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A B S T R A C T   

This paper develops a unifying framework to unveil the physical car-following (CF) behaviors of 
automated vehicles (AVs) under different control paradigms and parameter settings. The pro
posed framework adopts the flexible asymmetric behavior (AB) model to reveal the control 
mechanisms and their manifestation in the physical CF behavior, particularly their response to 
traffic disturbances. A mapping relationship between the AB model parameters and control pa
rameters is then obtained to understand the range of CF behavior possible. Finally, a predictive 
modeling approach based on a logistic classifier coupled with a convoluted Multivariate Gaussian 
Process (MGP ) is designed to predict the CF behavior of an AV. Analysis of two well-known 
controllers, linear state-feedback and Model Predictive Control (MPC), show how the proposed 
framework can uncover the CF mechanisms and provide insights into traffic-level disturbance 
evolution. The proposed analysis framework remains scalable and can be applied to a variety of 
controllers. Ultimately, it can guide AV control design that is not myopic, but considers traffic- 
level performance.   

1. Introduction 

Advancements in Automated vehicle (AV) technologies have given rise to various vehicle control paradigms. These advancements 
set the stage for a new era of traffic flow system, which will be characterized by heterogeneity and complex dynamics. The current 
literature on traffic heterogeneity is dedicated to differences in vehicle types, preference and behavior of human drivers, and more 
recently, mixed traffic (consisting of human driven vehicles (HDVs) and AVs). However, the introduction of different control para
digms and different parameter settings within each, will add a new dimension of heterogeneity; one that comes from AVs themselves. 
We conjecture that different AV controllers will respond differently to car-following (CF) disturbances (e.g., deceleration followed by 
acceleration), and that can translate into a major impact on traffic dynamics. Thus, exploring a range of CF behavior of multi-class AVs 
(due to different control paradigms and settings) will pave the way towards understanding their traffic impacts and developing control 
strategies to realize desired traffic performance. 

In general, existing control algorithms can be categorized into three main paradigms; (i) linear state-feedback control (Morbidi 
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et al., 2013; Naus et al., 2010; Peppard, 1974; Swaroop et al., 1994; Swaroop and Hedrick, 1996; Talebpour and Mahmassani, 2016), 
(ii) optimization-based control (Gong et al., 2016; Ma et al., 2017; Zhou et al., 2019; Hoogendoorn et al., 2012; Wang et al., 2014; Chen 
et al., 2018), and (iii) data driven or artificial intelligence (AI)-based control (Gao and Jiang, 2017; Gao et al., 2016; Hou and Wang, 
2013; Hou et al., 2007). Each control paradigm brings unique advantages and challenges in terms of performance, guarantee of 
stability, and constraint handling. Notably, the linear state-feedback control algorithm has been widely adopted in the literature and 
field-tested due to its desirable analytical and performance features (Milanés et al., 2013; Shladover et al., 2012; Liu et al., 2018; Van 
Arem et al., 2006; Zhou et al., 2020; Morbidi and Mariottini, 2012; Öncü et al., 2014). Particularly, it provides a closed formulation for 
the acceleration of an AV to regulate the deviations of vehicle state from a predefined equilibrium state. The algorithm requires low 
computational needs and can guarantee both local stability (disturbance dissipation over time) and string stability (disturbance 
attenuation through a vehicular string) through proper tuning of control parameters. Thus, this method is particularly popular for 
Adaptive Cruise Control (ACC) and its various forms (Öncü et al., 2014; Petrillo et al., 2018; Qin and Orosz, 2017; Shladover et al., 
2015; Marsden et al., 2001; Darbha and Rajagopal, 1999; VanderWerf et al., 2001). However, it lacks a convenient platform to 
explicitly set constraints or control objectives. 

On the contrary, MPC-based vehicle control, a popular method in the optimization-based control paradigm, provides an explicit 
framework to formulate an objective function and constraints to enable an optimal strategy with prediction capabilities (Zhou et al., 
2019; Wang et al., 2014; Zhou et al., 2017b). Specifically, the vehicle’s acceleration can be controlled through an optimization function 
that considers multiple criteria (e.g., control performance, driving comfort, fuel efficiency), while incorporating physical constraints 
(e.g., upper/lower acceleration bounds, collision-free driving). Notably, MPC adopts a rolling horizon framework, where the optimal 
acceleration is determined by optimizing the performance predicted over a future time horizon based on the current system mea
surements and dynamics. Yet, an important limitation of MPC-based vehicle control is the lack of stability guarantees. Some recent 
work tried to alleviate this limitation (Gong et al., 2016; Gong and Du, 2018; Dunbar and Caveney, 2011; Zhou et al., 2019). 

Limited research exists on AI-based, data-driven vehicle control although some studies suggest that AI-based controllers can be 
more adept at capturing complex vehicular dynamics and tackling complicated driving task compared to the traditional model-based 
approaches (Lefèvre et al., 2016; Kuderer et al., 2015). Wu et al. (2017) is a notable study that used reinforcement learning to learn 
how to control AVs in mixed traffic in different scenarios (e.g., stop-and-go traffic, lane-drop, and intersections). However, the per
formance often depends on its training data and short-term prediction capabilities (Zhou et al., 2017a). 

Multiple AV classes stemming from different control paradigms, algorithms, and parameter settings will result in heterogeneous 
traffic, adding further complexity to traffic dynamics. Note that the heterogeneity in AVs is systematically different from that in HDVs. 
Heterogeneity in HDVs largely stems from the variability in vehicle types, vehicle characteristics, and driver behavior. In addition to 
these elements, heterogeneity in AVs has a new dimension: the variability in the control logic and parameter settings. For instance, in 
linear control, different control gains settings will result in different deceleration-acceleration behavior in response to disturbances. In 
MPC-based control, multiple objectives are considered, and their weight matrix setting will lead to different driving behavior. 
Furthermore, in AVs, heterogeneity in drivers can be manifested in some parameter settings. For instance, in many commercial ACC 
systems, drivers can choose their desired headway preference (time-gap parameter). As the technology develops, it is expected that 
other parameters, such as maximum acceleration, can also be explicitly customized by users (Talebpour et al., 2011). All these will 
contribute to heterogeneity within AVs and can produce profound impacts on traffic dynamics. 

This paper is interested in how such heterogeneous AV traffic will behave when perturbed by traffic disturbances. Indeed, traffic 
disturbances are ubiquitous, attributed to instability in CF and lane-changes. Many studies have shown that in pure HDV traffic, such 
disturbances can instigate congestion and stop-and-go oscillations that grow over space, undermining traffic flow throughput and 
stability (Chen et al., 2014; Knoop et al., 2009). The disturbance growth is linked to time-varying driver response (e.g., response time) 
(Chen et al., 2014). While a wealth of studies exist on this subject for HDV traffic, literature on disturbance evolution in heterogeneous 
and mixed traffic of AVs and HDVs is sparse. As a notable exception, Chen et al. (2019) studied the evolution of traffic void caused by a 
single disturbance in a heterogeneous system involving AVs and HDVs. In that paper, heterogeneity was manifested in the preferred 
acceleration rate, desired speed, and CF behavior due to different control objectives (control efficient vehicles and smooth driving 
vehicles). It was found that such heterogeneity can diminish traffic throughout by creating extra space voids and change traffic 
properties. While analytical in its approach, the study largely examined simple hypothetical cases (e.g., binary settings of acceleration, 
desired speed, and AV CF control). Furthermore, a single controller (linear controller) was used in the study. Thus, the current 
literature lacks a systematic study of heterogeneous AV behavior and their influence on traffic dynamics. 

This study aims to better understand the CF behaviors of different classes of AVs and their impacts on traffic dynamics. For 
tractability, connectivity is not considered in this study. Specifically, the objectives are to (i) characterize the CF behavior of AVs under 
different control paradigms (i.e., linear control and MPC-based control) and control parameter settings, (ii) investigate discernible 
differences in the CF behavior among different classes of AVs, and (iii) elucidate how they impact traffic dynamics, particularly 
disturbance evolution. We seek to gain insights into the physical control mechanisms and how they govern the CF behavior and thus 
disturbance evolution. Toward this end, we adopt the principles of the physics-based asymmetric behavior (AB) CF model (Laval and 
Leclercq, 2010; Chen et al., 2012b) to capture key physical features of different control paradigms in a unifying fashion and gain direct 
insights into disturbance evolution. The use of the AB model is substantiated through an empirical analysis of real AV behavior in two 
field experiments. Then we analyze the physical control mechanisms of how linear and MPC-based controllers govern the CF behavior; 
i.e., how control parameter settings translate to the physical CF parameters of the AB model. Furthermore, we map control parameters 
into the AB model parameters to reveal systematic patterns. Building on this analysis, we formulate a data-driven prediction method 
based on a logistical classifier coupled with a convoluted Multivariate Gaussian Prediction (MGP ) model to predict the AB model 
parameters given a control parameter setting and disturbance characteristics (i.e., lead vehicle behavior). Based on these results, we 
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examine how heterogeneous parameter settings can impact disturbance evolution to elucidate traffic-level behavior via numerical 
simulations. 

Note that originated from control theory and artificial-intelligence fields, most AV control algorithms (including the ones inves
tigated here) naturally lack direct physical insights necessary to understand traffic-level behavior (disturbance amplitude and dura
tion). The microscopic nature of AV control makes it difficult to translate their control mechanisms into traffic-level dynamics. The 
present research fills this gap by developing an analysis framework to unveil the physical behavior of well-known controllers, in ways 
that are relatable to the traffic science community. This analysis framework can be applied to a wide variety of controllers, beyond the 
ones examined in this study. Ultimately, these insights can guide how AV control should be designed with traffic-level performance in 
mind. Note that some existing string stability concept does provide some useful insights for traffic-level performance. However, it is not 
enough to explain various aspects of disturbance evolution (e.g., recovery time). Furthermore, stability analysis has been possible (so 
far) only for linear/linearized controllers and has not crossed the boundaries of other control paradigms. The approach we present, 
though not capturing all the intricate details of controllers, is able to analyze controllers of different paradigms through the same lens, 
enabling a more comprehensive look at heterogeneous AV traffic. 

