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ABSTRACT
Outsourced Additive Manufacturing (AM) exposes sensitive design
data to external malicious actors. Even with end-to-end encryption
between the design owner and 3D-printer, side-channel attacks can
be used to bypass cyber-security measures and obtain the underly-
ing design. In this paper, we develop a method based on the power
side-channel that enables accurate design reconstruction in the face
of full encryption measures without any prior knowledge of the
design. Our evaluation on a Fused Deposition Modeling (FDM) 3D
Printer has shown 99 % accuracy in reconstruction, a significant
improvement on the state of the art. This approach demonstrates
the futility of pure cyber-security measures applied to Additive
Manufacturing.

CCS CONCEPTS
• Applied computing → Computer-aided manufacturing; •
Security and privacy → Side-channel analysis and counter-
measures; • Social andprofessional topics→ Intellectual prop-
erty; Digital rights management.

KEYWORDS
Additive Manufacturing, 3D Printing, Side-Channel Attack, Intel-
lectual Property Theft, IP Theft.

ACM Reference Format:
Jacob Gatlin, Sofia Belikovetsky, Yuval Elovici, Anthony Skjellum, Joshua
Lubell, Paul Witherell, and Mark Yampolskiy. 2021. Encryption is Futile:
Reconstructing 3D-Printed Models Using the Power Side-Channel. In 24th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’21), October 6–8, 2021, San Sebastian, Spain. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3471621.3471850

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00
https://doi.org/10.1145/3471621.3471850

1 INTRODUCTION
Additive Manufacturing (AM) has proven vulnerable to a variety of
attacks. Given that this is a high-growth and valuable industry [44],
cyber-security defenses are regularly considered, especially in the
private sector. However, in the case of outsourced manufacturing,
cross-domain (physical-to-cyber [47]) attacks can circumvent pure
cyber-security measures. In this paper, we develop such a side-
channel attack to steal the design data of a manufactured object.

Additive Manufacturing provides significant advantages over
traditional manufacturing methods. For instance, General Electric1
has claimed it provides production flexibility, reduced weight, com-
plex geometries, and graded materials [15]. Smaller manufacturers
can also benefit, but are often prohibited by the high capital expen-
diture and specialized operational knowledge. Outsourcing busi-
ness models have flourished to address this need; world leaders in-
clude ThyssenKrupp AG TechCenter Additive Manufacturing (Ger-
many) [41], Akhani3D (South Africa) [3], RapidDirect (China) [32],
and Treatstock (United States) [42]. While the above manufactur-
ers are reputable, not all manufacturers will be trustworthy or safe
from insider threats. A malicious AM service provider is in a unique
position to steal technical data.

To address this threat, systems have been proposed offering
Digital Rights Management (DRM) and adapting traditional cyber-
security for AM environments. In a recent patent, Oligshclaeger et
al. [30] propose to use cryptographic keys unique to a 3D printer for
end-to-end encryption of designs. In a similar proposal by GE [19],
technical data is decrypted by a Trusted Platform Module (TPM) (a
dedicated security chip) integrated in the 3D printer, limiting access
to plaintext (i.e., decrypted) data and cryptographic keys. Several
companies, such as Identify3D [24], offer commercial options that
implement DRM and encryption.

Identify3D in particular is addressing the distributed and out-
sourced manufacturing market: their technology suite is claimed to
provide “intellectual property protection, manufacturing repeata-
bility, and traceability” to “unlock the potential of distributed man-
ufacturing” [25]. Taken together, we believe these individual de-
velopments constitute a trend towards securing outsourced manu-
facturing via DRM, which will further boost the already growing
1Certain commercial equipment, instruments, or materials are identified in this paper
in order to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the authors or their organ-
isations, nor is it intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Figure 1: DRM-Protected Outsourcing to a Malicious AM Service Provider.

sector. We wish to examine a case where this technology is not only
available, but has achieved its apogee; we assume the cyber-security
implementation is comprehensive and faultless. Even in this case,
we seek demonstrate that pure cyber-security measures are not
sufficient to protect IP against a malicious contract manufacturer.

