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Abstract—Electromigration (EM) becomes a major concern
for VLSI circuits as the technology advances in the nanometer
regime. With Korhonen equations, EM assessment for VLSI cir-
cuits remains challenged due to the increasing integrated density.
VLSI multisegment interconnect trees can be naturally viewed
as graphs. Based on this observation, we propose a new graph
convolution network (GCN) model, which is called EMGraph
considering both node and edge embedding features, to estimate
the transient EM stress of interconnect trees. Compared with
recently proposed generative adversarial network (GAN) based
stress image-generation method, EMGraph model can learn more
transferable knowledge to predict stress distributions on new
graphs without retraining via inductive learning. Trained on the
large dataset, the model shows less than 1.5% averaged error
compared to the ground truth results and is orders of magnitude
faster than both COMSOL and state-of-the-art method. It also
achieves smaller model size, 4× accuracy and 14× speedup over
the GAN-based method.

Index Terms—Electromigration (EM), graph convolution net-
work (GCN), multisegment interconnect, hydrostatic stress as-
sessment

I. INTRODUCTION

Electromigration (EM) is still the primary reliability concern
for VLSI interconnect as the technology advances in the
nanometer regime. As predicted by International Technology
Roadmap for Semiconductors (ITRS), EM is projected to only
get worse in future technology nodes [1]. EM-related aging
and reliability will become worse for current 5nm and below
technologies. As a result, it is crucial to ensure the reliability
of the very large scale integration (VLSI) chips during their
projected lifetimes.

It is well accepted that existing Black and Blech-based EM
models [2], [3] are overly conservative and can only work
for single wire segment [4], [5]. To mitigate those problems,
recently many physics-based EM models and simulation tech-
niques have been proposed [6]–[18]. These computational
techniques primarily focus on finding a solution of Korhonen
equations [19], which is the partial differential equations
(PDEs) describing the hydrostatic stress evolution in the con-
fined multi-segment interconnects subject to blocking materi-
als boundary conditions. A number of conventional numerical
and analytical methods are proposed to attempt to solve the
PDEs efficiently and accurately [15], [17], [20]–[22]. Although
the numerical methods, such as finite difference method [20],
[21] and finite element method [15], can work for the complex
interconnect structures and obtain EM stress accurately, they
impose high computational cost due to discretization of space
and time. Recently, semi-analytical method based on separa-
tion of variables method has been proposed [17], [22], which
show promising performance in both accuracy and efficiency
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on general multi-segment interconnect. However, solving the
Korhonen equation in particular and PDEs in general by
traditional numerical methods still remains a big challenge
due to the inherent limitation of those methods.

On the other hand, recent breakthrough from deep learning
for cognitive tasks based on deep neural networks (DNN)
bring new opportunities for solving the differential equations
for many applications in electric design automation (EDA)
field [23]. However, how to apply the deep learning techniques
to solve nonlinear partial differential equations still remains in
its infancy.

In this work, we propose to leverage graph neural networks
(GNN) to solve the Korhonen equations for multi-segment
interconnects for fast EM failure analysis. GNN can naturally
present multi-segment interconnects, which can be viewed as
graphs with node relationship presented by edges. GNN [24]
is a more general data representation and learning framework
for complex relationship beyond Euclidean space. Recently,
numerous GNN models have been developed for learning
various kinds of graph structures [25], [26] and in the EDA
areas [27]–[31]. Our new contributions are as follows:

