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Latent Nested Nonparametric Priors
(with Discussion)

Federico Camerlenghi∗†, David B. Dunson‡, Antonio Lijoi§,
Igor Prünster§ and Abel Rodŕıguez¶

Abstract. Discrete random structures are important tools in Bayesian nonpara-
metrics and the resulting models have proven effective in density estimation, clus-
tering, topic modeling and prediction, among others. In this paper, we consider
nested processes and study the dependence structures they induce. Dependence
ranges between homogeneity, corresponding to full exchangeability, and maximum
heterogeneity, corresponding to (unconditional) independence across samples. The
popular nested Dirichlet process is shown to degenerate to the fully exchangeable
case when there are ties across samples at the observed or latent level. To over-
come this drawback, inherent to nesting general discrete random measures, we
introduce a novel class of latent nested processes. These are obtained by adding
common and group-specific completely random measures and, then, normalizing
to yield dependent random probability measures. We provide results on the parti-
tion distributions induced by latent nested processes, and develop a Markov Chain
Monte Carlo sampler for Bayesian inferences. A test for distributional homogene-
ity across groups is obtained as a by-product. The results and their inferential
implications are showcased on synthetic and real data.
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1 Introduction

Data that are generated from different (though related) studies, populations or ex-
periments are typically characterized by some degree of heterogeneity. A number of
Bayesian nonparametric models have been proposed to accommodate such data struc-
tures, but analytic complexity has limited understanding of the implied dependence
structure across samples. The spectrum of possible dependence ranges from homogene-
ity, corresponding to full exchangeability, to complete heterogeneity, corresponding to
unconditional independence. It is clearly desirable to construct a prior that can cover
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this full spectrum, leading to a posterior that can appropriately adapt to the true de-
pendence structure in the available data.

This problem has been partly addressed in several papers. In Lijoi et al. (2014)
a class of random probability measures is defined in such a way that proximity to
full exchangeability or independence is expressed in terms of a [0, 1]-valued random
variable. In the same spirit, a model decomposable into idiosyncratic and common
components is devised in Müller et al. (2004). Alternatively, approaches based on Pólya
tree priors are developed in Ma and Wong (2011); Holmes et al. (2015); Filippi and
Holmes (2017), while a multi-resolution scanning method is proposed in Soriano and
Ma (2017). In Bhattacharya and Dunson (2012) Dirichlet process mixtures are used
to test homogeneity across groups of observations on a manifold. A popular class of
dependent nonparametric priors that fits this framework is the nested Dirichlet process
(nDP) of Rodŕıguez et al. (2008), which aims at clustering the probability distributions
associated to d populations. For d = 2 this model is

(Xi,1, Xj,2) | (p̃1, p̃2)
ind∼ p̃1 × p̃2 (i, j) ∈ N×N

(p̃1, p̃2) | q̃ ∼ q̃2, q̃ =
∑

i≥1

ωi δGi ,
(1)

where the random elements X! := (Xi,!)i≥1, for # = 1, 2, take values in a space X, the
sequences (ωi)i≥1 and (Gi)i≥1 are independent, with

∑
i≥1 ωi = 1 almost surely, and

the Gi’s are i.i.d. random probability measures on X such that

Gi =
∑

t≥1

wt,iδθt,i , θt,i
iid∼ Q0 (2)

for some non-atomic probability measure Q0 on X. In Rodŕıguez et al. (2008) it is
assumed that q̃ and the Gi’s are realizations of Dirichlet processes while in Rodŕıguez
and Dunson (2014) it is assumed they are from a generalized Dirichlet process introduced
by Hjort (2000). Due to discreteness of q̃, one has p̃1 = p̃2 with positive probability
allowing for clustering at the level of the populations’ distributions and implying X1

and X2 have the same probability distribution.

The composition of random combinatorial structures, such as those in (1), lies at the
heart of several other proposals of prior processes for modeling non-exchangeable data.
A noteworthy example is the hierarchical Dirichlet process in Teh et al. (2006), which
arises as a generalization of the latent Dirichlet allocation model Blei et al. (2003) and
yields a partition distribution also known as the Chinese restaurant franchise. Gener-
alizations beyond the Dirichlet process case together with an in-depth analysis of their
distributional properties is provided in Camerlenghi et al. (2019a). Another approach
sets a prior directly on the space of partitions, by possibly resorting to appropriate
modifications of product partition models. See, e.g., Dahl et al. (2017); Müller et al.
(2011); Page and Quintana (2016); Blei and Frazier (2011). In fact, the literature on
priors over spaces of dependent probability distributions has rapidly grown in the last
15 years, spurred by the ideas of MacEachern (1999, 2000). The initial contributions
in the area were mainly focused on providing dependent versions of the Dirichlet pro-
cess (see, e.g., De Iorio et al. (2004); Gelfand et al. (2005); Griffin and Steel (2006);
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De Iorio et al. (2009)). More recently, a number of proposals of more general classes of
dependent priors have appeared, by either using a stick-breaking procedure or resorting
to random measures-based constructions. Among them we mention Chung and Dun-
son (2009); Jara et al. (2010); Rodŕıguez et al. (2010); Rodŕıguez and Dunson (2011);
Lijoi et al. (2014); Griffin et al. (2013); Griffin and Leisen (2017); Mena and Ruggiero
(2016); Barrientos et al. (2017); Nguyen (2013, 2015). Our contribution, relying on a
random measures-based approach, inserts itself into this active research area providing
an effective alternative to the nDP.

The nDP has been widely used in a rich variety of applications, but it has an unap-
pealing characteristic that provides motivation for this article. In particular, if X1 and
X2 share at least one value, then the posterior distribution of (p̃1, p̃2) degenerates on
{p̃1 = p̃2}, forcing homogeneity across the two samples. This occurs also in nDP mixture
models in which the Xi,! are latent, and is not specific to the Dirichlet process but is a
consequence of nesting discrete random probabilities. For a more effective illustration,
consider the case where one is examining measurements that are used to assess quality
of hospitals in d different regions or territories. It is reasonable to assume that there is
homogeneity (namely, exchangeability) among hospitals in the same region and hetero-
geneity across different regions. This is actually the setting that motivated the original
formulation in Rodŕıguez et al. (2008), who are interested in clustering the d popula-
tions of hospitals based on the quality of care. However, one may also aim at identifying
possible sub-populations of hospitals that are shared across the d regions, while still
preserving some degree of heterogeneity. Unfortunately, the nDP cannot attain this and
as soon as the model detects a shared sub-population between two different regions it
leads to the conclusion that those two regions share the same probability distribution
and are, thus, similar or homogeneous.

To overcome this major limitation, we propose a more flexible class of latent nested
processes, which preserve heterogeneity a posteriori, even when distinct values are shared
by different samples. Latent nested processes define p̃1 and p̃2 in (1) as resulting from
normalization of an additive random measure model with common and idiosyncratic
components, the latter with nested structure. Latent nested processes are shown to have
appealing distributional properties. In particular, nesting corresponds, in terms of the
induced partitions, to a convex combination of full exchangeability and unconditional
independence, the two extreme cases. This naturally yields a methodology for testing
equality of distributions.

2 Nested processes

2.1 Generalizing nested Dirichlet processes via normalized random
measures

We first propose a class of nested processes that generalize nested Dirichlet processes
by replacing the Dirichlet process components with a more flexible class of random
measures. The idea is to define q̃ in (1) in terms of normalized completely random
measures on the space PX of probability measures on X. In order to provide a full
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account of the construction, introduce a Poisson random measure Ñ =
∑

i≥1 δ(Ji,Gi) on
R+ ×PX characterized by a mean intensity measure ν such that for any A ∈ B(R+)⊗
B(PX) for which ν(A) < ∞ one has Ñ(A) ∼ Po(ν(A)). It is further supposed that

ν(ds, dp) = c ρ(s) ds Q(dp), (3)

where Q is a probability distribution on PX, ρ is some non-negative measurable function
on R+ such that

∫∞
0 min{1, s} ρ(s) ds < ∞ and c > 0. Henceforth, we will also refer

to ν as Lévy intensity. A completely random measure (CRM) µ̃ without fixed points of
discontinuity is, thus, defined as µ̃ =

∑
i≥1 Ji δGi . It is well-known that ν characterizes

µ̃ through its Lévy-Khintchine representation

E
[
e−λµ̃(A)

]
= exp

{
−
∫

R+×PX

(
1− e−λs

)
ν(ds, dp)

}

= exp

{
−cQ(A)

∫ ∞

0

(
1− e−λs

)
ρ(s) ds

}
=: e−cQ(A)ψ(λ)

(4)

for any measurable A ⊂ PX, we use the notation µ̃ ∼ CRM[ν;PX]. The function ψ in
(4) is also referred to as the Laplace exponent of µ̃. For a more extensive treatment of
CRMs, see Kingman (1993). If one additionally assumes that

∫∞
0 ρ(s) ds = ∞, then

µ̃(PX) > 0 almost surely and we can define q̃ in (1) as

q̃
d
=

µ̃

µ̃(PX)
. (5)

This is known as a normalized random measure with independent increments (NRMI),
introduced in Regazzini et al. (2003), and is denoted as q̃ ∼ NRMI[ν;PX]. The baseline
measure, Q, of µ̃ in (3) is, in turn, the probability distribution of q̃0 ∼ NRMI[ν0;X],

with q̃0
d
= µ̃0/µ̃0(X) and µ̃0 having Lévy measure

ν0(ds, dx) = c0 ρ0(s) ds Q0(dx) (6)

for some non-negative function ρ0 such that
∫∞
0 min{1, s} ρ0(s) ds < ∞ and∫∞

0 ρ0(s) ds = ∞. Moreover, Q0 is a non-atomic probability measure on X and ψ0

is the Laplace exponent of µ̃0. The resulting general class of nested processes is such
that (p̃1, p̃2)|q̃ ∼ q̃2 and is indicated by

(p̃1, p̃2) ∼ NP(ν0, ν).

The nested Dirichlet process (nDP) of Rodŕıguez et al. (2008) is recovered by specifying
µ̃ and µ̃0 to be gamma processes, namely ρ(s) = ρ0(s) = s−1 e−s, so that both q̃ and q̃0
are Dirichlet processes.

2.2 Clustering properties of nested processes

A key property of nested processes is their ability to cluster both population distribu-
tions and data from each population. In this subsection, we present results on: (i) the
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prior probability that p̃1 = p̃2 and the resulting impact on ties at the observations’
level; (ii) equations for mixed moments as convex combinations of fully exchangeable
and unconditionally independent special cases; and (iii) a similar convexity result for
the so called partially exchangeable partition probability function (pEPPF), describing
the distribution of the random partition generated by the data. Before stating result (i)
define

τq(u) =

∫ ∞

0
sq e−us ρ(s) ds, τ (0)q (u) =

∫ ∞

0
sq e−us ρ0(s) ds,

for any u > 0, and agree that τ0(u) ≡ τ (0)0 (u) ≡ 1.

Proposition 1. If (p̃1, p̃2) ∼ NP(ν0, ν), with ν(ds, dp) = c ρ(s) ds Q(dp) and
ν0(ds, dx) = c0 ρ0(s) ds Q0(dx) as before, then

π1 := P(p̃1 = p̃2) = c

∫ ∞

0
u e−cψ(u) τ2(u) du (7)

and the probability that any two observations from the two samples coincide equals

P(Xj,1 = Xk,2) = π1 c0

∫ ∞

0
u e−c0 ψ0(u) τ (0)2 (u) du > 0. (8)

This result shows that the probability of p̃1 and p̃2 coinciding is positive, as de-
sired, but also that this implies a positive probability of ties at the observations’ level.
Moreover, (7) only depends on ν and not ν0, since the latter acts on the X space.
In contrast, the probability that any two observations Xj,1 and Xk,2 from the two
samples coincide given in (8) depends also on ν0. If (p̃1, p̃2) is an nDP, which corre-
sponds to ρ(s) = ρ0(s) = e−s/s, one obtains π1 = 1/(c + 1) and P(Xj,1 = Xk,2) =
π1/(c0 + 1).

The following proposition [our result (ii)] provides a representation of mixed mo-
ments as a convex combination of full exchangeability and unconditional independence
between samples.

Proposition 2. If (p̃1, p̃2) ∼ NP(ν0, ν) and π1 = P(p̃1 = p̃2) is as in (7), then

E
[ ∫

P2
X

f1(p1)f2(p2)q̃(dp1)q̃(dp2)
]
= π1

∫

PX

f1(p)f2(p)Q(dp)

+ (1− π1)

∫

PX

f1(p)Q(dp)

∫

PX

f2(p)Q(dp)

(9)

for all measurable functions f1, f2 : PX → R+ and the expected value is taken w.r.t. q̃.

This convexity property is a key property of nested processes. The component with
weight 1−π1 in (9) accounts for heterogeneity among data from different populations and
it is important to retain this component also a posteriori in (1). Proposition 2 is instru-
mental to obtain our main result in Theorem 1 characterizing the partially exchangeable

random partition induced by X(n1)
1 = (X1,1, . . . , Xn1,1) and X(n2)

2 = (X1,2, . . . , Xn2,2)
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in (1). To fix ideas consider a partition of the n! data of sample X(n!)
! into k! specific

groups and k0 groups shared with sample X(ns)
s (s *= #) with corresponding frequencies

n! = (n1,!, . . . , nk!,!) and q! = (q1,!, . . . , qk0,!). In other terms, the two-sample data

induce a partition of [n1 + n2] = {1, . . . , n1 + n2}. For example, X(7)
1 = (0.5, 2, −1, 5,

5, 0.5, 0.5) and X(4)
2 = (5, −2, 0.5, 0.5) yield a partition of n1 + n2 = 11 objects into

5 groups of which k1 = 2 and k2 = 1 are specific to the first and the second sample,
respectively, and k0 = 2 are shared. Moreover, the frequencies are n1 = (1, 1), n2 = (1),
q1 = (3, 2) and q2 = (2, 1). As already mentioned at the beginning of the present sec-
tion, the partition of the data is characterized by a convenient probabilistic tool called
partially exchangeable partition probability function (pEPPF), whose formal definition
is as follows

E

∫

Xk

k1∏

j=1

p̃
nj,1

1 (dxj,1)
k2∏

l=1

p̃
nl,2

2 (dxl,2)
k0∏

r=1

p̃
qr,1
1 (dxr) p̃

qr,2
2 (dxr), (10)

where k = k1 + k2 + k0 and the expected value is taken w.r.t. the joint distribution
of (p̃1, p̃2). In the exchangeable framework the pEPPF reduces to the usual exchange-
able partition probability function (EPPF), as introduced by Pitman (1995). See also
Kingman (1978) who proved that the law of a random partition, satisfying certain con-
sistency conditions and a symmetry property, can always be recovered as the random
partition induced by an exchangeable sequence of observations.

