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ARTICLE INFO ABSTRACT

Keywords: Arsenic (As) contamination in groundwater is a global crisis that is known to cause cancers of the skin, bladder,
Arsenic and lungs, among other health issues, and affects millions of people around the world. Due to the time and
Bioremediation financial constraints associated with establishing in-depth monitoring programs, it is difficult to monitor and
E'_Llirpolmon map arsenic concentrations over time and across large areas. The goal of this study was to determine the most
Groundwater accurate Geographic Information Systems (GIS) interpolation method for mapping the effects of bioremediation
Contamination on groundwater arsenic sequestration across a local-scale study area in northwest Florida (~900 m?) over the

duration of a nine-month period (pre-injection, one-month post-injection, and nine-months post-injection). We
used groundwater data collected from 2018 to 2019 to visualize arsenic contamination over time. Measured
arsenic concentrations from 23 wells were grouped into three categories: (1) decreasing, (2) fluctuating, or (3)
largely unaffected by the bioremediation procedure. The accuracy of three interpolation methods was also
investigated: Inverse Distance Weighted (IDW), Ordinary Kriging (OK), and Empirical Bayesian Kriging (EBK).
Statistical results using the leave-one-out cross validation (LOOCV) process showed that OK consistently pro-
vided the most accurate predictions of arsenic concentrations across space and time ([Root Mean Square Error
(RMSE) = 0.265] and accurately predicted regulatory arsenic concentrations below 0.05 mg/L in nine of 11
wells, while IDW and EBK only accurately predicted four and five wells, respectively. While it was shown that OK
tends to underpredict arsenic maxima, this did not affect the overall accuracy of the interpolation compared to
results from EBK (RMSE = 0.297) and IDW (RMSE = 0.272). Overall, these interpolations aided in the inter-
pretation of the extent of bioremediation, revealing the need for repeated injections to continuously remove
arsenic from the groundwater. The study will provide guidance and evaluation methods for international and
governmental organizations, industrial companies, and local communities on how to understand spatial and
temporal distributions of arsenic contamination and inform bioremediation efforts at various scales in the future.

1. Introduction have been phased out beginning in the 1980s and barred from use by the

U.S. Environmental Protection Agency (EPA) in 2009 (U.S. EPA, 2009),

Millions of people worldwide suffer from diseases caused by
groundwater arsenic contamination (World Health Organization, 2019).
Geogenic arsenic contamination is well known in regions like the Bengal
Basin, yet anthropogenic sources of arsenic contamination, such as those
produced at industrial and agricultural sites, can also be a threat to
groundwater quality, especially in developed regions around the world
(Woolson, 1983; Smedley and Kinniburgh, 2002). Most of these cases
originate from the use of herbicides, pesticides, and other agricultural
aids (Bencko and Foong, 2017; Lee et al., 2018). Arsenical herbicides are
soluble in water, potentially leading to arsenic accumulation in under-
lying aquifers over time. Although arsenical herbicides and pesticides
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legacy contamination from industrial manufacturing sites and extensive
field applications still pose a threat to groundwater quality today.

GIS has emerged as an effective tool for visualizing environmental
contaminants. Often due to time and financial constraints, limited
numbers of groundwater samples are collected in the field for chemical
analysis, leading to sparse datasets that could diminish experimental
results and conclusions (Liu et al., 2004). Interpolation of isolated well
data can be used to predict values at unsampled locations using nearby
measured values (Tobler, 1970) and fill in gaps in the conceprtual site
model. Three common interpolation methods for groundwater
contamination mapping are Inverse Distance Weighting (IDW), Kriging,
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and Empirical Bayesian Kriging (EBK). IDW is a deterministic interpo-
lation method which produces an estimated surface by considering the
similarity between measured points and determining the optimum
weight needed to control the influence of points at a certain distance (de
Smith et al., 2020). IDW models adhere to Tobler’s First Law (Tobler,
1970), in which measured values that are farther away from the point of
estimation should be appropriately diminished or weighted based on
this distance (de Smith et al., 2020). Kriging and EBK are both geo-
statistical interpolation methods, which differ from deterministic
interpolation models in that they use the measured data points to
describe a true population and then create an overarching model from
this population to predict values at varying distances (de Smith et al.,
2020). Kriging is a multistage process that uses a semivariogram to
consider the distance and variation in the measured values to estimate
unknown values (Paramasivam and Venkatramanan, 2019; de Smith
et al., 2020). Kriging has a variety of mathematic models such as Simple
Kriging, Universal Kriging, and Ordinary Kriging (OK). OK uses a
location-dependent mean, and its semivariogram computes optimal
weights (like IDW) and assigns weights to measured points to predict
values at unsampled locations (Paramasivam and Venkatramanan,
2019; de Smith et al., 2020). EBK is a newly developed interpolation
method that automates the intensive construction of a valid Kriging
model through simulating the measured points (Magesh and Elango,
2019; ESRI, 2020b). Unlike Kriging, EBK utilizes multiple semivario-
grams and considers the uncertainty among them (ESRI, 2020b). Spe-
cifics regarding the mathematical basis of OK, EBK, and IDW
interpolation are detailed in Xie et al. (2011), Krivorucko (2012a,b),
Singh and Verma (2019), de Smith et al. (2020), and ESRI (2020b).