• We apply GNN to perform transient EM stress on multi-
segment interconnect for the first time to the best of our
knowledge. A graph dataset on EM assessment is created
using COMSOL multiphysics. The input of the GNN
model is edge features, such as length, width, current
density, a graph structure and time. Its output is the stress
on the edges. Then, we can estimate the hydrostatic stress
in each segment wire at the given time.
• We design our own graph neural network (called EM-
Graph) to perform the node-edge regression task based
on the popular GraphSage network. Compared with GAN
based method, the proposed EMGraph model can learn
more transferable knowledge to predict stress distribu-
tions on new graphs without retraining via inductive
learning. We use EMGraph to predict EM stress on
large and unseen designs with good accuracy and fast
speed, which can not be achieved by recently proposed
EM-GAN method [32] because of its size-fixed image
limitation. In addition, the size of EMGraph model is
much smaller than that of EM-GAN model.
• A novel graph convolution-decoder structure is em-
ployed in EMGraph model. Our model first processes
the input graph using graph convolution. The resulting
graph embedding features are then fed into node and edge
decoders which convert latent features to stress outputs.
• Our evaluation results show that the EMGraph yields
1.5% averaged error compared to the ground truth results
and is orders of magnitude faster than both COMSOL and
state-of-the-art method. It also leads to better accuracy
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and 14× speedup over the EM-GAN method on several
interconnect trees benchmarks.

The paper is organized as follows: Section II reviews
the physics-based EM model and its assessment techniques.
Section III defines the input and output features, and graph
construction. Based on the popular GraphSage network, we
propose EMGraph in Section IV. Experimental results are
presented in Section V. Finally, section VI concludes this
paper.

II. REVIEW OF RELEVANT WORK

A. DNN based approaches for solving PDEs

In order to solve the PDE (1) accurately, numerical meth-
ods [15], [20], [21], such as finite difference and finite element
methods, are applied for EM assessment. However, it requires
huge computational cost and is not scalable for modern chips.
Therefore, an analytic based method, called separation of vari-
ables method, is employed to estimate the transient hydrostatic
stress with eigenvalues, which suffers from computing eigen-
values slowly and determining the number of eigenvalues [17],
[22].

Deep learning has revolutionized the machine learning fields
with breakthoughs in many cognitive applications such as
image, text, speech and graph recognition [23], [33]. inspired
by the observations, neural networks are modified to solve the
PDEs. There are several strategies to solving PDE by DNN
based methods. One approach is to frame the PDE solving pro-
cess into a nonlinear optimization process coded by DNN with
the loss functions to enforce the physics laws represented by
the PDE and boundary conditions. Recently proposed physics-
informed neural networks [34], [35] or physics-constrainted
neural networks [36], [37] methods represent this strategy.
But most of the reported works only solve very small PDE
with simple boundary conditions. Furthermore, it is unclear
that such methods can deliver sufficient accuracy without any
labels (unsupervised learning). On the other hand, the second
approach uses supervised learning to build DNN models based
on the measured or simulated label data. Recently a generative
adversarial networks (GAN) based method, called EM-GAN, is
proposed to perform a fast transient hydrostatic stress analysis
by solving Korhonen equations [32]. It can achieve an order
of magnitude speedup over the efficient analytic based EM
solver with good accuracy. However, this method only works
for a fixed region because its output is an fixed image, which
restricts its application in the real chips. What is more, the
image is not a natural tool to represent the multisegment
interconnects as the region with large areas are filled with
nothing.

To efficiently represent the multisegment interconnect struc-
ture, graph is more suitable to store the node and edge
information of the interconnect trees. Kipf and Welling intro-
duce a definition of convolution operation on a graph, which
aggregates information into the node from its neighborhood
nodes [25]. However, this method only does the task on a
fixed graph because the input needs an adjacency matrix rep-
resenting a graph. Once the graph is changed, the model needs
to be trained again. To mitigate this problem, GraphSAGE
network is proposed for inductive learning on graphs [26].
Unlike matrix factorization method proposed by Kipf and
Welling, GraphSAGE only learns the local node features by
aggregating the information from its neighborhood and can
predict the features at unseen nodes, which means the model
can predict the embedding features on new graphs without
retraining. Also several works leveraging GNN have been

proposed recently for solving various problems in EDA such as
analog circuit clustering [27], estimation of device parameters
in [28], chip power estimation in [38], 3D circuit partition-
ing [29], transistor sizing [30], analog IC placement [31].
Since GNN represents more general and natural relationship
among different design objectives, knowledges learned by
GNN models tend to be more transferable for different designs,
which is highly desirable.