The rest of the paper is organized as follows: Section 2 presents an empirical analysis of real AV data from two field experiments, 
using the AB model. Sections 3 and 4 entail a detailed analysis of a linear controller and a MPC-based controller, respectively, including 
control mechanisms and their relations to CF behavior and disturbance propagation. The data-driven prediction method to predict the 
AV CF behavior is presented in Section 5. Section 6 provides insights into the traffic-level implications. Finally, discussion and 
concluding remarks are provided in Section 7. 

2. The Asymmetric Behavioral (AB) Model for AVs 

This section will introduce the AB model and substantiate its use as a flexible and unifying framework for AV CF behavior analysis. 
Through an empirical analysis of two field experimental data sets, we show that the AB model can capture different AV CF behaviors 
due to different control logic and physical mechanisms for disturbance evolution. 

2.1. The AB Model Formulation 

In this study, we adopt the physics-based AB CF model Chen et al. (2012a), an extended model of Newell’s simplified CF model 
Newell (2002), for two main reasons: (i) Due to its flexibility in capturing different CF behaviors around disturbances, it can serve as a 
unifying framework to analyze different paradigms of AV control; (ii) Its parsimonious framework can capture key physical CF 
characteristics that can be explicitly connected to traffic-level impact, particularly disturbance evolution. Below is a summary of the 
AB model, building on Newell’s simplified CF model. 

Newell’s simplified CF model (Newell, 2002) describes that a vehicle maintains a constant minimum spacing, δ, and time gap 
(driver response time), τ, with respect to its leader under congested conditions. This means that the follower behaves the same as its 
leader along constant traffic waves, w, and thus a disturbance, marked by a cycle of deceleration-acceleration, does not grow nor 
decay. The AB model extends this framework by incorporating the deviation from Newell’s model through an additional parameter, 
η(t). This parameter prescribes the vehicle’s temporal deviation in τ or δ from its equilibrium position defined by Newell’s model. The 
underlying mathematical formulation is presented in Eq. (4) 

yi(t) = yi−1(t − ηi(t)τ) − ηi(t)δ (1)  

where yi and yi−1 are the positions of vehicle i and its leader i −1, respectively. Note that the AB model describes the vehicle behavior 
only when constrained by the preceding vehicle. The evolution of η(t) reveals the driver’s CF characteristics. When a driver experiences 
a disturbance, η is found to exhibit several evolutionary shapes, named the reaction pattern, including concave and convex reaction 
patterns as illustrated in Fig. 1. A concave (convex) pattern suggests that a vehicle initially lags behind (leads ahead of) the equilibrium 

Fig. 1. Reaction pattern, η(t), under disturbance.  
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position (as defined by Newell’s model and noted as dashed lines in 1) and then gradually recovers. 
Note that while the reaction pattern does not capture all the minutiae of vehicle trajectory, it highlights the key aggregate char

acteristics and trends that influence disturbance evolution (e.g., magnitude, path and duration of different disturbance phases). 
Particularly, the reaction pattern can provide a direct insight into disturbance evolution as it describes the vehicle position over time 
relative to the ’neutral’ position (where disturbances do not grow or decay) according to Newell’s model. Furthermore, the reaction 
pattern can take any shapes, lending the model flexibility to analyze the CF behaviors under different AV controllers. Notably, a single 
pattern (e.g., either concave or convex) for each vehicle was envisioned in the original AB model framework. As we will show, 
however, composite patterns (e.g., concave followed by convex) are observed for well-known AV controllers, as well as real AVs (with 
ACC function) on the road. These patterns are physically linked to disturbance amplification or decay, and duration. 

2.2. Empirical Analysis of AV CF Behavior using the AB Model 

In this subsection, we present an empirical analysis of CF behavior of ACC vehicles to demonstrate the effectiveness of using the AB 
model framework. We use data from two field experiments involving different types of AVs, one conducted by the authors and one 
conducted by Stern et al. (2018), referred to as “Arizona Control Experiment”. 

2.2.1. MA Control Experiment 
Recently, we have conducted experiments using a commercial car model equipped with ACC in Lowell, MA. Below we provide a 

brief introduction and the details can be found in Li et al. (2021). Specifically, we have conducted two-vehicle CF experiments, in 
which the leader is a HDV and the follower is the ACC vehicle. The leader was instructed to cruise at a speed around 29 m/s, decelerate 
to a lower speed in the range of 25–27 m/s (varied by different cases), and then accelerate back to 29 m/s. The ACC was active in the 
whole process. 

While the controller is unknown due to the proprietary right, our field data suggest that it is likely a linear controller (as supported 
by our calibration outcome to be provided in Section 5.4). Particularly, the ACC behavior is evidently “reactive”. Fig. 2 shows one 
example speed profile and the corresponding η evolution of the ACC, which shows a convex-concave reaction pattern (red plot for 
actual data and black for approximation). Note that here the η is measured based on the δ ratio, assuming a constant time gap. More 
details will be provided in the following section. 

To explain this result, we use a schematic illustration in Fig. 2b. The ACC follower initially travels at the same stable speed as the 
leader. Then the leader conducts a deceleration-acceleration cycle. The ACC vehicle reacts to the leader’s deceleration with a delay 
before it decelerates. Because of the delay, η decreases from η0 and it reaches the minimum ηmin when the speed of the ACC equals to the 
leader; see the (t1, t2) period. After that, η starts to increase; see the (t2, t3) period. When the leader resumes the desired speed, the ACC 
vehicle is still accelerating to catch up with the leader. Therefore, ηmax occurs at t3 when the speed of the ACC vehicle equals to the 
leader’s. At this time, the ACC vehicle has not closed the extra gap ahead (i.e., ηmax is much larger than η0, which is often the case in our 
experiment). Thus, the ACC vehicle accelerates beyond the desired speed to close the gap and then decelerates to resume the desired 
speed; see (t3, t4). 

2.2.2. Arizona Control Experiments 
A recent study Stern et al. (2018) has conducted a set of experiments in Arizona to demonstrate that one Connected AV (CAV) can 

effectively resolve stop-and-go oscillations. The experiments used a ring road setting with 21 −22 vehicles including one CAV. There 
were three experiments (A, B, and C), but we exclude experiment B as there was only one run. Experiments A and C adopted different 

Fig. 2. η evolution, η(t), from MA experiment.  
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controllers. The controller for experiment A required the CAV to maintain the desired speed when possible or a lower speed per safety 
requirement (determined by the research team). The controller for experiment C had a similar principle, except that the speed of the 
CAV was determined based on the average speed of the vehicle in front. 

Note that the control in these experiments is different from the conventional CF controller design. It was more “proactive” (different 
from the “reactive” manner of the MA experiments) in the sense that anticipating an oscillation the CAV was controlled to drive at a 
lower speed during the acceleration phase, such that it was able to maintain that speed during a deceleration phase, thereby ending a 
stop-and-go cycle. 

The results of the η evolution show consistent patterns in the two experiments. Note that to measure the η values, we used the wave 
speeds of −9.15m/s and −9.25m/s for the two experiments, estimated from the data. Specifically, Fig. 3a shows a segment with a 
single oscillation cycle, and Fig. 3b shows the η evolution with multiple continuous oscillations. The reaction pattern in the single- 
oscillation case exhibits a concave-convex shape (red plot for actual data and black for approximation), while the evolution is more 
complex in the multi-oscillation case. 

To explain these results, we provide a schematic illustration. In Fig. 4, we illustrate the speed evolution and the resulting η profile in 
the single-oscillation case. 

Per the control principle, the speed of the CAV will be pre-set to a lower speed than the leader and then remains at that level until 
the oscillation ends, afterwards the CAV will accelerate to catch up with the leader. As a result, η first increases from the initial 
equilibrium level η0. The increase continues until the speed of the CAV equals to the leader’s; see the time period of (t1, t2). Once the 
leader’s speed dips below the CAV’s cruising speed, η starts to decrease until the leader’s speed once again exceeds the CAV’s cruising 
speed and ηmin is achieved. After that, η increases from ηmin to a new stable value, η1, when the two vehicles reach the same speed. If 
oscillations occur continuously without stable periods, the CAV will need to maintain the low speed through multiple cycles. In this 
case, the η evolution is absent of stable periods; see Fig. 4b for an illustration. This is also reflected in the empirical data in Fig. 3b, 
particularly in the period labeled. Similar patterns are observed for experiment C. Overall, it is found that the CAV behavior designed to 
“proactively” manage stop-and-go cycles can be effectively captured by the AB model. 

Fig. 4. Schematic illustration of η evolution.  

Fig. 3. η evolution, η(t), of the CAV in Arizona experiment (experiment A).  
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The empirical observations from the MA and Arizona experiments show that the reaction pattern can vary with the controller 
design. However, it can consistently and effectively capture the main characteristics of the controllers and explain the governing 
physical behavior for each controller. In the following sections, we investigate using the AB model two well-known AV controllers, 
linear and MPC-based controllers, particularly how the control parameter setting governs the reaction pattern, physical CF behavior, 
and disturbance evolution. Details follow. 

3. Analysis of Linear Controller 

This section briefly introduces a typical linear controller and analyzes its CF behavior. Specifically, we show how the control 
parameter setting translates into the η(t) profile of the AB model, including the shape (convex, concave), ηmin, and ηmax, to gain insight 
into the range of CF behavior possible and its impact on disturbance evolution. 

3.1. Controller Background 

Linear controller is a highly adopted control algorithm due to its desirable analytical properties (closed-form formulation) and 
stable performance. This control strategy has seen significant promise in real life application on ACC/CACC systems (Shladover et al., 
2015) with a rich theoretical/methodological literature as well as some field testing experiments (Milanés and Shladover, 2014; Zhou 
et al., 2020; Morbidi et al., 2013; Naus et al., 2010). While various linear controllers exist in the literature, the underlying control 
strategy is fairly consistent. In this paper, we base our analysis on the state-of-the-art linear controller designed by Zhou and Ahn 
(2019). This controller provides robust car-following control by considering uncertainties in vehicle dynamics. To keep the scope 
reasonable and tractable, we assume an ACC system without communication. 