While interpolation is a common method used in GIS, disagreement
still exists regarding the accuracy of interpolating contamination under
different conditions for various pollutants. For example, Xie et al. (2011)
investigated the performance of IDW and OK, along with Radial Basis
Functions (RBF), across a 605 km? agricultural area in Beijing, China.
They discovered that while OK was the most accurate in predicting soil
heavy metal contamination, local maxima and minima were best pre-
served with IDW and RBF, as the maxima were underestimated with OK.
Rabah et al. (2011) found that Kriging gave the most accurate interpo-
lation results for groundwater chloride concentrations and water levels
along the Gaza Strip (365 km?). More recent studies like Mirzaei and
Sakizadeh (2016) compared OK, EBK, and IDW in their ability to predict
various groundwater quality parameters over 1100 km? in Khuzestan,
Iran, through which they determined that EBK was the best method
because it yielded the least error. However, they noticed that EBK and
OK had strong smoothing effects in overestimating local minima,
meaning that the interpolation overpredicted values around known low
values and, thus, obscured the overall minima. Most recently, Singh and
Verma (2019) investigated groundwater nitrate concentrations in
Lucknow City, India (429.5 km?) and found that Kriging, compared to
IDW, was the most accurate method, while Magesh and Elango (2019)
looked at groundwater fluoride concentrations in the Dindigul district,
India (6267 km?) and discovered that EBK, compared to IDW, had the
least amount of error.

Interpolation methods have previously been used to understand the
spatial distribution of groundwater arsenic. Shamsudduha (2008)
examined different interpolation methods in their ability to predict
arsenic concentrations in shallow aquifers across a very large study area
in Bangladesh (144,000 km?). The analysis found that OK was a better
predictor of arsenic concentrations than IDW, but OK systematically
underestimated arsenic maxima and had a strong smoothing effect at the
regional scale. The study determined that the lack of sampling locations
across a large study area with high spatial variability hindered the
estimation of arsenic in shallow aquifers that were significantly influ-
enced by biogeochemical processes. Although Gong et al. (2014) found
that IDW, compared to several kriging models, performed best when
accounting for well depth and elevation as covariates, they also noticed
that the regional interpolation of arsenic across Texas (696,241 km?)
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yielded a large degree of variation due to different aquifer and geologic
properties. Overall, the selection of interpolation methods in ground-
water studies proves to be site and scale specific.

Typically, groundwater arsenic remediation efforts involve ex-situ
pump-and-treat methods; however, these treatments are expensive,
take several months or years to reduce arsenic concentrations, and, most
often, fail to remove enough arsenic to meet safe standards (Lee et al.,
2000; Ford et al., 2007; Russo et al., 2010). An alternative technique
proposed by Saunders et al. (1996) involves the in-situ bioremediation
of arsenic by injecting a ferrous sulfate mixture with a source of organic
carbon to stimulate indigenous sulfate-reducing bacteria (SRB) and
biomineralize pyrite (Lee et al., 2018; Saunders et al., 2018; Fischer,
2020). Because arsenic has a high affinity for pyrite (Huerta-Diaz and
Morse, 1992; Bostick and Fendorf, 2003; Lee et al., 2005), the working
hypothesis is that dissolved arsenic can be sequestered via adsorption on
the surface of iron sulfides (i.e., pyrite) or by co-precipitation under
stimulated sulfate-reducing conditions. The technique has been shown
to sequester groundwater arsenic through formation of biogenic pyrite
in field-scale applications (Lee et al., 2018; Fischer 2020). However, the
potential for both short-term (—one month) and long-term (—nine
months) remediation using this technique is still unclear. Understanding
both spatial and temporal patterns of the sequestration of arsenic is
critical in evaluating the technique’s remediation potential. Thus, the
goal of this study is to determine the most accurate GIS interpolation
method for mapping the effects of bioremediation on groundwater
arsenic sequestration across a local-scale study area in northwest Florida
(~900 m?) over the duration of a nine-month period (pre-injection,
one-month postinjection, and nine-months post-injection). We used
groundwater data collected from 2018 to 2019 to conduct a
high-resolution investigation into the visualization of arsenic contami-
nation over time.