B. Review of the EM and EM modeling

EM is a diffusion phenomenon of metal atoms migrating
from cathode to anode of confined metal interconnect wires
due to the momentum exchange between the conducting
electrons and metal atoms [2]. With the EM driving force, the
hydrostatic stress increases over time. When the stress reaches
a critical value, voids is nucleated at the cathode and hillock is
created at the anode of the interconnects. This eventually leads
to an open or short circuit, which is a EM-induced reliability
problem in modern VLSI circuits.

Black’s equation predicts EM-induced the time-to-failure
(TTF) based on an empirical or statistical data fitting, which
only works for one specific single wire [2]. Blech’s limit,
which is an immortality check method, can not estimate
transient hydrostatic stress and is subject to growing criticism
due to unnecessary overdesign [3]. To mitigate this problem,
the physics-based EM model, Korhonen equations [19], is
employed to describe the hydrostatic stress evolution for
general multi-segment interconnects.

The general multi-segment interconnect consists of n nodes,
including p interior junction nodes xr ∈ {xr1, xr2, · · · , xrp}
and q block terminals xb ∈ {xb1, xb2, · · · , xbq}, and sev-
eral branches. The physics-based Korhonen’s PDE for this
general structure in nucleation phase can be formulated as
follows [17], [22].
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where BC and IC are boundary and initial conditions respec-
tively, ij denotes a branch connected to nodes i and j, nr

represents the unit inward normal direction of the interior
junction node r on branch ij. σ(x, t) is the hydrostatic stress,
G = Eq∗

Ω is the EM driving force, and κ = DaBΩ/kBT is the
diffusivity of stress. E is the electric field, q∗ is the effective
charge. Da = D0 exp(

−Ea

kBT
) is the effective atomic diffusion

coefficient. D0 is the pre-exponential factor, B is the effective
bulk elasticity modulus, Ω is the atomic lattice volume, kB is
the Boltzmann’s constant, T is the absolute temperature, Ea

is the EM activation energy. σT is the initial thermal-induced
residual stress.

III. PROBLEM FORMULATION

This work aims to predict the transient hydrostatic stress
over time on the general multisegment interconnect using
GCN. The current densities for each branch can be calculated
by IR drop solver, such as SPICE circuit simulator. Aside
from current density, the width and length of each branch



also impact the EM stress. Thus, the input features include
current density, width, length and time. The output feature is
the hydrostatic stress. Table I lists all inputs and output of
GCN model.

TABLE I
INPUT AND OUTPUT FOR GCN MODEL

Features Type Definition

input

J edge current density (A/m2)
L edge length (µm)
W edge width (µm)
t edge/node time (s)

output σ edge/node stress (Pa)

The general multi-segment interconnect can be naturally
viewed as a graph, as shown in Fig. 1. Fig. 1(a) shows
an interconnect tree extracted from a real power delivery
network (PDN) where the current has direction. Each junc-
tion and branch can be represented by node and edge in a
graph, respectively. To describe the direction of current, a
directed graph is employed to represent the tree structure,
as shown in Fig. 1(b). Then, the embedding features can be
mapped into nodes and edges. Therefore, we can obtain a
directed graph G = (V,E) which consists of a node set
V and a directed edge set E. The node embedding feature
of input is time (xv = [t], v ∈ V). The edge embedding
features of input are current density, length, width and time
(xv,u = [J, L,W, t]T , (v, u) ∈ E), in which J is positive is
current flows from v to u and vice versa. The node embedding
feature of output is stress (zv = [σ], v ∈ V) at node v. The
edge embedding features of output are stress at five sampling
points (zv,u = [σ1, σ2, σ3, σ4, σ5]

T , (v, u) ∈ E), as shown
in Fig. 1(b). Based on the embedding features of input and
output, the graph learning task is node-edge regression.
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Fig. 1. (a) Schematic and (b) directed graph of a multi-segment interconnect.