The adopted linear controller follows a hierarchical control scheme consisting of lower-level and upper-level controllers, working 
in conjunction to regulate the vehicle’s acceleration. The upper-level controller regulates the AV’s acceleration to follow a pre-defined 
equilibrium spacing, while the lower-level controller determines the realized acceleration after accounting for vehicle dynamics. The 
upper-level controller follows the constant time-gap policy Swaroop et al. (1994) that models the equilibrium spacing as shown in Eq. 
(4) 

d*
i (t) = vi(t) × τ*

i + δ*
i (2)  

where d*
i (t) is the desired equilibrium spacing of vehicle i at any time t; vi(t) is the respective speed of vehicle i; τ*

i is the constant time 
gap (set to 1 s); and δ*

i is the standstill distance. Accordingly, the deviation from the equilibrium spacing can be written as Δdi(t) =

di(t) −d*
i (t), where di(t) represents the actual spacing between vehicle i and its leader (i −1) at time t, and the speed difference between 

vehicle i and its leader (i −1) is Δvi(t) = vi−1(t) −vi(t). 
The lower-level design uses the general longitudinal vehicle dynamics (GLVD) equation to incorporate vehicle dynamics due to 

aerodynamic drag, road gradient, vehicle condition, gear position, etc. Yi and Do Kwon (2001). In Zhou and Ahn (2019), vehicle 
dynamics is modeled with the first-order approximation as in Wang (2018), as shown below: 

ȧi(t) =
−1
Ti,L

ai(t) +
Ki,L

Ti,L
ui(t) (3)  

where ȧi(t) is the jerk; ai(t) is the realized acceleration; Ti,L is the actuation lag; Ki,L is the ratio between demanded and realized ac
celeration (typically taken as 1); and ui(t) is the final demanded acceleration from the controller. 

The state-space system is formulated according to a system state described by xi(t) = [Δdi(t), Δvi(t), ai(t)]
T and input state as ui(t). 

Accordingly, Eqs. 2, 3 are formulated as a linear time invariant system (LTI) as: 

ẋi(t) = Aixi(t) + Biui(t) + Dai−1(t) (4)  

with Ai(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 −τ*
i

0 0 −1

0 0
−1
Ti,L

⎤

⎥
⎥
⎥
⎥
⎦

, Bi(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0

0
Ki,L

Ti,L

⎤

⎥
⎥
⎥
⎥
⎦

,D =

⎡

⎣
0
1
0

⎤

⎦. 

Adopting the widely-used linear control law Stankovic et al. (2000); Van Arem et al. (2006) in a decentralized fashion, the desired 
acceleration of vehicle i at time t,ui(t), is determined in a feedback fashion by measuring xi(t) from vehicle sensors, as follows: 

ui(t) = KT
i xi(t) + Kfi ai−1(t − θ)

KT
i = [ksi, kvi, kai]

(5)  

where ksi, kvi, kai are the feedback gains for the deviation from equilibrium spacing (Δdi(t)), speed difference (Δvi(t)) and acceleration 
(ai(t)), respectively. Note that Kfi (feedforward gain) and θ (communication delay) are both set to zero for the ACC system. 

One can clearly note from Eqn. (5) the inherent relation between the feedback gains (KT
i ) and the CF behavior of the controlled 

vehicle as they are directly related to deviations from the desired state. The parameter setting of KT
i denotes the regulation magnitude 
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for each component in the system state xi(t). Thus, to study the impacts of KT
i , we perform numerical simulations to generate vehicle 

trajectories based on the above linear controller with different KT
i settings and then map KT

i gains to the shape of η(t) and the related 
parameters to give direct insights into how different control gains govern CF behavior individually and collectively. 

3.2. Numerical Simulation Setup 

Even though the linear controller adopted in this study has a closed-form expression, it is challenging to draw physical insights 
analytically due to three control gains working together dynamically. Thus, we take a numerical approach: we perform systematic 
numerical simulations to generate AV trajectories in a variety of settings and analyze the trajectories using the AB framework to derive 
physical insights. 

Our simulations are based on a set of leader trajectories, pre-designed to mimic HDV behavior during a single cycle of oscillations, 
as seen in Fig. 5. A total of 35 different leading trajectories were designed with varying deceleration (d), acceleration (a), and 
oscillation amplitude (am) values, while the initial velocity (v0) was fixed at 30m/sec. For realistic trajectories, we chose the d and a 
values within [ −6m/sec2, +6m/sec2] based on the observations in the filtered NGISM data Montanino and Punzo (2013). We adopt a 
latin hypercube sampling procedure Stein (1987) to draw different combinations of d and a. Similarly, we sampled the oscillation 
amplitude within [3m/sec, 27m/sec]. For the control gains, KT

i , we design a large space of gain values that span beyond the feasible 
regions for stability in Zhou and Ahn (2019), totalling 216, 000 (i.e., 603) different combinations. Specifically, ks (we drop the index i 
for general reference) and kv range within [0.05,3], and ka within [ −2.95,0], with a constant increment to obtain 60 samples for each. 
This setting allows us to gain insights into the range of CF behavior possible and provide a rich data set for our prediction models in 
Section 6. 

The simulated trajectories are then analyzed to compute η(t) and extract the model parameters, ηmin, ηmax. In computing η(t), in
formation/wave speed is a necessary parameter. For the linear controller, this is tricky. The linear controller, as seen earlier, has three 
state space variables: deviation from desired spacing, speed difference with leader, and acceleration of vehicle. For the latter two, 
information of any change is available to the follower in the next control time step for reaction. However, information regarding any 
change in deviation from desired spacing is effectively lagged by τ* (a follower always maintaining perfect desired spacing would result 
in a follower trajectory reflecting Newell’s model with τ* time gap, see Eqn. (2). Thus, the overall information travel time (or speed) 
depends on both the gain settings and the state space conditions, and is impossible to calculate precisely. Instead we pick the slowest of 
the three, τ*, and use a variation of Eqn. (1) with fixed time gap (i.e., ηt(t)τ = τ*) but varying spacing ηs(t)* δ* to compute η(t) ≡ ηs(t), 
as shown in Eqn. (7). Other default parameter setting for simulation is shown in Table 1. Note that for conciseness, we present analysis 
results for a single leader trajectory: d = −3m/sec2,a = 1.5m/sec2, and am = 27m/sec. The findings from all other studied trajectories 
are consistent with the discussions provided below. Note that, moving forward we will drop the subscript s and use ηs(t) as η(t). 

yi(t) = yi−1(t − ηt(t)τ) − ηs(t)δ (6)  

Fig. 5. Designed velocity profile for lead vehicle.  

Table 1 
Default parameter settings for simulation setup 
of linear controller.  

Parameter Value 

Ti,L  0.3 s 
Ki,L  1 
ts  0.01 s 

τ*  1 s 

δ*  5 m  

W. Kontar et al.                                                                                                                                                                                                        



Transportation Research Part C 128 (2021) 103166

8

ηs(t) =
yi−1(t − τ*) − yi(t)

δ* (7)  

3.3. Analysis of Control Mechanism and CF Behavior 

To analyze the impact of the controller setting on the CF behavior, we present a twofold investigation: (i) the effect of each control 
gain on CF behavior and (ii) collective effects of the three control gains. Note that (i) is critical to understanding the physical 
mechanisms of how the gains govern traffic flow dynamics, more specifically disturbance evolution. 

Fig. 6 shows the CF behavior of the linear controller for three setups, each representing a case where one of the three gains is 
dominant. Though such exaggerated settings may not be implementable in real world, they provide a means to highlight the impacts of 
each gain in isolation. In Fig. 6 the leader (blue curve) experiences a stop-and-go disturbance with the vehicle cruising at a constant 
speed of 30m/sec initially, decelerating at −3m/sec2 starting at t = 45 for 10 s, accelerating with a magnitude of 1.5m/sec2 at from t =

55 to t = 75 to regain initial speed, and cruising thereafter at constant speed. Note that the sub figures in Fig. 6 show the respective η(t)
profile for each case. The following observations are notable:  

1. ks is the gain responsible for regulating the deviation from target equilibrium spacing (d*
i (t)). It is evident from Fig. 6 that when ks is 

dominant, the CF behavior is similar to Newell’s (the follower trajectory is derived by shifting the leader trajectory laterally in time 
by τ* and vertically in space by δ*). This is somewhat expected since in Eqn. (2) the target equilibrium spacing based on the constant 
time-gap policy resembles the formulation of Newell’s model. This is consistent with the η(t) (green) that is nearly constant around 
1.  

2. kv is the gain responsible for regulating the speed difference Δvi(t) between the leader (i −1) and follower (i). When the controller is 
set to be sensitive to the speed difference (i.e., kv is high), the follower tries to constantly match the leader’s speed (follower 
trajectory is derived by shifting leader trajectory vertically in space by a constant spacing). Looking at the yellow trajectory in 
Fig. 6, we can see that the follower maintains a larger gap with its leader from early on. As the response to change in speed is 
immediate, this translates to the η growing (reducing) when the leader reduces (increases) its speed (Note that η is measured at a τ* 

time lag). This results in the follower’s η showing a concave (leader decelerating) followed by a convex (recovering, leader 
accelerating) reaction pattern, referred to as the “concave-convex” pattern hereafter.  

3. ka regulates the acceleration of the vehicle. To keep the acceleration values low for smoother driving, ka is always set as a negative 
value, with the magnitude of the gain representing the sensitivity of the controller to vehicle acceleration. Thus a high |ka| prompts 
a stronger reaction by the controller in resisting change in speed. The red trajectory in Fig. 6 illustrates how such behavior 
manifests. At the start of the oscillation, the follower resists deceleration, resulting in the red trajectory well ahead of the green 

Fig. 6. Effect of each control gain on CF behavior and η(t).  

Table 2 
Governing behavior of the control gains in linear controller.  

