ≥
1/2, because the value of the red item in Pj is less than 1/2 (recall that all the red items correspond
to the vertices in X ′ \ X ′1/2). This immediately implies the fact that 4.Vi(W(Pj)) ≥ 2. Finally, if

|G(Pj)| = 1, then by Lemma 3.20, the total value of the green and red items in Pj is less than 3/4
and hence, Vi(W(Pj)) ≥ 1/4 which means |G(Pj)|+ 4.Vi(W(Pj)) ≥ 2.

Since Inequality (54) holds for every partition Pj ∈ R1, we have:∑
Pj∈R1

(
|G(Pj)|+ 4.Vi(W(Pj))

)
≥ 2|R1|
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Therefore,
|G(R1)|+ 4.Vi(W(R1)) ≥ 2|R1|

and hence,
Vi(W(R1)) ≥ (2|R1| − |G(R1)|) · 1/4

�

Lemma E.9 For R2, we have:

Vi(W(R2)) ≥ (|R2| − |G(R2)|) · 1/4

Proof. Let Pj be a partition in R2. First, we show the following inequality holds:

4Vi(W(Pj)) + |G(Pj)| ≥ 1 (55)

By the definition of R2, degree of vj is 2. Therefore, Pj contains two red items. Note that the
degree of the partitions in B01 that contain blue items is at least 3. Thus, Pj contains no blue
items. By Lemma 3.20, the total value of the red items in Pj is less than 3/4. The rest of the
items in Pj are either green or white. If Pj contains a green item, then Inequality (55) holds. On
the other hand, if Pj contains no green items, then Vi(W(Pj)) ≥ 1/4 and hence, 4Vi(W(Pj)) ≥ 1.
Therefore, Inequality (55) holds in both cases.

Summing up Inequality (55) for all the partitions in R2, we have:∑
Pj∈R2

4Vi(W(Pj)) + |G(Pj)| ≥ |R2|

which means:
4Vi(W(R2)) + |G(R2)| ≥ |R2|

That is:
Vi(W(R2)) ≥

(
|R2| − |G(R2)|

)
· 1/4

�

Putting together Lemmas E.6,E.7,E.8, and E.9 we obtain the following lower bound on the
valuation of ai for all white items:

Vi(W(M′)) = Vi(W(B00)) + Vi(W(B01)) + Vi(W(B10))

≥
(

3|B00| − |G(B00)|
)
· 1/4 +

(
2|B10| − |B(B10)| − |G(B10)|

)
· 1/4

+

(
2|R1| − |G(R1)|

)
· 1/4 +

(
|R2| − |G(R2)|

)
· 1/4

=

(
(3|B00|+ 2|B10|+ 2|R1|+ |R2| − |B(B10)|)−

(
|G(B00)|+ |G(B10)|+ |G(R1)|+ |G(R2)|

))
· 1/4

≥
(

(3|B00|+ 2|B10|+ 2|R1|+ |R2|)− |B(B10)| − |G(M′)|
)
· 1/4

(56)

where |G(M′)| is the total number of green items.
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The items in W(M′) are either allocated to an agent during the second phase, or are still in F .
Let W2 be the white items that are allocated to an agent during the second phase. We have:

Vi(W(M′)) = Vi(W2) + Vi(F) (57)

Now, we present an upper bound on the value of Vi(W2). First, note that the number of agents in
S \ Sr1 is n′. Each of these n′ agents has two sets fj and gj , that leaves us 2n′ sets. Since gi = ∅ we
know that at least one of these sets is empty. Moreover, of all these |G(M′)| sets contain a single
green item and |B(B10)|+ |E01| of the sets contain either a single blue item, or a pair of red items
(recall that each edge of G01 refers to a blue item or a pair of red items). Therefore, the number
of the sets that contain only white items is at most:

2n′ − 1− |G(M′)| − |B(B10)| − |E01|

By Lemmas 3.34 and 3.32, the value of every set with white items to ai is less than 2εi < 1/4
and hence:

Vi(W2) ≤ (2n′ − 1− |G(M′)| − |B(B10)| − |E01|) · 1/4 (58)

Subtracting the lower bound obtained for Vi(W(M′)) in (56) from the upper bound for Vi(W2) in
(58) gives us a lower bound on the value of F :

Vi(F) = Vi(W(M′))− Vi(W2)

≥
(

(3|B00|+ 2|B10| − |B(B10)|+ 2|R1|+ |R2|)− |G(M′)|
)
· 1/4− Vi(W2)

