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Scaling the discrete Fourier transform gate
in the quantum frequency processor
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Abstract:  We show that the d-dimensional discrete Fourier transform can be imple-
mented by adding RF harmonics to the applied modulation in a quantum frequency proces-
sor. Implementing the d = 3 case experimentally, we quantify entanglement and perform
full quantum state tomography. © 2021 The Author(s)

Mutually unbiased bases (MUBs) enable important applications in quantum information processing, includ-
ing efficient quantum tomography [1], quantum key distribution [2], and entanglement quantification [3, 4].
Two representative MUBs are the computational and Fourier bases, defined for m € {0,...,d — 1} as |m) and
|fm) = ﬁ fo;(l) e~2mimn/d |n) respectively. The Fourier basis is so-named because it can be measured by applying

the discrete Fourier transform (DFT) matrix with elements (Fy), = ﬁezmm’l/ 4 followed by computational-basis

detection. In the context of frequency-bin qudits, the DFT has been synthesized up to d = 3 on a quantum fre-
quency processor (QFP) [5]. In this work, we simulate designs for higher-dimensional DFTs, finding a remarkable
scaling rule, valid at least up to the maximum of d = 10 considered: a fixed three-element QFP can realize the
d-dimensional DFT by driving each electro-optic modulator with d — 1 RF tones. As an example application, we
experimentally implement parallel d = 3 DFT gates on frequency-bin—entangled photons, using the measurements
to estimate the complete density matrix. Overall, our results offer a clear path forward for DFT gate synthesis in
frequency-bin quantum information, valuable for quantifying and leveraging entanglement.

In order to interfere discrete frequency bins spaced at Aw, we start with electro-optic phase modulators (EOMs)
driven by waveforms periodic at A@w. As observed in Ref. [5], a lone single-pass EOM cannot mix d frequency
bins equally without at least % of the input energy scattering into modes outside of the d-dimensional subspace.
However, by cascading multiple EOMs separated by pulse shapers—the QFP—this scattering can be compensated
and high-probability, high-fidelity mixing is possible. In the first demonstration of the d =2 and d = 3 DFTs on
an EOM/pulse-shaper/EOM QFP, the d = 2 case utilized single-frequency sinewave modulation, while the d = 3
solution required modulation containing both the first and second harmonic. To see if this “add-RF-harmonic” rule
represents a trend for DFT gates, we perform additional design simulations for a three-element QFP. The matrix
fidelity .#w and success probability &y [6] results for d-dimensional DFT gates follow in Fig. 1(a), where in
each case we consider d — 1 tones in the optimization procedure. For all dimensions, solutions with %y > 0.9997
and Py > 0.965 are possible with these resources. Significantly, the number of elements required is constant in
d, rather than linear in d as expected for either arbitrary gates [6] or the DFT when only single-tone modulation
is considered [7]. Nevertheless, the effective number of modes utilized does increase with d, as expressed by
the vertical lines in Fig. 1(a), which mark where the third significant digit of the cost Pwlog,y(1 — Fw) has
converged to its limiting value, suggesting a tradeoff between circuit depth and optical bandwidth. From a practical
side, accessing additional bandwidth is frequently preferred to adding components—both in terms of cost and
loss budget—so that this fixed-depth DFT design procedure appears quite useful, particularly toward on chip
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Fig. 1. (a) DFT solutions. (b) Parallel DFT experiment. (c) Modes defined for d = 3 implementation.
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Fig. 2. Coincidences for (a) 1D @1 and (b) F3(1) ®F3(S) operations. (c¢) Characterization results.

integration where tighter mode spacings could make high-order RF harmonics much more readily attainable.

As an application of the DFT for state characterization, we experimentally implement the d = 3 solution and
apply it to a biphoton frequency comb, prepared by spontaneous parametric downconversion followed by a pulse
shaper to carve 20 GHz-spaced, ~10 GHz-wide bins. Figure 1(b) provides a conceptual illustration of our exper-
imental design for d = 3. While previously demonstrated on single-photon states [5], this is the first example of
parallel implementation on an entangled qutrit pair. The bin spacing A® /27 = 20 GHz is chosen for line-by-line
shaping with our QFP pulse shaper, so that RF tones at 20 and 40 GHz are required at each of the QFP’s two
EOMs. Figure 1(c) shows an example mode transformation spectrum for the parallel DFT operation.

A logical basis measurement of our 3 x 3 biphoton frequency comb (EOMs off) appears in Fig. 2(a). Using the
front-end pulse shaper to produce biphoton states ideally of the form |@) o< [02) ¢ + €™ |11);5 + €% |20),s, the
measured output coincidences for ¢ € {0,27/3,47/3} after parallel DFTs follow in Fig. 2(b): as expected, the re-
sults are strongly correlated, with each setting of ¢ determining which three pairs of frequency bins are populated.
Despite the small number of measurements considered, the observed correlations are sufficient to make meaning-
ful inferences of the underlying states. Since the prepared states differ only in phase, we can take the logical basis
results as applying to any of the three ¢ cases, giving us two sets of nine-outcome measurements for each ¢ value,

1D ®1®) and F3(1) ® F3(S). One useful metric for a bipartite state is the distillable entanglement Ep: the optimal
rate of Bell pair production given many state copies, allowing for local operations and classical communication.
While extremely difficult to determine directly, bounds can be obtained from computable quantities. For example,
a lower bound can be set from conditional entropies [3], namely: Ep > log, 3 — 22(1(1) | 1(5)) — %(F;I) |F3<S)).
With classical Bayesian inference (no quantum mechanical constraints), we find the min Ep values in Fig. 2(c).

In addition, Ep can be upper bounded by the log-negativity E 4 [8]; however, a full density matrix is required
for such a computation. Utilizing Bayesian tomographic methods [9], which return uncertainties commensurate
with the data gathered, we can indeed estimate the full quantum state with these results. The Bayesian fidelities for
each state (%, = (¢|p|¢)) are shown in Fig. 2(c). Since the outcomes are so strongly correlated, the inferred states
have small uncertainty, even with just two measurements. Computing the log-negativity E 4 (the upper bound of
Ep [8]), we obtain a complete interval for Ep of approximately Ep € [0.4, 1.4] ebits for the states considered. This
range is quite wide, and we suspect that the much higher values for E 4 result from its application of quantum
state constraints, in contrast to the entropic approach which treats the measurement results as raw probabilities.
It would be interesting to explore how this range may narrow with higher-fidelity results, which are limited here
primarily by the resolution of the state preparation and measurement pulse shapers.
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