Ki  Coefficient Controller Command Effect of |ki|↑  

ks  Δdi(t) Maintain the target spacing Pushes towards Newell behavior (constant pattern) 
kv  Δvi(t) Match the leader’s speed Generates responsive behavior (concave-convex pattern) 
ka  ai(t) Minimize acceleration Resists acceleration change (convex-concave pattern)  
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Fig. 7. Collective effects of control gains on η(t) for concave-convex pattern; KT
i = [3, 3, −1.2].  
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(dominant ks) and yellow (dominant kv) trajectories. In fact, the follower overtakes the leader in this extreme case before the ka 
component is eventually overridden by the other components, resulting in a drastic reduction in speed to avoid collision. In the 
recovery phase, it likewise resists acceleration, resulting in the gap growing substantially before the other gains take precedence 
and initiate the acceleration phase. This behavior translates to a large convex followed by concave behavior, referred to as the 
“convex-concave” pattern hereafter. 

The effects of individual control gains are summarized in Table 2. Our analysis results suggest that a concave-convex pattern is 

Fig. 10. KT
i gains mapping.  

Fig. 8. Reaction patterns, η(t), common for linear controllers.  

Fig. 9. Mapped relationship between control gains and shape of η(t); black (instability region), green (convex-concave), red (concave-convex).  

W. Kontar et al.                                                                                                                                                                                                        



Transportation Research Part C 128 (2021) 103166

11

desirable for disturbance attenuation. As the yellow trajectory in Fig. 6 shows, a rapid response during deceleration saves the follower 
from coming to a complete stop (as the leader does), thereby dampening the disturbance to some extent. In contrast, a convex-concave 
pattern is not desirable in terms of disturbance growth and safety as the red trajectory in Fig. 6 suggests. The follower overtakes the 
leader (i.e., collision) and comes to a complete stop for a prolonged period. 

After analyzing the physical mechanisms governed by each control setting, we now investigate how these settings collectively 
interact to produce a reaction pattern and govern the CF behavior of the AV. Towards this goal, we analyze the case illustrated in Fig. 7 
in details. The figure breaks down four key elements in follower behavior: evolution of η(t) (Fig. 7a), contribution of each gain 
component (gain multiplied by corresponding system state condition (i.e., ksΔdi(t),kvΔvi(t), |ka|ai(t)) (Fig. 7b), speed difference Δvi(t)
(Fig. 7c), and the acceleration profile (Fig. 7d). 

Fig. 7 presents the temporal evolution of a concave followed by convex reaction pattern (referred to as concave-convex). At the start 
of the oscillation (t ≈ 42.5 secs) the controller perceives that ΔV is ≪ 0 and invokes a deceleration response. Due to the high kv (blue 
curve in Fig. 7b), the controller is very responsive and thus the follower decelerates promptly. This kv dominant mechanism results in a 
concave pattern evolution, as the follower’s rapid response increases the gap from its leader. This can be noted as well in the ksΔd 
(green curve in Fig. 7b) which is > 0, meaning that the actual separation between the two vehicles (di(t)) is larger than the desired 
separation (d*

i (t)). The concavity increases till a maximum value of ηmax ≈ 1.5, after which a combination of the leader’s deceleration 
starting to taper off and increasing magnitude of the ks response (since the deviation from ideal spacing is large now), starts influencing 
the controller behavior, leading to the follower closing back in towards desired spacing. Notably, during this duration (yellow shade), 
the η(t) profile decreases to approach 1 and ΔV approaches 0. At t ≈ 57 (leader accelerating) the controller perceives that ΔV > 0 and 
invokes an acceleration response once again reacting promptly due to a strong kv component. In here, the responsive acceleration 
maneuver results in convex pattern as the follower increases speed to catch us with its leader. 

Note that the detailed physical mechanisms for the convex-concave pattern can be derived using similar logic. For brevity, the 
details are omitted here. 

3.4. Mapping Control Gains to AB CF Parameters 

Here we explore the locality of each pattern (seen in Fig. 8) in the large space of control gains, as shown in Fig. 9. The figure shows 
three primary regions: (1) convex-concave (red region), (2) concave-convex (green), and (3) instability (black). (Weak concavity and 
weak convexity together represents Newell-like behavior). The black region of instability correspond to scenarios of collisions or even 
back travel. 

A principal insight from this mapped relationship is the switch between concave-convex and convex-concave patterns. It is evident 
from the figure that increasing kv (holding other gains constant, i.e., moving vertically upwards in Fig. 9) results in a shift from convex- 
concave into concave-convex patterns. This is in line with the mechanisms explained in Section 3.3, whereby higher kv leads to a rapid 
reaction to the speed change, resulting in an increased gap with its leader during deceleration. Interestingly, this shift occurs at lower 
kv with higher ks, suggesting that the desirable concave-convex pattern can be achieved jointly by higher kv and ks. Also evident is that 
increasing |ka| (i.e., moving from subplot 1 to subplot 3 while holding ks and kv constant) results in a shift from concave-convex into 
undesirable convex-concave. This, again, is a manifestation of ka resisting deceleration (acceleration) that leads to follower closing in 
on (lagging behind) the leader. As expected, high |ka| coupled with low values of ks and kv leads to a large black region. 

Next we explore the relationship between control gains setting and the extent of convexity and concavity, i.e., ηmin and ηmax. Fig. 10 
shows the relationship between ηmin, ηmax and the control gains KT

i . Note that, Figs. (10a, b) show the relationship of Kv,Ks, and ηmin 

with different Ka values (Ka = −0.8,Ka = −2.5). Similarly, Figs. (10d,e) show ηmax mappings. However, Figs. (10c,f) map the relation 
between Ka and Kv for a constant Ks value. 

As expected, we see that both ηmax and ηmin show a monotonic relationship with ks outside the instability region: an increase in ks 
pushes both values towards 1, corresponding to Newell-like behavior. On the other hand, they have non-monotonic relationships with 
kv and ka. While this seems odd at first, it is actually due to the shift in reaction pattern (refer to Fig. 9). Specifically, as kv increases, ηmin 

increases from low values to 1, and then decreases back to low values. The increase in ηmin occurs in the convex-concave region and 
marks diminishing convexity during deceleration as η(t) approaches the Newell-like behavior. As kv continues to increase, η(t)
eventually shifts to concave-convex pattern, and ηmin now decreases during convex recovery, marking stronger recovery, as the 
concave-convex pattern becomes stronger. Similar interpretations can be obtained for the ηmax and the relationships with ka. 

4. Model Predictive Control (MPC) Analysis 

In this section, we analyze the CF behavior of MPC-based vehicle control using the AB framework to derive insight into the impact 
on disturbance evolution. The MPC-based vehicle control can handle multiple objectives and physical constraints. However, the setting 
for control objectives and constraints can introduce heterogeneity in the CF behavior. Here we focus on four different settings: (i) 
unbounded acceleration and deceleration rates, (ii) bounded deceleration only, (iii) bounded acceleration only, and (iv) bounded 
deceleration and acceleration. (i) is considered to examine the basic control mechanisms, particularly in comparison to the linear 
controller. (ii) is considered since the deceleration behavior during a disturbance is likely to impact string stability. (iii) is considered 
since it will likely impact the recovery phase of disturbance. For example, Chen et al. (2019) shows that acceleration heterogeneity can 
lead to traffic void creation and disturbance propagation. (iv) is considered for the compounding effect of both bounds together. 
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4.1. Controller Background 

We base our investigation on the state-of-the-art control model designed by Zhou et al. (2019). It formulates an optimal control 
strategy that considers car-following control efficiency, and driving comfort and fuel efficiency, subject to acceleration/deceleration 
limits and maximum deviation from target spacing constraints. In short, the MPC formulation builds on the state-space system in Eqn. 
(4) to develop an optimization framework that seeks to minimize a running cost function at each time step of the prediction horizon 
given in Eqn. (8), and state constraints given in Eqn. (9). For conciseness we only show the formulations of interest in this paper, and 
readers are referred to Zhou et al. (2019) for the detailed formulation. 

∑kp

m=1
Li(xp,k

i,k+m, up,k
i,k+m−1) = (xp,k

i,k+m)
T
Qi(xp,k

i,k ) + Ri(up,k
i,k+m−1)

2
(8)  

ai,min ⩽ Hxp,k
i,k ⩽ ai,max

Δd−
i ⩽ Gxp,k

i,k ⩽ Δd+
i

(9)  

where k is the time step and kp is the prediction horizon set long enough to circumvent the myopic CF behavior Zhou et al. (2019); 
Wang et al. (2014); xi is the system state; ui is the control input; Qi and Ri are weight matrices. Note that the system state is defined with 
the same three components as the linear controller: i.e., xi(t) = [Δdi(t),Δvi(t),ai(t)], as this is a common state space used for different 

longitudinal control algorithms of AVs. Qi =

⎡

⎣
α1,i

α2,i
α3,i

⎤

⎦; and Ri is a scalar; ai,min and ai,max are the deceleration and acceleration 

constraints, respectively; H = [0, 0, 1]
T; (Δd−

i ,Δd+
i ) depict the maximum allowable deviations from target spacing; and G = [1, 0, 0]

T . 
In Eqn. (8) the first term regulates the control efficiency based on the system state, while the second term considers comfort and fuel 

consumption. In this study, we focus on the former, as it is intrinsically related to the CF behavior. Accordingly, Qi is of specific interest 
as it weighs the efficiency of the controller relative to each system state. Specifically, α1,i in Qi is the weight for deviation from target 
spacing, α2,i for speed difference, and α3,i for acceleration. To analyze the impact of Qi setting on the CF behavior, we set the constraints 
in Eqn. (9) inactive (i.e., unbounded setting) and perform numerical simulations to obtain vehicle trajectories. Then the AB reaction 
patterns are extracted and analyzed based on the trajectories in similar manners as the linear control analysis in Section 4. We further 
investigate the bounded setting by limiting the deceleration rate (ai,min) or the acceleration rate (ai,max). Since an overly-tight constraint 
on deviation from the target spacing could lead to an infeasible solution, we treat (Δd−

i , Δd+
i ) as unbounded and focus on the accel

eration and deceleration constraints. 

Fig. 12. The effects of bounded acceleration (convex-concave pattern).  