2. Materials and methods
2.1. Study site

The study by Fischer (2020) devised an in-situ arsenic bioremedia-
tion method to sequester arsenic for nine months at an arsenic
contaminated industrial site in northwest Florida. The aquifer at the
industrial site is part of the Surficial Aquifer System of Florida, mostly
comprised of quartz-rich sand and sandy clay that extend to 6.0-7.6 m in
depth (Lee et al., 2018). The aquifer has moderately oxidizing conditions
and a shallow water table, measuring ~1.5 m in depth, with the general
groundwater flow direction to the west and northwest at a rate of about
20 m/year (Fig. 1). The clean-up standard of this specific legacy site is
0.05 mg/L (Lee et al., 2018; Saunders et al., 2018). To reach this stan-
dard, an injectate consisting of 5 kg of ferrous sulfate, —27 kg (60 1bs) of
molasses, and —1 kg (2 lbs) of fertilizer per 3785.4 L (1000 gallons) of
water was used to stimulate bacterial sulfate reduction (Fischer, 2020).
Twenty-three wells (11 injection wells and 12 monitoring wells) were
installed across the —~900 m? site, with the injection wells placed hy-
drologically upgradient of the monitoring wells for the downgradient
movement of the injectate to facilitate full-scale remediation (Fig. 1).
The ferrous sulfate mixture was injected during the week of June 17,
2018. Groundwater samples were collected using a peristaltic pump
prior to the injection as well as throughout the bioremediation process,
until the end of the experiment during the week of March 17, 2019.
Three time periods spanning the entire field experiment duration were
chosen to determine the success of the bioremediation procedure using
interpolation analyses: before the injection on May 15, 2018, one month
after the injection on July 19, 2018, and nine months after the injection
on March 18, 2019. Concentrations of arsenic in the water were
measured by Agilent 7900 Inductively Coupled Plasma-Mass Spec-
trometer (ICP-MS) in the Department of Geosciences at Auburn Uni-
versity using EPA Method 6020 (U.S. EPA, 2014). Mineralogical and
geochemical data of the precipitated biominerals formed from the
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Fig. 1. Overview of study site in northwest Florida showing ground elevation (contours in meters), injection wells (in black), and monitoring wells (in white). The
general direction of groundwater flow is toward northwest, as shown by the black arrow.

indigenous SRB to sequester arsenic can be found in Fischer (2020).
2.2. Interpolation and spatial analysis

IDW, OK, and EBK, interpolations were calculated and analyzed
using ArcGIS Pro 2.4. The ArcGIS Pro Geostatistical Wizard was used to
create interpolation maps for the three time periods spanning the
bioremediation experiment. The Geostatistical Wizard allows one to
manually create the best-fit model based on the statistical properties of
the dataset. Additionally, the Geostatistical Wizard generates cross-
validation and validation analyses of the interpolation surface such
as leave-one-out cross-validation (LOOCV), which has been previously
used as a cross-validation technique in environmental studies (¥Xie
et al., 2011; Mirzaei and Sakizadeh, 2016). Through LOOCV, the pro-
gram systematically removes each point in the interpolation, predicts
its value by interpolating from the remaining points, and finally
compares the predicted value to the measured value (Xie et al., 2011;
Mirzaei and Sakizadeh, 2016). These validation outputs enable the
user to determine which of the interpolation models is the most ac-
curate representation for the dataset.

Arsenic concentrations were higher in the northwest region of the
site and lower in the eastern and southern portions of the site. Arsenic
showed a first order decrease in concentration across the study site over
the three time periods. Consistent with best-practices (Lange and
Krause, 2019), the first order trend was removed for each of the three
interpolation methods to adhere to the assumption of Kriging that there
should be no global trends in the dataset (Shamsudduha, 2008; Para-
masivam and Venkatramanan, 2019). Additionally, arsenic concentra-
tions were not normally distributed and were corrected using a log
transformation in both the OK and EBK interpolation models (Gong
etal., 2014; Singh and Verma, 2019), verified through the Geostatistical
Wizard’s Quantile-Quantile (QQ) Plots. For the OK interpolation, the
kernel function was set to exponential and the function type to semi-
variogram, with the interpolation model optimized for goodness of fit
and accuracy; all other variables were kept at their standard values. For
the EBK interpolation, the transformation type was set to log empirical
and the semivariogram model type was set to exponential; all other

values were kept to their standards. The semivariogram power was kept
at 100 simulations for improved operation, efficiency, and accuracy
(Tomlinson, 2019). For the IDW interpolation, the weighting power was
set to one, as this showed the lowest root mean square error (RMSE)
compared to higher weighting powers. This implies that for the arsenic
data, points farther away can still have a significant influence on the
predictions (Xie et al., 2011).

The cross-validation indicators of RMSE and mean values as well as
prediction and error plots were utilized to assess the validity and ac-
curacy of the three interpolation methods throughout the bioremedi-
ation procedure. RMSE was used to directly assess the accuracy of the
interpolation’s predictions, as RMSE values closer to zero indicate that
predicted values are numerically close to the measured values (Krause,
2019; Lange and Krause, 2019). The mean value denotes the average
of the cross-validation (CV) errors and is important in determining any
bias or smoothing effects in the interpolation model (Krause, 2019;
Lange and Krause, 2019). Strong smoothing indicates that the inter-
polation either significantly overestimates local minima or un-
derestimates local maxima, which inaccurately diminishes or obscures
the contrast between the concentration changes across a site. Thus, if
the mean is close to zero there is minimal bias; if the mean is above
zero, the model systematically overestimates the actual values; while
if the mean is below zero, the model consistently underestimates the
values (Krause, 2019). Additionally, the measured arsenic concen-
trations were compared and plotted against the interpolation’s pre-
dicted arsenic concentrations and the cross-validation errors. Final
interpolation maps were created, and the interpolation surfaces were
transformed from Geostatistical Analyst layers into rasters using the
Geostatisical Analyst (GA) Layer to Raster tool.