A number of publications have explored offensive or defensive
reconstructions of AM IP using side-channels [11, 17, 22, 37]. The
side-channels utilized in these works include the acoustic, electro-
magnetic (EM), visual, and inertial readings; these data streams
have been used individually and in combination, through recon-
structive approaches based on data mining, machine learning with
or without human assistance, and control theory. We develop a
novel approach to reconstruction utilizing a side-channel not yet
used for this purpose, the actuator current draw. This side channel
has numerous advantages compared to those previously explored:
the potential for perfect or near-perfect reconstruction, excellent
portability to all classes of actuators, and a level of stealth that
allows for multiple viable threat models.

Threat Model: In this paper, we assume a Man-at-the-End
(MATE) threat model applied to outsourced AM. Comprehensive
digital security measures are assumed to be in place to protect the
customer’s data, such as end-to-end encryption of the model and a
TPMmodule on the 3D printer (see Figure 1). We assume that either
the service provider itself is malicious, or has a malicious insider
employee with some access to the AM equipment. The intent of
the malicious party is to reconstruct the customer’s 3D printed
model. We assume that they are unable to compromise the cyber-
security measures, but are able to instrument the 3D printer at will.
Potential implementations of the sensor suite are stealthy enough
that a single insider could instrument a 3D printer and capture the
side-channel data. This permits the attack against any printer an
insider has even temporary physical access to. Under this threat
model, we develop an approach to capture and reconstruct the 3D
printed model that bypasses cyber-security measures entirely.

Overall, we contribute a significant evolution of the state of the
art in reconstruction, a novel approach to collecting and interpret-
ing AM actuator signals, and a demonstration of MATE attacks in
AM circumventing defensive systems.

This paper is structured as follows: Section 2 reviews the litera-
ture. Section 3 outlines our approach and the challenges involved.
The approach is presented in pseudocode in Section 4. Section 5

explains our experimental evaluation and presents our results. We
discuss the limitations of the approach in Section 6, and further
topics in Section 7. Section 8 concludes the paper.

2 STATE OF THE ART
Multiple authors have surveyed the field of AM security [27, 31, 48].
The theft of technical data emerged as a topic early in the field’s
development. It was mentioned in 2014 by Yampolskiy et al. [45,
46], with practical attacks published in 2016 by Do et al. [14] and
Belikovetsky et al. [9] using cyber means to access design files.
The majority of AM sabotage attacks, such as Sturm et al. [40],
Belikovetsky et al. [9], and Zeltmann et al. [50], acquire and modify
the design files, implying a data theft attack as a prerequisite [20].

A variety of cyber-security solutions have been proposed to re-
spond to the threat of data theft in AM. Adkins et al.’s patent [2] for
an approach to securely delivering design files describes a system
applying encryption on a trusted device, and practices for main-
taining trust through the print process. Safford et al. [35] propose
a similar system with hardware based on TPM technology. Such
systems, robust as they might be to cyber attacks, can often be
circumvented with side-channel attacks.

Side-channels are a common vulnerability of embedded systems.
They are the physical emanations of Cyber-Physical Systems (CPS),
such as electromagnetics or sound, which can be correlated to the
original processes. Classical approaches include Van Eck’s remote
spying on Cathode Ray Tube displays by their emanations [43], and
Koscher’s Simple and Differential Power Analysis for identifying
encryption algorithms and cryptographic keys [26].

The first practical side-channel exploitation in AM was con-
ducted by Al Faruque et al. [4] using acoustic emanations from
the motors of a Fused Deposition Modeling (FDM) 3D Printer. The
authors identified that motor noise could be correlated with oper-
ating speed, direction, and the axis of movement. Using a machine-
learning approach, they reconstructed motor movements for the
printing of a basic polygon. They achieved 78.35 % accuracy of
axis prediction, on average, and had a 17.82 % error in movement
distance estimation.

Shortly afterwards, Hojjati et al. [22] and Song et al. [37] pre-
sented machine-learning-based reconstructions using the acoustic
side-channel, relying on smartphone audio sensors. Hojjati et al.
used a library of recorded printheadmotions in addition tomagnetic
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side-channel info and a human-managed error correction process.
They report accuracy in terms of end gap lengths for segments
(ranging 0.5-4.2mm) and angle deviations (ranging 0-3 degrees).
Song et al. report an average Mean Tendency Error of 5.87 % in a
similar model to that of Al-Faruque et al. [4], but raise concern over
whether their metrics were meaningful. Both papers test only on
perimeters with no infill.