Fig. 11. The effects of bounded deceleration (convex-concave pattern).  
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4.2. Effects of Control Weight Matrices and Constraints 

With the optimization framework, it is infeasible to analyze the system behavior in a completely analytical fashion. Thus, similar to 
the approach taken for the linear control, we first perform numerical simulations to extract AV trajectories based on a pre-designed 
leader trajectory and analyze the trajectories using the AB framework to unveil physical mechanisms to the extent possible. The 
same leader trajectory as in Section 3 is adopted; d = −3m/sec2, a = 1.5m/sec2, and am ≈ 27m/sec. Note that due to high compu
tational complexity of MPC, we adopt a smaller-scale simulation than the counterpart in Section 3. The goal here is not to have a 
complete mapping of the control setting to the AB model, but to investigate the underlying physical mechanisms and gain insights into 
the differences and similarities between the two control paradigms. Also, to retain a reasonable scope, we assume a system with no 
communication similar to the setting in Section 3. 

4.2.1. Unbounded Setting 
Interestingly, the observed behavior under unbounded setting is consistent with that for the linear controller, specifically in Fig. 6 

and Table 2. This is expected since the system state x(t) is the same between MPC and linear controller, which effectively gives the state 
regulator matrices KT

i (linear controller) and Qi (MPC) a similar functionality. Thus, one can compare the effects of KT
i and Qi on the CF 

mechanisms analogously: α1 :≡ ks; α2 :≡ kv; α3 :≡ ka. Accordingly, when α1 is dominant we observe Newell-like behavior, dominant α2 
leads to concave-convex reaction pattern, and dominant α3 leads to a convex-concave reaction pattern. 

While the basic control mechanisms and the resultant η(t) appear similar between the two control types, active constraints in the 
MPC-based controller could significantly influence the CF behavior and alter η(t). This is examined next in more detail. 

4.2.2. Bounded Setting 
Here we examine the individual effects of deceleration and acceleration bounds, and their compound effects in comparison to the 

base case of unbounded setting. We present the case with a convex-concave reaction pattern, generated by setting α1 = α2 = 1 and 
α3 = 5, as an illustrative example. For bounded deceleration, we limit the maximum deceleration at −2.81 m/sec2 for the follower 
while the leader’s deceleration can reach −3 m/sec2. For bounded acceleration, we bound the maximum acceleration at 1.48 m/sec2, 
slightly below the leader’s (1.5 m/sec2). Note that we limit the rates slightly above or below to ensure that a feasible solution can be 
found. 

Figs. 11–13 show the resulting acceleration, velocity, and η(t) profiles for the bounded deceleration (Fig. 11), bounded acceleration 
(Fig. 12), and compound effects with both bounds active (Fig. 13). For the effects of bounded deceleration, at t ≈ 9 sec, the follower 
reaches the deceleration bound while the leader continues to decelerate further; see Fig. 11a. This evidently leads the gap to close 
sharply, causing a sharper decrease in η(t) compared to the base case (blue curve); see Fig. 11c. Moreover, to compensate for the 
limited deceleration, the follower stays at the bounded rate for an extended period, lasting from t ≈ 9 till t ≈ 15, which results in 
significant convexity in η(t). This causes further speed reduction (the minimum velocity of the follower (2.25 m/sec) drops below that 
of the leader (3 m/sec) and that of the base case (2.96 m/sec)), and the control becomes unstable; see the zoomed-in figure insert in 
Fig. 11b for the velocity. Interestingly, the transition from deceleration to acceleration happens faster (i.e., larger magnitude of jerk) 
than the base case, and the vehicle enters the acceleration phase slightly sooner. Both the base case and bounded deceleration case 
have an over-shoot in acceleration, more so for the bounded deceleration case. The effect of bounded deceleration lasts until t ≈ 23. 

With the bounded acceleration (Fig. 12), we see the effect in the recovery phase. With the bound, the acceleration rate does not 
exhibit overshooting but stays at the bounded rate for an extended period (from t ≈ 20 till t ≈ 37); see Fig. 12a. The lower acceleration 
evidently increases the gap with the leader, as the follower is not able to match the increase in speed of the leader. A larger gap gives 
rise to more drawn out acceleration at its maximum value and eventually to greater speed than the leader (and the base case) toward 
the end (t ≈ 37) to close the extra gap, causing an overshoot of speed and prolonged recovery; see Fig. 12b. The increasing gap, coupled 
with the prolonged recovery, induces substantial concavity in η(t) in the recovery phase, as shown in Fig. 12c. 

In the examples above, the periods of the bounded deceleration and acceleration effects slightly overlap (the former ending at t ≈

22 sec, and the latter beginning at t ≈ 20 sec). This indicates that a compound effect is possible: the bounded deceleration can affect the 
recovery phase and thus, when and how long the acceleration bound will take effect. This compound effect is evident in Fig. 13. The 

Fig. 13. The compound effects of bounded acceleration and deceleration (convex-concave pattern).  
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acceleration bound becomes active earlier and lasts longer than the bounded acceleration only case (from t ≈ 19 to t ≈ 38); see 
Fig. 13a. With the combination of lower minimum speed and bounded acceleration, the vehicle lags further behind in speed recovery, 
eventually ending up with an even greater overshoot than the previous case; see Fig. 13b. All these lead to much greater concavity and 
longer recovery, as evident in Fig. 13c. 

A similar analysis was conducted for the concave-convex pattern. The results remain consistent in the sense that bounded decel
eration induces convexity during the deceleration phase, whereas bounded acceleration induces concavity in the recovery phase. 
Interestingly, the bounded deceleration shaves off a significant portion of concavity but does not eliminate the concavity in its entirety 
in some cases. Likewise, the bounded acceleration turns a large, but not the entire, portion of convexity into concavity, leaving the 
reaction pattern more complex. Note that the extent of these effects and the compound effect depends on the bounds setting and 
disturbance characteristics. 

5. Prediction Models for Car-following Behavior 

Section 3 and Section 4 established a clear mapping between the control parameter setting and η(t). We have shown how a 
parameter setting results in a unique η(t) evolution, characterized by its shape and parameter values (ηmin,ηmax). The natural next step 
toward scaling up to the traffic-level impacts is to quantify this relationship through a prediction model. The basic idea is that given the 
control parameter setting (e.g., KT

i ,Qi) and the leader’s behavior (d,a,am), we should be able to predict the η(t) shape, as well as ηmin 

and ηmax. This is achieved through a bi-level modeling framework: (i) classification model for η(t) reaction pattern (convex-concave vs. 
concave-convex), and (ii) multivariate convoluted prediction model for ηmin and ηmax. Coupled together, we can predict the η(t) profile. 

Note that given the availability of both empirical and extensive simulation data, our presentation of the formulation and model 
validation is oriented toward the linear controller. Nonetheless, the modeling framework is general and can be applied to other 
controllers (e.g., MPC-based control) by changing the input variables and/or adjusting the construction of information sharing (i.e., 
convolution construction). 

5.1. Logistic Classifier 

The first step of the prediction is to determine the reaction pattern of η(t). From Fig. 9, we can see (i) two unique shapes in general, 
concave-convex and convex-concave, and (ii) linearly separable regions. Thus, this problem boils down to a binary classification 
problem. Accordingly, the linear separation between the shapes entails the use of a linear classifier, specifically the logistic classifier. 
For brevity, the formulation for the logistic classifier is omitted, as it is a widely known model Phillips et al. (2015); Allwein et al. 
(2000), and our approach is consistent with the basics of the model. In essence, the logistic classifier takes an input vector x = [ks, kv,

ka, d, a, am] and classifies the η(t) profile as either convex-concave or concave-convex. 

5.2. Multivariate Gaussian Process (MGP ) Formulation 

The predictive model envisioned in this study must be able to characterize the inherent correlation between the two outputs, ηmin 

and ηmax, that occur in the dynamic process. This is achieved through the multivariate (also known as vector-valued or multitask) 
Gaussian process (MGP ) (Alvarez and Lawrence, 2009; Zhao and Sun, 2016). Alternative approaches to multi-output regression based 
on deep neural networks have been proposed in recent years, but they suffer from drawbacks in uncertainty propagation across outputs 
(e.g., due to lack of uncertainty quantification), which occurs naturally in MGP due to their Bayesian interpretation (Rasmussen, 
2003). Rethinking Neural networks from a Bayesian perspective (Kendall and Gal, 2017) have shown promise, but their extensions to a 
multitask setting has still not been tackled. In light of this, we adopt the MGP model. 

The MGP model for the linear controller includes six inputs: x = [ks, kv, ka, d, a, am], and two outputs: y1(x) := ηmin(x) and 
y2(x) := ηmax(x). Correspondingly, for each output our data is denoted as D = {D1, D2} such that Di = {(yi, Xi)} where yi =

[y1
i , y2

i …, ypi
i ]

t, yc
i := yi(xic), Xi = [xi1, …, xipi ]

t and pi represents the number of observations for output i ∈ {1,2}. We also let y = [yt
1, yt

2]

and X = [Xt
1, Xt

2]
t to concatenate all the output and input data respectively. 

Given the two output functions, y1(x) and y2(x) and input x, the MGP is defined as 
[

y1(x)

y2(x)

]

=

[
f1(x)

f2(x)

]

+

[
∊1(x)

∊2(x)

]

= F (x) + E (x) (10)  

where F : R D → R 2is a multivariate process with covariance covf
ij(x, x′

) = covf
ij

(
fi(x), fj(x′

)
)

and zero mean for all x, x′

∈ X , i, j ∈ {1,

2} and ∊i(x) ∼ N (0, σ2
i ) denotes additive noise. Note that Eqn. (10) is a general decomposition of an MGP and will recede to a GP with 

one output. We also note that the zero-mean assumption is most commonly used since the GP is a non-linear and non-parametric 
functional representation, where the mean has a minor effect on predictions (i.e. posterior). Please refer to Rasmussen (2003) for 
more details. 