3. Results
3.1. Measured arsenic concentrations
Spatial and temporal patterns were found among the results of

bioremediation across the site. The 23 wells were grouped into three
categories based on resultant arsenic concentrations over the course of
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the study: (1) decreasing, (2) fluctuating, or (3) largely unaffected (Fig. 2;
Table S1 in Appendix A). Four wells showed continuously decreasing (1)
arsenic concentrations throughout the nine months (LH-4, LH-10, M-1,
and RA-9), three of which were located in the northwest portion of the
site (LH-10, M-1, and RA-9) (Fig. 2a and b), in the downgradient di-
rection of groundwater flow. The majority of wells (12/23) displayed
large fluctuations (2) in arsenic concentrations over time (I-1, I-2, [-3, I-4,
15, I-6, I-7, I-11, LH-2, LH-5, M-3, and RA-12). Several wells showed
sharp decreases in arsenic concentration between the initial injection
and one month reading, and then an increase in concentration between
one and nine months (I-1, I-2, 1-3, 1-4, and I-11). Most wells with
fluctuating arsenic concentrations were in the northwest portion of the
site (I-1, 1-2, 1-3, [-4, LH-2, LH-5, M-3, and RA-12), with the remaining
being injection wells located in the east (I-5, I-6, .7, and I-11) (Fig. 2a).
Finally, seven wells remained largely unaffected (3) by the injection,
with arsenic concentrations showing no significant changes over time (I-
8,19,1-110,LH-7, RA-11, RA-13, and RA-14) (Fig. 2b). These seven wells
are found exclusively in the east and southwest sides of the site (Fig. 2a).
The injection and monitoring wells in the east and southeast portions of
the site maintained negligible concentrations of arsenic throughout the
study (Fig. 2a). In contrast, wells in the northwest report the highest
initial concentrations of arsenic, indicating a potential arsenic plume
centered around injection well I-3 (Fig. 2a). Of the wells that reported
arsenic concentrations above the site clean-up standard, two (LH-2 and
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M-1) decreased below 0.05 mg/L after nine months (Fig. 2b). Thus, the
monitoring wells of LH-2 and M-1, with the potential addition of RA-9
and M-3, serve as best-case scenarios for demonstrating the success of
the remediating mixture at the field site, with these wells depicting a
significant reduction in arsenic to near or below the acceptable standard
(Fig. 2b). Overall, arsenic concentrations were below the regulatory
standard in 12 wells after one month and 11 wells after nine months.

3.2. Predicted arsenic concentrations with interpolation

The interpolation maps generated from the IDW, OK, and EBK
methods show detailed differences in the overall accuracy of their pre-
dictions due to over- or underestimation (Fig. 3). All three methods
predicted that the highest arsenic measurements were concentrated in
the northwest, while lower concentrations (near or below 0.05 mg/L)
were found primarily in the east and southeast of the study site.

Before the injection, EBK and IDW accurately predicted arsenic
concentrations above 0.75 mg/L centered around well 1-3, while OK
underestimated this arsenic maximum (Fig. 3). Additionally, nine wells
(I8, 19, 1110, LH4, LH-7, LH-10, RA-11, RA-13, and RA-14) had
measured concentrations below 0.05 mg/L (Fig. 2). The OK and EBK pre-
injection interpolations successfully predicted arsenic concentrations in
eight of these wells (missing LH-10), while IDW only accurately pre-
dicted four of the wells (missing I-8, 1-9, LH-7, LH-10, and RA-13).
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Fig. 3. Visualization of results of interpolation methods for different time periods: Ordinary Kriging (OK) for pre-injection (a), one month later (b), and nine months
later (c); Empirical Bayesian Kriging (EBK) for pre-injection (d), one month later (e), and nine months later (f); and Inverse Distance Weighted (IDW) for pre-injection
(g), one month later (h), and nine months later (i). Colors represent dissolved arsenic concentrations in milligrams per liter (mg/L) ranging from low (green) to high
(red). Injection and monitoring groundwater wells, represented as groundwater sample locations, are depicted as black and white dots on the map, respectively.
Groundwater flow moves in the northwest direction as shown by the black arrow in Fig. 1. (If viewing print version: for interpretation of the references to color in this

figure legend, the reader is referred to the Web version of this article.)

Moreover, IDW also over-predicted arsenic concentrations in these four
wells, estimating values between 0.025 and 0.05 mg/L.

After one month of bioremediation, all interpolation methods pre-
dicted highest arsenic concentrations in the northwestern-most portion
of the site, around wells LH-5 and RA-9 (Fig. 3b,e,h). However, only EBK
predicted arsenic concentrations above 0.75 mg/L in these two wells,
while OK and IDW predicted values of 0.5-0.75 mg/L. Yet, all three
methods were inaccurate when compared to the measured values of
0.823 mg/L in LH-5 and 0.722 mg/L in RA-9. Both OK and EBK pre-
dicted low concentrations of arsenic around LH-10 and M-1 compared to
the surrounding wells; however, EBK was more accurate in predicting
concentrations below 0.05 mg/L at LH-10 and M-1 (Fig. 2). EBK
correctly predicted all 12 wells with concentrations below the 0.05 mg/
L standard (I-6, I-8, 19, I-10, I-11, LH-4, LH-7, LH-10, M-1, RA-11, RA-
13, and RA-14), OK accurately predicted 10 wells (missing LH-10 and M-
1), and IDW accurately predicted eight wells (missing I-6, LH-7, LH-10,
and M-1).