To obtain the training set, we implemented an interconnect
tree generation algorithm which randomly generates branches
with various width, length and current densities in a fixed area
of 256×256 µm2. The resulting dataset contains 2500 unique
designs and the number of branches range from 5 to 110. To
obtain the ground truth stress results, the designs are simulated
in a finite element based commercial software COMSOL, and
for each design, 10 results at 1st to 10th discrete aging years
are produced.

IV. EMGRAPH: EM GRAPH NEURAL NETWORK

In this section, we focus on developing a GCN model which
takes node and edge features as input and output as described
in Section III. However, there is no GNN model for node-
edge regression task. Therefore, we proposed our own GCN
model, which is called EMGraph, for EM stress assessment.
The primary challenges are as follows: first, the stress ranges
from −2×109 to 2×109Pa. It is difficult for a neural network
to predict the entire range which spans 10 orders of magnitude;
Second, edge is directed and the output has both node and edge
features. The GCN model should be complicated enough to
deal with this graph; Third, the accuracy of stress should be
high. However, the regression using GCN has low accuracy.

A. Data rescaling

It is commonly accepted that values around zero are nu-
merically more stable for neural networks. Thus, we rescale
all input and output features to -1 to 1 using min-max
normalization method. However, Considering the large range
of the output stress values (4 × 109Pa), such normalization
squeezes values with less orders of magnitude into a small
range around zero. This may lead to more accurate predictions
at large stress points but impact the accuracy at the smaller
ones as they may be considered noises by the model. This
concern is verified by our experiment results in Sec. V-A.
However, such configuration is actually in favor of our goal
since the large stress points are the ones that may lead to
reliability issues and require higher accuracy, while the smaller
ones are less important and can be ignored. This is further
justified as hydrostatic stress typically will exceed the critical
stress before void is nucleated [39].

B. Graph convolution network
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Fig. 2. (a) One node and four neighborhood nodes. Both nodes and edges are
embedded with features. Each edge has the direction. (b) One hidden layer
node-edge embedding update of EMGraph. The convolution operation is to
aggregate the information of its neighborhood nodes and connected edges into
one node. In the meantime, a convolution also aggregates the information of
two end nodes into one edge.

We propose an EMGraph architecture based on the Graph-
SAGE network [26] since the GraphSAGE only works for
the node classification task. The input layer of EMGraph is
represented by

h
0
v = xv and h

0
v,u = xv,u (2)

where h
0
v and h

0
v,u are node and edge hidden embedding

features of the 0th layer, respectively. The lth hidden layer
of EMGraph is given by

h
l+1
v = ReLU(bl

1 +W
l
1(h

l
v||

∑

u∈N(v)

av,u(h
l
u||h

l
v,u))) (3)



h
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v,u = ReLU(bl
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where ReLU(·) is an activation function, av,u is a known
parameter representing the direction of edge, N(v) is the set
of neighborhood nodes of the node v, || denotes concatenation,
h
l
v and h

l
v,u are node and edge hidden embedding features of

the lth layer, W
l and b

l are learnable weights and biases,
respectively. Fig. 2 gives an example of one hidden layer
node-edge embedding update for EMGraph. The edge features
can impact the node features. In turn, the node features can
also influence the edge features. The convolution of EMGraph
consists of two parts: one is to aggregate the information of its
neighborhood nodes and connected edges into one node and
another is to aggregate the information of two end nodes into
one edge. Concatenation is similar to the “skip connections”
in different layers and is also employed to consider both node
and edge features. Therefore, EMGraph can do the node-edge
regression task. To represent directed edge, we introduce a
parameter av,u, which is 1 for the inward direction and −1
for the outward direction at the node, as shown in Fig. 2. The
output layer of EMGraph is expressed as

zv = b
L
1 +W

L
1 (h

L
v ||

∑

u∈N(v)
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L
u ||h

L
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C. Node and edge decoder
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Fig. 3. Framework of EMGraph with Multilayer perceptron network.

