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A B S T R A C T   

This paper introduces a novel approach for modeling a set of directed, binary networks in the context of cognitive 
social structures (CSSs) data. We adopt a relativist approach in which no assumption is made about the existence 
of an underlying true network. More specifically, we rely on a generalized linear model that incorporates a 
bilinear structure to model transitivity effects within networks, and a hierarchical specification on the bilinear 
effects to borrow information across networks. This is a spatial model, in which the perception of each individual 
about the strength of the relationships can be explained by the perceived position of the actors (themselves and 
others) on a latent social space. A key goal of the model is to provide a mechanism to formally assess the 
agreement between each actors’ perception of their own social roles with that of the rest of the group. Our 
experiments with both real and simulated data show that the capabilities of our model are comparable with or, 
even superior to, other models for CSS data reported in the literature.   

1. Introduction 

Cognitive social structures (CSSs), also called triadic data in the so-
cial networks literature, naturally arise in diverse disciplines such as 
sociology, psychology, and organizational economics. Roughly 
speaking, a CSS is defined by a set of cognitive judgments that subjects 
form about the relationships among actors (themselves as well as others) 
who are embedded in a common environment. Hence, each subject re-
ports a full description of the social network structure, resulting in a set 
of I sociomatrices Y1, …, YI, each with I actors, where Yj = [yi,i′ ,j]. In this 
notation, i = 1, …, I identifies the “sender” of the relation, i′ = 1, …, I 
identifies the “receiver” of the relation, and j = 1, …, I identifies the 
“reporter” of the relation from i to i′ (notice that yi,i′ ,j = yi′ ,i,j for undi-
rected relations). 

CSSs provide rich data that allow researchers to understand the 
patterns of social interactions as cognitively represented by each actor in 
the system. For instance, CSSs allow researchers to investigate the ability 
of social actors to precisely recognize the social network in which they 
are embedded, as well as the impact of such an ability on their success 
(Brands, 2013). It is widely assumed that actors who are skillful at un-
derstanding the relationships around them are better prepared to, for 
example, adjust their behavior according to the demands of a particular 
situation. The focus of this work is on developing statistical methods that 
allow us to identify such “highly adept” individuals. 

The use of cognitive reports in the context of social network research 
goes back to Newcomb (1961) and Sampson (1968), but it was Krack-
hardt (1987) who formalized the study of CSSs and outlined key 
empirical methods based on aggregations. One of the primary aggre-
gations discussed by Krackhardt is obtained by “collapsing” all the in-
formation onto a consensus network Ỹ = [ỹi,i′ ] defined as: 

ỹi,i′ =

⎧
⎪⎪⎨

⎪⎪⎩

1, if
1
I

∑I

j=1
yi,i′ ,j > δ0;

0, otherwise,

(1)  

where δ0 is a fixed (but arbitrary!) threshold taking values from 0 to 1. 
This reduction is typically inappropriate because it usually results in a 
considerable loss of useful information. 

Krackhardt’s seminal work has been extended by numerous authors. 
Kumbasar et al. (1994) and Kumbasar (1996) went beyond Krackhardt’s 
aggregations and employ multi-dimensional scaling and correspondence 
analysis to study the structure of triadic data. Subsequently, once again 
along the lines of data reduction schemes, Batchelder et al. (1997) 
proposed a model for aggregating separate reports into a single 
consensus network, allowing estimates of actor accuracy to be obtained 
along the way. Unfortunately, this model is quite restrictive and infer-
ence procedures are not straightforward. Later, Bond et al. (1997, 2000) 
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extended the social relations model of Kenny (1994) to analyze multi-
variate triadic relations; the later extension was the first attempt to 
incorporate covariances between measurements on different types of 
relations on the same pair of actors. Butts (2000), later published as 
Butts (2003), proposed a family of hierarchical Bayesian models which 
allows for simultaneous inference of informant accuracy and the un-
derlying social structure in the presence of measurement error. In par-
allel, Koskinen (2002b) extended Batchelder’s model in a Bayesian 
context treating the underling “true” network as a latent variable (and 
therefore part of the parameter space). Then, Koskinen (2002a) imple-
mented a modified version of the previous model aiming to correlate 
bias on cognitive judgements with exogenous attributes of the reporters. 
Finally, Koskinen (2004) proposed an inference scheme where reference 
priors were used in order to allow some degree of automation in the 
model selection. More recently, Rodriguez (2015) developed a novel 
class of stochastic block models for CSS data by constructing a joint prior 
on the community structure of all networks using fragmentation and 
coagulation processes. Concurrently, Swartz et al. (2015), extending 
Bond’s model, proposed a fully Bayesian logistic ANOVA model for 
triadic data. Their strategy uses a convenient parametrization that 
makes assessments of cognitive agreement among actors possible. Pat-
tison (1994) and Brands (2013) provide excellent reviews about the 
early and modern literature on CSSs, respectively. 

In this manuscript we introduce a random-effects model for triadic 
data that builds upon the latent space approach of Hoff (2005) and Hoff 
(2009). The model assumes that there is a true social space (a 
K-dimensional vector space in which each individual occupies a fixed 

position), that each individual has a perception of the true space (re-
flected as an assignment of coordinates to individuals within the same 
space that differ to a lesser or greater extent from the true positions), and 
that, when asked to provide CSS reports, each individual consults their 
individual spatial model, and then generates tie presence/absence re-
ports independently. The positions in latent space can be interpreted as 
operationalizing the notion of (perceived) “social roles” (e.g., see Was-
serman et al., 1994, Chapter 12). A consequence of this framework is 
that there is no “true” network: networks are purely a consequence of 
the behavior of individuals when we force them to express their (spatial) 
understanding in terms of a network instrument. The bilinear structure 
of our model is reminiscent of (multivariate) item response theory (IRT) 
models (e.g., see von Davier and Carstensen, 2007) and spatial voting 
models (e.g., see Clinton et al., 2004), which are widely used in various 
social sciences disciplines to map discrete responses into (latent) 
continuous scales. 