After nine months, the three methods indicated that the highest
concentrations of arsenic existed in the northwestern portion of the site,
extending from the northwest corner around LH-5 and RA-9 to slightly
west of the center of the site at RA-12 (Fig. 3¢,f,i). IDW predicted higher

arsenic concentrations in this elevated area than both OK and EBK
(0.5-0.75 to >0.75 mg/L compared to 0.25-0.5 mg/L). OK was the most
accurate interpolation method in predicting regulatory arsenic concen-
trations, depicting nine of the measured 11 wells (I-8, I-10, LH-4, LH-7,
LH-10, M-1, RA-11, RA-13, and RA-14) accurately below 0.05 mg/L
(missing 1-9 and LH-2), while IDW and EBK only accurately predicted
four and five wells, respectively (IDW missed I-8, I-9, LH-2, LH-7, LH-10,
M-1, and RA-13, and EBK missed 1-8, I-9, LH-2, LH-10, M-1, and RA-13).

3.3. Cross-validation analyses

3.3.1. Statistical results

The RMSE and mean of the cross-validation values (mean CV) over
the duration of the study from the IDW, OK, and EBK methods were used
to assess the accuracy of each interpolation method in predicting arsenic
concentrations across space and time. The RMSE values of the in-
terpolations determined whether the predicted arsenic concentrations
matched the measured concentrations, with values close to zero indi-
cating a high prediction accuracy. Similarly, the mean CV values noted
smoothing effects and bias in the interpolations, with values above zero
indicating overestimation of arsenic concentrations and values below
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Table 1

Statistical results of each interpolation method for each time period in the study.
Interpolation methods used: Ordinary Kriging (OK), Empirical Bayesian Kriging
(EBK) and Inverse Distance Weighted (IDW). Root Mean Square Errors (RMSE)
and mean cross-validation values (Mean CV) are shown for each time-period.
The global mean represents the averages of RMSE and Mean CV throughout
the study.

OK EBK IDW
RMSE Mean RMSE Mean RMSE Mean
Ccv Ccv cv
Pre-Injection 0.391 —0.034 0.49 0.113 0.399 0.046
One Month Later ~ 0.163 —0.035 0.154 0.023 0.186 0.008
Nine Months 0.243 —0.023 0.225 0.046 0.233 0.026
Later

Global Mean 0.266 —0.031 0.296 0.063 0.273 0.027

zero denoting underestimation of arsenic. Before the injection, OK had a
RMSE of 0.391 and a mean CV value of —0.034 (Table 1). After one
month, the RMSE decreased to 0.154, while the mean CV slightly
decreased to —0.035. The RMSE for OK then increased to 0.243 and the
mean CV increased to —0.023 after nine months. For the EBK interpo-
lation, EBK reported a RMSE of 0.49 and a mean CV of 0.113 before the
injection. Both the RMSE and mean CV then dropped to 0.154 and 0.023
after one month, respectively. After nine months, the RMSE and mean
CV of the EBK interpolation both moderately increased to 0.225 and
0.046, respectively. The IDW interpolation had a RMSE of 0.399 and a
mean CV of 0.046 before the injection, which both significantly
decreased after one month to 0.186 and 0.008, respectively. Both the
RMSE and mean CV increased to 0.233 and 0.026, respectively, after
nine months (Table 1).

3.3.2. Prediction and error results

Besides the RMSE and mean CV values, prediction and error plots are
automatically generated during the interpolation process. These plots
were used to determine the accuracy of the three interpolation methods.
Plots of the measured arsenic concentrations versus each interpolation’s
predicted arsenic concentrations as well as of the cross-validation errors
versus the measured concentrations are shown in Fig. 4 (OK) and S1 in
Appendix A (IDW and EBK). For the prediction plots, an accurate model
would show a regression line that follows a slope of 1 indicating that the
predicted concentrations align with the measured concentrations
(Krause, 2019; Lange and Krause, 2019). Deviations from a slope of 1
indicate error in the model fit. OK showed a correlation slope of 0.419
for the predicted arsenic concentrations before the injection and a very
strong correlation of 1.01 after one month (Fig. 4a). However, OK
showed low correlation in its predicted concentrations after nine
months, with a regression slope of 0.051. EBK had consistently weak
correlation slopes for its pre-injection and nine-month predicted con-
centrations (0.226 and 0.237, respectively) but showed a strong corre-
lation for its one-month concentrations (0.851) (Fig. 4b). IDW showed
the weakest overall correlations of the three interpolation methods, with
regression slopes of 0.409, 1.922, and 0.210 prior to the injection, one
month after, and nine months after the injection, respectively (Fig. 4c).
The average regression slope values for each of the interpolation
methods throughout the bioremediation process were 0.489 for OK,
0.438 for EBK, and 0.209 for IDW. OK and EBK showed similar average
error regression slopes of —0.708 and —0.706, respectively, while IDW
showed the highest average error slope of —0.822 (Fig. S1).