To improve the modeling capacity of the EMGraph, we
feed node and edge features of the output in Section IV-B
to node and edge decoders which are two separate multilayer
perceptron (MLP) networks, as shown in Fig. 3. The GCN
model, which is the first part of EMGraph, is only responsible
for graph embedding which converts the input graph into
latent edge and node features. These features are trained to
extract and contain important neighboring information for
stress prediction which are then utilized by node and edge
decoders to infer the stress values on each branch.

We propose such architecture basing on the observation that
after certain point, increasing the number of hidden units and
hidden layers in GCN model does not help much on improving
the output stress accuracy. Due to the small size of GCN,
modeling capacity needs to be increased to further improve
the accuracy. Therefore, we employ another way to increase
number of learnable parameters by combining GCN and MLP
network. MLP network can further process the information as
it learns node and edge features separately.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the accuracy and speed of
EMGraph models on our randomly generated dataset consist-
ing of 2500 circuit designs. The dataset is randomly split into
training set with 2125 samples and test set with 375 samples.

The EMGraph model is implemented in Deep Graph Library
(DGL) [40], which is developed for deep learning on graph
and built on PyTorch. For the GCN part, we employed 5
layers with number of hidden features set to 8, 16, 32, 64 and
128 respectively. For the node and edge decoders, the fully
connected layers are set to [128, 256, 1024, 256, 64, 1] and
[128, 256, 1024, 256, 64, 5] separately. The model is trained
and tested on a Linux server with 2 Xeon E5-2699v4 2.2 GHz
processors and Nvidia Titan RTX GPU. The training batch size
is set to 32 and the learning rate of the Adam optimizer is set
to 10−4. The cross validation technique is employed and the
model was trained for 80 epochs in 2 hours.

A. Accuracy of EM Stress Prediction

Fig. 4(a) and Fig. 4(b) shows the predicted stresses vs
ground truth of all 223380 nodes and 1114350 edges in the test
set. The results are obtained using trained EMGraph to predict
EM-induced stresses on all 375 test cases which were never
seen by the model during the training process. For each case,
10 predictions for the 1st to 10th aging year are conducted.
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Fig. 4. EMGraph prediction vs ground truth on all testing cases for (a) nodes
and (b) edges.

As is shown in Fig. 4, the stress values vary in a large
numerical range from −2×109 to 2×109 Pa. For both nodes
and edges, there are more outliers in the range around zero
while the results tend to be more accurate at both ends of
the full range. This is acceptable and indeed what we desired
since the large stresses are the ones that may lead to reliability
issues and require higher accuracy.

For better illustration and comparison, we convert all pre-
diction results into stress maps in which stress values are
filled into the interconnects topology and shown in colors. The
root-mean-square error (RMSE) between the predicted stress
map and its ground truth is employed to evaluate the result
accuracy.

EMGraph yields RMSE from 1.6× 107 to 1.8× 108 Pa on
the test set and achieves an averaged RMSE of 6 × 107 Pa
which translates to 1.5% error rate considering the full stress
value range of 4× 109 Pa.

Fig. 5 shows the stress maps of both the best and the worst
cases (in terms of averaged RMSE) predicted by EMGraph.
The results of EM-GAN [32] and ground truth obtained from
COMSOL are also shown in parallel for comparison. As the
EM-induced stress is a time varying process, for each case,
we show the results at the 1st, 5th and the 10th aging year for
a better illustration of the stress evolution.