≥
(

(3|B00|+ 2|B10| − |B(B10)|+ 2|R1|+ |R2|)− |G(M′)|
)
· 1/4

−
(

2n′ − 1− |G(M′)| − |B(B10)| − |E01|
)
· 1/4

=

(
3|B00|+ 2|B10|+ 2|R1|+ |R2| − 2n′ + 1 + |E01|

)
· 1/4

=

(
2|B00|+ 2|B10|+ |B00|+ |E01|+ 2|R1|+ |R2| − 2n′ + 1

)
· 1/4

(59)

Next we provide Lemmas E.10, E.12, and E.11 to complete the proof.

Lemma E.10 |B00| ≥ |E01| − |B01|

Proof. First, note that |B00| + |B10| + |B01| = n′. Moreover we have |B(B10)| + |E01| ≤ n′. To
show this Lemma, note that each edge in G01 corresponds to the first set of an agent in S \ Sr1 .
Also, every blue item in B10 corresponds to the first set of an agent in S \ Sr1 . Therefore, the total
number of the agents must be more than this number. By the definition of B10, we know that
|B(B10)| ≥ |B10|. Therefore, we have:

|B00|+ |B10|+ |B01| ≥ |B(B10)|+ |E01|
≥ |(B10)|+ |E01|

(60)

This means:
|B00| ≥ |E01| − |B01|

�
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Lemma E.11 |E01| ≥ 3/2
∑

j≥3 |Rj |+ |R2|+ |R1|/2

Proof. |E01| =
∑

vj∈V01
d(vj)

2 =
∑

j j|Rj |
2 ≥ 3/2

∑
j≥3 |Rj |+ |R2|+ |R1|/2. �

Lemma E.12 |B00| ≥
∑

j≥3 |Rj |−|R1|
2

Proof. By Lemma E.10, |B00| ≥ |E01| − |B01|. Furthermore, by Lemma E.11,

|E01| ≥ 3/2
∑
j≥3

|Rj |+ |R2|+ |R1|/2.

By these two inequalities, we have:

|B00| ≥ 3/2
∑
j≥3

|Rj |+ |R2|+ |R1|/2− |B01| (61)

Also, since there is a one-to-one correspondence between B01 and V01, |B01| = |V01| holds. By the
definition of Rj , we have:

|V01| =
∑
j

|Rj | (62)

By replacing the value obtained for B01 from (62) into Inequality (61), we have:

|B00| ≥ 1/2
∑
j≥3

|Rj | − |R1|/2

=

∑
j≥3 |Rj | − |R1|

2
.

(63)

�

By applying Lemmas E.12 and E.11 to Inequality (59) we have:

Vi(F) =

(
2|B00|+ 2|B10|+ |B00|+ |E01|+ 2|R1|+ |R2| − 2n′ + 1

)
· 1/4

≥
(

2|B00|+ 2|B10|+
∑

j≥3 |Rj | − |R1|
2

+ 3/2
∑
j≥3

|Rj |+ |R2|+ |R1|/2 + 2|R1|+ |R2| − 2n′ + 1

)
· 1/4

=

(
2|B00|+ 2|B10|+

∑
j≥3

2|Rj |+ 2|R2|+ 2|R1| − 2n′ + 1

)
· 1/4

Finally, note that
∑

j≥3 2|Rj | + 2|R2| + 2|R1| = 2|V01| = 2|B01|. This, together with the fact that
|B00|+ |B01|+ |B10| = n′, yields Vi(F) ≥ (2n′ − 2n′ + 1) · 1/4. This means Vi(F) ≥ 1/4 which is a
contradiction since F is feasible for ai. �

F Omitted Proofs of Section 4

Observation F.1 fx(S) ≤ x for every given S.

Observation F.2 fx(S) ≤ f(S) for every given S.
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Proof Of Lemma 4.4:
First Claim: By definition of submodular functions, for given sets A and B we have:

f(A ∪B) ≤ f(A) + f(B)− f(A ∩B)

We prove that fx(.) is a submodular function in three different cases:

First Case: Let both f(A) and f(B) be at least x. According to Observation F.1, fx(A ∪ B)
and fx(A ∩B) are bounded by x. Therefore, fx(A ∪B) + fx(A ∩B) ≤ 2x, which yields:

fx(A ∪B) + fx(A ∩B) ≤ fx(A) + fx(B)