4, Discussion
4.1. Arsenic concentrations across space and time
There were three trends in arsenic concentrations over the course of

the nine-month bioremediation: (1) several wells (4/23) showed
decreasing arsenic concentrations over time (LH-2, LH-10, M-1, and RA-
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Fig. 4. The predicted arsenic concentrations and error values versus the
measured arsenic concentrations before the injection from the OK, EBK, and
IDW interpolation methods. Additional prediction and error plots for one- and
nine-months post-injection can be found in Figure S1 in Appendix A.

9), (2) the majority of wells (12/23) displayed fluctuating patterns of
arsenic concentrations, and (3) the seven remaining wells (I-8, I-9, I-10,
LH-7, RA-11, RA-13, and RA-14) depicted little to no change in arsenic
over time, remaining below the acceptable limit before and after the
injection. Wells with a decreasing trend in arsenic were located in close
proximity to injection wells and were first to exhibit reductions in
arsenic (e.g., LH-10 and M-1), while those farther away (e.g., LH-2 and
RA-9) depicted significant improvements in arsenic concentrations after
nine months (Fig. 2). These findings can be explained by the slow ve-
locity of groundwater at the site (20 m/y) and is representative of the
amount of time it took the injectate to reach the wells located farther
downgradient. In the 12 fluctuating wells, which displayed a striking
contrast in arsenic concentrations, one of two scenarios likely occurred:
(1) an influx of untreated groundwater increased arsenic over time or (2)
the injectate did not reach its intended wells. The injection wells were
predominantly located upgradient throughout the site (e.g. in the east or
southwest), meaning that without repeated injections, they were sus-
ceptible to recontamination due to upgradient, untreated groundwater
flowing into the site. This untreated groundwater was more oxidizing
than the treated groundwater, potentially destabilizing the formed
arsenian pyrite and releasing arsenic back into the groundwater. Thus,
while the injectate effectively removed arsenic after one-month,
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untreated groundwater flowed into the site after nine months, which
remobilized arsenic and induced a significant increase in arsenic in
many of the injection wells located in the east and southwest (I-5, I-6, T-
7, and 1-11). In addition to the influx of untreated water, the injection
and monitoring wells located around the arsenic plume in the northwest
(I-1, I-2, 1-3, I-4, LH-5, and RA-12) also showed increases in arsenic
possibly due to a limited flow path of the injectate, and thus, the
injectate did not effectively reach the intended wells. For instance, LH-5
was located far downgradient of surrounding injection wells (e.g., ~7.5
m downgradient of [-3 and —12.5 m downgradient of I-1), and while a
reduction in arsenic did occur after nine months, arsenic concentrations
remained well above the standard. In contrast, the nearby monitoring
well RA-9 showed a significant decrease in arsenic near the acceptable
level, indicating that the injectate was preferentially flowing to RA-9
rather than to both wells equally. Thus, the increase in arsenic in
many of the injection wells in the northwest could be explained by
variations in the groundwater flow paths. In contrast to the decreasing
and increasing arsenic trends, the trend of wells that appear largely un-
affected by SRB bioremediation is due to the very low arsenic concen-
trations (5-10x less than 0.05 mg/L) reported in these wells. Due to these
low concentrations, the wells exhibited only slight increases or de-
creases in arsenic throughout the nine months.

After examining and assessing the bioremediation trends in arsenic,
this study definitively determined the importance of repeated injection
treatments of contaminated groundwater. Repeated injections of the
ferrous sulfate mixture would likely maintain reducing conditions and
stabilize the arsenian pyrite for an extended period of time, even during
the influx of untreated groundwater. Additionally, multiple injections
may allow the variable groundwater flow to carry the injectate to the
missed downgradient wells for full-scale remediation. New upgradient
injection points near the missed wells may be needed if repeated in-
jections still fail to reach these locations.

4.2. Accuracy of interpolation methods in determining arsenic
concentrations

The high sampling resolution (23 wells) and a local-scale study area
(—900 m?) was key in demonstrating the accuracy of the interpolations
and certainty in the overall findings of this study. Notably, the study’s
results differed from many previous environmental monitoring studies
due to scale and sampling resolution, considering that most studies
interpolated over very large areas (>100 km?) with a lower sampling
density. For instance, Mirzaei and Sakizadeh (2016) analyzed 65 wells
over 1100 km?, and Xie et al. (2011) analyzed 137 samples across an
area half the size (605 km?). Because Xie et al. (2011) had a much higher
sampling resolution, this study aligned more closely to the results found
by Xie et al. (2011) than Mirzaei and Sakizadeh (2016), in which OK
showed consistent underprediction but overall accuracy in prediction.
Studies that had a lower sampling resolution over a larger study area (e.
g. Shamsudduha, 2008; Gong et al., 2014; Mirzaei and Sakizadeh, 2016)
noted high uncertainty and discrepancies in their interpolations. Mirzaei
and Sakizadeh (2016) found that although EBK yielded the least amount
of error in their study, both EBK and OK showed strong smoothing ef-
fects and consistently overestimated local minima, which is problematic
in regard to monitoring regulatory standards of groundwater contami-
nants. Similarly, Magesh and Elango (2019), who used 49 wells to
interpolate fluoride over 429.5 km?, reported high error in their ArcGIS
Pro error plots and large RMSE values. Again, they saw a strong
smoothing effect in both the EBK and IDW interpolations and a high
error in their predictions at low concentrations. Both Shamsudduha’s
(2008) and Gong et al.’s (2014) interpolations of groundwater arsenic
also highlighted how a low sample density yielded a lower prediction
accuracy due to varying geology and biogeochemical processes over a
large area. Considering these comparisons, our study benefited from a
local-scale site (—900 m?) with high-density data (23 wells) to increase
the prediction accuracy, which allowed the study to effectively analyze
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and critique different interpolation methods.