Gao et al. [17] made significant strides in reconstruction accu-
racy and metrics in their 2018 work on process monitoring. Using a
multi-sensor suite of accelerometer, magnetometer, and camera, the
authors reconstruct the physical properties of toolpath, extrusion
speed, layer thickness, and fan speed. Each of the physical prop-
erties required its own reconstruction approach, and the authors
deploy different metrics based on their own judgement of appropri-
ateness. The most noteworthy is the use of the Hausdorff Distance,
a distance measure that reports the deviation between two sampled
curves, which the authors applied on a per-layer basis. For their
Kalmann-filter-based reconstruction of the toolpath, the authors
achieved error ranging from 0.735 mm to 0.869 mm. The experi-
ment was conducted on full printed models, with infill percentages
ranging from 5 to 20 %; lower infill percentages corresponded to
lower Hausdorff Distances.

In addition and in response to published side-channel attacks,
some authors have proposed methods either to defend AM systems
with side-channel techniques, or else to defend against them. A
number of side-channel papers in the field utilize them to detect
sabotage attacks or print errors [6–8, 11, 18, 39], using much the
same approach as a data-theft attack. Recently, a collaboration of
Yu, Chhetri, and Al-Faruque [49] made significant improvements
to attack detection accuracy employing a multi-modal approach,
examining many identified side-channels at once and correlating
their information. Work by Chhetri et al. discusses modifications to
toolpath generation either to increase [10, 33] or decrease [12, 33]
the side-channel information that could be used in reconstruction.
Al-Faruque et al. acquired a 2019 patent [5] on defending side-
channel attacks with their mutual information reduction strategy,
implemented in the toolpath-generation stages of the AM process.
Gatlin et al. [18] utilized the power side-channel for detecting sab-
otage attacks, but did not attempt reconstruction, instead using a
Principal Component Analysis–based signature.

3 CHALLENGES OF RECONSTRUCTION
In this work, we focus on 3D printers employing the FDM process,
which is widely used in both desktop and high-end polymer 3D
printers. The process is based on the extrusion of heated polymer
filament through a nozzle, built into a print head which can be
moved along the X-, Y-, and Z-axes, and extrude or retract filament
along the E-axis. Both printhead movement and filament extrusion
are driven by motors, controlled by an on-board motor controller.

The bipolar hybrid stepper motor is a commonly used positional
actuator in FDM printers; our test printer, the Lulzbot Taz 6 (See
Figure 2), uses these motors exclusively. Each motor has two phases
and each phase is connected by two wires, forming an electrical
loop delivering current from the controller. The current is delivered
in a sinusoidal pattern, making it Alternating Current (AC). Both

Figure 2: A Lulzbot Taz 6 printer, instrumented by Picoscope
5444D oscilloscopes. The probes are Picoscope’s 60A Induc-
tive Current probes. Each motor has two clamps attached,
one for each phase. The fan controller is also instrumented
by a standard voltage probe. The data captured here is trans-
mitted to a host PC running the PicoScope application.

the positive and negative peaks of the current on either phase cause
the motor to advance or reverse depending on the firing sequence.

The peaks of the current directly cause the motor to move, and
the mechanical construction of the motor ensures that positional
error does not accumulate [29]. A single peak on one phase will
predictably move the motor from one step position to another. The
direction of movement is determined by the sequence in which the
two phases are fired. The speed of movement is determined by the
speed of the firing sequence.

The toolpath, a sequence of movement and printing commands,
is issued in the G-code format, a legacy format commonly used in
desktop 3D printers. The toolpath is interpreted by the printer and
translated into a series of motor movements. The motor controller
generates current in the correct pattern to achieve these move-
ments. The particular properties of this current and recognizing
the patterns necessary for executing G-code commands present
several challenges to the reconstruction process, described in the
remainder of this section.