The MGP assumes that the predicted value for any new observed output {yi(x0) : i ∈ {1, 2}} with a input vector x0 ∈ X , and the 
previous observations y, have a joint distribution given as: 
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(
y
yi(x0)

| D
)

∼ N

⎛

⎜
⎝ 0p+1,

⎡

⎣
Cf ,f + Σ Cf ,f 0

i

Ct
f ,f 0

i
Cf 0

i ,f 0
i

+ σ2
i

⎤

⎦

⎞

⎟
⎠ (11)  

where p = p1 +p2 and f = [f t
1, f t

2]
t are the latent variables corresponding to the observed noisy output y, such that f c

i := fi(xic) and f i =

fi(Xi). The Cf ,f ∈ R p×p is the covariance matrix relating all input points for all outputs with covf
ij(x, x′

); Σ = diag[σ2
1Ip1 , σ2

NIp2 ] is a block 

diagonal matrix, in which the ith block corresponds to a pi × pi matrix; Cf ,f0
i

= [Ct
f1 ,f0

i
, …, Ct

fN ,f0
i
]
t where f0

i := fi(x0); Cf c ,f0
i

=

[covf
ic(x0, xc1), …, covf

ic(x0, xcpc )]
t
; and Cf0

i ,f0
i

= covf
ii(x0, x0). Following the conditional probability theory, the predicted distribution of 

yi(x0) denoted as pr(⋅|y) is given as: 

pr(yi(x0)|y) = N

(
Ct

f ,f 0
i
(Cf ,f + Σ)

−1y, Cf 0
i ,f 0

i
+ σ2

i − Ct
f ,f 0

i
(Cf ,f + Σ)

−1Cf ,f 0
i

)
(12)  

Note that the mean does not require normality assumptions, as it can be derived from the best empirical linear unbiased predictor 
(EBLUP) Stein and Corsten (1991). 

As shown in Eqn. (12), the sharing information is achieved through covf
ij(x, x′

). The success of MGP s is mainly attributed to the 
convolution process (CP ) construction of this covariance, which enables the outputs to possess both shared and unique features 
Álvarez and Lawrence (2011). The basic idea of the CP is that a GP ,fi(x), can be constructed by convolving a smoothing kernel ki(x)

with a latent GP process X(x). This is equivalent to stimulating a stable linear filter where ki(x) is the impulse response (stability only 
requires 

∫ ∞
−∞ |ki(u)|du < ∞). Based on the CP , one can construct an MGP through a sharing multiple latent function across all outputs, 

fi(x). As a result, all outputs can be expressed as jointly distributed GP , i.e., an MGP . 

fi(x) =
∑Q

q=1
Kqi(x) ⊛ Xq(x) =

∑Q

q=1

∫ +∞

−∞
Kqi(x − u)Xq(u)du (13)  

where ⊛ denotes a convolution. A key feature in Eqn. (13) is that information is shared through different kernels Kqi(x), hence offering 
increased flexibility in accounting for heterogeneity and allowing the data to speak for itself (i.e., not forcing correlation). Given Eqn. 
(13) and assuming that X(x) are independent white noise processes with cov(Xi(x), Xi(x′

)) = δ(x −x′

) and δ is the Dirac delta function, 
we have 

covf
ij(x, x′

) =
∑Q

q=1

∫ ∞

−∞
Ki(u)Kj(u − d)du (14)  

where d = x′

−x is the displacement vector. 
Finally, a smoothing kernel structure need to be specified for the model. The most commonly used kernel is the Gaussian kernel in 

Eqn. (15), which is capable of representing any family of continuous and differential function as it is equivalent to an infinite sum
mation of basis function in a Bayesian linear regression setting Rasmussen (2003). 

Kqi(x) = αqi(4π)
D
4 |Λqi|

−1
4N (x|0, Λ−1

qi ) (15)  

where Λqi is a diagonal matrix with a length scale parameter at each dimension. Then by plugging in Eqn. (15) into Eqn. (14), we have 

covf
ij(x, x′

) =
∑Q

q=1

2D
2 αqiαqj|Λqi|

1
4|Λqj|

1
4

|Λqi + Λqj|
1
2

exp
(

−
1
2
dtΦ−1

ij d
)

(16)  

where Φ−1
ij =

(
Λ−1

qi + Λ−1
qj

)−1
= Λqi

(
Λqi + Λqj

)−1Λqj. We note that the marginal covariance covf
ii(x, x′

) =
∑Q

q=1α2
qiexp( −1

4dtΛqid) is the 

commonly used covariance Gaussian form in the univariate process. 
The MGP is then parametrized through the kernel parameters θf and the noise measurement σ = {σ1, …, σN}. Accordingly, we 

Table 3 
Prediction errors on simulated data of η(t) shape, ηmin, and ηmax.  

Test % Wrong Classifications MAE  

Logistic Classifier ηmin  ηmax  

Cross Validation 3.4  0.002(±0.0008) 0.007(±0.003)

Test Trajectory 1 5.9  0.004(±0.002) 0.01(±0.008)

Test Trajectory 2 15.7  0.13(±0.08) 0.29(±0.18)
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denote the parameters θ = {θt
f , σt}

t . Now, with our observed data D = {D i, …, D N}, the MGP likelihood function is given as 

L (θ; D ) = (2π)
−P/2

|Cf ,f + Σ|
−1/2

× exp( − y(Cf ,f + Σ)
−1yt

/
2) (17)  

The parameters are thus estimated by minimizing the negative log-likelihood function ℓ(θ; D ) = −log L (θ; D ). Then, up to a constant 
ℓ(θ; D ) = 1

2〈Y, (Cf ,f + Σ)
−1

〉 + 1
2 log|Cf ,f + Σ|, where we define the operator 〈W, W′〉 = trace(WW′) and Y = yyt. Notably, such mini

mization in a very high dimensional space faces some challenges. Below are some remarks in that regard: 
Some remarks on the developed model:  

1. On computational complexity: Much like a univariate GP , the MGP has a cubic complexity of O(p3). This is mainly due to the 
inversion of Cf ,f + Σ. In cases of large data sets (i.e., large p), one can resort to the rich literature on sparse approximate inference in 
GP Alvarez and Lawrence (2009); Damianou et al. (2016); Zhao and Sun (2016); Snelson and Ghahramani (2006). The literature is 
mainly based on estimating the covariance matrix Cf ,f ≈ KpzK−1

zz Kzp as a low rank alternative. Here z denotes a set of inducing 
points with cardinality(z) = pz ≪ p. We refer readers to the survey Liu et al. (2020) in case such approximation is needed. This could 
be particularly useful in case of very large data set used to train the model.  

2. On number of latent functions: This remains an open question in literature. Yet, most papers in this field choose Q = 1 and let the 
kernels handle heterogeneity in the data. Recently, theoretical results by Burt et al. (2019) hinted to the fact that using Q = 1 might 
be sufficient in most cases, even in inducing point approximations where pz = O(logp) would suffice. 

5.3. Validation using Simulated Data 

The prediction method, coupling the logistic classifier and MGP , is validated by simulated data as well as empirical data. This 
section presents the validation results using simulated data. Two validation approaches are taken: (i) classic cross-validation on the 
simulated data and (ii) testing via new trajectories simulated with new lead vehicle settings. To train our model, we sample randomly 
200 different combinations of control gains (KT

i ) for the linear controller for each pre-designed leader trajectory (35 trajectories in 
total). Note that due to the O(p3) complexity of the MGP , the training time is significant. However, the use of stochastic gradient 

Fig. 14. Prediction errors on empirical data of ηmax and ηmin.  

Table 4 
Empirical characteristics of lead vehicle under disturbance.  

Feature Mean STD 

Deceleration rate (d) (m/s2)  0.80  ±0.32  

Acceleration rate (a) (m/s2)  0.59  ±0.20  

Oscillation amplitude (am) (m/s) 3.17  ±1.16   
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descent (SGD) speeds up the training process. In total, the chosen data set is a (7000 × 8) matrix. We then randomly split the data into 
training (75%) and testing sets (25%) (this is done to perform the twofold cross validation). 

For the second method of validation, we designed two new lead vehicle trajectories and simulated 1000 new observations. The first 
test trajectory is characterized by d = −1.8m/sec2, a = 1m/sec2 and am = 15m/sec. The second test trajectory is characterized by d =

−7m/sec2, a = 6m/sec2 and am = 27m/sec. Note that the second test trajectory is purposely designed for an extreme scenario, with the 
acceleration/deceleration rates beyond the typical values in the training set, to test the model’s ability to extrapolate. The trained 
prediction models are then tested on the new trajectories. Table 3 summarizes the findings and report the percentage of wrong 
classifications for the logistic classifier and the Mean Absolute Error (MAE) for the MGP . The validation results demonstrate the power 
of the models in predicting the reaction pattern, and ηmax and ηmin. Particularly, it is evident that the MGP learns effectively the 
functional correlation between ηmax and ηmin. Notably, the errors for the second test trajectory are higher, as expected under extreme 
extrapolation; nonetheless, the performance is still reasonable. 

5.4. Validation using Empirical Data 

We further validate the prediction method using the empirical data with different oscillations scenarios in the MA experiments. This 
is done through two steps: (i) approximate the control gain parameters of the ACC vehicle from the MA experiments assuming that it is 
operating under a linear controller and (ii) predict the η(t) shape and parameters. A total of 14 oscillation scenarios are fed into the 
linear controller (in Eq. (4)))) to calibrate the control gain parameters for the ACC vehicle. The characteristics of these oscillations are 

Fig. 15. Impact of ordering of vehicles in platoon - Scenario 2.  

Table 5 
Details on experimental setup.  