The RMSE and mean CV values of the interpolations across space and
time are reliable criteria to evaluate the accuracy of interpolation
methods (e.g., Magesh and Elango, 2019; Singh and Verma, 2019).
RMSE values close to zero indicate a high prediction accuracy, with the
predicted (interpolated) arsenic concentrations closely aligning with the
measured arsenic concentrations. By averaging the RMSE values of the
three interpolation methods across the three sampling periods, OK
showed the lowest global RMSE of 0.266, IDW had a RMSE of 0.273, and
EBK depicted the highest global RMSE of 0.296 (Table 1). Because OK
had the lowest overall RMSE and yielded consistently low RMSE values
throughout the bioremediation process, OK had the highest accuracy in
predicting arsenic concentrations over space and time. Accordingly,
IDW and EBK had higher RMSE values, and, thus, a lower overall ac-
curacy in predicting arsenic concentrations. The mean CV value is
important for determining if a bias (underestimation or overestimation)
exists in the interpolation model (Krause, 2019; Lange and Krause,
2019). Our results showed that OK had mean CV values below zero for
each timepoint during the bioremediation process, with a global mean of
—0.031 (Table 1). In contrast, EBK and IDW both systematically yielded
mean CV values above zero, with global mean CV values of 0.063 and
0.027, respectively (Table 1). Thus, OK consistently underestimated
arsenic concentrations, whereas EBK and IDW overestimated concen-
trations. The statistical results also indicate that OK is the most accurate
of the three interpolation methods and that it tends to underpredict
arsenic concentrations. Our results agree with the findings of Sham-
sudduha (2008), Xie et al. (2011), and Singh and Verma (2019), in
which they reported OK as having the lowest RMSE and mean values.

In this study, OK was best overall in determining which wells had
met regulatory arsenic concentrations (<0.05 mg/L) throughout the
bioremediation process. This finding aligns with previous results by Xie
et al. (2011), who concluded that OK had the “strongest ability” to
accurately predict the overall trend in pollution across a site (Fig. 3a—c).
However, OK consistently underestimated the local arsenic maxima that
represented the arsenic plume on site. Yet, this trend of underestimation
is also noted by Xie et al. (2011) and Mirzaei and Sakizadeh (2016).
While this study confirms OK's trend in underestimation, there are no
distinct instances of overprediction, perhaps due to the lack of a singular
arsenic minima. Rather, there is a large area of low arsenic concentra-
tion (<0.05 mg/L), which OK accurately represented. Both EBK and IDW
showed a tendency for overestimation, with EBK displaying a large
smoothing effect on the data. EBK was less accurate overall compared to
OK because it showed a consistent inclination for overestimation,
especially in regard to wells around the local arsenic maxima of the
plume, which aligns with findings from Mirzaei and Sakizadeh (2016)
(Fig. 3e). The study also agrees with the large smoothing effect of EBK
found by Magesh and Elango (2019) but provides a slight caveat, noting
that the EBK method produces less systematic bias than IDW. In fact, the
IDW method was the least accurate in predicting arsenic across the site,
only accurately predicting concentrations <0.05 mg/L in a small frac-
tion of the wells throughout the entire bioremediation process due to
consistent overestimation, in contrast to Mirzaei and Sakizadeh’s (2016)
findings (Figs. 3g—i and 4c¢). Overall, OK was the most accurate inter-
polation method in predicting arsenic concentrations across space and
time; EBK gave sufficient results but had a tendency for overestimation,
and IDW showed the most inaccurate results and showed consistent
problems with overestimation.