Let us start by analyzing the two extreme cases. For the fully exchangeable case (in
the sense of exchangeability holding true across both samples), one obtains the EPPF

Φ(N)
k (n1,n2, q1 + q2) =

ck0
Γ(N)

∫ ∞

0
uN−1e−c0ψ0(u)

×
k1∏

j=1

τ (0)nj,1
(u)

k2∏

i=1

τ (0)ni,2
(u)

k0∏

r=1

τ (0)qr,1+qr,2(u) du

(11)

having set N = n1 + n2, k = k0 + k1 + k2. The marginal EPPFs for the individual
sample # = 1, 2 are

Φ(n!)
!,k0+k!

(n!, q!) = Φ(n!)
k0+k!

(n!, q!)

=
(c0)k0+k!

Γ(n!)

∫ ∞

0
un!−1 e−c0 ψ0(u)

k!∏

j=1

τ (0)nj,!
(u)

k0∏

r=1

τ (0)qr,!(u) du.
(12)

Both (11) and (12) hold true with the constraints
∑k!

j=1 nj,! +
∑k0

r=1 qr,! = n! and

1 ≤ k! + k0 ≤ n!, for each # = 1, 2. Finally, the convention τ (0)0 ≡ 1 implies that

whenever an argument of the function Φ(n)
k is zero, then it reduces to Φ(n)

k−1. For example,

Φ(6)
3 (0, 2, 4) = Φ(6)

2 (2, 4). Both (11) and (12) solely depend on the Lévy intensity of the
CRM and can be made explicit for specific choices. We are now ready to state our main
result (iii).
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Theorem 1. The random partition induced by the samples X(n1)
1 and X(n2)

2 drawn
from (p̃1, p̃2) ∼ NP(ν0, ν), according to (1) with Q0 non-atomic, is characterized by the
pEPPF

Π(N)
k (n1,n2, q1, q2) = π1 Φ

(N)
k (n1,n2, q1 + q2)

+ (1− π1) Φ
(n1+|q1|)
k0+k1

(n1, q1)Φ
(n2+|q2|)
k0+k2

(n2, q2)1{0}(k0)
(13)

having set |a| =
∑p

i=1 ai for any vector a = (a1, . . . , ap) ∈ Rp with p ≥ 2.

The two independent EPPFs in the second summand on the right-hand side of (13)
are crucial for accounting for the heterogeneity across samples. However, the result
shows that one shared value, i.e. k0 ≥ 1, forces the random partition to degenerate
to the fully exchangeable case in (11). Hence, a single tie forces the two samples to
be homogeneous, representing a serious limitation of all nested processes including the
nDP special case. This result shows that degeneracy is a consequence of combining
simple discrete random probabilities with nesting. In the following section, we develop
a generalization that is able to preserve heterogeneity in presence of ties between the
samples.

3 Latent nested processes

To address degeneracy of the pEPPF in (13), we look for a model that, while still able
to cluster random probabilities, can also take into account heterogeneity of the data in

presence of ties between X(n1)
1 and X(n2)

2 . The issue is relevant also in mixture models
where p̃1 and p̃2 are used to model partially exchangeable latent variables such as,
e.g., vectors of means and variances in normal mixture models. To see this, consider a
simple density estimation problem, where two-sample data of sizes n1 = n2 = 100 are
generated from

Xi,1 ∼ 1

2
N(5, 0.6) +

1

2
N(10, 0.6) Xj,2 ∼ 1

2
N(5, 0.6) +

1

2
N(0, 0.6).

This can be modeled by dependent normal mixtures with mean and variance specified
in terms of a nested structure as in (1). The results, carried out by employing the
algorithms detailed in Section 4, show two possible outcomes: either the model is able
to estimate well the two bimodal marginal densities, while not identifying the presence of
a common component, or it identifies the shared mixture component but does not yield
a sensible estimate of the marginal densities, which both display three modes. The latter
situation is displayed in Figure 1: once the shared component (5, 0.6) is detected, the
two marginal distributions are considered identical as the whole dependence structure
boils down to exchangeability across the two samples.

This critical issue can be tackled by a novel class of latent nested processes. Specif-
ically, we introduce a model where the nesting structure is placed at the level of the
underlying CRMs, which leads to greater flexibility while preserving tractability. In or-
der to define the new process, let MX be the space of boundedly finite measures on X
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Figure 1: Nested σ-stable mixture models: Estimated densities (blue) and true densities

(red), for X(100)
1 in Panel (a) and for X(100)

2 in Panel (b).

and Q the probability measure on MX induced by µ̃0 ∼ CRM[ν0;X], where ν0 is as in
(6). Hence, for any measurable subset A of X

E
[
e−λµ̃0(A)

]
=

∫

MX

e−λm(A) Q(dm) = exp
{
− c0 Q0(A)

∫ ∞

0

(
1− e−λs

)
ρ0(s) ds

}
.

Definition 1. Let q̃ ∼ NRMI[ν;MX], with ν(ds, dm) = cρ(s)dsQ(dm). Random prob-
ability measures (p̃1, p̃2) are a latent nested process if

p̃! =
µ! + µS

µ!(X) + µS(X)
# = 1, 2, (14)

where (µ1, µ2, µS) | q̃ ∼ q̃2 × q̃S and q̃S is the law of a CRM[ν∗0 ;X], where ν∗0 = γ ν0, for
some γ > 0. Henceforth, we will use the notation (p̃1, p̃2) ∼ LNP(γ, ν0, ν).

Furthermore, since

p̃! = w!
µ!

µ!(X)
+ (1− w!)

µS

µS(X)
, where w! =

µ!(X)

µS(X) + µ!(X)
, (15)

each p̃! is a mixture of two components: an idiosyncratic component p! := µ!/µ!(X) and
a shared component pS := µS/µS(X). Here µS preserves heterogeneity across samples
even when shared values are present. The parameter γ in the intensity ν∗0 tunes the
effect of such a shared CRM. One recovers model (1) as γ → 0. A generalization to
nested CRMs of the results given in Propositions 1 and 2 is provided in the following
proposition, whose proof is omitted.

Proposition 3. If (µ1, µ2) | q̃ ∼ q̃2, where q̃ ∼ NRMI[ν;MX] as in Definition 1, then

π∗
1 = P(µ1 = µ2) = c

∫ ∞

0
u e−cψ(u) τ2(u) du (16)
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and

E
[ ∫

M2
X

f1(m1) f2(m2) q̃
2(dm1, dm2)

]

= π∗
1

∫

MX

f1(m) f2(m)Q(dm) + (1− π∗
1)

2∏

!=1

∫

MX

f!(m)Q(dm)

(17)

for all measurable functions f1, f2 : MX → R+.

Proposition 4. If (p̃1, p̃2) ∼ LNP(γ, ν0, ν), then P(p̃1 = p̃2) = P(µ1 = µ2).

Proposition 4, combined with {p̃1 = p̃1} = {µ1 = µ2} ∪ ({p̃1 = p̃2} ∩ {µ1 *= µ2}),
entails P[{p̃1 = p̃2} ∩ {µ1 *= µ2}] = 0 namely

P({p̃1 = p̃2} ∩ {µ1 = µ2}) + P({p̃1 *= p̃2} ∩ {µ1 *= µ2}) = 1

and, then, the random variables 1 {p̃1 = p̃2} and 1 {µ1 = µ2} coincide almost surely.
As a consequence the posterior distribution of 1 {µ1 = µ2} can be readily employed to
test equality between the distributions of the two samples. Further details are given in
Section 5.

For analytic purposes, it is convenient to introduce an augmented version of the la-
tent nested process, which includes latent indicator variables. In particular, (Xi,1, Xj,2) |
(p̃1, p̃2) ∼ p̃1 × p̃2, with (p̃1, p̃2) ∼ LNP(γ, ν0, ν) if and only if

(Xi,1, Xj,2) | (ζi,1, ζj,2, µ1, µ2, µS)
ind∼ pζi,1 × p2ζj,2

(ζi,1, ζj,2) | (µ1, µ2, µS) ∼ Bern(w1)× Bern(w2)

(µ1, µ2, µS) | (q̃, q̃S) ∼ q̃2 × q̃S .

(18)

The latent variables ζi,! indicate which random probability measure is actually gener-
ating each observation Xi,!, for i = 1, . . . , n!. More specifically this random probability
measure coincides with p! if the corresponding label ζi,! = 1, otherwise, if ζi,! = 0,
this is p0 = pS . We will further write ζ∗

! = (ζ∗1,!, . . . , ζ
∗
k!,!

) to denote the latent vari-
ables that are associated to the k! distinct clusters, either shared or sample-specific,
for # = 0, 1, 2. Moreover, k̄! := |ζ∗

! | and define k̄ := k̄0 + k̄1 + k̄2. With / denoting
the component-wise multiplication of vectors, the frequencies corresponding to groups
labeled ζi,! = 1 will be denoted by n̄! := n! / ζ∗

! and q̄! := q! / ζ∗
0 , with n̄! = |n̄!|

and q̄! = |q̄!|, for # = 1, 2. Finally, if q̄ := q̄1 + q̄2 and n̄0 = |q̄|, the overall number
of observations having label 1 will be indicated by n̄ = n̄0 + n̄1 + n̄2. For instance,

if X(7)
1 = (0.5, 2, −1, 5, 5, 0.5, 0.5), X(4)

2 = (5, −2, 0.5, 0.5), ζ1 = (0, 1, 0, 1, 1, 0, 0)
and ζ2 = (1, 1, 0, 0), the labels attached to the 5 distinct observations are ζ∗

1 = (1, 0),
ζ∗
2 = (1) and ζ∗

0 = (0, 1). From this, one has k̄1 = k̄2 = k̄0 = 1, n̄1 = (1, 0), n̄2 = 1,
q̄1 = (0, 2) and q̄2 = (0, 1).
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Theorem 2. The random partition induced by the samples X(n1)
1 and X(n2)

2 drawn
from (p̃1, p̃2) ∼ LNP(γ, ν0, ν), as in (18), is characterized by the pEPPF

Π(N)
k (n1,n2, q1, q2) = π∗

1
ck0(1 + γ)k

Γ(N)

×
∫ ∞

0
sN−1e−(1+γ)c0ψ0(s)

2∏

!=1

k!∏

j=1

τ (0)nj,!
(s)

k0∏

j=1

τ (0)qj,1+qj,2(s)ds

+ (1− π∗
1)

∑

(∗)

I2(n1,n2, q1 + q2, ζ
∗),

(19)

where

I2(n1,n2, q1 + q2, ζ
∗) =

ck0γ
k−k̄

Γ(n1)Γ(n2)

∫ ∞

0

∫ ∞

0
un1−1vn2−1e−γc0ψ0(u+v)−c0(ψ0(u)+ψ0(v))

×
k1∏

j=1

τ (0)nj,1
(u+ (1− ζ∗j,1)v)

k2∏

j=1

τ (0)nj,2
((1− ζ∗j,2)u+ v)

×
k0∏

j=1

τ (0)qj,1+qj,2(u+ v)dudv

and the sum in the second summand on the right hand side of (19) runs over all the

possible labels ζ∗ ∈ {0, 1}k1+k2 .

The pEPPF (19) is a convex linear combination of an EPPF corresponding to full
exchangeability across samples and one corresponding to unconditional independence.
Heterogeneity across samples is preserved even in the presence of shared values. The
above result is stated in full generality, and hence may seem somewhat complex. How-
ever, as the following examples show, when considering stable or gamma random mea-
sures, explicit expressions are obtained. When γ → 0 the expression (19) reduces to
(13), which means that the nested process is achieved as a special case.

Example 1. Based on Theorem 2 we can derive an explicit expression of the partition
structure of latent nested σ-stable processes. Suppose ρ(s) = σ s−1−σ/Γ(1 − σ) and
ρ0(s) = σ0 s−1−σ0/Γ(1− σ0), for some σ and σ0 in (0, 1). In such a situation it is easy

to see that π∗
1 = 1 − σ, τ (0)q (u) = σ0(1 − σ0)q−1uσ0−q and ψ0(u) = uσ0 . Moreover let

c0 = c = 1, since the total mass of a stable process is redundant under normalization.
If we further set

Jσ0,γ(H1, H2;H) :=

∫ 1

0

wH1−1(1− w)H2−1

[γ + wσ0 + (1− w)σ0 ]H
dw,

for any positive H1, H2 and H, and

ξa(n1,n2, q1 + q2) :=
2∏

!=1

k!∏

j=1

(1− a)nj,!−1

k0∏

j=1

(1− a)qj,1+qj,2−1,
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for any a ∈ [0, 1), then the partially exchangeable partition probability function in (19)
may be rewritten as

Π(N)
k (n1,n2, q1, q2) = σk−1

0 Γ(k)ξσ0(n1,n2, q1 + q2)
{ (1− σ)

Γ(N)

+
σ

Γ(n1)Γ(n2)

∑

(∗)

γk−k̄ Jσ0,γ(n1 − n̄1 + k̄1σ0, n2 − n̄2 + k̄2σ0; k)
}
.