As shown in Fig. 5, EMGraph yields much better accuracy
in both cases (7× better in the best case and 2.5× better in
the worst case). Although the RMSE of the worst case is 11×
larger than that of the best case, the predicted stress map for
the worst case is still quite accurate and closer to the ground
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Fig. 5. Comparison of the predicted stress maps obtained by EMGraph and
EM-GAN on (a) best case and (b) worst case.

truth than the result of EM-GAN. Compared with EM-GAN,
EMGraph yields much better accuracy in both cases (7× better
in the best case and 2.5× better in the worst case). More
statistics on the comparison between EM-GAN and EMGraph
are listed in Table II.

B. Speed of Inference

The training process of the EMGraph costs 2 hours and
the trained model consists of a 441KB GNN, a 2252KB edge
decoder and a 2251KB node decoder. The lightweight model
together with the highly parallelizable nature of the graph
input makes EMGraph have the potential to yield fast inference
speed. In what follows, we compare the speed performance of
EMGraph, EM-GAN and also the state-of-the-art work [17],
which is a separation-of-variables based analytical method.

As is shown in Table II, the average inference speed of
EMGraph for each case is only 0.27ms which is 14× and
265× faster than the 3.8ms and 71.7ms inference speeds
yielded by EM-GAN and work [17]. These statistics are
obtained by running three methods on all test cases and
taking the average of the time cost for each case. Although
work [17] yields higher accuracy, EMGraph achieves 2 orders
of magnitude speedup while still rendering comparable results
accuracy. Moreover, as EMGraph is treating each graph input

TABLE II
ACCURACY AND SPEED COMPARISON

Metrics EMGraph EM-GAN State-of-the-art

Max RMSE 1.8× 10
8 Pa 5.2× 10

8 Pa

Close to
ground truth

Min RMSE 1.6× 10
7 Pa 1.2× 10

8 Pa

Mean RMSE 6× 10
7 Pa 2.6× 10

8 Pa
Mean

Error Rate 1.5% 6.6%

Inference
Speed 0.27ms 3.8ms 71.7ms

as individual nodes and edges which can be processed in
parallel, it has the potential to achieve even more significant
speedups on large designs.

C. Scalability on large unseen designs

In this section we further test the scalability of the trained
EMGraph model on 13 large designs which are randomly gen-
erated without any limitations on their dimensions. Although
we trained EMGraph on the dataset with fixed size of 256×256
µm2, we note that EMGraph is not limited to a certain size,
contrasting with EM-GAN which is only applicable to the
size it was trained on. We fix the size of the dataset in this
work just to make a fair apple-to-apple comparison between
two models. The scalability of EM-GAN is limited due to
its image processing-based nature and the cost of its forward
propagation becomes exponentially large as the input size
increases, which is not the case for EMGraph. The inference
cost of EMGraph is linearly dependent on the number of
branches in its input graph and such calculations are highly
suitable for parallelization which further boosts its scalability
to large designs.

Fig. 6 shows the stress map predicted by EMGraph for
the largest design with 401 branches at the 10th aging year.
EMGraph maintains its high accuracy on the large designs
and achieves an averaged RMSE of 1.1 × 108 Pa across all
13 large designs with a 8 × 107 Pa minimum and 1.6 × 108

Pa maximum. The number of branches in these large designs
ranges from 113 to 401 which are much larger than the cases
in previous test set. We only compare the results with ground
truth here as EM-GAN is not applicable to such large designs.
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Fig. 6. EMGraph prediction vs ground truth on large design with 401
branches.

Although the accuracy on large cases slightly degenerates
compared to the previous test set, considering these are much
more complicated designs and were never seen by the model
before, such accuracy is still acceptable. We also recorded the
time cost of EMGraph and the average inference speed for



each case is only 0.32ms which is still at the same level as it
yields on the smaller cases thanks to the parallel nature of the
nodes and edges in the input graph.

VI. CONCLUSION

In this paper, we propose a new graph neural network
model, which is called EMGraph, fast prediction of the
transient EM stress of the general multisegment interconnect
in VLSI systems. EMGraph performs the node-edge regression
task to predict the stress at the wire segment (edge). Compared
with GAN based image method, the proposed EMGraph
model can learn more transferable knowledge to predict stress
distributions on new graphs without retraining via inductive
learning. Experimental results show the model has smaller
size, better accuracy and faster speed over the recently pro-
posed learning-based method, EM-GAN method, on several
interconnect trees benchmarks. Therefore, EMGraph is very
powerful and suitable for the transient EM stress assessment.