Our main goal in building the model is to develop a test that would 
allow us to formally assess the level of agreement between an actor’s self 
perception of their own position in a social environment and that of 
other actors embedded in the same social environment. This goal is 
accomplished though a hierarchical Bayesian model that incorporates a 
mixture prior. Such a prior enables the computation of posterior prob-
abilities that assess whether the perception of an individual about its 
own position in social space agrees with the judgments of other actors. 
As a byproduct of this approach, we are able to estimate a weighted 
consensus network that summarizes the cognitive assessments of all 
reporters in the network by differentially weighting the information 

Fig. 1. Visualization of some networks in the CSS corresponding to Actors 8, 13, and 19. The bottom right panel shows the consensus network using δ0 = 0.5 as 
a threshold. 
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according to the level of cognitive agreement among actors. 
Historically, there have been two leading approaches to the analysis 

of CSS data, namely, the essentialist (“classical”) and the relativist 
(“cognitivist”) perspectives. Essentialists conveniently define a “real” 
network structure (known as criterion network, and usually constructed 
based on behaviors described by an external observer), and then study 
the discrepancies between actors’ reports and this “truth” (Bond et al., 
1997; Koskinen, 2002a,b, 2004; Butts, 2003; Kilduff et al., 2008). On the 
other hand, in the absence of an external truth, relativists compare ac-
tors’ cognitive reconstructions of an underlying network with each 
other. Under the relativist approach, ties that actors perceive are 
considered to be more informative than ties reported by a third-party, 
external observer because people act upon what they consider real in 
their minds. Thus, differences between the perceptions of one individual 
and the perceptions of other actors represent the theoretical and 
empirical question of interest (Krackhardt, 1987). Our approach is built 
from a relativist perspective, as it relies exclusively in cognitive reports 
from actors embedded in the social environment, it does not assume the 
existence of a “true” network, and focuses on assessing “agreement” as 
opposed to “accuracy” (which requires the definition of an external 
“gold standard”). And while our approach can generate a weighted 
consensus network (which can be interpreted in terms of perceived af-
finities or social distances), we make no claim about whether this 
consensus provides an accurate representation of a “true” social 
structure. 

The model we introduce in this paper is part of a growing literature 
on latent space models for tensor and multi-network data. Other ex-
amples of this literature include Salter-Townshend and McCormick 
(2017), Durante et al. (2017) and Wang et al. (2019) for replicated 
networks, Hoff (2015) for tensor data, and Sarkar and Moore (2006), 
Westveld et al. (2011), Durante and Dunson (2014) and Sewell and Chen 
(2015) for longitudinal network data. A key contribution of our 
approach vis-a-vis this existing literature is the hierarchical mixture 
structure in our prior that allows us to test perceptual agreement in the 
specific context of CSS data. 

The remainder of the paper is organized as follows: Section 2 moti-
vates our methodological developments using a CSS associated with 33 
employees of a firm involved in maintenance of information systems 
originally presented in Krackhardt (1990). Section 3 introduces our 
model, discusses some of its properties, and describe our prior elicitation 
process. Section 4 discusses our approach to computation, including our 
approach to addressing identifiability issues and the selection of the 
dimension of the social space. Section 5 revisits the Krackhardt’s dataset 
introduced in Section 2 and compares the results of applying our 
modelling strategy as well as that of Swartz et al. (2015). Section 6 
further explores the performance of the model through a 
cross-validation exercise carried out on several datasets additional 
datasets. Finally, some concluding remarks and directions for future 
work are provided in Section 7. 

Fig. 2. Out-degree distribution dout
i,j (top panel) and in-degree distribution din

i,j (bottom panel) across networks. The ith boxplot summarizes the distribution of the 
degree for all reporters except i, while the self-perceived degree is represented by a triangle (△) and the degree in the consensus network by a cross (×). 
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2. Krackhardt’s 1990 dataset 

To motivate our modeling approach, we consider the “advice” CSS 
reported by Krackhardt (1990). This CSS considers 33 employees in a 
small firm involved in maintenance of information systems. Using 
Krackhardt’s (1987) methodology, each actor in the network was asked 
to fill out a questionnaire answering the following question: “Who 
would this person go to for help or advice at work?” That is, if a specific 
person had a question or ran into a problem at work, who would she/he 
likely go to ask for advice or help? All 33 respondents completed the 
questionnaire, each answering the same question about himself/herself 
and all the others employees. Hence, this advice dataset constitutes a 
complete CSS composed of I = 33 directed, binary networks Y1, …, Y33, 
each one of size 33 × 33, in which yi,i′ ,j = 1 if Actor j informs that Actor i 
is likely to go for advice to Actor i′, and yi,i′ ,j = 0 otherwise. The diagonal 
elements of each Yj are treated as structural zeros. No nodal or link 
covariates are available for this dataset. 

Fig. 1 presents the ties reported by three employees (which in our 
notation correspond to Y8, Y13 and Y19), along with the consensus 
network obtained by using (1) with δ0 = 0.5 (i.e., a link is retained if only 
if at least 50% of the actors agree on it). There is wide variability among 
the reporters, and homophily effects are clear. The number of links 
ranges from 27 (Actor 13) to 430 (Actor 12); while Actors 4, 8, 13, and 
29 at most report 46 links each, 18 employees report more than 100 
links each. Interestingly, Actor 11, who only perceives 94 links, is the 
only employee that reports never seeking advice from others. Similarly, 
Actors 1, 4, 13, 29, 30, and 32 report that no co-worker goes to them for 
guidance. 