We adapt our instrumentation strategy from the work of Gatlin
et al. on power side-channel signatures [18], using inductive current
clamps to monitor motor phases2. While that work instrumented a
single phase of each motor, we instrument both to capture the full
motor behavior. Our implementation of the sensor suite is obvious
and constructed from laboratory-grade equipment, but the technical
requirements (sampling in the 2 KHz range on 8 channels) can be
easily achieved with a more surreptitious and smaller setup based
around a microcontroller and less precise current probes. Such an

2While in-line ammeters or pullup resistors can also capture this data, they have
notable downsides compared to inductive clamps: they can interfere with actuation
signals, are difficult to remove for in-person inspections, and might be detectable by
anti-tamper impedance testing.
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Figure 3: Constant-speed motor trace, after applying a low-
pass filter. This plot is generated in code from our processed
data.

implementation could be hidden within the enclosure of even a
desktop 3D printer.

3.1 Unidirectional Movement
The simplest section of oscilloscope trace to interpret is unidirec-
tional movement at a constant speed. This will occur in the middle
of any linear movement command. Observing the current at this
point will produce a trace as shown in Figure 3. In this figure, and
in all other trace figures, we plot a positive and negative version
of the current on each phase, producing a total of four. The firing
sequence of the phases can then be seen just by looking at positive
peaks; this representation is also convenient when processing the
data in Section 4.

Peaks have two independent characteristics by which they can
be recognized: height and prominence. Height is the absolute value
of the peak at its highest point. In Figure 3, the peaks have a consis-
tent height of approximately 1.5 A; in other situations, the height
can vary dramatically. The prominence of the peak can be simply
described as the height of the peak over the adjacent minima. This
corresponds to the amplitude of a signal in electrical terms. The
prominence of the peaks in Figure 3 is consistently around 3 A. In
other situations, the prominence of a given peak can be significantly
less. Interpreting each peak as a single step, we can precisely track
position. From there we can use the known property of step size, or
distance per motor step, to determine both printhead and filament
position at any time, and the linear speed of movements.

The phases are all operating at the same constant frequency
(corresponding to a constant movement speed) and firing in the
same order. It must be noted that, at the beginning and end of a
linear movement, the motor controller ramps up and ramps down
the frequency, respectively. This produces acceleration and deceler-
ation in the movement, and the artifacts from it in the trace should
be accounted for in reconstruction.

3.2 Start, Stop, and Dwell
The trace exhibits specific behavior at the beginning and end of
movements. This behavior includes apparent changes in frequency
and absolute value. This occurs at the beginning and end of every
print, as shown in Figure 4. This also occurs during Dwell com-
mands, which halt movement on every axis for a set period, as
shown in Figure 5.

Both figures illustrate a challenge associated with these transi-
tional periods: changing DC offsets. The height of the first peak
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Figure 4: Beginning ofmotormovement after inactivity. The
DC offset of the phases start at nearly 2A, then converges
over time.

after a period of inactivity is visibly lower, and the second peak is
visibly higher, than their normal range. Over time, they gradually
stabilize at the same level, as in the linear movement of Figure 3.
In electrical terms, this difference in the absolute height of an AC
signal is referred to as its Direct Current (DC) offset. Notably, the
prominence of the peaks does not vary dramatically. A change in
DC offset over time means that height cannot be relied upon to
distinguish peaks.

For reconstruction, it is helpful to identify periods of inactivity,
as opposed to normal inter-peak periods. On the Z- and E-axis
motors, there are long periods of inactivity while the print head
repositions along X and Y. Identifying these inactive periods helps
filter out false positive peaks.
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Figure 5: Dwell shown in the trace. Note the much lower
height of the first peak at 310.25s. A change in speed is visi-
ble from the first section of activity to the second.

To aid in this filtering, we can observe the change of inter-peak
intervals while transitioning into and out of inactivity. Before a
period of inactivity, there is a stable inter-peak interval correspond-
ing to constant motion. There will then be a single larger interval
between the last peak before and the first peak after the inactive
section. After that, the next movement command begins and, after
a short period of time, shows stable inter-peak intervals once more.