Scenario Description Class 1 Vehicle Class 2 Vehicle   

ks  kv  ka  ks  kv  ka  

1 Both controllers well within concave-convex region 1.5 2.5 −0.8 1.5 1.5 −0.8 

2 One in each region: average behavior dominated by concave-convex 1.5 1.5 −0.8 1.5 0.75 −0.8 

3 One in each region: average behavior dominated by convex-concave 1.5 1.0 −0.8 1.5 0.25 −0.8 

4 Both within convex-concave region 1.5 0.75 −0.8 1.5 0.25 −0.8  

W. Kontar et al.                                                                                                                                                                                                        



Transportation Research Part C 128 (2021) 103166

18

summarized in Table 4. The calibration follows the general procedure of the frequency domain method in Ozdemir and Gumussoy 
(2017). The key idea is to firstly characterize the frequency domain CF behavior using the empirical frequency response function of the 
ratio between the accelerations of a follower and its leader. The empirical frequency response function is thus represented by 
amplification ratios and phase shifts under a range of frequencies of interest. Here we focus on 0 to 3 Hz, which is the normal scale of 
the acceleration in the empirical data. Then the calibration process essentially aims to find a set of control parameters that can best 
reproduce the empirical frequency response. Readers are referred to Ozdemir and Gumussoy (2017) for more details. The calibrated 
control gains (ks,kv,ka) are (0.14,0.62, −0.2), respectively. The calibration error is measured by the H2 norm of the difference between 
the empirical and calibrated frequency response. The MAE of the calibration error is 0.11 (min 0.01, max 0.34) in the investigated 
frequency range. Note that the calibration error for empirical frequency response function typically ranges from 0 to 1. Therefore, the 
calibration result is reasonable, indicating that the CF behavior of the commercial ACC can be reasonably described by the linear 
controller assumed in this study. 

For validation, we employ the trained models to predict the η(t) reaction pattern, ηmin, and ηmax using the calibrated control gains 
and the lead-vehicle characteristics of the ACC vehicle as inputs. Notably, all 14 oscillations exhibit convex-concave reaction patterns, 
and the logistic classifier was able to classify the pattern for all the cases. For the MGP model, we observe the average errors of 0.09 for 
ηmin and 0.75 for ηmax. The performance for ηmin, which occurs in the deceleration phase, is particularly promising. Predictions on ηmax, 
however, have a lower performance. Upon inspection of the 14 oscillations, we noticed that 6 of them were characterized by high 
acceleration rates (≈ 0.8m/s2) in the recovery phase. In the response of the ACC, however, the maximum acceleration appears to be 
bounded around 0.5m/s2, which resulted in large ηmax values and delayed recovery. This type of behavior was not captured in model 
training. Fig. 14 presents box plots for errors for all 14 oscillations vs. 8 oscillations excluding these special cases. As expected, while 
the performance of ηmin remains relatively the same (average error = 0.07; see Fig. 14a), the performance of ηmax improves significantly 
(average error = 0.36; see Fig. 14b). The findings suggest that the developed prediction models show great promise in real-life ap
plications but should be further enhanced through training with larger, more comprehensive data sets. 

6. Traffic Level Implifications 

In this section we explore how the CF behavior translates to traffic wide impacts. While the string stability and local stability of 
some controller types (available for linear controllers, scarce for MPC-based controllers) in homogeneous traffic is well studied, we 

Fig. 16. Impact of heterogeneous composition on traffic.  

Fig. 17. Speed profiles - Impact of constrained MPC.  
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wish to investigate the impact from traffic flow perspective, considering how AVs with different control settings may interact. 

6.1. Linear Controller 

To gain traffic wide impacts, we set up numerical simulation experiments where a 10-vehicle platoon of AVs is following a leader 
with a predetermined trajectory (consistent with the one used in earlier sections: d = −3m/sec2,a = 1.5m/sec2,am = 27m/sec). The 
vehicles in the platoon belong to one of two classes (with different control parameter settings). For illustration, we select four 
representative class pairings to capture multiple interactions as shown in Table 5, with each representing different regions of behavior 
shown in Fig. 9. Essentially, we fix ks = 1.5, ka = −0.8 and vary kv in the range of (0.25,2.5). The results based on other pairings are 
qualitatively consistent. Note that based on the string stability condition defined in Zhou and Ahn (2019), gains that result in string 
stable solutions are contained within the concave-convex (red) region. A general trend observed is that traffic disturbance dampens 
(amplifies) with concave-convex (convex-concave) reaction patterns; i.e., minimum speeds and time to return to equilibrium increase 
(decrease) as we move upstream. This is in line with local and string stability conditions for linear controller in Zhou and Ahn (2019). 
The four studied scenarios are described below: 

The first experiment studies the vehicle ordering impact within the heterogeneous platoon. Specifically, we consider two platoon 
compositions: (i) AVs from a single type congregate together, and (ii) AVs from different classes (control settings) intermingle. For the 
first composition, we consider two different cases: 5 vehicles of Class 1 followed by 5 vehicles from Class 2 (or visa versa). In the second 
composition, Class 1 and Class 2 vehicles alternate. 

Fig. 15 shows the resulting speed profiles, evolution of minimum speeds within the platoon, and time to reach equilibrium within 
the platoon. The main insight is that vehicle ordering affects how the disturbance magnitude (speed reduction) evolves from vehicle to 
vehicle. However, the average behavior (based on the minimum speed and time to reach equilibrium for the final vehicle in the 
platoon) is independent of the ordering. This is not unexpected from a linear controller. It is important to note, however, that the linear 
controller is often accompanied with other complementary lower level controllers in a real implementation on a road vehicle (such as 
acceleration and speed constraints). Exploring such interactions remains outside the scope of this study. 

In the second experiment, we look at the impact of the platoon composition (by changing the parameter setting according to 
Table 5) on disturbance evolution. Here, the ordering is five class 1 vehicles followed by five class 2 vehicles (as defined in each 
scenario). The evolution of minimum speed over the platoon for each scenario is presented in Fig. 16a. As stated earlier, control 
settings that fall within the concave-convex (convex-concave) reaction region are expected to result in disturbance dampening 
(amplification). This is seen in the results with the disturbance getting dampened in the Scenarios 1 and 2 that involve dominant 
concave-convex behaviors. Further, the dampening is much more efficient in Scenario 1 due to the stronger concave-convex reaction. 
Conversely, the disturbance is seen to amplify in Scenarios 3 and 4 where convex-concave is the dominant behavior. In addition, where 
convex-concave vehicles amplify the disturbance, varying extents of speed overshooting (speed increasing over the initial speed and 
effectively extending the disturbance by adding a second smaller disturbance) is seen (see Fig. 16b). 

These experiments support the insights that were derived in earlier sections, as well as present a framework for a more detailed 
analysis of traffic flow impacts of heterogeneous AVs. Insights gathered here, can guide the design of desired controller behavior with 
traffic-level performance in mind (described through η(t)). 

Fig. 18. The impacts of over/under estimation.  
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6.2. MPC Controller 

Similar to the traffic impact study shown in Section 6.1, numerical simulations were run for platoons of MPC vehicles as well as 
mixed platoons of MPC and linear controller vehicles (see Fig. 17 for representative speed profiles). When MPC is unconstrained, the 
behavior is similar to that seen with linear controllers with equivalent control parameter settings (compare Figs. 17a and b). The more 
interesting scenario happens when constraints are introduced into the MPC vehicles. Fig. 17c shows the speed profile with a mixed 
platoon of linear controller and MPC vehicles where the MPC vehicles have limiting acceleration and deceleration constraints active. 
The constraints imposed are weak so that the MPC optimization algorithm is able to find feasible solutions. This however leads to the 
constraints becoming limiting only for the first MPC vehicle in the platoon (subsequent vehicles never reach constraint conditions). As 
can be seen in Fig. 17c, active constraints would result in an increase in the disturbance duration, possibly with a secondary distur
bance being created. 

Stronger imposed acceleration and deceleration constraints may become active for multiple vehicles in a platoon. This presents a 
very interesting scenario since platoon ordering and interactions between heterogeneous settings would become increasingly relevant 
in the presence of strongly constrained MPCs. Further, enough vehicles with active constraints in a platoon may lead to overall 
disturbance amplification, even if weight parameters are set for string stability when unbounded. A full investigation of traffic-level 
impacts of platoons of strongly constrained MPC, however, remains outside of the scope of the present work due to the high complexity 
of such an undertaking. Nonetheless, the mechanisms observed above provide insight into possible disturbance propagation through 
the platoon. 

7. Conclusion 

This paper aimed to unveil the physical CF behaviors of AVs under different vehicle control paradigms and settings, and cast light 

Fig. 19. Underestimation (top row); Overestimation (bottom row).  
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on their traffic-level impacts. To this end, we developed a comprehensive analysis framework, consisting of (i) approximation of AV CF 
behavior using the AB model, (ii) mapping between control parameters and the AB model parameters through numerical simulations, 
and (iii) prediction of the AB model parameters given control parameters and lead vehicle trajectory using data-driven methods. 
Specifically, substantiated by empirical evidence, the AB model was adopted as a unifying framework to connect microscopic control 
mechanisms to more aggregate physical CF response to disturbances. The empirical analysis showed that the reaction pattern, η(t), of 
the AB model can flexibly capture a wide range of CF behaviors possible under different control logic. 

Building on this, we focused on analyzing two well-known controllers: linear state-feedback controller and MPC-based controller. 
Particularly, we analyzed a linear state-feedback controller to explore how different control gain settings influence the CF behavior. 
Three main results are notable: (i) three control gains guide the controller with different mechanisms, leading to different CF be
haviors; (ii) the compound effect of control gains produces two prevalent η(t) reaction patterns: convex-concave and concave-convex 
(weak concavity and weak convexity represent Newell-like behavior); and (iii) an intrinsic mapping relationship exists between the 
control gains and η(t) parameters, casting light on implications for traffic dynamics. 

A MPC-based controller was analyzed in a similar fashion. Particularly, we examined two cases pertaining to the constraints in the 
MPC-based controller: unbounded and bounded acceleration/deceleration. The analysis showed that in unbounded setting, MPC 
control mechanisms can be consistent with the linear controller, and similar η(t) reaction patterns were observed. However, in 
bounded settings, deviations from these reaction patterns occur in the form of greater convexity (concavity) with bounded deceleration 
(acceleration). Moreover, constraints from deceleration and acceleration can interact. The compound effects can result in instability 
(in the form of a decrease in minimum speed), acceleration and speed overshooting during recovery, and prolonged recovery to the 
original state. 

Building on the insights from the analysis, we formulated a data-driven approach to predict the reaction pattern, η(t), based on 
control parameter setting and disturbance characteristics. The approach consists of (i) a logistic classifier to predict the η(t) shape and 
(ii) a convoluted Multivariate Gaussian Process (MGP ) to predict the ηmin and ηmax while addressing correlation between them. The 
models were validated using simulated AV data, as well as real AV data, which demonstrated promising performance. 