Fig. 2 illustrates the differences between the self-perception of each 
actor and the perception that others have of him/her by comparing the 
normalized out-degree dout

i,i =
∑

i′ ∕=iyi′ ,i,i/(I − 1) (top panel) and in- 
degree din

i,i =
∑

i′ ∕=iyi,i′ ,i/(I − 1) (bottom panel) of a given actor when 
she/he is the reporter, against the distribution of the normalized in- and 
out-degrees when the reporter is any other subject in the network din

i,j =
∑

i′ ∕=iyi,i′ ,j/(I − 1) and dout
i,j =

∑
i′ ∕=iyi′ ,i,j/(I − 1), j ∕= i, as well as those 

obtained from the consensus network, ̃d
in
i =

∑
i′ ∕=iỹi,i′ /(I − 1) and ̃d

out
i =

∑
i′ ∕=iỹi′ ,i/(I − 1). Note that for many executives, both the in- and out- 

degree they perceive for themselves is smaller than the corresponding 
median computed from the networks perceived by the other actors, as 
well as that for the consensus network. This effect is particularly extreme 
for Actors 8, 12, 21, 22, and 23. Similar discrepancies can be observed 
for various Actors based on other descriptive measures such as clustering 
coefficient or assortativity index (plots not shown). We emphasize the 
fact that the perceptual discrepancies highlighted above are not estab-
lished in relation to a “true” underlying network structure; instead, such 
discrepancies are cognitive disagreements with respect to others’ 
reports. 

3. A latent space model for CSSs data 

Hoff (2005, 2009) proposes a bilinear latent space model for binary, 
directed networks Y = [yi,i′ ]. The model assumes that observations are 
conditionally independent Bernoulli draws, yi,i′ ∣θi,i′ ∼ Ber

(
θi,i′

)
, i, i′ = 1, 

…, I, i′ ∕= i, and then proceeds to structure the probabilities as θi,i′ =

Φ(xT
i,i′ β + uT

i vi′ ), where Φ(⋅) denotes the cumulative distribution function 
of the standard Gaussian distribution. In addition to a global intercept, 
the p-dimensional vector of predictors xi,i′ incorporates known attributes 
associated with each pair of actors that might explain transitivity effects 
in the network. On the other hand, the bilinear term uT

i vi′ is used to 
account for residual transitivity effects not explained by the known at-
tributes. The unknown vectors u1, …, uI and v1, …, vI can be interpreted 
as the positions of each actor in “sender” and “receiver” K-dimensional 
social spaces, respectively. The latent dimension K is treated as a known 

constant, which needs to specified beforehand, or in our case, selected 
using a two-step approach (see Section 4.2 for details). The model is 
completed by setting (usually mutually independent) priors on the un-
known vector of regression coefficients β and the unknown latent fea-
tures u1, …, uI and v1, …, vI. 

We are interested in extending this model to accommodates the 
particular features associated with CSS data. As in Hoff (2005, 2009), we 
still assume that observations are conditionally independent, 
yi,i′ ,j∣θi,i′ ,j ∼ Ber

(
θi,i′ ,j

)
, and construct a hierarchical prior for the array of 

probabilities [θi,i′ ,j]. To do so, we let 

θi,i′ ,j = Φ
(

xT
i,i′ βj + uT

i,jvi′ ,j

)
, (2)  

where the additional index j makes explicit the reference to reporter j. If 
mutually independent priors were assigned to each reporter j, then this 
formulation would be equivalent to fitting the one-network model we 
described above independently for each reporter. Instead, we consider a 
hierarchical prior for the latent space positions that distinguishes be-
tween two cases. For values of j ∕= i (i.e., for the latent positions of actor i 
as perceived by all actors except him/herself) we assign conditionally 
independent Gaussian priors 

ui,j∣ηi, σ2
u∼

indN(ηi, σ2
u IK), vi,j∣ζ i, σ2

v ∼
indN(ζ i, σ2

v IK), (3)  

where IK denotes the K × K identity matrix. The means ηi and ζi can be 
interpreted as the consensus positions in the sender and receiver spaces 
for each actor in the network. By placing priors on these consensus 
means we can capture similarities among the observed networks and 
borrow information across them. On the other hand, for j = i we model 
the latent positions using two-component mixtures of the form 

ui,i∣ηi, σ2
u, τ2

u, γi∼
ind

{
N(ηi, σ2

u IK), γi = 1,

N(0, τ2
u IK), γi = 0,

(4)  

vi,i∣ζ i, σ2
v , τ2

v , ξi∼
ind

{
N(ζi, σ2

v IK), ξi = 1,

N(0, τ2
v IK), ξi = 0,

(5)  

where σ2
u ∼ IGam(aσ , bσ) and σ2

v ∼ IGam(aσ , bσ), while τ2
u ∼ IGam(aτ, bτ)

and τ2
v ∼ IGam(aτ,bτ). 