REFERENCES

[1] “International technology roadmap for semiconductors (ITRS),” 2015,
http://www.itrs2.net/itrs-reports.html.

[2] J. R. Black, “Electromigration-A Brief Survey and Some Recent Re-
sults,” IEEE Trans. on Electron Devices, vol. 16, no. 4, pp. 338–347,
Apr. 1969.

[3] I. A. Blech, “Electromigration in thin aluminum films on titanium
nitride,” Journal of Applied Physics, vol. 47, no. 4, pp. 1203–1208,
1976.

[4] M. Hauschildt, C. Hennesthal, G. Talut, O. Aubel, M. Gall, K. B. Yeap,
and E. Zschech, “Electromigration Early Failure Void Nucleation and
Growth Phenomena in Cu And Cu(Mn) Interconnects,” in IEEE Int.
Reliability Physics Symposium (IRPS), 2013, pp. 2C.1.1–2C.1.6.

[5] V. Sukharev, “Beyond Black’s Equation: Full-Chip EM/SM Assessment
in 3D IC Stack,” Microelectronic Engineering, vol. 120, pp. 99–105,
2014.

[6] R. De Orio, H. Ceric, and S. Selberherr, “Physically based models
of electromigration: From black’s equation to modern tcad models,”
Microelectronics Reliability, vol. 50, no. 6, pp. 775–789, 2010.

[7] X. Huang, A. Kteyan, S. X.-D. Tan, and V. Sukharev, “Physics-
Based Electromigration Models and Full-Chip Assessment for Power
Grid Networks,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 11, pp. 1848–1861, Nov. 2016.

[8] V. Sukharev, A. Kteyan, and X. Huang, “Postvoiding stress evolution
in confined metal lines,” IEEE Transactions on Device and Materials
Reliability, vol. 16, no. 1, pp. 50–60, 2016.

[9] H. Chen, S. X.-D. Tan, X. Huang, T. Kim, and V. Sukharev, “An-
alytical modeling and characterization of electromigration effects for
multibranch interconnect trees,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 11, pp. 1811–1824, 2016.

[10] V. Mishra and S. S. Sapatnekar, “Predicting Electromigration Mortal-
ity Under Temperature and Product Lifetime Specifications,” in Proc.
Design Automation Conf. (DAC), Jun. 2016, pp. 1–6.

[11] H.-B. Chen, S. X.-D. Tan, J. Peng, T. Kim, and J. Chen, “Analytical
modeling of electromigration failure for vlsi interconnect tree consid-
ering temperature and segment length effects,” IEEE Transaction on
Device and Materials Reliability (T-DMR), vol. 17, no. 4, pp. 653–666,
2017.

[12] S. Chatterjee, V. Sukharev, and F. N. Najm, “Power Grid Electromi-
gration Checking Using Physics-Based Models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1317–1330, Jul. 2018.

[13] C. Cook, Z. Sun, E. Demircan, M. D. Shroff, and S. X.-D. Tan, “Fast
electromigration stress evolution analysis for interconnect trees using
krylov subspace method,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 5, pp. 969–980, May 2018.

[14] S. Wang, Z. Sun, Y. Cheng, S. X.-D. Tan, and M. Tahoori, “Leveraging
recovery effect to reduce electromigration degradation in power/ground
TSV,” in Proc. Int. Conf. on Computer Aided Design (ICCAD). IEEE,
Nov. 2017, pp. 811–818.

[15] H. Zhao and S. X.-D. Tan, “Postvoiding fem analysis for electro-
migration failure characterization,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 11, pp. 2483–2493, Nov. 2018.