Second Case: In this case one of f(A) and f(B) is at least x. We have f(A ∪ B) ≥ x and
f(A∩B) is no more than max {f(A), f(B)}. As a result fx(A∪B) and one of fx(A) or fx(B) are
equal to x which yields:

fx(A ∪B) + fx(A ∩B) ≤ fx(A) + fx(B)

Third Case: In this case both f(A) and f(B) are less than x, and f(A ∩ B) is less than x
too. Since fx(A) = f(A), fx(B) = f(B), fx(A ∩ B) = f(A ∩ B), according to Observation F.2,
fx(A ∪B) ≤ f(A ∪B) holds. Since f(.) is a submodular function, we conclude that:

fx(A ∪B) ≤ fx(A) + fx(B)− fx(A ∩B).

Second Claim: Since f(.) is an XOS set function, by definition, there exists a finite set of additive
functions {f1, f2, . . . , fα} such that

f(S) =
α

max
i=1

fi(S)

for any set S ⊆ ground(f). With that in hand, for a given real number x, we define an XOS set
function g(.), and show g(.) is equal to fx(.).

We define g(.) on the same domain as f(.). Moreover, based on {f1, f2, . . . , fα}, we define a
finite set of additive functions {g1, g2, . . . , gβ} that describe g. More precisely, for each set S in
domain of f(.) we define a new additive function like gγ in g(.) as follows: Without loss of generality
let fδ be the function which maximizes f(S). For each bi /∈ S let gγ(bi) = 0. Furthermore, for each
bi ∈ S if f(S) ≤ x let gγ(bi) = fδ(bi), and otherwise let gγ(bi) = x

f(S)fδ(bi).

We claim that g(.) is equivalent to fx(.), which implies fx(.) is an XOS function. g(.) and fx(.)
are two functions which have equal domains. First, we prove that g(S) ≤ f(S) for any given set S.
According to construction of g(.), for each additive function in g(.) such gγ , there is at least one
additive function in f(.) such fδ where gγ(bi) ≤ fδ(bi) for each bi ∈ M. Therefore, for any given
set S we have:

g(S) ≤ f(S) (64)

Now, according to the construction of g(.), for any given set S where f(S) ≤ x, we have a function
gγ(S) = f(S), and where f(S) > x, we have a function gγ(S) = x. Therefore, we can conclude
that:

g(S) ≥ fx(S) (65)

For any given set S where f(S) ≤ x, according to the definition of fx(.), f(S) = fx(S), and using
Inequalities (64) and (65) we argue that fx(S) = g(S). Moreover, according to the construction of
g(.), g(S) ≤ x for any given set S. Therefore, for any given set S where f(S) > x, according to the
definition of fx(.) and Inequality (65), fx(S) = g(S) = x. As a result, by considering these two
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cases we argue that fx(.) and g(.) are equivalent, which shows fx(.) is an XOS function.
Third Claim: In this claim, we use a similar argument to the first claim. By definition of
subadditive functions for any given sets A and B, we have:

f(A ∪B) ≤ f(A) + f(B)

We prove that fx(.) meets the definition of subadditive functions by considering two different
cases. In the first case at least one of f(A) and f(B) is at least x, and in the second case both
f(A) and f(B) is less than x.

First Case: In this case fx(A) + fx(B) is at least x, and since fx(S) ≤ x for any given set S,
fx(A ∪B) ≤ x. Therefore,

fx(A ∪B) ≤ fx(A) + fx(B)

Second Case: Since fx(A ∪ B) ≤ f(A ∪ B), f(A ∪ B) ≤ f(A) + f(B), f(A) = fx(A), and
f(B) = fx(B), we have:

fx(A ∪B) ≤ fx(A) + fx(B)

�

Proof Of Lemma 4.5: Since f(.) is submodular, according to the definition of submodular
functions, for every given sets X and Y in domain of f(.) with X ⊆ Y and every x ∈ M \ Y we
have:

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ) (66)

Let Si = {e1, e2, . . . , eα}, T0 = ∅, and Tj = {e1, e2, . . . , ej}, for every 1 ≤ j ≤ α. Since Tj ⊆ Si
for each 0 ≤ j ≤ α and fi is a submodular function, according to Inequality (66) we have:∑

1≤j≤α
fi(Si \ Tj−1)− fi(Si \ Tj) ≥

∑
1≤j≤α

fi(Si)− fi(Si − ej) (67)