Note that if γi = 1 (ξi = 1) then the self-perception of Actor i’s position 
in the sender (receiver) social space is drawn from the same general 
distribution as the perception of other actors about him/her. On the 
other hand, if γi = 0 (ξi = 0) then the perception that Actor i has its own 
position in sender (receiver) social space, which differs from that of the 
other actors. We treat γ1, …, γI and ξ1, …, ξI as unknown quantities and 
assign them common priors γi ∣ ψ ~ Ber(ψ) and ξi ∣ ψ ~ Ber(ψ), with 
ψ ~ Beta(c, d). The choice of a common value of ψ for both the γis and the 
ξis is a (very mild) mechanism to share information between the sender 
and receiver spaces of the model, which are otherwise treated as inde-
pendent a priori. This is most easily seen if ψ is integrated out of the 
model, 

p(γ1, …, γI , ξ1, …, ξI) =
Γ(c + d)

Γ(c)Γ(d)

Γ(c + γ⋅ + ξ⋅)Γ(d + 2I − γ⋅ − ξ⋅)

Γ(c + d + 2I)
,

where γ⋅ =
∑I

i=1γi, ξ⋅ =
∑I

i=1ξi and Γ(⋅) denotes the well-known Gamma 
function. The use of a common ψ simply reflects an assumption that the 
average “sparsity” in both sender and receiver spaces is identical. We 
believe that this is a natural assumption to make a priori, but if the data 
does not support it, the model is still free to deviate from it a posteriori. 

Inferences on γ1, …, γI and ξ1, …, ξI allow us to make statements 
about the level of cognitive agreement between actor’s self-perception 
and that of the rest of the actors. Furthermore, by learning γ1, …, γI 
and ξ1, …, ξI jointly from the data, the estimates of the consensus po-
sitions ηi and ζi differentially weight an actor’s self-perception and the 
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opinions of other actors in the network. For example, for actors for 
which Pr(γi = 0 ∣ Y) is very low, the model will heavily down-weight an 
actor’s self perception in the estimates of ηi. Finally, notice that our 
perceptual test is not based on the existence of an underlying “true” 
network structure; which implies that our inferences on γ1, …, γI and ξ1, 
…, ξI are limited to either agreement or disagreement regarding to the 
others’ cognitive perception, as opposed to accuracy or any other 
measure that involves any sort of an external gold standard. 

The model is completed by specifying priors on the remaining model 
parameters. The consensus positions are assigned independent priors 

ηi∣κ2
η∼

iidN
(
0, κ2

η IK
)
, ζ i∣κ2

ζ∼
iidN

(
0, κ2

ζ IK
)
, (6)  

where κ2
η = κ2

ζ = κ2 are fixed. Note that this resembles the prior speci-
fication we used in (4) for the case γi = 0 and in (5) for the case ξi = 0. 
Centering the latent positions in bilinear models around zero is a com-
mon practice in the literature, in part because it implies that the model 
is, roughly speaking, centered around an Erdos-Renyi model (Erdös and 
Rényi, 1959). Furthermore, the choice of a zero mean and a covariance 
matrix that is proportional to the identity ensures that the priors, as well 
as the likelihood, are invariant to rotations of the latent space. This 
property will be important in our discussion of identifiability (see Sec-
tion 4.1 below). 

Finally, when covariates are available, the corresponding regression 
coefficients are assigned a hierarchical prior, 

βj∣ν, ς2∼
iidN

(
ν, ς2 Ip

)
, ν ∼ N

(
0, ω2 Ip

)
, ς2 ∼ IGam(aς, bς)

Fig. 3 presents a plate diagram that summarizes the structure of the 
model. 

The construction we propose in this section is such that, in the case 
where no covariates are present, the resulting joint marginal distribution 
of the data is fully jointly exchangeable (i.e., that the distribution of the 

collection 
{

yi,i′ ,j

}I

i,i′ ,j=1 
is the same as the distribution of 

{
yπ1(i),π2(i′ ),π3(j)

}I

i,i′ ,j=1 
only if the permutations π1, π2 and π3 satisfy 

π1 = π2 = π3, see Aldous, 1985). Full joint exchangeability (rather than a 
weaker form of exchangeability) is particularly attractive in this setting 
because all indexes i, i′ and j refer to the same set of actors. This in 
particular implies that the marginal distribution of yi,i′ ,j is not the same 
as that of yi,i′ ,i, which should be clear from (3)–(5). 

3.1. Hyperparameter elicitation 

Careful elicitation of the hyperparameters c, d, ω2, aς, bς, aσ, bσ, aτ, bτ, 
bκ, and κ is key to ensure appropriate model performance. As is 
customary in the model selection literature (e.g., see Scott and Berger, 
2010), we set c = d = 1, which implies a uniform prior on the number of 
actors that exhibit idiosyncratic self-perceptions. On the other hand, for 
the priors on the variance parameters, we set aσ = aτ = bκ = 2, which 
leads to a proper prior with finite mean but infinite variance. Further-
more, because of the symmetry of the model, it appears reasonable to set 
bσ = bτ = b. We then jointly choose values of b, ω2 and bς in a careful 
manner to ensure that Var

[
θi,i′ ,j

]
is (roughly) constant as a function of 

the dimension of the latent spaces. We impose this constraint so that we 
can appropriately contrast models constructed with different values of K 
and avoid Barlett’s paradox (Bartlett, 1957). 

To accomplish this goal, assume that the covariates have been 
standardized and that we are looking at a (hypothetical) pair of actors 
for which the level of all covariates (except that associated with the 
intercept) is zero. Note that, for such an actor and moderate to large 
values of K, the linear predictor in (2) is approximately distributed a 
priori as a Gaussian distribution with (marginal) mean 

E
[
βj,0 + uT

i,jvi′ ,j

]
= 0,

and (marginal) variance 

Var
[
βj,0 + uT

i,jvi′ ,j

]
=

{
ω2 + bς

}
+ K

{
κ2 + b

}2
. (7) 

Hence, setting {ω2 + bς} + K{κ2 + b}
2

= 1 in our probit model leads 

Fig. 4. Histogram of the marginal prior distribution on θi,i′ ,j, j ∕= i, i′, for K = 3 and K = 6.  