Extending these results, we then analyzed disturbance evolution through a platoon of vehicles with multi-class AVs controlled 
through different gain settings. The simulations revealed that disturbance propagation for a platoon of heterogeneous vehicles is 
dependent on the dominant vehicle type, the aggregate impact on disturbance is an average of individual impacts of vehicle types 
involved, and that the platoon ordering does not have a significant impact on disturbance propagation. The simulation results also 
show that platoons with convex-concave dominant behavior lead to oscillation amplification and possible overshooting in speed 
leading to creation of a secondary disturbance and increasing the oscillation duration. 

This study serves as an important step toward connecting microscopic AV control algorithms to macroscopic traffic wide impacts. 
The proposed analysis framework is general, such that it can be applied to a variety of controllers and better guide the AV control 
design or setting with the system-level performance in mind. Nevertheless, several directions for future research is desired. In this 
work, a knowledge of the controller is needed to directly explore the analysis framework developed. If the controller is unknown (e.g., 
due to propriety rights), but field data suggests that it could likely follow a known controller (e.g., linear controller), then we have 
shown in Sections 2.2 and 5.4 how we can calibrate needed parameters and follow the developed analysis framework (we also refer to 
relevant work by Chen et al. (2012a) on this matter). However, if no knowledge exists on the controller’s structure, as seen in AI-based 
controllers, applying the proposed framework needs further research investigation. Additionally, this work focused only on a single 
stop-and-go disturbance and could be expanded to study the behavior under multiple interactive disturbances (i.e., oscillations). More 
research is needed to elucidate the traffic wide impacts under multiple controllers from different paradigms (e.g., AI-based control), 
constraint settings, and platoon compositions. Furthermore, incorporating connectivity (including communication delay) would also 
lead to a more general understanding of multi-class AV traffic. Another important direction would be to expand the MGP prediction 
model to predict the timings of ηmin and ηmax, which could affect disturbance propagation. While the same modeling framework can be 
adopted, the main challenges lies in addressing the functional covariance between (ηmin,ηmax) and their timings to obtain robust and 
accurate predictions. These are part of ongoing research by the authors. 
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Appendix A. Appendix 

In here we provide a sensitivity analysis with respect to parameters τ and δ when they need to be calibrated. We show the sensitivity 
analysis results for two representative cases; concave-convex reaction pattern (k = [3.0, 3.0, −1.2]), and convex-concave reaction 
pattern (k = 1.2,1.2, −1.8). Note that δ and τ are inherently tied, and thus vary together. Specifically, the corresponding δ for a mis- 
estimated τ is calibrated using the steady state equilibrium CF for the follower. This suggests that over-estimation of τ leads to under- 
estimation of δ (in order to produce same equilibrium conditions). Considering that δ (standstill spacing) is bounded by a vehicle’s 
length, the relationship imposes a natural upper bound for over-estimation of τ. Furthermore, τ (time gap setting in the controller) is 
practically bounded through minimum safety considerations to avoid collision. 

For the sensitivity analysis, we use a leader (HDV) trajectory and construct a follower’s trajectory (given each of the control gain 
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settings mentioned above), with a known true τ and δ setting. This serves as the ground truth for the leader–follower pair trajectory. We 
then compute the estimated (with errors) η(t) profile using; (i) the range of τ (and corresponding δ) values reflecting calibration error in 
parameters for the sensitivity testing, and (ii) the ground truth follower trajectory. Consequently, we use the estimated η(t) profile to 
reconstruct a corresponding speed profile for the follower (i.e., AV). 

The following are results of sensitivity analysis for the case of (i) concave-convex and (ii) convex-concave. We first present a closer 
look into the sensitivity of under/over estimation (considering a concave-convex pattern). We then extend and tabulate the results for 
both concave-convex and convex-concave patterns. Note: we will hereby refer to underestimation as the case where the estimated τ 
value is less than the true value (the opposite is true for overestimation). 

Results from the sensitivity analysis (for both patterns) show that η(t) profile is sensitive to variations in τ and δ; however the 
reconstructed speed profile is more robust, with negligible variations. Fig. 18 provides a closer look into the impact of under and over 
estimation of τ (and accordingly δ) in green and red plot, respectively. Key insights are: (1) the overall shape of η(t) remains consistent 
despite the changes in the values (this is also seen in the extended results in Fig. 19); (2) there is a shift (w.r.t time) in the overall η(t)
profile; (3) there are very small changes in the speed profile. Insights (1) and (2) combine together to create the overall robust speed 
profile. We also note that in underestimation the extent of distortion (in terms of magnitude) is less than the overestimation case. This 
is due to the fact than in overestimation the parameter δ is decreasing significantly and approaching 0, and thus will have greater 
impact as it is a denominator term in Eqn. (7). 

We now shift our attention towards a physical implication of under/over estimation. In case of an underestimation (in a concave- 
convex reaction pattern), from the estimated speed profile, one will see a lower dampening ability (i.e., drop in speed) than the ground 
truth (see the lowest speed in the green plot vs. the blue plot in Fig. 1(b)). Additionally, a smaller undershoot (than the ground truth) in 
velocity (in the recovery phase) is observed. The opposite is true in case of overestimation. Further, we note that in case of over
estimation the impact is slightly higher. This suggests that overestimation is not desirable and should be avoided if possible as one 
would reckon that performance is better than what it actually is. Fig. 2. presents more details on under/over estimations. 

The Case of Concave-Convex: 
Table 6 and Fig. 19, provide a summary of the extended results of the sensitivity analysis done for a concave-convex pattern. 

Table 6 
Summary of sensitivity results: Concave-Convex.  

Δτ(%) Δδ(%) Δηmin(%) Δηmax(%) ΔVdrop(%) Δτ(%) Δδ(%) Δηmin(%) Δηmax(%) ΔVdrop(%)

−1.00 3.00 −0.03 −2.26 −0.16 1.00 −3.00 −0.14 2.43 0.23 
−2.00 6.00 −0.19 −4.38 −0.35 2.00 −6.00 −0.37 5.03 0.44 
−3.00 9.00 −0.66 −6.34 −0.52 3.00 −9.00 −0.66 7.83 0.65 
−4.00 12.00 −1.30 −8.17 −0.71 4.00 −12.00 −1.04 10.84 0.86 
−5.00 15.00 −2.03 −9.09 −0.88 5.00 −15.00 −1.48 14.08 1.08 
−6.00 18.00 −2.83 −11.46 −1.05 6.00 −18.00 −1.99 17.57 1.31 
−7.00 21.00 −3.66 −12.93 −1.21 7.00 −21.00 −2.57 21.35 1.53 
−8.00 24.00 −4.53 −14.24 −1.36 8.00 −24.00 −3.22 25.44 1.75 
−9.00 27.00 −5.41 −15.55 −1.51 9.00 −27.00 −4.00 29.89 1.96 
−10.00 30.00 −6.30 −16.70 −1.66 10.00 −30.00 −4.80 34.72 2.17 
−11.00 33.00 −7.20 −17.77 −1.80 11.00 −33.00 −5.73 40.02 2.36 
−12.00 36.00 −8.09 −18.74 −1.93 12.00 −36.00 −6.77 45.82 2.52 
−13.00 39.00 −8.98 −19.64 −2.06 13.00 −39.00 −7.94 52.20 2.68 
−14.00 42.00 −9.86 −20.47 −2.19 14.00 −42.00 −9.26 59.26 2.78 
−15.00 45.00 −10.73 −21.23 −2.32 15.00 −45.00 −10.74 67.10 2.84  

Table 7 
Summary of sensitivity results: Convex-Concave.  

Δτ(%) Δδ(%) Δηmin(%) Δηmax(%) ΔVdrop(%) Δτ(%) Δδ(%) Δηmin(%) Δηmax(%) ΔVdrop(%)

−1.00 3.00 −2.33 −1.38 0.14 1.00 −3.00 2.47 1.49 0.04 
−2.00 6.00 −4.52 −2.64 0.17 2.00 −6.00 5.09 3.20 −0.02 
−3.00 9.00 −6.60 −3.80 0.22 3.00 −9.00 7.90 4.86 −0.08 
−4.00 12.00 −8.57 −4.85 0.25 4.00 −12.00 10.83 6.74 −0.15 
−5.00 15.00 −10.43 −5.49 0.28 5.00 −15.00 14.09 8.83 −0.22 
−6.00 18.00 −12.20 −6.01 0.31 6.00 −18.00 17.52 11.07 −0.30 
−7.00 21.00 −13.88 −6.54 0.34 7.00 −21.00 21.21 13.50 −0.40 
−8.00 24.00 −15.48 −6.97 0.36 8.00 −24.00 25.18 16.16 −0.52 
−9.00 27.00 −17.00 −7.40 0.39 9.00 −27.00 29.48 19.06 −0.63 
−10.00 30.00 −18.46 −7.81 0.40 10.00 −30.00 34.15 22.23 −0.75 
−11.00 33.00 −19.84 −8.20 0.42 11.00 −33.00 39.22 25.72 −0.90 
−12.00 36.00 −21.17 −8.57 0.44 12.00 −36.00 44.78 29.55 −1.06 
−13.00 39.00 −22.43 −8.92 0.45 13.00 −39.00 50.86 33.80 −1.25 
−14.00 42.00 −23.65 −9.25 0.47 14.00 −42.00 57.57 38.51 −1.51 
−15.00 45.00 −25.22 −10.27 0.52 15.00 −45.00 65.00 43.76 −1.72  
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The Case of Convex-Concave: 
Note that the detailed impact of under/over estimation of τ and δ for a convex-concave pattern follows the same logic as the 

discussion provided for the above case. Table 7 presents the a summary of results into the sensitivity analysis for a convex-concave 
pattern. 
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Öncü, S., Ploeg, J., van de Wouw, N., Nijmeijer, H., 2014. Cooperative adaptive cruise control: Network-aware analysis of string stability. IEEE Trans. Intell. Transp. 

Syst. 15, 1527–1537. 
Newell, G.F., 2002. A simplified car-following theory: a lower order model. Transportation Research Part B: Methodological 36, 195–205. 
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