The sum with respect to ζ∗ can be evaluated and it turns out that

Π(n)
k (n1,n2, q1 + q2) =

σk−1
0 Γ(k)

Γ(n)
ξσ0(n1,n2, q1 + q2)

[
1− σ + σγk0

B(k1σ0, k2σ0)

B(n1, n2)

×
∫ 1

0

∏k1

j=1(1 + γwnj,1−σ0)
∏k2

i=1[1 + γ(1− w)]ni,2−σ0

[
γ + wσ0 + (1− w)σ0

]k Beta(dw; k1σ0, k2σ0)
]
,

where Beta( · ; a, b) stands for the beta distribution with parameters a and b, while
B(p, q) is the beta function with parameters p and q. As it is well-known,
σk−1
0 Γ(k) ξσ0(n1,n2, q1+q2)/Γ(N) is the exchangeable partition probability function of

a normalized σ0-stable process. Details on the above derivation, as well as for the follow-
ing example, can be found in the Supplementary Material (Camerlenghi et al., 2019b).

Example 2. Let ρ(s) = ρ0(s) = e−s/s. Recall that τ (0)q (u) = Γ(q)/(u + 1)q and
ψ0(u) = log(1+u), furthermore π∗

1 = 1/(1+c) by standard calculations. From Theorem 2
we obtain the partition structure of the latent nested Dirichlet process

Π(N)
k (n1,n2, q1, q2) = ξ0(n1,n2, q1 + q2)c

k
0

{ 1

1 + c

(1 + γ)k

(c0(1 + γ))N

+
c

1 + c

∑

(∗)

γk−k̄

(α)n2(β)n1

3F2(c0 + n̄2,α, n1;α+ n2,β + n1; 1)
}
,

where α = (γ+1)c0+n1− n̄1, β = c0(2+ γ) and 3F2 is the generalized hypergeometric
function. In the same spirit as in the previous example, the first element in the linear
convex combination above ck0(1+γ)k ξ0(n1,n2, q1+q2)/(c0(1+γ))N is nothing but the
Ewens’ sampling formula, i.e. the exchangeable partition probability function associated
to the Dirichlet process whose base measure has total mass c0(1 + γ).

4 Markov Chain Monte Carlo algorithm

We develop a class of MCMC algorithms for posterior computation in latent nested
process models relying on the pEPPFs in Theorem 2, as they tended to be more effective.
Moreover, the sampler is presented in the context of density estimation, where

(Xi,1, Xj,2) | (θ(n1)
1 ,θ(n2)

2 )
ind∼ h( · ; θi,1) × h( · ; θj,2) (i, j) ∈ N×N

and the vectors θ(n!)
! = (θ1,!, . . . , θn!,!), for # = 1, 2 and with each θi,! taking values in

Θ ⊂ Rb, are partially exchangeable and governed by a pair of (p̃1, p̃2) as in (18). The
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discreteness of p̃1 and p̃2 entails ties among the latent variables θ(n1)
1 and θ(n2)

2 that
give rise to k = k1 + k2 + k0 distinct clusters identified by

• the k1 distinct values specific to θ
(n1)
1 , i.e. not shared with θ(n2)

2 . These are denoted
as θ∗

1 := (θ∗1,1, . . . , θ
∗
k1,1

), with corresponding frequencies n1 and labels ζ∗
1 ;

• the k2 distinct values specific to θ
(n2)
2 , i.e. not shared with θ(n1)

1 . These are denoted
as θ∗

2 := (θ∗1,2, . . . , θ
∗
k2,2

), with corresponding frequencies n2 and labels ζ∗
2 ;

• the k0 distinct values shared by θ(n1)
1 and θ(n2)

2 . These are denoted as θ∗
0 :=

(θ∗1,0, . . . , θ
∗
k0,0

), with q! being their frequencies in θ(n!)
! and shared labels ζ∗

0 .

As a straightforward consequence of Theorem 2, one can determine the joint distribution
of the data X, the corresponding latent variables θ and labels ζ as follows

f(x | θ)Π(N)
k (n1,n2, q1, q2)

2∏

!=0

k!∏

j=1

Q0(dθ
∗
j,!), (20)

where Π(N)
k is as in (19) and, for Cj,! := {i : θi,! = θ∗j,!} and Cr,!,0 := {i : θi,! = θ∗r,0},

f(x | θ) =
2∏

!=1

k!∏

j=1

∏

i∈Cj,!

h(xi,!; θ
∗
j,!)

k0∏

r=1

∏

i∈Cr,!,0

h(xi,!; θ
∗
r,0).

We do now specialize (20) to the case of latent nested σ-stable processes described in

Example 1. The Gibbs sampler is described just for sampling θ(n1)
1 , since the structure

is replicated for θ(n2)
2 . To simplify the notation, v−j denotes the random variable v after

the removal of θj,1. Moreover, with T = (X,θ, ζ,σ,σ0,φ), we let T−θj,1 stand for T
after deleting θj,1, I = 1{p̃1 = p̃2} and Q∗

j (dθ) = h(xj,1; θ)Q0(dθ)/
∫
Θ h(xj,1; θ)Q0(dθ).

Here φ denotes a vector of hyperparameters entering the definition of the base measure
Q0. The updating structure of the Gibbs sampler is as follows

(1) Sample θj,1 from

P(θj,1 ∈ dθ |T−θj,1 , I = 1) = w0Q
∗
j,1(dθ) +

∑

{i: ζ∗,−j
i,0 =ζj,1}

wi,0δ{θ∗,−j
i,0 }(dθ)

+
∑

{i: ζ∗,−j
i,1 =ζj,1}

wi,1δ{θ∗,−j
i,1 }(dθ) +

∑

{i: ζ∗,−j
i,2 =ζj,1}

wi,2δ{θ∗,−j
i,2 }(dθ),

P(θj,1 ∈ dθ |T−θj,1 , I = 0) = w′
0Q

∗
j,1(dθ) +

∑

{i: ζ∗,−j
i,1 =ζj,1}

w′
i,1δ{θ∗,−j

i,1 }(dθ)

+ 1{0}(ζj,1)
[ ∑

{i: ζ∗,−j
i,2 =0}

w′
i,2δ{θ∗,−j

i,2 }(dθ) +
k0∑

r=1

w′
r,0δ{θ∗,−j

r,0 }(dθ)
]
,
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where

w0 ∝ γ1−ζj,1σ0 k−r

1 + γ

∫

Θ
h(xj,1; θ)Q0(dθ), wi,! ∝ (n−j

i,! − σ0)h(xj,1; θ
∗,−j
i,! ) # = 1, 2,

wi,0 ∝ (q−j
i,1 + q−j

i,2 − σ0)h(xj,1; θ
∗,−j
i,0 )

and, with a1 = n1 − (n̄−j
1 + ζj,1) + k̄−j

1 σ0 and a2 = n2 − n̄2 + k̄2σ0, one further has

w′
0 ∝ γ1−ζj,1σ0k

−jJσ0(a1 + ζj,1σ0, a2; k
−j + 1)

∫

Θ
h(xj,1; θ)Q0(dθ),

w′
i,! ∝ Jσ0(a1, a2; k

−j) (n−j
i,! − σ0)h(xj,!; θ

∗,−j
j,! ) # = 1, 2,

w′
i,0 ∝ Jσ0(a1, a2; k

−j) (q−j
i,1 + q−j

i,2 − σ0)h(xj,1; θ
∗,−j
i,0 ).

(2) Sample ζ∗j,1 from

P(ζ∗j,1 = x | T−ζ∗
j,1
, I = 1) =

γ1−x

1 + γ
,

P(ζ∗j,1 = x | T−ζ∗
j,1
, I = 0) ∝ γk−kx−k̄0−k̄2Jσ0(n1 − nx + kxσ0, n2 − n̄2 + k̄2σ0; k),

where x ∈ {0, 1}, kx := x + |ζ∗,−j
1 | and nx = nj,1x + |ζ∗,−j

1 / n−j
1 |, where a / b

denotes the component-wise product between two vectors a, b. Moreover, it should be
stressed that, conditional on I = 0, the labels ζ∗r,0 are degenerate at x = 0 for each
r = 1, . . . , k0.

(3) Update I from

P(I = 1 | T ) = 1− P(I = 0 |T ) =
(1− σ)B(n1, n2)

(1− σ)B(n1, n2) + σJσ0(ā1, ā2; k)(1 + γ)k
,

where ā1 = n1 − n̄1 + k̄1σ0 and ā2 = n2 − n̄2 + k̄2σ0. This sampling distribution holds

true whenever θ(n1)
1 and θ(n2)

2 do not share any value θ∗j,0 with label ζ∗j,0 = 1. If this
situation occurs, then P(I = 1 | T ) = 1.

(4) Update σ and σ0 from

f(σ0 |T−σ0 , I) ∝ J1−I
σ0

(ā1, ā2; k) σ
k−1
0 κ0(σ0)

2∏

!=1

k!∏

j=1

(1− σ0)nj,!−1

k0∏

r=1

(1− σ0)qr,1+qr,2−1,

f(σ |T−σ, I) ∝ κ(σ)
[
(1− σ)1{1}(I) + σ1{0}(I)

]
,

where κ and κ0 are the priors for σ and σ0, respectively.
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(5) Update γ from

f(γ |T−γ , I) ∝ γk−k̄ g(γ)
[ 1− σ

(1 + γ)k
1{1}(I) + σ Jσ0(ā1, ā2; k)1{0}(I)

]
,

where g is the prior distribution for γ.

Finally, the updating of the hyperparameters depends on the specification of Q0 that
is adopted. They will be displayed in the next section, under the assumption that Q0

is a normal/inverse-Gamma.

The evaluation of the integral Jσ0(h1, h2;h) is essential for the implementation of
the MCMC procedure. This can be accomplished through numerical methods based on
quadrature. However, computational issues arise when h1 and h2 are both less than 1
and the integrand defining Jσ0 is no longer bounded, although still integrable. For this
reason we propose a plain Monte Carlo approximation of Jσ0 based on observing that

Jσ0(h1, h2;h) = B(h1, h2) E
{ 1

[γ +W σ0 + (1−W )σ0 ]h

}
,

with W ∼ Beta(h1, h2). Then generating an i.i.d. sample {Wi}Li=1 of length L, with
Wi ∼ W , we get the following approximation

Jσ0(h1, h2;h) ≈ B(h1, h2)
1

L

L∑

i

1

[γ +W σ0
i + (1−Wi)σ0 ]h

.

5 Illustrations

The algorithm introduced in Section 4 is employed here to estimate dependent random
densities. Before implementation, we need first to complete the model specification of
our latent nested model (14). Let Θ = R×R+ and h(·; (M,V )) be Gaussian with mean
M and variance V . Moreover, as customary, Q0 is assumed to be a normal/inverse-
Gamma distribution

Q0(dM, dV ) = Q0,1(dV )Q0,2(dM |V )

with Q0,1 an inverse-Gamma probability distribution with parameters (s0, S0) and Q0,2

a Gaussian with mean m and variance τV . Furthermore, the hyperpriors are

τ−1 ∼ Gam(w/2,W/2), m ∼ N(a,A),

for some real parameters w > 0, W > 0, A > 0 and a ∈ R. In the simulation studies we
have set (w,W ) = (1, 100), (a,A) = ((n1X̄ +n2Ȳ )/(n1+n2), 2). The parameters τ and
m are updated on the basis of their full conditional distributions, which can be easily
derived, and correspond to

L (τ |T−τ , I) ∼ IG
(w
2
+

k

2
,
W

2
+

2∑

!=0

k!∑

i=1

(M∗
i,! −m)2

2V ∗
i,!

)
,
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L (m|T−m, I) ∼ N
(R

D
,
1

D

)
,

where

R =
a

A
+

2∑

!=0

k!∑

i=1

M∗
i,!

τV ∗
i,!

, D =
1

A
+

2∑

!=0

k!∑

i=1

1

τV ∗
i,!

.

The model specification is completed by choosing uniform prior distributions for σ0 and
σ. In order to overcome the possible slow mixing of the Pólya urn sampler, we include
the acceleration step of MacEachern (1994) and West et al. (1994), which consists in
resampling the distinct values (θ∗i,!)

k!
i=1, for # = 0, 1, 2, at the end of every iteration. The

numerical outcomes displayed in the sequel are based on 50, 000 iterations after 50, 000
burn-in sweeps.

Throughout we assume the data X(n1)
1 and X(n2)

2 to be independently generated by
two densities f1 and f2. These will be estimated jointly through the MCMC procedure
and the borrowing of strength phenomenon should then allow improved performance.
An interesting byproduct of our analysis is the possibility to examine the clustering
structure of each distribution, namely the number of components of each mixture.
Since the expression of the pEPPF (19) consists of two terms, in order to carry out
posterior inference we have defined the random variable I = 1{µ1=µ2}. This random
variable allows to test whether the two samples come from the same distribution or
not, since I = 1{p̃1=p̃2} almost surely (see also Proposition 4). Indeed, if interest lies in
testing

H0 : p̃1 = p̃2 versus H1 : p̃1 *= p̃2,

based on the MCMC output, it is straightforward to compute an approximation of the
Bayes factor

BF =
P(p̃1 = p̃2|X)

P(p̃1 *= p̃2|X)

P(p̃1 *= p̃2)

P(p̃1 = p̃2)
=

P(I = 1|X)

P(I = 0|X)

P(I = 0)

P(I = 1)

leading to acceptance of the null hypothesis if BF is sufficiently large. In the following we
first consider simulated datasets generated from normal mixtures and then we analyze
the popular Iris dataset.

5.1 Synthetic examples

We consider three different simulated scenarios, whereX(n1)
1 andX(n2)

2 are independent
and identically distributed draws from densities that are both two component mixtures
of normals. In both cases (s0, S0) = (1, 1) and the sample size is n = n1 = n2 = 100.