Fig. 3. Plate diagram summarizing the structure of our model.  
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to a prior for θi,i′ ,j that is close to the uniform. To select the values of the 
hyperparameters, we split the prior variance of the linear predictor 
equally among all terms, leading to ω2 = bς = 1/4 and κ2 = b = 1/

̅̅̅̅̅̅
8K

√
. 

Fig. 4 presents histograms of 100,000 independent realizations from the 
induced marginal prior on θi,i′ ,j for K = 3 and K = 6. Both are very similar 
(both are somewhat “trimodal”, with modes at θi,i′ ,j = 0, θi,i′ ,j = 1/2 and 
θi,i′ ,j = 1), but for K = 6 the distribution is, as we would expect, slightly 
less peaked. 

We note that, while keeping the variance of the linear predictor 
constant is, in our experience, critical for good dimension selection 
performance, the specific value of 1 that we have chosen to use as a 
default is not. In particular, the mean and the variance of θi,i′ ,j could be 
tuned to reflect prior information by slightly modifying the elicitation 
process we just described. 

4. Computation 

For a given K the posterior distribution of the parameters can be 
explored using Markov chain Monte Carlo (MCMC) algorithms in which 
the posterior distribution is approximated using dependent but 
approximately identically distributed samples ϒ(1), …, ϒ(S), where  

Point and interval estimates can be approximated from the empirical 
distributions. To facilitate computation we follow Albert and Chib 

(1993) and introduce independent auxiliary variables zi,i′ ,j∣βj, ui,j,

vi′ ,j ∼
indN

(
xT

i,i′ βj + uT
i,jvi′ ,j, 1

)
and let 

yi,i′ ,j∣zi,i′ ,j =

{
1, zi,i′ ,j ≥ 0,

0, otherwise.

Marginalizing over the zi,i′ ,j leads to our original Bernoulli likelihood 
with success probability given by (2). After introducing these latent 
variables, all full conditional distributions reduce to standard families, 
greatly simplifying computation. Details of the MCMC algorithm can be 
seen in the Supplementary Materials. 

4.1. Identifiability 

Bilinear models are invariant to rotations and reflections of the social 
space. Indeed, for any K × K orthogonal matrix Q, the likelihood asso-
ciated with the reparametrization ũi,j = Qui,j, ṽi,j = Qvi,j, η̃i = Qηi and 
ζ̃ i = Qζi is independent of Q. This lack of identifiability does not affect 
our ability to make inferences on the θi,i′ ,js (which are identifiable), or on 
the indicators γ1, …, γI, ξ1, …, ξI, whose posterior distribution is a 
function of the ui,js, vi,js, ηis and ζis only through quadratic or bilinear 
functions of them (and are therefore identifiable as well). However, it 
does hinder us when trying to provide posterior estimates of the latent 
positions. 

We address this invariance issue using a parameter expansion 
approach similar to that described in Hoff (2005). In particular, we 
address the identifiability issues through a post-processing step in which 
posterior samples are rotated/reflected to a shared coordinate system. 
For each sample ϒ(s), an orthogonal transformation matrix Q(s) is ob-
tained by minimizing the Procrustes distance, 

Q̃
(s)

= argminQ∈𝒮K tr
{(

W(1) − W(s)Q
)T (

W(1) − W(s)Q
) }

(8)  

where 𝒮K denotes the set of K × K orthogonal matrices and W(s) is the 
2I × K matrix whose first I rows correspond to the transposes of η(s)

1 , …,

η(s)
I and the rest correspond to the transposes of ζ(s)

1 , …, ζ(s)
I . The mini-

mization problem in (8) can be easily solved using singular value de-
compositions (e.g., see Borg and Groenen, 2005, Section 20.2). Once the 

matrices Q̃
(1)

, …, Q̃
(S)

have been obtained, posterior inference for the 

latent positions are based on the transformed coordinates ̃u(s)
i,j = Q̃

(s)
u(s)

i,j , 

ṽ(s)
i,j = Q̃

(s)
v(s)

i,j , η̃(s)
i = Q̃

(s)η(s)
i and ζ̃

(s)
i = Q̃

(s)
ζ(s)

i . 

4.2. Selection of the latent dimension K 

The choice K = 2 is popular in the network literature. Indeed, setting 
K = 2 simplifies visualization and interpretation, and is therefore 
particularly useful when the main goal of the analysis is to provide a 
description of the social relationships. However, our model focuses on 
testing structural hypotheses associated with the cognitive data, and the 
value of K can potentially play a critical role in the results. Hence, we 
investigate some methodologies for selecting the dimension of the social 
space. 