The RMSE and mean CV values represent the overall accuracy of the
interpolation method, however, these measures may overshadow
important nuances in predicting arsenic concentrations near the regu-
latory threshold, an important part of evaluating effective remediation.
Plots of the CV errors versus the measured arsenic concentrations
(Fig. 1) reveal the degree of smoothing in the model, depicting whether
the errors are independent of the measured values. Moreover, the error
plots can be used to carefully assess the error in the RMSE values and
confirm the accuracy of these methods in predicting low concentrations.
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If the error regression line is horizontal, then the model accurately
predicts values across the entire range of the measured values. In this
study, however, the regression line showed a negative slope, meaning
the lowest values were underestimated while the highest values were
overestimated (Krause, 2019). Considering this, OK and EBK showed
moderate-to-high levels of systematic smoothing (bias) throughout the
bioremediation process, reporting average error regression slopes of
—0.708 and —0.706, respectively, while IDW depicted the highest sys-
tematic smoothing, with an average error slope of —0.822 (Fig. 4).
Importantly, in the OK prediction plots, predicted arsenic at low con-
centrations closely aligns (near a 1:1 ratio) with the measured concen-
trations, but predicted concentrations deviate at high arsenic
concentrations. Similarly, in the OK error plots, the error regression
slopes intercept the y axis near zero, meaning that predicted arsenic
concentrations at low concentrations (<0.05 mg/L) have a small amount
of error (Fig. 4). Careful interpretation of the relative error across the
wide range of arsenic concentrations reinforce the accuracy of OK for
predicting arsenic concentrations near the regulatory threshold. For EBK
and IDW, the predicted low concentrations show more distinet differ-
ences from the measured concentrations at low concentrations, evi-
denced by their error regression slopes have y intercepts significantly
higher than zero throughout the experiment (Fig. 4b and c). All inter-
polation methods show that as arsenic concentrations increase, the
amount of prediction error also increases, which explains the high de-
gree of smoothing and potential bias seen at higher arsenic concentra-
tions. OK was the most accurate of the three methods in its predictions
overall and showed the least amount of error especially at concentra-
tions near the regulatory threshold.

4.3. Methods and challenges of arsenic remediation

Several treatment methods have been developed to remediate water
and groundwater arsenic contamination, with most facing efficacy or
cost-related challenges. All methods would serve to benefit from inter-
polation and visualization of concentrations across space and time.
Notable methods for arsenic remediation include co-precipitation with
iron coagulants, filtration using ion exchange resins or membranes,
adsorption by iron oxides, activated alumina, and ex-situ and in-situ
bioremediation (c.f. Mondal et al., 2013). Yet, coagulation and filtra-
tion systems often become clogged, and adsorption filters using iron
oxide or activated alumina create toxic sludge. These ion exchange,
membrane, and adsorption filters also cannot effectively remove arse-
nite, the more toxic form of arsenic. Additionally, ex-situ remediation, or
“pump and treat” techniques, involve pumping large quantities of
groundwater for above-ground treatment, which is usually expensive (Pi
etal., 2017). Considering these issues, in-situ bioremediation, as used in
this study, appears as the most cost-efficient and effective method for
groundwater arsenic removal. Low-cost remediating mixtures can be
directly injected into the contaminated groundwater and stimulate
bacteria to precipitate arsenic-sorbed biominerals, without producing
any toxic by-products. Furthermore, iron (Fe), sulfate (SO,), and
hydrogen sulfide (H,S) concentrations can be used to monitor the
progress of in-situ arsenic bioremediation: initially, the injection would
cause an increase in Fe, SO4, and As (Fischer, 2020). Then subsequent
concurrent decreases in Fe, SO4, and As indicate the precipitation of
As-sorbing pyrite, whereas H,S, which is produced by sulfate reducing
bacteria (SRB), reacts with Fe to produce pyrite for arsenic removal (Lee
et al., 2018). No matter which method is used for arsenic bioremedia-
tion, there is a strong need for estimating concentrations in unmeasured
areas. The results of this study indicate that interpolation is an effective
way to aid in the interpretation and extent of bioremediation across
space and time.

5. Conclusions

The spatial and temporal visualization of arsenic concentrations has
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been key to identifying the effectiveness of groundwater arsenic biore-
mediation. The results showed that 23 wells exhibited decreasing, fluc-
tuating, or largely unchanging arsenic concentrations over the nine
months of bioremediation. However, the wells with fluctuating arsenic
concentrations saw increases in arsenic after one or nine months due to
the influx of untreated groundwater over time and/or variations in the
flow paths. Repeated injections would maintain reducing conditions
throughout the site and, thus, prevent the untreated groundwater from
destabilizing the arsenian pyrite.

Of the three examined interpolation methods, OK was the most ac-
curate in predicting arsenic concentrations spatially and temporally
throughout the bioremediation process. OK showed the lowest overall
RMSE interpolation values and had mean CV values below zero
throughout the bioremediation process. While these negative means
indicated that OK underpredicted arsenic concentrations, the interpo-
lation prediction and error analyses revealed that OK was the most ac-
curate interpolation method, especially in determining the wells with
low, regulatory arsenic concentrations of 0.05 mg/L. In contrast, EBK
and IDW were consistently less accurate in predicting arsenic concen-
trations, both showing a tendency for overestimating and with IDW
depicting larger prediction inaccuracies. These in-depth comparisons
between OK, EBK, and IDW reveal the importance of using high-
resolution sampling and a local-scale study area for accurate in-
terpolations. In regard to mapping groundwater arsenic contamination
specifically: when using OK as the interpolation method, researchers
should be cognizant of the fact that actual lows and highs may be higher
than predicted but overall accuracy across the site is reliable; whereas,
with IDW and EBK, there will be significant instances of overestimation
and a lower degree of accuracy overall. In conclusion, this study high-
lights the importance of high sampling resolution over a very small area,
with both significantly increasing the accuracy of the interpolations and
allowing the study to precisely analyze and compare the interpolations.
Considering these important discoveries, this study can help inform
governments, industry, and local communities of the best sampling and
interpolation practices for effectively monitoring and mitigating arsenic
contamination.
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