First consider a scenario where X(n1)
1 and X(n2)

2 are drawn from the same density

Xi,1 ∼ Xj,2 ∼ 1

2
N(0, 1) +

1

2
N(5, 1).

The posterior distributions for the number of mixture components, respectively denoted
by K1 and K2 for the two samples, and for the number of shared components, denoted
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by K12, are reported in Table 1. The maximum a posteriori estimate is highlighted in
bold. The model is able to detect the correct number of components for each distribu-
tion as well as the correct number of components shared across the two mixtures. The
density estimates, not reported here, are close to the true data generating densities. The

Bayes factor to test equality between the distributions of X(n1)
1 and X(n2)

2 has been
approximated through the MCMC output and coincides with BF = 5.85, providing
evidence in favor of the null hypothesis.

scen. # comp. 0 1 2 3 4 5 6 ≥ 7

I
K1 0 0 0.638 0.232 0.079 0.029 0.012 0.008
K2 0 0 0.635 0.235 0.083 0.029 0.011 0.007
K12 0 0 0.754 0.187 0.045 0.012 0.002 0.001

II
K1 0 0 0.679 0.232 0.065 0.018 0.004 0.002
K2 0 0 0.778 0.185 0.032 0.004 0.001 0
K12 0 0.965 0.034 0.001 0 0 0 0

III
K1 0 0 0.328 0.322 0.188 0.089 0.041 0.032
K2 0 0 0.409 0.305 0.152 0.073 0.034 0.027
K12 0 0.183 0.645 0.138 0.027 0.006 0.001 0

Table 1: Simulation study: Posterior distributions of the number of components in the
first sample (K1), in the second sample (K2) and shared by the two samples (K12)
corresponding to the three scenarios. The posterior probabilities corresponding to the
MAP estimates are displayed in bold.

Scenario II corresponds to samples X(n1)
1 and X(n2)

2 generated, respectively, from

Xi,1 ∼ 0.9N(5, 0.6) + 0.1N(10, 0.6) Xj,2 ∼ 0.1N(5, 0.6) + 0.9N(0, 0.6).

Both densities have two components but only one in common, i.e. the normal distribu-
tion with mean 5. Moreover, the weight assigned to N(5, 0.6) differs in the two cases.
The density estimates are displayed in Figure 2. The spike corresponding to the common
component (concentrated around 5) is estimated more accurately than the idiosyncratic
components (around 0 and 10, respectively) of the two samples nicely showcasing the
borrowing of information across samples. Moreover, the posterior distributions of the
number of components are reported in Table 1. The model correctly detects that each
mixture has two components with one of them shared and the corresponding distribu-
tions are highly concentrated around the correct values. Finally the Bayes factor BF to
test equality between the two distributions equals 0.00022 and the null hypothesis of
distributional homogeneity is rejected.

Scenario III consists in generating the data from mixtures with the same components

but differing in their weights. Specifically,X(n1)
1 andX(n2)

2 are drawn from, respectively,

Xi,1 ∼ 0.8N(5, 1) + 0.2N(0, 1) Xj,2 ∼ 0.2N(5, 1) + 0.8N(0, 1),
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Figure 2: Simulated scenario II (mixtures of normal distributions with a common com-

ponent): the estimated densities (blue) and true densities (red) generating X(100)
1 in

Panel (a) and X(100)
2 in Panel (b).

The posterior distribution of the number of components is again reported in Table 1 and
again the correct number is identified, although in this case the distributions exhibit a
higher variability. The Bayes factor BF to test equality between the two distributions is
0.54, providing weak evidence in favor of the alternative hypothesis that the distributions
differ.

5.2 Iris dataset

Finally, we examine the well known Iris dataset, which contains several measurements
concerning three different species of Iris flower: setosa, versicolor, virginica. More specif-
ically, we focus on petal width of those species. The sample X has size n1 = 90, con-
taining 50 observations of setosa and 40 of versicolor. The second sample Y is of size
n2 = 60 with 10 observations of versicolor and 50 of virginica.

Since the data are scattered across the whole interval [0, 30], we need to allow for large
variances and this is obtained by setting (s0, S0) = (1, 4). The model neatly identifies
that the two densities have two components each and that one of them is shared as
showcased by the posterior probabilities reported in Table 2. As for the Bayes factor,
we obtain BF ≈ 0 leading to the unsurprising conclusion that the two samples come
from two different distributions. The corresponding estimated densities are reported in
Figure 3.

We have also monitored the convergence of the algorithm that has been implemented.
Though we here provide only details for the Iris dataset, we have conducted similar
analyses also for each of the illustrations with synthetic datasets in Section 5.1. Notably,
all the examples with simulated data have experienced even better performances than
those we are going to display henceforth. Figure 4 depicts the partial autocorrelation
function for the sampled parameters σ and σ0. The partial autocorrelation function
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# comp. 0 1 2 3 4 5 6 ≥ 7
K1 0 0 0.466 0.307 0.141 0.055 0.020 0.011
K2 0 0.001 0.661 0.248 0.068 0.017 0.004 0.001
K12 0 0.901 0.093 0.006 0 0 0 0

Table 2: Real data: Posterior distributions of the number of components in the first
sample (K1), in the second sample (K2) and shared by the two samples (K12). The
posterior probabilities corresponding to the MAP estimates are displayed in bold.

Figure 3: Iris dataset: the estimated densities for the first sample X (observations of
setosa and versicolor) are shown in red, while the estimated densities for the second
sample Y (observations of versicolor and virginica) are shown in blue.

apparently has an exponential decay and after the first lag exhibits almost negligible
peaks.

We have additionally monitored the two estimated densities near the peaks, which
identify the mixtures’ components. More precisely, Figure 5(a) displays the trace plots
of the density referring to the first sample at the points 3 and 13, whereas Figure 5(b)
shows the trace plots of the estimated density function of the second sample at the
points 13 and 21.

6 Concluding remarks

We have introduced and investigated a novel class of nonparametric priors featuring
a latent nested structure. Our proposal allows flexible modeling of heterogeneous data
and deals with problems of testing distributional homogeneity in two-sample problems.
Even if our treatment has been confined to the case d = 2, we stress that the re-
sults may be formally extended to d > 2 random probability measures. However, their
implementation would be more challenging since the marginalization with respect to
(p̃1, . . . , p̃d) leads to considering all possible partitions of the d random probability mea-
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Figure 4: Iris dataset: plots of the partial autocorrelation functions for the parameters
σ (a) and σ0 (b).

Figure 5: Iris dataset. Panel (a): trace plots of the estimated density, say f1(x), gener-
ating X at points x = 3 and x = 13; panel (b): trace plots of the estimated density, say
f2(x), generating Y at the points x = 13 and x = 21.

sures. While sticking to the same model and framework which has been shown to be
effective both from a theoretical and practical point of view in the case d = 2, a more
computationally oriented approach would be desirable in this case. There are two pos-
sible paths. The first, along the lines of the original proposal of the nDP in Rodŕıguez
et al. (2008), consists in using tractable stick-breaking representations of the underlying
random probabilities, whenever available to devise an efficient algorithm. The second,
which needs an additional significant analytical step, requires the derivation of a pos-
terior characterization of (p̃1, . . . , p̃d) that allows sampling of the trajectories of latent
nested processes and build up algorithms for which marginalization is not needed. Both
will be the object of our future research.
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Supplementary Material

Supplementary material to Latent nested nonparametric priors
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Invited Discussion

Mario Beraha†∗ and Alessandra Guglielmi∗

We thank the authors (also denoted by Camerlenghi et al. hereafter) for a very inter-
esting paper, which addresses the problem of testing homogeneity between two popula-
tions/groups. They start from pointing out a drawback of the Nested Dirichlet Process
(NDP) by Rodriguez et al. (2008), i.e. its degeneracy to the exchangeable case: when
the NDP is a prior for two population distributions (or for the corresponding mixing
measures in mixture models), it forces homogeneity across the two samples in case of ties
across samples at the observed or latent level. In fact, as pointed out by Camerlenghi et
al., the NDP does not accommodate for shared atoms across populations. This limita-
tion, which is clear from the definition of NDP in Rodriguez et al. (2008), has a strong
impact on the inference: as showed in this paper, if two populations share at least one
common latent variable in the mixture model, the posterior distribution would either
identify the two random measures associated to the populations as completely different
(i.e. it would not recover the shared components) or it would identify them as identi-
cal. The need for a more flexible framework is elegantly addressed by the authors who
propose a novel class of Latent Nested Nonparametric priors, where a shared random
measure is added to the draws from a nested random measure, hence accommodating
for shared atoms. There are two key ideas in their model: (i) nesting discrete random
probability measures as in the case of the nested Dirichlet process by Rodriguez et al.
(2008), and (ii) contaminating the population distributions with a common component
as in Müller et al. (2004) (or as in Lijoi et al., 2014). The latter yields dependency
among the random probability measures of the populations and avoids the degeneracy
issue pointed out by the authors, while the former accounts for testing homogeneity in
two-sample problems.

As a comment on the computational perspective, we note that their Markov Chain
Monte Carlo (MCMC) method relies on the analytical expression of the Partially Ex-
changeable Partition Probability Function (pEPPF), which the authors obtain in the
special case of I = 2 populations. However, the sampling scheme poses significant com-
putational issues even in the case of I = 2, needing to rely on Monte Carlo integration
to approximate some intractable integrals.

In this comment, we address the problem of extending their mixture model class for
testing homogeneity of I populations, with I > 2, according to the first path the au-
thors mention in their concluding remarks. In particular, we assume the mixture model
for I populations/groups, when the mixing random probability measures (p̃1, . . . , p̃I)
have a prior distribution that is the Latent Nested Dirichlet process (LNDP) measure.
This prior is more manageable than their general proposal, thanks to the stick-breaking
representation of all the random probability measures involved, which can be easily
truncated to give an approximation and is straightforward to compute. Here, we apply

∗Politecnico di Milano, Milano, Italy, mario.beraha@polimi.it, alessandra.guglielmi@polimi.it
†Also affiliated with Università degli Studi di Bologna
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the Latent Nested Dirichlet Process mixtures to simulated datasets from this paper,
while the authors adopt a different latent nested nonparametric prior for I = 2 popu-
lations. By using the truncation approximation of stick breaking random probabilities,
we do not need to resort to the pEPPF anymore and we are able to extend the analysis
to cases with more than two populations.

However, our experience shows that this vanilla-truncation MCMC scheme does not
scale well with I: the computational burden becomes demanding even for moderate val-
ues of I, which are common when testing homogeneity for different groups, for example
while comparing a treatment in a small group of hospitals. If one assumes the LNDP as
a prior for the mixing random probability measures (p̃1, . . . , p̃I), we have showed that
we really need to derive either the posterior characterization of the LNDP, as suggested
by the authors, or significantly more efficient truncation-based schemes.

1 Latent Nested Dirichlet Process Mixture Models

In this section, we make explicit the details of the definition of the Latent Nested Process
that was introduced by the authors, and then consider the Latent Nested Dirichlet
Process as the mixing distributions for I different populations. We also apply this model
to synthetic data.

In what follows, we use the same acronyms as the authors, specifically NRMI and
CRM for normalized random measure with independent increments and completely
random measure respectively.

Consider the (Euclidean) space Θ and let MΘ be the space of all bounded mea-
sures on Θ. Let q̃ be a random probability measure, q̃ ∼ NRMI[ν,MΘ] with intensity
ν(ds, dm) = cρ(s)dsQ(dm); here c > 0, ρ is a function defined on R+ under conditions

∫ +∞

0
min{1, s}ρ(s)ds < +∞,

∫ +∞

0
ρ(s)ds = +∞,

and Q is a probability measure on MΘ. We skip the details on the σ-algebras attached
to the spaces we consider. We know that q̃ =

∑∞
j=1 ω̃jδη̃j , where {(ω̃j , η̃j)} are the

points of a Poisson process with mean intensity ν(ds, dm). In particular, η̃j
iid∼ Q, i.e.

each η̃j is itself a CRM on Θ with Lévy intensity ν0(ds, dθ) = c0ρ0(s)dsQ0(dθ), which

implies η̃j =
∑∞

k=1 J
j
kδθj

k
, where, for each j, {(Jj

k , θ
j
k), k ≥ 1} are the points of a Poisson

process with mean intensity ν0(ds, dθ). Here c0 > 0, ρ0 is a function on R+ under the
same conditions as ρ(s) and Q0 is a probability measure on Θ. Finally, let qS be the
law of µS , a CRM on Θ, with Lévy intensity ν∗0 = γν0, where γ > 0.

Similarly to the authors, we define a Latent Nested Process as a collection of random
probability measures p̃1, p̃2, . . . , p̃I on Θ such that

p̃i =
µi + µs

µi(X) + µs(X)
= wi

µi

µi(X)
+ (1− wi)

µS

µS(X)
, i = 1, . . . , I,

where
µ1, µ2, . . . , µI , µS |q̃, qS ∼ q̃ × q̃ . . .× q̃ × qS .
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In particular, if we set ρ(s) = ρ0(s) = s−1e−s, s > 0, we obtain the Latent Nested
Dirichlet Process; since the µi’s and µS are independent gamma processes in this case,
the µi’s also being iid, and

pi =
µi

µi(X)
, i = 1, . . . , I, pS =

µS

µS(X)
,

i.e. pi and pS are draws from two independent Dirichlet processes, we have

pi | G
iid∼ G =

∞∑

l=1

πlδG∗
l
, i = 1, . . . , I, (1.1)

pS =
∞∑

h=1

wS
h δθS

h
, (1.2)

where G is a Nested Dirichlet process, i.e. a DP whose atoms are DPs. We use notation
(p̃1, . . . , p̃I) ∼ LNDP (γ, ν0, ν) for

p̃i = wipi + (1− wi)pS , i = 1, . . . , I.

Note that each p̃i is a mixture of two components: an idiosyncratic component pi and a
shared component pS , where the latter preserves heterogeneity across populations even
when shared values are present. As pointed out by the authors, the random indicator
functions of the two events p̃i = p̃i′ and pi = pi′ coincide a.s., if i *= i′. This latter
event has positive prior probability for any couple of distinct indexes i, i′ in {1, . . . , I}.
Summing up, this prior induces a prior distribution for the parameter ρ, the partition
of population indexes {1, 2, . . . , I}: two populations are clustered together if they share
the same mixing measure.