The network literature has largely focused on the Bayesian Infor-

mation Criteria (BIC) (e.g., see Hoff, 2005, Handcock et al., 2007 and 
Airoldi et al., 2009) as a tool for model selection. However, BIC is 
inappropriate for hierarchical models since the hierarchical structure 
implies that the effective number of parameters will typically be lower 
than the actual number of parameters in the likelihood. An alternative to 
BIC that addresses this issue is the Deviance Information Criterion (DIC) 
(Spiegelhalter et al., 2002, 2014; Gelman et al., 2014b), 

DIC
(

K
)

= −2logp
(

Y∣Θ̂K

)
+ 2pDIC, (9)  

where Θ̂K denotes the posterior mean of model parameters assuming 
that the dimension of the social space is K, and the penalty term pDIC on 
the model complexity is given by 

pDIC = 2logp
(

Y∣Θ̂K

)
− 2 E[logp(Y|ΘK) ]

An alternative to DIC is the Watanabe-Akaike Information Criterion 
(WAIC) (Watanabe, 2010, 2013; Gelman et al., 2014b), 

WAIC

(

K

)

= −2
∑

j,i<i’
logE

[
p
(
yi,i’ ,j

⃒
⃒ΘK

) ]
+ 2 pWAIC,

where the complexity penalty is given by 

pWAIC = 2
∑

j,i<i’

{

logE
[
p

(
yi,i’ ,j

⃒
⃒ΘK

) ]
− E

[
logp

(
yi,i’ ,j

⃒
⃒ΘK

) ]
}

Note that in the previous expressions all expectations, which are 
computed with respect to the posterior distribution, can be approxi-
mated by averaging over MCMC samples. 

A key advantage of the WAIC criteria is its invariance to repar-
ameterizations, which makes it particularly helpful for models (such as 
ours) with hierarchical structures, for which the number of parameters 
increases with sample size (Gelman et al., 2014a; Spiegelhalter et al., 
2014). 

Θ(s) =
(

β(s)

1 , …, β(s)

I , u(s)

1,1, …, u(s)

I,I , v(s)

1,1, …, v(s)

I,I , η(s)

1 , …, η(s)

I , ζ(s)

1 , …, ζ(s)

I , γ(s)

1 , …, γ(s)

I , ξ(s)

1 , …, ξ(s)

I , σ(s)
u , τ(s)

u , σ(s)
v , τ(s)

v , ν(s), ς(s), ψ (s)
)
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5. Krackhardt’s (1990) dataset revisited 

In this section we analyze the Krackhardt’s data introduced in Sec-
tion 2 using our model from Section 3 with βj ≡ βj, for all j, xi,i′ ≡ 1 for all 
i and i′, and ν ≡ ν (referred to as LATENT for short), as well as the 
Bayesian models introduced in Swartz et al. (2015) (SWARTZ for short; 
see Section 1). SWARTZ is a logistic ANOVA model that includes all first 
and second order interactions among reporter, sender and receiver 
levels. This parameterization allows the practitioner to assess the level of 
agreement between self and group perception by contrasting the value 
of appropriate interaction parameters. However, it does not yield a 
straightforward mechanism to construct a consensus network. The re-
sults we report in this section are based on S = 40, 000 samples obtained 
after thinning the original Markov chains every 25 observations. 
Execution times, at 2.169 h. for SWARTZ and between 2.186 (K = 2) and 
4.720 (K = 9) h. for LATENT using a single core of an i7 Intel processor, 
are comparable for these two models. Convergence was monitored by 
tracking the variability of the joint distribution of data and parameters 

using the multi-chain procedure discussed in Gelman and Rubin (1992). 

5.1. Dimension of the latent space 

Table 1 presents the values of the DIC and WAIC associated with 
versions of our model that differ in K, the number of dimensions of the 
latent social space. Note that both criteria favor a choice of K = 6, which 
is the value we use for all of our analyzes. 

5.2. Self-perception assessment 

As discussed in Sectionss 1 and 2, one important goal in the analysis 
of CSS data is to assess the agreement of the actors’ self-perception with 
that of other members of the system. In the context of LATENT, the 
posterior probabilities ℙr[γi = 1|Y] and ℙr[ξi = 1|Y] provide the desired 
measures of Actor i’s agreement in its role as sender and receiver, 
respectively. In particular, remember that posterior probabilities close 
to one correspond to high levels of agreement. In the case of SWARTZ, a 

Fig. 5. Comparison of sender self perception assessments under LATENT and SWARTZ for Krackhardt’s (1990) data. Top panel: For LATENT, posterior probabilities 
ℙr[γi = 1|Y]. Bottom panel: For SWARTZ, 95% credible intervals and posterior means for the distribution of the personal assessment parameters δOUT

i . Thicker lines 
correspond to credible intervals that do not contain zero. 

Table 1 
Values of DIC and WAIC for selecting the dimension K of the latent space for LATENT using Krackhardt’s (1990) data.  

K 2 3 4 5 6 7 8 

DIC 13,389.0 11,122.6 9470.2 8903.8 8548.9 8575.1 8576.7 
WAIC 13,718.9 11,730.7 10,207.3 9707.4 9384.7 9404.3 9409.5 

Bold values correspond to those values that minimize the criteria reported in the table. 
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sender (receiver) agreement measure δOUT
i (δIN

i ) can be defined as the 
difference between the interaction term associated with reporter i and 
sender (receiver) i′ and the average value of the same interaction term 
associated with all other reporters (see Swartz et al., 2015, Section 2 for 
details). For metrics δOUT

i and δIN
i , differences close to zero in absolute 

value correspond to actors whose self-perception strongly agrees with 
the consensus. 

Figs. 5 and 6 present estimates of cognitive agreement for Krack-
hardt’s data under these two models. Overall, LATENT is the most 
conservative model, identifying only four individuals whose sender self- 
perception does not agree with the consensus (actors 8, 15, 22 and 27), 
and five individuals whose receiver self-perception disagrees with the 
consensus (8, 12, 14, 19 and 28). SWARTZ identifies a total of 17 actors 
whose sender self-perception disagrees with the consensus (the same 
four identified by LATENT plus 6, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 
31, and 33), and another 17 whose receiver self-perception disagrees 
with the consensus (again, the five identified by LATENT plus 6, 15, 16, 
18, 20, 22, 23, 25, 26, 27, 31, and 33). It is particularly striking that both 
lists are identical for SWARTZ. The difference between LATENT and 
SWARTZ can be partially explained by the well-known tendency of 
Bayesian procedures to automatically adjust for multiple comparisons 
when appropriate hierarchical priors are used (e.g., see Scott and Berger, 
2006 and Scott and Berger, 2010). Achieving the same adjustment using 
SWARTZ approach would require adjusting the credibility level of the 

intervals up from 95% according to, for example, Bonferroni’s correc-
tion. One challenge with making these adjustments is that, in this 
setting, the different hypotheses being testing here are likely to be highly 
correlated. 