[16] A. Abbasinasab and M. Marek-Sadowska, “RAIN: A tool for reliability
assessment of interconnect networks—physics to software,” in Proc.
Design Automation Conf. (DAC). New York, NY, USA: ACM, 2018,
pp. 133:1–133:6.

[17] L. Chen, S. X.-D. Tan, Z. Sun, S. Peng, M. Tang, and J. Mao, “Fast
analytic electromigration analysis for general multisegment interconnect
wires,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 1–12, 2019.

[18] S. X.-D. Tan, M. Tahoori, T. Kim, S. Wang, Z. Sun, and S. Kiamehr,
VLSI Systems Long-Term Reliability – Modeling, Simulation and Opti-
mization. Springer Publishing, 2019.

[19] M. A. Korhonen, P. Bo/rgesen, K. N. Tu, and C.-Y. Li, “Stress evolution
due to electromigration in confined metal lines,” Journal of Applied
Physics, vol. 73, no. 8, pp. 3790–3799, 1993.

[20] C. Cook, Z. Sun, E. Demircan, M. D. Shroff, and S. X.-D. Tan, “Fast
Electromigration Stress Evolution Analysis for Interconnect Trees Using
Krylov Subspace Method,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 5, pp. 969–980, May 2018.

[21] V. Sukharev and F. N. Najm, “Electromigration Check: Where the
Design and Reliability Methodologies Meet,” IEEE Transactions on
Device and Materials Reliability, vol. 18, no. 4, pp. 498–507, Dec. 2018.

[22] X. Wang, Y. Yan, J. He, S. X.-D. Tan, C. Cook, and S. Yang, “Fast
physics-based electromigration analysis for multi-branch interconnect
trees,” in Proc. Int. Conf. on Computer Aided Design (ICCAD). IEEE,
Nov. 2017, pp. 169–176.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[24] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–21, 2020.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentation, 2017.

[26] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017, pp. 1024–1034.

[27] K. Settaluri and E. Fallon, “Fully automated analog sub-circuit clustering
with graph convolutional neural networks,” in 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), 2020, pp. 1714–1715.

[28] H. Ren, G. F. Kokai, W. J. Turner, and T. S. Ku, “Paragraph: Layout
parasitics and device parameter prediction using graph neural networks,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020,
pp. 1–6.

[29] Y. C. Lu, S. S. Kiran Pentapati, L. Zhu, K. Samadi, and S. K.
Lim, “Tp-gnn: A graph neural network framework for tier partitioning
in monolithic 3d ics,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[30] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H. S. Lee, and S. Han,
“Gcn-rl circuit designer: Transferable transistor sizing with graph neural
networks and reinforcement learning,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[31] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, and W. Xu, “A customized
graph neural network model for guiding analog ic placement,” in
2020 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2020, pp. 1–9.

[32] W. Jin, S. Sadiqbatcha, Z. Sun, H. Zhou, and S. X.-D. Tan, “Em-
gan: Data-driven fast stress analysis for multi-segment interconnects,”
in Proc. IEEE Int. Conf. on Computer Design (ICCD), Oct. 2020, pp.
296–303.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016, http://www.deeplearningbook.org.

[34] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential
Equations,” arXiv e-prints, p. arXiv:1711.10561, Nov. 2017.

[35] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[36] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for
solving partial differential equations,” Journal of Computational Physics,
vol. 375, pp. 1339 – 1364, 2018.

[37] X. Meng and G. E. Karniadakis, “A composite neural network that
learns from multi-fidelity data: Application to function approximation
and inverse pde problems,” Journal of Computational Physics, vol. 401,
p. 109020, 2020.

[38] Y. Zhang, H. Ren, and B. Khailany, “Grannite: Graph neural network
inference for transferable power estimation,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[39] C. M. Tan, Electomigration in ULSI Interconnects, ser. International
Series on Advances in Solid State Electronics and Technology. Word
Scientific, 2010.

[40] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.