Now, suppose that we have data from I different populations (e.g. measurements
on patients in different hospitals). Let yji, j = 1, . . . , ni, be observations for different
subjects in population i, for i = 1, . . . , I. We assume that, for any i = 1, . . . , I,

yji | p̃i
iid∼

∫

Θ
f(yji | θ)p̃i(dθ), j = 1, . . . , ni

(p̃1, . . . p̃I) ∼ LNDP (γ, ν0, ν).
(1.3)

For computing posterior inference, instead of considering model (1.3), we consider a
truncation approximation of the stick-breaking representation of the LNDP, similarly
as in Rodriguez et al. (2008). In particular, instead of (1.1)-(1.2), we consider the pi’s
iid from a L-H truncation of a nested Dirichlet process, i.e.,

pi|G
iid∼

L∑

l=1

πlδG∗
l
, πl = νl

l−1∏

s=1

(1− νs), νl
iid∼ Beta(1, c) l = 1, . . . , L− 1, νL = 1

G∗
l =

H∑

h=1

wlhδθ∗
lh
, wlh =ulh

h−1∏

s=1

(1− uls), ulh
iid∼ Beta(1, c0) h=1, . . . , H − 1, ulH =1

θ∗lh
iid∼ Q0 for all l, h
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and pS itself is an H–truncated Dirichlet Process of parameters γc0 and Q0. Since wi

is defined from the total masses of independent gamma processes, then

wi =
µi(Θ)

µi(Θ) + µS(Θ)
∼ Beta(c0, γc0), i = 1, . . . , I.

This truncation approximation could be exploited to design blocked Gibbs sampling
schemes as in Ishwaran and James (2001), or more general truncation schemes (see
the references in Argiento et al., 2016); in the next section we use this truncation
approximation in order to write a JAGS code to fit the data from the examples.

2 Simulation Study

We have fitted the truncated Latent Nested Dirichlet Process mixture model to sim-
ulated data via JAGS, using L = 30 and H = 50. The parametric kernel f(y|θ)
in (1.3) is the unidimensional Gaussian density with mean θ and variance σ2, i.e.
θ = (µ,σ). For every simulated dataset, we have considered the base measure Q0(µ,σ) =
N

(
0,λσ2

)
×U(σ | 0, 2), with λ = 10. Moreover we set c = c0 = 1 and let γ ∼ U(0.25, 5).

Chains were run for 10,000 iterations after 15,000 iterations of adaptation and 5,000
iterations of burn-in, thinning every 10 iterations for a final sample size equal to 1,000.

First, we considered two of the simulated scenarios examined in the paper, specifi-
cally scenarios I and II, and we simulated n1 = n2 = 100 observations from each group.
Scenario I corresponds to full exchangeability across two groups of data, i.e.

yj1, yj2
iid∼ 0.5N (0, 1) + 0.5N (5, 1),

while scenario II corresponds to partial exchangeability with a shared component be-
tween the populations

yj1
iid∼ 0.9N (5, 0.6) + 0.1N (10, 0.6) yj2

iid∼ 0.1N (5, 0.6) + 0.9N (0, 0.6).

Both scenarios were tested in the paper under the same Gaussian kernel we consider,
with a latent nested σ-stable mixture model instead of the LNDP as a prior for the mix-
ing distributions. We have considered another simulated dataset from I = 3 populations,
with n1 = n2 = n3 = 100, that is

yj1
iid∼ 0.2N (5, 0.6)+0.8N (0, 0.6) yj2

iid∼ 0.2N (5, 0.6)+0.8N (0, 0.6) yj3
iid∼N (−3, 0.6),

which corresponds to full exchangeability across populations 1, 2 but not across 1, 2, 3.

As pointed out by the authors, Bayes factors for homogeneity tests across popula-
tions are available as a by-product of their model. Homogeneity tests with hypotheses

H0 : p̃i = p̃j vs H1 : p̃i *= p̃j (2.1)

are performed by the authors in case (i, j) = (1, 2), by introducing the auxiliary variable
I{p̃1=p̃2} in their MCMC state space, so that draws from its posterior are straightfor-
wardly available. In our formulation of the LNDP mixture model instead, we resort to
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the cluster allocation variables of the nested process, sj = l iff pj = G∗
l for j = 1, . . . , I,

to perform the same tests.

In case of I > 2 populations, it is also possible to perform global tests on the cluster
structure arising among the populations. In our new (third) scenario, we are interested
in testing the presence of one single group against the presence of three groups (for
example), i.e.

H0 : p̃1 = p̃2 = p̃3 vs H1 : p̃1 *= p̃2 *= p̃3.

This type of tests are straightforward to obtain, since they are based on the EPPF
of the nested process. Indeed, a priori, P (p̃1 = p̃2 = p̃3) = P (ρ = {1, 2, 3}) while
P (p̃1 *= p̃2 *= p̃3) = P (ρ = {1}, {2}, {3}), where ρ is the partition of {1, 2, 3} arising
from the nested process; posterior odds are obtained once again monitoring the values of
the allocation variables sj ’s. The Bayes factor for this specific test equals 0.18, providing
evidence in favour of H1.

Scenario (i, j) BF01

I (1, 2) 1.00
II (1, 2) 0.08

3 populations
(1, 2) 1.27
(1, 3) 0.07
(2, 3) 0.09

Table 1: Bayes factors for hypotheses (2.1) under the three simulated scenarios.

Table 1 reports the Bayes factors for tests (2.1) computed via our MCMC, while
Figure 1 displays the predictive densities in each population. As far as the Bayes factors
are concerned, we have computed those corresponding to hypotheses (2.1) with (i, j) =
(1, 2) for scenarios I and II, while for the new scenario we consider all the possible
pairwise tests, i.e. (i, j) = (1, 2), (1, 3), (2, 3). The Bayes factors in Table 1 correctly
indicate strong evidence in favour of the alternative hypothesis for the second and
third test of the 3-populations scenario, as well as for scenario II, while for the other
tests there is no clear evidence in either direction. The BF01 for scenario II is much
larger than the corresponding Bayes factor computed by the authors, obtained under
the latent nested σ-stable mixture model; similarly, our BF01 for scenario I is equal
to 1, while the authors obtain a larger value, giving evidence in favour of the true
hypothesis. Of course, the mixing of the chain produced by JAGS, especially for scenario
I with equal mixture weights, is generally worse than any specifically-designed MCMC
scheme, as the one described by the authors. However, the density estimates (in black)
for scenario II in Figure 1(b) are accurate, unlike those in Figure 1(a) where we clearly
see that the JAGS code is not able to recover the weights in the true density in each
group, while recovering the locations. Predictive densities in Figure 1(c) are close to the
true population distributions in all the groups, even though we experienced the same
difficulties in recovering the true weights of all the mixtures because of the large number
of allocation parameters in the JAGS model, which makes sampling much less efficient.

To conclude our experiments, we have also designed a scenario with 4 populations
simulating ni = 100 observations from each true population distribution, which is a



M. Beraha and A. Guglielmi 1331

Figure 1: Density estimates for scenario I (a), II (b) and the new scenario with I = 3
populations (c). In every panel, the black line denotes the predictive density in the
population, while the red line is the density which generated the data.

mixture of two Gaussian components. The Bayes factors for hypotheses (2.1), computed

via our JAGS MCMC, are in agreement with the true underlying clustering, that is

{1, 2}, {3, 4}. However, even with as little as 100 observations per group, the MCMC

simulation took more than 8 hours to run. To make a comparison, in our experience,

the runtime of our JAGS code for I = 3 populations was about 2.5 times longer than

for I = 2 populations, and that for I = 4 groups was approximately 4 times larger than

for I = 2.

Despite the construction of ad-hoc Gibbs sampling schemes, possibly based on the

truncated stick breaking representation, which could greatly improve the performances

we reported, we believe that this model, generalized as we have presented here to the

case of I > 2 populations and using a truncation approximation for the LNDP, contains

inherent computational difficulties which are not easy to deal with. Assuming a larger

value for I, even though a moderate value as in case of, e.g., comparing a patient

treatment in a few dozens of hospitals, will still be challenging using the model we

have considered here, taking into action the suggestion Camerlenghi et al. made in their

concluding remarks.
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Invited Discussion

Vera Liu∗ and Peter Müller†

Camerlenghi et al. introduce two generalizations of the Nested Dirichilet Process (NDP)
(Rodŕıguez et al., 2008). The first generalization (nested non-parametric process, NP)
replaces the DP prior in the NDP construction by a normalized CRM (completley ran-
dom measure). The change is methodologically minor, but practically very important.
It allows substantially more flexibility with respect to the implied clusters. For any ap-
plication that focuses on the implied partitions, the NP would seem a more appropriate
choice than the NDP.

The major extension is introduced in the second generalization, the latent non-
parametric process (LNP). The LNP model allows two random distributions (sub-
populations), say p̃1 and p̃2, to share some related clusters and at the same time allows
some clusters that are distinct and specific to each subpopulation. In contrast, the NDP
only allows two cases: p̃1 and p̃2 are either identical or share no common atoms, i.e.,
implied clusters of experimental units would either be all in common across the two
sub-populations, or all distinct. The NP model inherits the same limitation. The LNP
maintains a positive probability for these two extreme cases, but also allows intermediate
configurations with some shared and some subpopulation-distinct clusters.

Using the notation from the paper, the random probability measure p̃! for sub-
population # is defined as p̃! = w!

µ!

µ!(X) + (1−w!)
µs

µs(X) with weight w! =
µ!(X)

µ!(X)+µs(X) .
Since µs includes all shared atoms that are in common across the two sub-populations,
all shared atoms must have the same relative weights across different sub-populations.
One example comes from the authors’ simulation study, where the two Gaussian mix-
tures Xi,1 ∼ 0.8N(5, 1) + 0.2N(0, 1) and Xi,2 ∼ 0.2N(5, 1) + 0.8N(0, 1) have (only)
shared components, but with different relative weights. In the posterior distribution
each sample picks up one cluster that is not practically different from the shared clus-
ters, just to accommodate the discrepancy in the weights. The model is not set up
to accommodate varying relative weights. An extension or variation of LNP might be
useful in some applications where more flexible weight assignment is desired.

Figure 1 highlights how different models accommodate different levels of flexibility
in modeling heterogeneity across subpopulations. In the figure, “heterogeneity of clus-
ters” refers to the mix of shared versus subpopulation-specific clusters; and “varying
shared weights” refers to allowing the relative weights of shared clusters to vary across
subpopulations. The figure places NDP (and NP), LNP, and the hierarchical DP (HDP)
(Teh et al., 2006) with respect to these model features.

The restriction to common relative weights of the shared components becomes a
practical limitation especially in the extension to d > 2 subpopulations. In that case

∗Department of Statistics & Data Science, The University of Texas at Austin, TX,
veraliu@utexas.edu

†Department of Statistics & Data Science, The University of Texas at Austin, TX
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Figure 1: The figure places NDP, LNP and hierarchical DP (HDP) in a diagram to
summarize flexibility with respect to (i) allowing a mix of shared and subpopulation-
specific clusters (horizontal axis, “heterogeneity of clusters”); and (ii) allowing the rel-
ative weights of shared clusters to vary across subpopulations (vertical axis, “varying
shared weights”).

also the housekeeping in an implementation of posterior simulation becomes very bur-
densome, as one needs to distinguish unique values that are in common to all, or any
subset of the d subpopulations. The authors mention this challenge in the conclusion.
We would like to add some observations related to this issue.

Example. Consider breast cancer gene expression data. Earlier studies have demon-
strated that three subtypes of breast cancer – basal-like, HER2-enriched and luminal A
– include some shared, overlapping features in addition to some subpopulation-specific
features. This could be formalized as cluster locations in a mixture of normal model for
gene expression (after suitable transformation), as, for example, in Xu et al. (2015).
Let y!i denote the (transformed) data on a selected set of biomarkers for the i-th patient
in subpopulation #. If we were to use a model as in equation (1) (in the paper), we would
use d = 3 random probability measures p̃!, # = 1, 2, 3, and add an additional convolution
with a normal kernel to define

y!i ∼ G!(y!i) =

∫
N(y!i | θ) dp̃(θ)

where θ is the pair of a multivariate normal mean and covariance matrix.

In this example, the assumption of common relative weights for shared components
would be an unreasonable restriction (and this is no critique of the paper, as the authors
never suggested any such applications). We feel the issue is not so much the restriction
in the model, but rather in how the problem is set up. To start, we propose to first
introduce a matrix of indicators to keep track of shared versus subpopulation-specific
features (in anticipation of the upcoming argument we stop using the term “cluster”).
For example, with the example in section 2.2 of the paper, X1 = (0.5, 2,−1, 5, 5, 0.5, 0.5)
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and X2 = (5,−2, 0.5, 0.5), instead of introducing k1, k2, k0, we would set up a binary
(d× k) matrix with d = 2 rows and k = k1 + k2 + k0 columns,

Z =

[
1 1 1 1 0
1 0 0 1 1

]

with parameters corresponding to each column, θ = (0.5, 2,−1, 5,−2). Finally, each
subpopulation has a weight vector w! = (w!1, . . . , w!k), which allows then to state a
straightforward sampling model. The advantage is that now the parameters are ω =
(Z, θ, w), with k, k0, k1, k2 being simple summaries of Z. The representation trivially
generalizes to d > 2, without an explosion of notation and without tedious housekeeping
needs.

The model is completed with a prior on Z, θ, w. Each column of Z defines a random
subset (in this case, of the subpopulations), with Z!c = 1 when feature c includes
subpopulation #. A prior on a family of random subsets (“features”) is known as feature
allocation. See, for example, Broderick et al. (2013) for a good review.