5.3. Consensus network 

In LATENT, the average positions η1, …, ηI and ζ1, …, ζI can be used 
to generate a weighted network, ϑi,i′ = Φ

(
ν + ηT

i ζi′
)
, which can be 

interpreted as the consensus “affinity” between Actors i and i′. Fig. 7 
presents the matrix of posterior means E

[
ϑi,i′

⃒
⃒Y

]
for Krackhardt’s (1990) 

data, along with a heat-map of the proportion of actors reporting each 
link, 1

I
∑I

j=1yi,i′ ,j. We do not present a consensus network for SWARTZ 
because this model does not provide any straightforward mechanism to 
construct such a network. Note that the consensus network from 
LATENT tends to be sparse, probably due to shrinkage and the fact that 
our model discounts information from actors whose self-perception 
disagrees with the rest. 

5.4. Projections in social space 

The latent positions ui,j and vi,j provide a powerful tool to describe 
social interactions. To illustrate this, we show in Fig. 8 the coordinates 

Fig. 6. Comparison of receiver self perception assessment under LATENT and SWARTZ for Krackhardt’s (1990) data. Top panel: For LATENT, posterior probabilities 
ℙr[ξi = 1|Y]. Bottom panel: For SWARTZ, 95% credible intervals and posterior means for the distribution of the personal assessment parameters δIN

i . Thicker lines 
correspond to credible intervals that do not contain zero. 
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along the two highest-variability dimensions of ui,j (top row) and vi,j 

(bottom row) for a two fixed values of i (in this case, i = 1 and i = 8) and 
every possible j (i.e., the position of these two actors as perceived by the 
different members of the social network, including themselves). These 
graphs are consistent with those from Figs. 5 and 6. In the first column of 
the figure, Actor 1’s self-perceived position clusters with his/her posi-
tion as perceived by other actors in both graphs, which is consistent with 
high values for both ℙr[γ1 = 1|Y] and ℙr[ξ1 = 1|Y]. On the other hand, in 
the second column of Fig. 8 we see that, in both cases, Actor 8 is clearly 
isolated from the other actors. This is again consistent with the low 
values we reported for ℙr[γ8 = 1|Y] and ℙr[ξ8 = 1|Y]. 

It is interesting to contrast these results with those presented from 
Fig. 9, which instead presents the coordinates ui,j (top row) and vi,j 
(bottom row) for two fixed values of j and every possible i (i.e., the 
position of all actors as perceived by each of the two different observers). 
For example, from the second column we see that Actor 8 sees him/ 
herself as occupying a somewhat isolated position in sender space 
(although certainly not as isolated as the one that other actors perceive 
him/her to be). However, in terms of the receiver space, Actor 8 per-
ceives him/herself as being located right with the other actors. As we 
discussed above, this is the opposite of how the other actors perceive 
him/her. 

5.5. Model fit 

To asses the fit of our model, we first complement the results pre-
sented in Table 1 by computing the DIC and WAIC values for SWARTZ. 
For this model the DIC is 11,073.52, whereas the WAIC is 11,406.92. 
While the performance of SWARTZ is competitive with that of a low- 
dimensional LATENT models, it is clear that, for an optimally selected 

latent-space dimension, LATENT outperforms SWARTZ under both 
criteria. 

Next, following Gelman et al. (2014a, Chapter 6) and Kolaczyk and 
Csárdi (2014, Chapter 4), we replicate pseudo-data from both fitted 
models and calculate a battery of summary statistics (in our case, the 
average density, assortativity, clustering coefficient, and mean path 
length over the different networks) for each sample. This allows us to 
generate an estimate of the posterior predictive distribution of the 
summaries, which can then be compared against the value observed in 
the original sample (see Fig. 10). Our model clearly provides a better fit 
to the data, outperforming SWARTZ. This is most obvious for the 
assortativity, transitivity and mean path length indexes. 

6. Cross-validation 

As an additional goodness-of-fit assessment, we carry out cross- 
validation experiments on several CSS datasets exhibiting different 
kinds of actors, sizes, and relations, including two datasets collected as 
part of our research (see Table 2 for details). More specifically, for each 
combination of dataset and model, we performed an L-fold cross- 
validation (CV) in which L randomly selected subsets of roughly equal 
size in the CSS are treated as missing and then predicted using the rest of 
the data. 

We summarize our findings in Table 3, where we report the average 
Area Under the ROC Curve (AUC) corresponding to the prediction of 
missing links for LATENT and SWARTZ, and also each dataset presented 
in Table 2. In this context, the AUC is a measure of how well a given 
model is capable of predicting missing links (the higher the AUC, the 
better the model is at predicting 0s as 0s and 1s as 1s). For LATENT, we 
report the AUC for the model with the optimal value of K according to 
the WAIC criteria. 