Since fi(Si) =
∑

1≤j≤α fi(Si \ Tj−1) − fi(Si \ Tj), we can rewrite Inequality (67) for every
1 ≤ i ≤ k as follows:

fi(Si) ≥
∑
e∈Si

fi(Si)− fi(Si − e) (68)

For every 1 ≤ i ≤ k we can rewrite Inequality (68) as follows:∑
e∈si

fi(Si − e) ≥ (|Si| − 1)fi(Si) (69)

By adding (|⋃Si| − |Si|)fi(Si) to the both sides of Inequality (69), we have:

(|
⋃
Si| − |Si|)fi(Si) +

∑
e∈Si

fi(Si − e) =
∑
e∈

⋃
Si

fi(Si \ {e})

≥ (|
⋃
Si| − 1)fi(Si)

(70)

Since Inequality (70) holds for every 1 ≤ i ≤ k, we can sum up both sides of Inequality (70) as
follows: ∑

1≤i≤k

∑
e∈

⋃
Si

fi(Si − e) ≥
∑

1≤i≤k
(|
⋃
Si| − 1)fi(Si) (71)
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By dividing both sides of Inequality (71) over 1/|⋃Si| we obtain:

1

|⋃Si|( ∑
e∈

⋃
Si

∑
1≤i≤k

fi(Si − e)) = E[
∑

1≤i≤k
fi(S

∗
i )]

≥
∑

1≤i≤k
fi(Si)

|⋃Si| − 1

|⋃Si| .

(72)

�

Proof Of Lemma 4.6: Similar to the proof of Lemma 4.5, we use Inequality (66) as a definition
of submodular functions. Let S′i = Si \ S = {e1, e2, . . . , eα}, T0 = S, and Tj = S ∪ {e1, e2, . . . , ej}
for 1 ≤ j ≤ α. According to f(S) < 1/3, f(S ∪ S′i) ≥ 1, and Inequality (66) as a definition of
sub-modular functions, we have:

2/3 < f(S ∪ S′)− f(S)

=
∑

1≤j≤α
f(Tj−1 ∪ {ej})− f(Tj−1)

≤
∑
e∈S′i

f(S ∪ {e})− f(S)

(73)

Similar to Inequality (71), we can rewrite Inequality (73) with a summation, since Inequality
(73) holds for any 1 ≤ i ≤ k.

2k/3 <
∑

1≤i≤k

∑
e∈S′i

f(S ∪ {e})− f(S) (74)

By dividing both sides of Inequality (74) over 1/|⋃Si \ S| we have:

2k/3

|⋃Si \ S| < 1

|⋃Si \ S|( ∑
1≤i≤k

∑
e∈S′i

f(S ∪ {e})− f(S))

= E[f(S ∪ {e})− f(S)]

(75)

�

G Omitted Proofs of Section 5

Proof of Lemma 5.2: According to the definition of XOS function, f(.) is an XOS function with a
finite set of additive functions {g1, g2, . . . , gα} where f(S) = maxαi=1 gi(S) for any set S ∈ ground(f).
Let gj(.) be the additive function which maximizes S. Let gj(S1) = α1, gj(S2) = α2, . . . , gj(Sk) =
αk, which yields β =

∑
αi. Since gj(Si) = αi, f(S \ Si) ≥ β − αi. Therefore, we have:

∑
f(S)− f(S \ Si) ≤

∑
β − (β − αi)

= β

= f(S)

(76)
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Proof of Lemma 5.3: According to the definition of MMS, we know that ai can divide items to
n sets P = 〈P1, P2, . . . , Pn〉 such that Vi(Pj) ≥ 1 for any Pj . The catch is that ai can divide each of
these n sets to two disjoint sets such that the value of each of these new sets be at least 2/5 to him.
Let T = {b1, b2, . . . , bγ} be one of these n sets, and gj(.) be an additive function which maximizes
Vi(T ). Let Tk = {b1, b2, . . . , bk} for any 1 ≤ k ≤ γ. According to Lemma 3.1, since the problem is
1/5-irreducible, the value of any item is less than 1/5 to ai. Therefore, there is a set Tk among T1

to Tγ where 2/5 ≤ gj(Tk) < 3/5. Since gj(.) is one of additive functions of XOS function Vi, we
have Vi(Tk) ≥ 2/5. Moreover, since gj(Tk) < 3/5, gj(T \ Tk) ≥ 2/5, which yields Vi(T \ Tk) ≥ 2/5.
As a conclusion, we can divide each of n sets to two disjoint sets with at least 2/5 value to ai.

�
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