In summary, we argue that when the inference goal is to identify common and dis-
tinct features across d subpopulation, then perhaps it is more appropriate to set it up
as a feature allocation problem. The downside, of course, is to lose the mathemati-
cal tractability of the specification with hierarchies over random probability measures.
This includes, in particular, the characterization of the pEPPF (partially exchangable
partition probability function) and related results in the paper. We appreciate the con-
tribution of the paper in introducing an interesting new class of models for families of
discrete random probability measures and related random partitions, and the elegant
results on pEPPF’s.
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Invited Discussion∗

Fernando A. Quintana†,‡,‖ and Alejandro Jara§,¶,∗∗

1 The Proposal

We congratulate Federico Camerlenghi, David Dunson, Antonio Lijoi, Igor Prünster
and Abel Rodŕıguez, from now on referred to as CDLPR, for an an interesting paper.
CDLPR are indeed to be commended by a very fine work. By focusing on partitions they
uncovered a critical degeneracy issue underlying the nested Dirichlet process (NDP) and
other discrete nested processes. The key tool to understand the problem is the partially
exchangeable partition probability function (pEPPF), that describes the probability
model on partitions induced by models such as the NDP. CDLPR explicitly find the
pEPPF in the case of d = 2 samples, showing that it is expressed as a mixture of
patterns that may be described as partially exchangeable (both samples are marginally
exchangeable, arising from different discrete random probability measures) and fully
exchangeable (both samples arise from a common discrete random measure). Specifi-
cally, the pEPPF is a convex combination of these two forms. However, if it so happens
that one atom is shared by these two random measures, then the structure degenerates
to the fully exchangeable case. This is certainly a limitation of nested processes. As
discussed in the manuscript, the problem is not restricted to the NDP, but will mani-
fest itself in the case of any nested discrete random measure. CDLPR illustrate further
this point with real data examples and synthetic data simulations. Solving the degen-
eracy problem motivated the (very clever) introduction of their latent nested process
(LNP) approach. By allowing idiosyncratic and shared components, CDLPR overcome
the degeneracy while retaining modeling flexibility. Essentially, the shared component
can explicitly provide atoms in the mixture that are common to both samples, while the
idiosyncratic components can adjust to local behavior without being forced to combine
all of the mass in a single random measure. Their specific construction involves three
random measures with which they create the LNP by normalizing the sum of idiosyn-
cratic (µ!) and shared measures (µS) thus yielding p̃!, as given in (14), where # = 1, 2.
The structure is emphasized by noting that each p̃! can be expressed as a convex com-
bination of normalized versions of µ! and µS . Indispensable to the proposal is the fact
that flexibility does not come at the expense of practical tractability, which is of course
vital for the practical success of models based on LNPs.

We discuss next some possible extensions to the model constructed by CDLPR.
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http://www.mat.uc.cl/˜ajara
¶Millennium Nucleus Center for the Discovery of Structures in Complex Data
‖Supported by Fondecyt grant 1180034.
∗∗Supported by Fondecyt grant 1180640.



F. A. Quintana and A. Jara 1337

2 Model Extensions

2.1 d > 2

CDLPR consider the case of more than two samples in the final Discussion. An obvious
problem of this setting is that analytic formulas get more complicated. Instead of dealing
with atoms that are either shared by the two samples or specific to each sample, a general
formula would require keeping track of all possible combinations of atoms shared by two
samples, three samples, etc. and all atoms that are not shared by any other sample. This
amounts to enlarging (19) to a summation over all possible partitions of [d] = {1, . . . , d},
which is certainly substantially less appealing than the current formula. Nevertheless, in
a simple case like d = 3, one may still be able to carry out these calculations analytically.
But more generally, the extended computational approaches described in the discussion
should be most welcome.

2.2 Dependence

Assume we have covariates Zi,1 and Zj,2 available for each of the elements in the d = 2
samples. We make the (implicit) assumption of matching dimensions in the dimensions
of Zi,1 and Zj,2, just as is assumed in the case of Xi,1 and Xj,2. It is natural then to
consider modifying the model to account for this extra information. An obvious alter-
native is to include a regression in each of the populations likelihood factors, probably
with a suitable link function to account for cases where the sample mean is restricted
to a subset of Euclidean spaces. Using the notation in §4 of the manuscript, this could
be achieved by setting h(xi,!; θ∗j,!,βi) = h(xi,!; θ∗j,! + βT

i zi,!), i.e. using the θ∗j,! terms as
random intercepts, with the convention that no constant variables are present in the
design vectors. Of course, many more alternatives are possible.

An alternative way to consider much more general forms of dependence, which does
not require big changes to the current analytical derivations would rely on the condi-
tional approach introduced by Müller et al. (1996) to model jointly responses and covari-
ates, (X,Z), say, and then examine the induced conditional distribution X | Z. Specif-
ically, one may reinterpret Xi,1 and Xj,2 in formula (18) as (Xi,1, Zi,1) and (Xj,1, Zj,1)
and proceed with the desired inference from there, with obvious adjustment to the
dimensions of random variables.

Of more historical interest from the Bayesian nonparametric viewpoint is to consider
dependence that affects the distributions of responses in a more general way. In other
words, the idea would be to create a dependent version of the latent nested nonpara-
metric priors in the sense of a collection of random probability measures indexed by
predictors, in the spirit of the pioneering work of MacEachern (1999; 2000). Several
alternatives are in turn available for such extension. In a general context, this may re-
quire sophisticated model choices, but to illustrate the point, consider a very simple
version of the LNP, where each of the three defining measures µS , µ1 and µ2 are given
by Gamma processes, which are special cases of completely random measures (CRMs).
Extend now the definition of these Gamma processes to R×Z, where Z is the covariate
(or predictor) space, so that we have three CRMs indexed by predictors, {µS,z}z∈Z ,
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and {µ!,z}z∈Z , for # = 1, 2. From this, a covariate-dependent version of a special case of
LNP follows, and for each predictor value z ∈ Z, the resulting normalized construction

p̃!,z =
µ!,z + µS,z

µ!,z(X) + µS,z(X)
, # = 1, 2,

follows the LNP model. A similar approach to construct Pólya Trees indexed by pre-
dictors was presented in Trippa et al. (2011).

3 Final Words

CDLPR present their LNP in the context of CRMs which include several well known and
popular models as special cases. As in many cases of Bayesian Nonparametric priors,
the real practical value of models lies in all potential applications that use such priors
as building blocks for more complicated structures. In this sense, we look forward to
many such applications and/or developments of the ideas discussed in the manuscript.
Until then, we congratulate CDLPR again.
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Contributed Discussion

Li Ma∗

I congratulate the authors on this excellent paper that provides deep insights into nested
discrete processes, especially in revealing the distributional properties of the random
partitions induced by these processes. Moreover, the authors skillfully embed the clas-
sical idea from Müller et al. (2004) into nested completely random measures to form a
new class of latent nested nonparametric processes (LNNPs), thereby resolving a key
difficulty in applying the nested Dirichlet process (DP) (Rodŕıguez et al., 2008) and
its variant (Rodriguez and Dunson, 2014) when tied observations are present across
data sets that are otherwise different. I shall discuss two challenges that a practitioner
of the LNNP might face and how the LNNP might be further generalized to address
them. Because nested discrete processes involve two layers of clustering structures—one
at the sample level and the other at the observation level, to avoid confusion, I shall
distinguish the two types by referring to them as sample cluster (SC) and observation
cluster (OC) respectively.

To see the two challenges, note that by constructing each sampling distribution as a
weighted average between a shared measure and a SC-specific idiosyncratic measure, the
LNNP assumes that (i) samples that belong to the same SC must share exactly the same
sampling distribution without any within-SC sample-to-sample variability; (ii) samples
from different SCs must share the same relative weights over the OCs induced by the
shared measure. Both of these assumptions can be too restrictive in applications. Next
I shall consider each of them in turn.

Incorporating within-SC variation. Sample-to-sample variation is prevalent in appli-
cations. Even otherwise similar data sets collected under the same controllable condi-
tions will inevitably display variability to various extents from each other. In the current
context, not incorporating such variation within-SC can lead to many small or even sin-
gleton SCs when the number of observations in each sample grows. This was previously
pointed out by MacEachern (2008) in his illuminating discussion on the nested DP.

It appears that the flexible nested process framework proposed in this paper is ca-
pable of incorporating such within-SC variation with some extension. In particular, for
each SC, we can introduce a dispersion parameter—which can be scalar, multivariate, or
even infinite-dimensional—that characterizes how samples within the SC differ. Specifi-
cally, let Ωd denote the (Borel measurable) space of all possible values of the dispersion
parameter. Let the Poisson random measure be defined as Ñ =

∑
i≥1 δ(Ji,Gi,wi) on

R+×PX×Ωd with a mean intensity function ν(ds, dp, dv) = Cρ(s)dsQ(dp×dv), where
Q is now a probability measure on the product space PX × Ωd.

Accordingly, define a completely random measure µ̃ =
∑

i≥1 Jiδ(Gi,wi), and its nor-
malized version

q̃ :=
µ̃

µ̃(PX × Ωd)
.

∗Department of Statistical Science, Duke University, Durham, NC 27708, USA, li.ma@duke.edu
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Given q̃, we can generate K sampling distributions p̃1, p̃2, . . . p̃K hierarchically from
their respective SCs with the corresponding within-SC variation as follows. First, we
generate the SC centers (e.g., the mean distributions) and the within-SC dispersions

(p̃01, ṽ1), . . . , (p̃0K , ṽK) | q̃ ∼ q̃K .

Given the SC centers and within-SC dispersions, we generate the sampling distributions

p̃i | p̃0i, ṽi
ind∼ F (p̃0i, ṽi) for i = 1, 2, . . . ,K,

where F (p, v) represents a “location-scale” family in the space of probability distribu-
tions with location (or center) p and scale (or dispersion) v.

While popular random measures such as the DP and the Pitman-Yor process can
serve as this “location-scale” family, they are limited in that their dispersion parameter
is either scalar or otherwise low-dimensional, and thus they cannot characterize flexible
within-SC variation. A particularly flexible “location-scale” family is the Pólya tree
(PT), which has an infinite-dimensional dispersion parameter with Ωd = [0,∞)∞ as
pointed out in Berger and Guglielmi (2001). Following this route, Christensen and Ma
(In press) demonstrated a special case of the above nested model with ρ(s) = s−1e−s

and Q the product of an “adaptive PT” and a “stochastically increasing shrinkage”
hyperprior on the dispersion parameter, both introduced in Ma (2017).

Allowing different relative weights on shared OCs. In many applications, the samples
belonging to different SCs share OCs, and this is indeed one of the key motivations
for the authors to introduce the LNNP as nested processes alone do not allow this
feature. By introducing a shared component and building each sampling distribution as a
weighted average of a shared and an idiosyncratic component in the style of Müller et al.
(2004), the LNNP assumes that the idiosyncratic components do not share any OCs
whereas the shared component must endow all the shared OCs with exactly the same
relative weights among them. These constraints can be overly restrictive in practice. For
example, Soriano and Ma (2019) considered the application of flow cytometry, where
the observations are blood cells and each OC corresponds to a cell subtype (e.g., T-cells,
B-cells, etc.). Different subtypes of patients (the SCs) will share some of the same cell
subtypes, or one should hope so as they are all humans! In other words, the actual SCs
might differ only in the weights of some OCs, not their identities.

The strategy that Soriano and Ma (2019) employed to address this issue is to let
all the samples share a common set of OCs, and introduce shared and idiosyncratic
components only in generating the weights of these OCs. This way, while the shared
component still corresponds to the OCs with the same relative weights across SCs as
in the LNNP, the idiosyncratic components now allow SCs to have distinct weights on
common OCs. (Note that this strategy still allows SCs to have unique OCs in that an SC
without a certain OC will just have a very small weight on that OC.) As Surya Tokdar
pointed out through personal communications, this strategy is essentially a (limiting)
version of a Müller et al. (2004) style mixture of a shared DP and idiosyncratic DPs
generated from a hierarchical DP (Teh et al., 2006). Unlike the LNNP, this “LHDP” does
not allow inference on the partition at the sample level. It is of interest to investigate
how to allow different weights on shared OCs across SCs in the LNNP in such a way
that maintains its ability to carry out the partitioning or clustering on the samples.
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Contributed Discussion∗

Christian P. Robert†

While this paper is a fairly theoretical piece of work, it manages in completely and
beautifully validating a Bayesian approach for the non-parametric clustering of sepa-
rate populations with “common” clusters. More formally, it constructs a new family of
models that allows for a partial or complete equality between two probability measures,
but does not result in the artifact that forces full identity when the associated sam-
ples do share some common observations. Indeed, more traditional structures prohibit
one or the other, from the Dirichlet process (DP) preventing two probability measure
realisations from being equal or partly equal to some hierarchical DP (HDP) already
allowing for common atoms across measure realisations, but failing to authorise a com-
plete identity between two realised distributions, to nested DP offering one extra level of
randomness, but with an infinity of DP realisations that bars common atomic support
from happening, besides completely identical support (and hence distribution).

The current paper thus posits two realisations of random measures to be decomposed
as a sum of (i) a common random measure and (ii) one among two separate almost
independent random measures: equation (14) is the core representation in the paper
that allows for partial or total equality. An extension to a setting larger than facing two
samples seems however complicated if only because of the number of common measures
one has to introduce, from the integrally common measure to measures that are only
shared by a subset of the samples. Except in the simplified framework when a single and
universally common measure is adopted (with enough justification). The randomness of
the model is handled via different completely random measures that involve the unusual
recourse to four degrees of hierarchy in the Bayesian model.

Since the mixture example is central to the paper, the case of one or rather of
two two-component Normal mixtures with a common component (but with different
mixture weights) is handled by the advertised approach, although it seems to me that
it could be covered by a simpler HDP. Having exactly the same term (i.e., with the very
same weight) is not covered, but this may be of lesser appeal in real life applications.
Note that alternative, easily constructed, parametric constructs are already available in
this specific case, involving a limited prior input and a lighter computational burden,
although the Gibbs sampler behind the model proves extremely simple for the approach
advocated therein. (One may still wonder at the robustness of the sampler once a case
of identical distributions occurs.)

Due to the combinatoric explosion associated with a higher number of observed sam-
ples, despite obvious practical situations, one may wonder at any feasible (and possibly

∗I am most grateful to the Bayesian reading group in CEREMADE, Paris Dauphine, for conducting
a discussion on this paper. This work is partly supported by a Senior Institut Universitaire de France
Fellowship.
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sequential) extension, one that would further keep a coherence under marginalisation
(in the number of samples). And also whether or not multiple testing could be coher-
ently envisioned in this setting, for instance when handling all hospitals in the UK.
Another consistency question covers the Bayes factor used to assess whether the two
distributions behind the samples are or not identical. (One may further question the
relevance of the question, hopefully applied to more relevant dataset than the Iris data.)
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Fabrizio Leisen∗ and Alan Riva Palacio†

We would like to congratulate the authors of Camerlenghi et al. (2018) for their insightful
paper on nested processes. We strongly believe that this paper not only provides a
new perspective on the nested Dirichlet process of Rodriguez et al. (2008) but also on
the modelling of heterogeneous data with Bayesian nonparametric priors. We welcome
contributions to Bayesian nonparametrics which exhibit a theoretical rigour as the one
displayed in this paper.

