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Abstract: Utilizing electro-optic modulation and pulse shaping for random measure-
ments, we reconstruct the full density matrix of biphoton frequency combs for entangled 
qudits up to d = 5. Our method relies on simple experimental settings and can be applied 
to any frequency-bin quantum system. 

Encoding quantum information in equispaced frequency bins has emerged as a novel scheme for photonic quan-
tum information processing [1]. Generation of high-dimensional frequency-entangled states, usually in the form
of biphoton frequency combs (BFCs), can be as simple as pumping a nonlinear, resonant structure. A conven-
tional joint spectral intensity (JSI) measurement can easily reveal tens of correlated frequency modes, but such a
measurement cannot provide information regarding the phase coherence across frequency-bin pairs. To reconstruct
the density matrix of the BFC state requires active mixing of frequency bins [2–4] or ultrahigh temporal resolution
[5] such that projective measurements other than the computational basis can be realized. One method coherently
mixes different frequency components of the BFC via a Fourier-transform pulse shaper and electro-optic phase
modulator (EOM) [2,3]. By properly setting the amplitude and phase mask on the shaper and the modulation volt-
age on the EOM, one can filter out sidebands populated by equal contributions from all input frequency modes.
An alternative solution exploits the functionality of a quantum frequency processor [1], which consists of a con-
catenation of multiple EOMs and pulse shapers, to realize near-deterministic quantum gates for tomography based
on multi-outcome measurements. Nevertheless, both methods face roadblocks en route to higher dimensions, as
mixing multiple frequency bins equally is never a trivial task: aggressive amplitude filtering of the input state is
inevitable in the first approach (to balance mixing weights), while the number of elements required for arbitrary
QFP operations (scaling linearly with dimensionality d) limits the maximum dimensionality possible with current
setups. Indeed, the highest dimension of a fully characterized BFC hitherto is a two-quqart state (d = 4) [2, 5].

Here we propose an alternative solution to this problem. Instead of attempting to mix all frequency bins ac-
cording to a prescribed pattern, we apply a series of random operations to the input biphotons and follow with JSI
measurements. At each measurement setting, the frequency-resolved outputs consist of different superpositions
of the input bins, with the weightings determined by the EO modulation depth. Though these measurements are
not mutually unbiased, they are sufficiently random to probe all elements of the density matrix, and we can utilize
state-of-the-art Bayesian statistical methods [7] to obtain a realistic estimate of the density matrix. Figure 1(a)
illustrates our proposed method. In this work, we utilize an etalon and pulse shaper to carve a broadband down-
conversion spectrum into a 40 GHz-spaced BFC, with a total of d frequency bin pairs. We then impose a set of
random spectral phases onto the signal and idler bins (a total of 2d phases) and drive the EOM with a 40 GHz
sinusoidal voltage, resulting in a temporal phase modulation eiδ sin∆ωt . The strength of the modulating RF field
δ is chosen in a random order from 20 values preselected uniformly at random from δ ∈ [0,2.5] rad, with the
maximum set by the amount of RF power we can generate at this frequency. Figure 1(b) provides examples of
JSI measurement results for d = 4. In the absence of EO modulation (δ = 0), the signal-idler photon pairs are
completely anticorrelated due to energy conservation. When the EOM is turned on, the frequency correlations be-

Fig. 1. (a) Experimental setup. (b) Examples of JSI measurements in the presence of random modu-
lation (left to right): δ = 0, 0.7, and 2.3 rad. (c) Convergence plots for experimental data sets.
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Fig. 2. Density matrix plots of the ideal and retrieved for (a) d = 3, (b) d = 4, and (c) d = 5 BFC
state. The bar heights represent the absolute values of ρ , and colors represent the phases.

come more complex as photons are scattered into many frequency modes, and the JSIs are no longer diagonal [6].
We intentionally leave a ∼300 GHz gap between the signal and idler photons, such that we can apply strong EO
modulation without fear of the signal photon jumping over into the idler’s modes, and vice versa.

We consider a total of R measurement settings (R = 1,2, ...,21), the first of which is the traditional JSI measure-
ment (i.e., EOM off), and the rest of which correspond to random spectral and temporal phase modulation applied
by the shaper and the EOM. For each measurement setting, we collect coincidences for d2 combinations and
disregard any events outside of the original subspace. We then employ Bayesian analysis to find the possible
input states giving rise to the measurement results. Specifically, we construct a Poissonian likelihood function
LD(c,x) = ∏

Rd2

s=1 e−cps(x) [cps(x)]Ns , where c denotes the mean biphoton counts over all possible outcomes (in-
cluding those unobserved), s specifies a particular combination of measurement setting and frequency bins—an
ordered triple (r(s),m(s),n(s))—Ns is the measured number of coincidences between frequency mode ω−m (idler
photon) and mode ωn (signal photon) at the r-th measurement setting, and ps(x) = 〈ω−m,ωn|Urρ(x)U†

r |ω−m,ωn〉
is the corresponding outcome probability.

The effect of the pulse shaper and EOM on the two-photon state is given by Ur =U (I)
r ⊗U (S)

r , where U (I)
r and

U (S)
r describe the operations applied to idler and signal photons, respectively. We follow the procedures in Ref. [7]

to parameterize the density matrix ρ(x) to assure physicality, and assume a uniform prior on x; for the biphoton
flux c, we take the prior as a normal distribution of mean C0 and standard deviation 0.1C0, setting C0 as the sum
of all counts in the first JSI measurement. Numerically sampling the posterior formed by the product of likelihood
and prior, we can then estimate the mean and standard deviation of any function of interest, such as state fidelity
and logarithmic negativity EN , an upper bound on distillable entanglement [8].

Figure 1(c) plots the evolution of state fidelity for the estimated BFC state as the number of measurements
increases. We compute the fidelity with respect to the d−dimensional Bell state with additional spectral phase
accumulated after the equivalent of 20 m single-mode fiber. In all cases, the fidelity converges within R ∼ 10
measurements. For d = 5, we report a fidelity F = (94.2± 0.2)% and EN = 2.237± 0.002 ebits (theoretical
maximum is 2.32 for d = 5), with the retrieved Bayesian mean density matrix plotted in Fig. 2(c). We notice
that both the absolute value and the phase of the density matrix elements align well with the theory—the only
discrepancy being the inconsequential phase values of the near-zero off-diagonal elements. These results showcase
the highest dimension of a fully reconstructed density matrix in experimental frequency-bin encoding.
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