Fig. 7. Estimates of the weighted consensus network for Krackhardt’s (1990) data. The left panel provides the posterior mean under LATENT, and the right panel 
shows the proportion of actors that report perceiving each possible link, 1

I
∑I

j=1yi,i′ ,j. 
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Fig. 8. Posterior means of the positions in social space along the two dimensions with highest variance for Actors 1 and 8 in Krackhardt’s (1990) data, as perceived 
by all actors. 
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We can see from Table 3 that LATENT is the best model in terms of 
predicting missing links. Specifically, for the K21 and Six datasets, the 
predictive performance of LATENT and SWARTZ is practically the same; 
however, for all the other CSSs, LATENT has a better predictive per-
formance than SWARTZ. These results strongly suggest that the pre-
dictive capabilities of LATENT are indeed comparable with or even 
better than those offered by its competitor. 

7. Discussion 

We have presented a novel approach for modeling CSS data with a 
focus on assessing cognitive agreement across actors in a social network. 
The spatial nature of the model (which operationalizes the notion of 
social roles) and its close relationship with latent factor models widely 
used for scaling categorical data in the social sciences make the model 
highly interpretable. 

During the review process, one of the referees suggested that, if the 
spatial representation is the correct, then traditional CSS instruments are 
not appropriate, and that other approaches to data collection, such as 
introducing variants of social distance scales or attempting to directly 
elicit perceived positions in the underlying spatial representation, would 
be needed. While we agree that alternative instruments have the po-
tential to provide higher quality data that would allow for more accurate 
estimates, we see no structural impediment to using traditional CSS 
instruments in the context of our model. Indeed, there is a rich tradition 
of using binary data to estimate spatial models in various social sciences 
disciplines. The most obvious example is the case of spatial voting 
models (Poole and Rosenthal, 1985; Clinton et al., 2004; Rodriguez and 

Moser, 2015; Lofland et al., 2020). In fact, the model discussed in 
Clinton et al. (2004) is a bilinear model that is strongly related to the one 
we discuss in this manuscript. What these models do is map the binary 
responses into (social) distance scales without directly asking about 
them. In our case, the fact that the data is binary can be seen as mea-
surement error introduced by the CSS instrument. 

Our model can be easily adapted to account for undirected and/or 
weighted CSS data and to deal with missing values. Furthermore, a 
number of extension are possible. For example, we could incorporate 
explicit reporter-specific popularity terms for each actor (e.g., see Hoff, 
2005), which can also be modeled hierarchically and tested for. Simi-
larly, alternative models for transitivity (such as the eigenvalue model of 
Hoff, 2009) could be adapted to provide additional flexibility to the 
model. Also, the agreement probabilities of the indicators in Eqs. (4) and 
(5) could be replaced for subject-specific parameters in order to intro-
duce more sensitivity into the model. 

In this paper we adopted a two step procedure to selecting the 
dimension of the latent space using DIC and WAIC as model selection 
procedures. We have recently been successful at incorporating the se-
lection of the dimension as part of the model estimation process in the 
context of dynamic networks (please see Guhaniyogi et al., 2020). In the 
future, we plan to investigate similar approaches to dimensionality se-
lection in the context of CSS data. 

One of the referees raised questions about the use of Gaussian dis-
tributions as priors for the latent positions. This choice, which is in line 
with most of the literature on the topic, is mostly one of convenience and 
is potentially restrictive. In the future, we plan to explore extensions of 
the model that would replace the Gaussian distributions in Eqs. (3), (4), 

Fig. 9. Posterior means of the positions in social space along the two dimensions with highest variance for all actors as perceived by Actors 1 and 8 in Krackhardt’s 
(1990) data. 
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and (5) with more general (possibly non-parametric) mixture priors. 
Such model structure, which is somewhat reminiscent of Handcock et al. 
(2007), is motivated by the results presented in Figs. 8 and 9. Indeed, 
from these figures it is apparent that the perception of the position of 
different actors in social space tend to form clusters, and that the use of 
Gaussian random effects might be inappropriate. Such extensions of the 
model will be discussed elsewhere. 

Supplementary materials 

The online supplementary materials include details of the Markov 
chain Monte Carlo algorithm used to fit our model, as well as an addi-
tional illustration focused on the dataset introduced in Krackhardt 
(1987), as well as detailed simulation studies that assess the accuracy of 
LATENT and SWARTZ to identify individuals with perceptual 
disagreement, the ability of our two-step approach to correctly select the 
dimension of the latent space, and an evaluation of the computational 
performance of our algorithm. 
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Fig. 10. Kernel estimates corresponding to the empirical distribution of the test statistics for replicated data along with the observed value in Krackhardt’s 
(1990) data. 

Table 3 
Average AUCs corresponding to the prediction of missing links in a series of CV 
experiments to assess the predictive performance of LATENT and SWARTZ, 
using each CSS provided in Table 2.  

Dataset LATENT SWARTZ 

K33 0.962 0.950 
It1 0.944 0.928 
Eco 0.960 0.923  

K21 0.917 0.913 
It2 0.941 0.930 
Six 0.928 0.926 
Fin 0.931 0.918 

Bold values correspond to those values that minimize the criteria reported in the 
table. 

Table 2 
CSS datasets for which a series of cross-validation experiments are performed 
using LATENT and SWARTZ. Note that the K33 and K21 datasets are widely 
analyzed in Sections 2 and 2 from the supplementary material, respectively.  

Acronym Reference Actors Type No of actors 

K33 Krackhardt (1990) Executives Advise 33 
It1 Casciaro (1998) Researchers Advise 24 
Eco Sosa and Rodriguez College students Advise 28  

K21 Krackhardt (1987) Executives Friendship 21 
It2 Casciaro (1998) Researchers Friendship 24 
Six Neal (2008) 6th graders Friendship 15 
Fin Sosa and Rodriguez College students Friendship 19  
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