1 Extending the LNP with CoRMs

In this discussion we would like to highlight an extension of the process displayed in
(14) which would provide a further modelling flexibility. The authors’ proposal relies
on normalizing the vector of measures (µ1 + µS , µ2 + µS). A first observation is that
the measure µS influences the dependence among the two components although, the
fact that is shared by both measures, limits the dependence modelling. We propose to
consider a vector (µ1+µ1

S , µ2+µ2
S) such that (µ1

S , µ
2
S) is a Compound Random Measure

(CoRM), see Griffin and Leisen (2017). Before commenting the benefits of this approach,
we provide a description of CoRMs in terms of discrete measures. Consider the CRM:

µ̃∗ =
∑

i≥1

JiδXi

with directing Lévy measure ν∗ and Xk
i.i.d.∼ G0, for some non-atomic measure G0.

Compound Random Measures could be described in an intuitive way as a perturbation
of the above CRM:

µ̃1 =
∑

i≥1

m1,iJiδXi · · · µ̃d =
∑

i≥1

md,iJiδXi ,

where (m1i, . . . ,mdi)
i.i.d.∼ h (score distribution) and Xk

i.i.d.∼ G0, for some non-atomic
measure G0. Griffin and Leisen (2018) employed CoRMs in a density regression context
whereas Riva Palacio and Leisen (2018) used CoRMs to develop new modelling tools in
survival analysis.

The vector (µ1
S , µ

2
S) is chosen as a CoRM with d = 2. The score distribution h is a para-

metric distribution which allows to model the dependence across measures. As shown
in Riva Palacio and Leisen (2019) in the context of subordinators, this distribution in-
fluences the correlation between components. Such modelling might be appealing in a
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fabrizio.leisen@gmail.com

†Departamento de Probabilidad y Estad́ıstica, Instituto de Investigaciones en Matemáticas Apli-
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scenario where a component is shared but with different weights. If the Lévy intensity
of (µ1

S , µ
2
S) is supported on the diagonal line then the above pEPPF collapses in the

one defined by Camerlenghi et al. (2018); if, on the other hand, it is supported on the

axis {(x, y) ∈ (R+)
2
: x = 0} ∪ {(x, y) ∈ (R+)

2
: y = 0} then the pEPPF reduces to

the EPPF framework. We can effectively use a CoRM to modulate between such be-
haviours. If we consider a multivariate Log-normal distribution for the score distribution
in a CoRM we can allocate the mass of the respective Lévy measure in a 2-dimensional
space and modulate between the behaviours discussed above by suitably choosing the
mean vector and covariance-variance matrix of the underlying Gaussian distribution.
Let vvv ∈ R2 be a mean vector and ΣΣΣ be a variance-covariance matrix defining a bivari-
ate Gaussian distribution, we denote LogNormal(vvv,ΣΣΣ) for the associated LogNormal
distribution. The CoRM given by an arbitrary directing Lévy measure ν* and score
distribution LogNormal(vvv,ΣΣΣ) can be seen to be well defined by using the integrability
condition result in Riva Palacio and Leisen (2019).
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Contributed Discussion

Emanuele Aliverti∗, Sally Paganin†, Tommaso Rigon‡, and Massimiliano Russo§,¶

We congratulate the authors on an interesting paper, which provides a concrete contri-
bution in Bayesian nonparametric methods. The proposed latent nested process (lnp)
of Camerlenghi et al. is a notable generalization of the nested Dirichlet process (ndp)
of Rodŕıguez et al. (2008). In the first place, Camerlenghi et al. extend the ndp to a
broader class of nested processes (np), leveraging on homogeneous random measures
with independent increments (Regazzini et al., 2003). They elegantly frame this novel
class of priors within the theory of completely random measures.

The rigorous theoretical study of the involved clustering mechanism allows Camer-
lenghi et al. to identify a potential pitfall of general nps. Specifically, two random discrete
distributions p̃! and p̃!′ , associated to different groups (populations) and distributed ac-
cording to a np, are either identical (i.e. p̃! = p̃!′ a.s.), or they do not have common
atoms. This behavior implies that nps can borrow information across groups only in an
extreme fashion, that is, by assuming full homogeneity across populations. In contrast,
the lnp generalization accommodates smooth transitions between the full homogene-
ity and the independence cases, while still accounting for clustering across different
populations.

We will focus on the latent nested Dirichlet process special case, which has been con-
sidered by Camerlenghi et al. in their Example 2. First recall that the ndp of Rodŕıguez
et al. (2008), in presence of d ≥ 2 populations, can be alternatively defined through
a Blackwell and MacQueen (1973) urn-scheme. Let δx denote a point mass at x. If
(p1, . . . , pd) is a collection of random probability measures on a complete and separable
metric space X following an ndp, then for any c > 0

p!+1 | p1, . . . , p! ∼
c

c+ #
Q+

1

c+ #

!∑

i=1

δpi , # = 1, . . . , d− 1, (1)

where Q is the probability distribution of a Dirichlet process q̃0 ∼ dp(c0Q0), with
precision parameter c0 > 0 and with Q0 being a non-atomic probability measure on X.
In other words, each p! is either a sample from a dp(c0Q0) or is set equal to one of the
previously observed random measures.

The latent nested Dirichlet process is built upon (1). More precisely, the vector of
random probability measures (p̃1, . . . , p̃d) characterizing such a process is obtained as a
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convex combination of two random probability measures, namely

p̃! = w!p! + (1− w!)pS , # = 1, . . . , d, (2)

where pS ∼ dp(γc0Q0), with γ > 0, is independent on p1, . . . , pd whereas w!
iid∼

Beta(c0, γc0), independently on the random probability measures p1, . . . , pd and pS .

As formalized by Proposition 4 in Camerlenghi et al., some random probability
measures among p̃1, . . . , p̃d will be identical with positive probability. Broadly speaking,
this occurs if ties are present in the underlying urn-scheme of (1). In the Dirichlet case,
the a priori probability of homogeneity among two distributions is

π∗
1 := P(p! = p!′) = P(p̃! = p̃!′) =

1

c+ 1
, # *= #′.

Thus, Camerlenghi et al. suggest to evaluate the posterior probability P(p! = p!′ | X),
to test the null hypothesis H0 : p̃! = p̃!′ against the alternative H1 : p̃! *= p̃!′ . Such an
approach is appealing as it naturally follows from the model construction.

Although this testing procedure is theoretically well-justified, there might be few
practical difficulties that are worth emphasizing. Consider the example in Scenario ii
of Section 5.1 in Camerlenghi et al., in which there are two mixtures of two normal
distributions with a common component. The two distributions can be made equal
either allowing the weight of the idiosyncratic component to be zero, or having arbitrary
weights and letting the distribution-specific components to have the same parameters.
The former case can easily be encountered. In fact, when the parameter γ is large enough
one has that w! ≈ 0, in turn implying that p̃! ≈ p̃S . This statement is formalized in the
following lemma, whose proof is omitted.

Lemma 1. Let (p̃1, . . . , p̃d) be a latent nested Dirichlet process of (1)–(2). Then p̃1 =
· · · = p̃d almost surely, as γ → ∞.

Lemma 1 holds for general lnps and it has relevant consequences. Strictly speaking,
it implies that homogeneity among populations is recovered as limiting case when γ →
∞, regardless of the ties occurring in the Pólya-sequence of (1). Besides, (2) suggests that
homogeneity between two groups (i.e. p̃! = p̃!′) is attained exactly whenever p! = p!′
but also approximately if w! ≈ 0. This could affect the rationale underlying the testing
procedure, because an lnpmodel may struggle in discriminating between the case of two
identical latent distributions (p! = p!′) and that of two similar, yet different, random
probability measures (w! ≈ 0). Note that this issue is specific to the lnp, since nested
processes correspond to the case w! = 1.

As a consequence, if an lnp is employed for testing purposes, the probability of
homogeneity P(p̃! = p̃!′ | X) might be deflated, possibly leading to biased decisions.
Hence, we recommend to select the parameter γ with great care. In contrast, if the lnp
were used for density estimation, these considerations would not be a concern.
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Rejoinder

Federico Camerlenghi∗,† , David B. Dunson‡ , Antonio Lijoi§ ,
Igor Prünster§ and Abel Rodŕıguez¶

We are extremely grateful to all the discussants for their insightful comments and stim-
ulating ideas. While the last 15 years have witnessed a vast literature on BNP modeling
for heterogeneous data, there are still many aspects to be investigated and, maybe even
more importantly, to gain a deep understanding of the inferential implications of the
available modeling choices. And, the discussion of our paper is clear evidence of this.

The main goal we pursue in our paper is to propose and investigate a model that is
able to account for clustering both probability distributions and observations (or latent
features) across multiple samples. Indeed, we have shown that the Nested Dirichlet Pro-
cess (NDP), which was originally proposed with this purpose, fails to accomplish the
task since as soon as clusters of data (or latent variables) are shared across samples, the
samples themselves are clustered as well. This feature is formalized in terms of degener-
acy of the posterior distribution of (p̃1, p̃2), induced by a NDP, on the diagonal p1 = p2,
when conditioning on samples sharing a common cluster. Such a limitation has been
overlooked in the literature. In addition to singling out this limitation, by introducing
a new class of models, Latent Nested Priors (LNPs), we also highlight that it can be
overcome so to preserve the appealing nested structure. As mentioned in the paper,
our proposal is based on an additive composition of shared and idiosyncratic random
measures and the nested structure is specified at the level of the idiosyncratic compo-
nents. Its main goal was to preserve heterogeneity even when clusters are shared across
samples and this was achieved. Obviously our construction has also limitations, such as
those mentioned in the discussions, and we hope this paper together with its discussion
will spur important improvements. In particular, either efficient computational-based
approaches or alternative model formulations are required to handle the multiple pop-
ulation scenario when the number of groups equals d > 2 (see Section 1). At the same
time, greater flexibility may be achieved by allowing the weights of the shared com-
ponent in the model to be different across different populations. These two points are
the main focus of our Rejoinder, which also investigates other interesting properties of
LNP’s relevant for prior specification as well as further extensions to allow for more
complex covariate-dependence.
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1 Beyond the two samples case

In the paper we focused on the case of d = 2 groups of observations: both theoretical
results and marginal algorithms are obtained for this special case. As stressed in the
Concluding Remarks (Section 6 paper), one may still formally display results analogous
to Propositions 2–4, Theorems 1–2 for d > 2, although the combinatorial hurdles that
are involved make them of little practical use. A possible solution is to resort to a com-
putationally oriented approach as effectively remarked in the discussions by M. Beraha
& A. Guglielmi, F. A. Quintana & A. Jara and C.P. Robert.

The contribution by Beraha & Guglielmi is centered around the scenario with
multiple-populations, namely with d > 2: they focus on a suitable extension of the mix-
ture model to test homogeneity across the samples and to allow for posterior inference.
They specify a Latent Nested Dirichlet Process (LNDP) for the vector (p̃1, . . . , p̃d) so
that they can rely on the stick-breaking construction of the Dirichlet process and on its
conjugacy properties. Their simulations are run in JAGS, but unfortunately the compu-
tational cost is still demanding. They also highlight that the results obtained using the
LNDP along with the truncation scheme are generally worse than the ones we obtain
using the latent nested σ-stable process implemented via a marginal MCMC sampler.
For example the Bayes factor (BF) derived using the LNDP in Scenario I is equal to
1 (see Table 1 in Beraha & Guglielmi), while the BF obtained with stable LNP in
Scenario I equals 5.85. We think this behavior is due to two main factors: the limited
flexibility induced by the Dirichlet Process and the algorithm, which is not exact since
it is based on the truncation of a series representation. An ad hoc MCMC scheme de-
signed for LNDP could probably improve the mixing of MCMC algorithm, however one
may look for more efficient solutions to overcome both computational issues and the
poor model flexibility of the LNDP. An option that is definitely worth investigating
relies on the possible characterization of the posterior distribution of the vector of LNP
(p̃1, . . . , p̃d). One may, then, use suitable conditional methods such as the importance
conditional Gibbs sampler introduced in Canale et al. (2019) for the Dirichlet and the
Pitman–Yor process.

It would be interesting to compare the results in Beraha & Guglielmi with those
that one would obtain from a Latent Nested Pitman–Yor processes, which is more
flexible a prior specification compared to the Dirichlet process and still tractable from
an analytical standpoint. More precisely let us denote by Qσ, the law of a σ-stable CRM
on the space of boundedly finite measure MX on X. For any θ > 0, define Qσ,θ on MX

as absolutely continuous w.r.t. Qσ with Radon–Nikodym derivative

dQσ,θ

dQσ
(m) =

σ Γ(θ)

Γ(θ/σ)
m−θ(X).

Note that if one considers a random measure µ̃σ,θ with distribution Qσ,θ, then under
normalization one has the Pitman–Yor process. Hence latent nested Pitman–Yor pro-
cesses may be defined as follows: consider a vector (p̃1, p̃2) as in Equation (14) of the

paper with µS ∼ Qσ,θ and µ1, µ2|q̃
iid∼ q̃, where q̃ is a NRMI arising from a CRM with

Lévy intensity cρ(s)dsQσ,θ(dp). One may think to develop efficient and fast algorithms
for this class of models, exploiting the quasi-conjugacy property of the Pitman–Yor
process and its stick breaking representation.
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2 Improving the model flexibility

Most of the discussions focus on suitable extension of the LNP to allow for increased
modeling flexibility. The main critical issue that has been raised is related to the same
common component, which is crucial to preserve heterogeneity across different groups
when clusters are shared. Indeed, we agree this is not consistent with more realistic
situations whereby shared clusters of observations have different relative weights and
we are happy to see this generated interesting ideas by F. Leisen & A. R. Palacio,
V. Liu & P. Müller and L. Ma. From the mixture representation of each random
probability p̃!

p̃! = w!
µ!

µ!(X)
+ (1− w!)

µS

µS(X)
, where w! =

µ!(X)

µS(X) + µ!(X)
.

It is apparent that the component of p̃! with the common atoms is (1−w!)
µS

µS(X) . Hence,
the relative weights of the shared atoms for p̃1 and p̃2 differ only in the multiplicative
factors (1− w!), with # = 1, 2. This may be way too restrictive in some applications as
nicely illustrated, e.g., in Liu & Müller through breast cancer gene expression data.
Hence, unsurprisingly, it is essential to explore further extensions of LNPs in order to
accommodate for different relative weights of the common atoms. Some of them have
been already pointed out by the discussants. For example, Leisen & Palacio suggest
the use of vectors (µ1

S , µ
2
S) of Compound Random Measures (CoRMs) to replace the

additive structure that makes the model analytically intractable when the number of
samples d is larger than 2, as recalled in Section 1. The weights of µ!

S are different but
dependent and one may still achieve clustering of samples by resorting to a suitable
specification of the Lévy intensity for (µ1

S , µ
2
S). Another solution is suggested by Liu &

Müller whose proposal relies on a feature allocation model for identifying shared and
idiosyncratic mixture components. Both a are definitely promising lines of investigation
that is worth pursuing.

Obviously, starting from the hierarchical representation where

p̃1, p̃2
iid∼ q̃′, q̃′ =

∑

j≥1

π̃jδG̃j

one may rely on appropriate specifications of theGj ’s that yield different relative weights
for the shared atoms. For example, one may proceed along the lines of the discussion
by Ma and define the G̃j ’s as in Soriano and Ma (2019), i.e. all the G̃j ’s share the same
atoms while their weights have shared and idiosyncratic components. This looks very
much in the spirit of our paper. Another point touched by Ma is related to the limited
flexibility of the dispersion parameter for LNPs based on CRMs. This is an interesting
point, as the model typically has very few parameters to be tuned. A flexible model with
an infinite-dimensional parameter which certainly merits further investigation could be
based on nesting of Pólya trees (see also Christensen and Ma, 2019).
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3 Correlation and related issues

E. Aliverti et al. andQuintana & Jara discuss some issues related to the dependence
structure induced by LNPs.Quintana & Jara introduce the issue of possible extensions
to accommodate for covariate-dependence, which we did not consider. Indeed, the most
natural option would be a semiparametric covariate-dependent model where one may
even introduce the dependence within the Lévy intensities of the underlying CRMs.
While this is a nice and useful extension of LNPs that appears more appropriate for
complex data structures, its implementation may follow from results in our paper.

Aliverti et al. unveil another interesting property of LNPs, which we actually
overlooked. Indeed, as γ → +∞, they nicely show that all the random probability
measures coincide almost surely and, hence, degeneracy to exchangeability may still arise
though as a limiting case. This can also be deduced by the expression of the correlation
in the two examples of interest (latent nested Dirichlet and stable processes). In order
to do this we provide a general expression for the correlation Corr(p̃1(A), p̃2(A)) on the
same set A.

Proposition 1. If (p̃1, p̃2) ∼ LNP(γ, ν0, ν), then for any set A belonging to the Borel
σ-field on X, the correlation between p̃1(A) and p̃2(A) is given by

Corr(p̃1(A), p̃2(A)) = π∗
1 + (1− π∗

1)
γI2(γ, ν0)

(1 + γ)I1(γ, ν0)
, (1)

where

I1(γ, ν0) =

∫ ∞

0
ue−c0(γ+1)ψ0(u)τ (0)2 (u)du,

I2(γ, ν0) =

∫ ∞

0

∫ ∞

0
e−c0ψ0(u)−c0ψ0(v)−c0γψ0(u+v)τ (0)2 (u+ v)dudv.

Proof. By definition we have that the covariance is

Corr(p̃1(A), p̃2(A)) =
E[p̃1(A)p̃2(A)]− E[p̃1(A)]E[p̃2(A)]√

Var(p̃1(A))Var(p̃2(A))
. (2)

We start by evaluating E[p̃1(A)p̃2(A)], using Proposition 3 and conditioning w.r.t. µS ,
we get

E[p̃1(A)p̃2(A)] = E
[ 2∏

!=1

µ!(A) + µS(A)

µ!(X) + µS(X)

]

=π∗
1EµS

∫

MX

(m(A) + µS(A)

m(X) + µS(X)

)2
Q(dm)+(1−π∗

1)EµS

(∫

MX

m(A) + µS(A)

m(X) + µS(X)
Q(dm)

)2
,

where EµS denotes the expected value with respect to the random variable µS , which
is distributed as a CRM with Lévy intensity γν0. Denoting by µ̃∗

S , µ̃
∗
1 and µ̃∗

2 three
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independent CRMs with respective Lévy intensities given by γν0, ν0 and ν0 we get

E[p̃1(A)p̃2(A)]

= π∗
1E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)

]2
+ (1− π∗

1)E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)
· µ̃

∗
2(A) + µ̃∗

S(A)

µ̃∗
2(X) + µ̃∗

S(X)

]
.

(3)

We now evaluate the two expected value in (3), as for the first one we get

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)

]2
=

∫ ∞

0
uE[e−u(µ̃∗

1(X)+µ̃∗
S(X))(µ̃∗

1(A) + µ̃∗
S(A))2]du

=

∫ ∞

0
uE[e−u(µ̃∗

1(A
c)+µ̃∗

S(Ac))]
d2

du2
E[e−u(µ̃∗

1(A)+µ̃∗
S(A))]du,

by observing that µ̃∗
1(A) + µ̃∗

S(A) has Laplace transform given by

E[e−u(µ̃∗
1(A)+µ̃∗

S(A))] = exp {−c0(γ + 1)ψ0(u)Q0(A)} ,

straightforward calculations show that

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)

]2

=

∫ ∞

0
ue−c0(γ+1)ψ0(u)[(c0(γ + 1)Q0(A)τ (0)1 (u))2 + c0Q0(A)(γ + 1)τ (0)2 (u)]du.

(4)

If one considers the set A = X, the previous equation boils down to the identity

c20(γ+1)2
∫ ∞

0
ue−c0(γ+1)ψ0(u)(τ (0)1 (u))2du = 1−c0(γ+1)

∫ ∞

0
ue−c0(γ+1)ψ0(u)τ (0)2 (u)du

using this expression in (4) we finally obtain

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)

]2

= Q0(A)2 +Q0(A)(1−Q0(A))c0(γ + 1)

∫ ∞

0
ue−c0(γ+1)ψ0(u)τ (0)2 (u)du.

(5)

We now focus on the second expected value in (3)

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)
· µ̃

∗
2(A) + µ̃∗

S(A)

µ̃∗
2(X) + µ̃∗

S(X)

]

=

∫ ∞

0

∫ ∞

0
E[e−u(µ̃∗

1(X)+µ̃∗
S(X))−v(µ̃∗

2(X)+µ̃∗
S(X))(µ̃∗

1(A) + µ̃∗
S(A))(µ̃∗

2(A) + µ̃∗
S(A))]dudv

resorting to the first order derivatives of the Laplace functional of the three completely
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random measures, some elementary calculations show that

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)
· µ̃

∗
2(A) + µ̃∗

S(A)

µ̃∗
2(X) + µ̃∗

S(X)

]

=

∫ ∞

0

∫ ∞

0
e−c0ψ0(u)−c0ψ0(v)−c0γψ0(u+v)

×
{
c20Q0(A)2[τ (0)1 (u)τ (0)1 (v) + γτ (0)1 (u+ v)(τ (0)1 (u) + τ (0)1 (v) + γτ (0)1 (u+ v))]

+c0Q0(A)γτ (0)2 (u+ v)
}
dudv.

Choosing A = X in the previous expression, one can obtain a suitable identity and get

E

[
µ̃∗
1(A) + µ̃∗

S(A)

µ̃∗
1(X) + µ̃∗

S(X)
· µ̃

∗
2(A) + µ̃∗

S(A)

µ̃∗
2(X) + µ̃∗

S(X)

]
= Q0(A)2

+Q0(A)(1−Q0(A))c0γ

∫ ∞

0

∫ ∞

0
e−c0ψ0(u)−c0ψ0(v)−c0γψ0(u+v)τ (0)2 (u+ v)dudv.

(6)

Substituting the expressions (5)–(6) in (3) we obtain

E[p̃1(A)p̃2(A)] =

Q0(A)2 +Q0(A)(1−Q0(A))c0{π∗
1(γ + 1)I1(γ, ν0) + (1− π∗

1)γI2(γ, ν0)}.
(7)

Along similar lines one may determine Var(p̃1(A)) showing that

Var(p̃1(A)) = Q0(A)(1−Q0(A))c0(γ + 1)I1(γ, ν0), (8)

and the same formula holds true for Var(p̃2(A)). Substituting expressions (7)–(8) in (2)
and since E[p̃1(A)] = E[p̃2(A)] = Q0(A), the conclusion follows.

As for many other proposals of dependent priors, (1) does not depend on the par-
ticular set A and it is, thus, interpreted as a measure of the overall dependence across
the two random probability measures. One can now determine explicit expressions of
the correlation in some examples of interest and we show that it goes to 1 as γ → +∞:
this is in line with Lemma 1 of Aliverti et al..

Example 1. Consider the latent nested stable process introduced in Example 1 of the
paper. One can evaluate the integrals I1(γ, ν0) and I2(γ, ν0) to obtain

I1(γ, ν0) =
(1− σ0)1
c0(γ + 1)

,

by a change of variable and some algebra we also get that

I2(γ, ν0) =
(1− σ0)1

c0

∫ 1

0

1

γ + wσ0 + (1− w)σ0
dw.

Using the previous expression in (1) and recalling that π∗
1 = 1− σ we get

Corr(p̃1(A), p̃2(A)) = (1− σ) + σγ

∫ 1

0

1

γ + wσ0 + (1− w)σ0
dw. (9)

We point out that as γ → +∞ the correlation goes to 1.
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Example 2. Let us consider the latent nested Dirichlet process of Example 2 in the

paper, which corresponds to the choice ρ0(s) = ρ(s) = e−s/s. Recalling that τ (0)q (u) =
Γ(q)/(u + 1)q and ψ0(u) = log(1 + u) we can easily evaluate the integral I1(γ, ν0), in
particular we obtain

I1(γ, ν0) =
1

c0(γ + 1)(c0(γ + 1) + 1)
.

As for the second integral in the expression of the correlation (1), one obtains

I2(γ, ν0) =

∫ ∞

0

∫ ∞

0

1

(1 + u)c0(1 + v)c0(1 + u+ v)c0γ+2
dudv,

where we have exploited identity 3.197.1 in Gradshteyn and Ryzhik (2007) we get

I2(γ, ν0) = B(1, c0γ+2)

∫ ∞

0
(1+u)−c0(γ+2)−1

2F1(c0, c0(γ+1)+1; c0(γ+1)+2;−u)du

a change of variable t = u/(u+1) and identity 7.512.5 of Gradshteyn and Ryzhik (2007)
imply the following expression for the integral under consideration

I2(γ, ν0) =
3F2(c0, c0(γ + 1) + 1, 1; c0(γ + 1) + 2, c0(γ + 2) + 1; 1)

(c0γ + 2)c0(γ + 2)
.

Thanks to the previous considerations and remembering that π∗
1 = 1/(1 + c), the cor-

relation becomes

Corr(p̃1(A), p̃2(A)) =
1

1 + c
+

c

1 + c

γ(c0(γ + 1) + 1)

(c0γ + 2)(γ + 2)

× 3F2(c0, c0(γ + 1) + 1, 1; c0(γ + 1) + 2, c0(γ + 2) + 1; 1).

(10)

In order to study the behavior of the correlation as γ → +∞, we have to determine the
limit as γ → +∞ of the hypergeometric function, to this end note that

3F2(c0,λ, 1;λ+ 1, c0 + λ; 1) =
1

Γ(c0)

∑

k≥0

λ

λ+ k

Γ(λ+ c0)

Γ(λ+ c0 + k)
Γ(c0 + k),

where we have put λ = λ(γ) = c0(γ + 1) + 1 → +∞. We observe that for any λ ≥ 2

λ

λ+ k

Γ(λ+ c0)

Γ(λ+ c0 + k)
Γ(c0 + k) ≤ Γ(λ+ c0)

Γ(λ+ c0 + k)
Γ(c0 + k)

≤ Γ(2 + c0)

Γ(2 + c0 + k)
Γ(c0 + k) =

c0(c0 + 1)

(c0 + k)(c0 + k + 1)
,

where we have exploited the fact that the ratio of gamma functions is decreasing in λ.
Thanks to the previous inequality we can conclude that the general term of the sum-
mation over k is uniformly bounded by the term of a convergent series in k, therefore
the dominated convergence theorem may be applied and then

lim
γ→∞ 3F2(c0,λ, 1;λ+ 1, c0 + λ; 1) =

1

Γ(c0)

∑

k≥0

lim
γ→∞

λ

λ+ k

Γ(λ+ c0)

Γ(λ+ c0 + k)
Γ(c0 + k)
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=
1

Γ(c0)

∑

k≥0

lim
γ→∞

λ−kΓ(c0 + k) = 1.

This implies again that the correlation in (10) goes to 1 as γ tends to infinity.

Due to our interest in testing homogeneity across populations, another important
aspect that should be investigated is related to consistency issues of the Bayes Factor, as
underlined by Robert. This should also be complemented by the study of consistency
for the random dependent densities in a partially exchangeable setting. Both problems
will be object of future investigation.

We conclude expressing again our gratitude to all discussants for their enlightening
contributions, which have helped outlining several relevant aspects about LNPs and the
general problem of pursuing clustering of distributions and clustering of observations
across multiple samples by means of a nested structure and beyond.
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