3.3 Reversal of Direction
When a sequence of G-code commands reverses the direction of
movement along an axis, we observe the behavior seen in Figure 6.
The characteristic feature of a reversal is that it changes the firing
order of the phases. They can be detected by testing for this change,
but several artifacts of the trace can complicate the process. In
the figures showing reversals, we mark the first peak in the new
direction with a vertical blue line.
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Figure 6: Valid reversal shown in the trace. After the central
green peak, 130.4s, the direction of travel is reversed. The
blue line marks the first peak after the reversal. This rever-
sal presents no additional problems for reconstruction.

The DC offset of the trace can change during reversals to the
point that it impacts peak recognition. In Figure 7, peaks in the
vicinity of the reversals have both a low absolute value and a low
prominence, but are still valid peaks (i.e., shift the motor position).
This can occur not only to the reversal peak, but also to any peak
before or after. Each potential missing peak represents a uniquely
malformed firing order, when in reality only well-behaved reversals
actually occur.

3.4 High Frequency Noise
A consistent property of the raw trace is the presence of high-
frequency noise. In most cases, the signal-to-noise ratio is high,
and trace properties measured across longer periods of time are
unaffected. More precise properties, such as locating a peak, are
affected. To locate peaks better and more consistently, we pre-
process the raw trace with a low-pass filter3, a common technique
in signal processing. All trace figures are presented after filtering.

Applying a low-pass filter to these current traces creates a prob-
lem of its own. The frequency of the current and the speed of the
motor are directly proportional, and the valid range of speeds over-
laps in part with the frequencies of noise. Thus, we must restrict
the cutoff frequency of our low-pass filter to above this range, and
compensate for the remaining noise in other ways.

3.5 Trace Synchronization
The full printer system is composed of multiple motors acting
together, and it is necessary to maintain synchronization when
capturing their current traces. Done poorly, this can cause issues
with misordered motor movements across different axes. These
misalignments can distort the reconstructed shape significantly.

While it is possible to synchronize the beginning of multiple
traces captured individually, the duration of several commands is
not always fixed, which leads to desynchronization. These include
motion commands such as Home (G28), and thermal commands
that use a feedback loop to reach a specific target temperature.

To provide reliable synchronization throughout the duration of a
print, we capture all motor signals simultaneously in a single print
run. With our selected equipment, this requires multiple oscillo-
scopes. We chose to synchronize to a consistent movement pattern

3 A low-pass filter is a signal processing filtering technique that dampens the power
of a signal above a cutoff frequency. There are multiple ways to apply low-pass filters;
in this work, we use an 8th-order Butterworth filter.
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Figure 7: Reversal with multiple issues complicating recon-
struction. Peaks from 258.25s to 258.4s are low-prominence,
of varying width, and represent two reversals in rapid suc-
cession.

in the preamble, a printer-specific block of G-code that occurs be-
fore each print, to begin oscilloscope capture. The captures could
also be synchronized with a manual signal to each oscilloscope, by
chaining the oscilloscope triggers, or using a single oscilloscope
with more channels.

4 RECONSTRUCTION APPROACH
At a high level, the reconstruction process consists of several stages.
First, we preprocess the traces to filter noise. Then, we identify
basic features of the trace such as peaks and periods of inactivity.
Next, we attempt to map the features onto motor behavior, such
as reversals. Because of the difficulties explained in Section 3.3,
this stage generates a number of errors. The next stage applies
a heuristic approach to correct these errors. Once a corrected se-
quence of features is finalized, they are used to track the position
of the print head over time. During this process we distinguish
between extruding and non-extruding moves to produce a point
cloud corresponding to the printed figure.

We implemented our reconstruction approach in Python 3.2;
we summarize the essential operation of the algorithm in pseu-
docode. Where our code relies on an external library for non-trivial
functionality, we provide specific reference to the library and call.

4.1 Loading Oscilloscope Data
Our reconstruction algorithm operates on the synchronized traces
of the current delivered to each phase of each motor on the printer.
We refer to the individual motor traces as the X, Y, Z, and E traces.
Our oscilloscopes capture the full waveforms corresponding to each
axis; upon print completion, these readings are exported as a CSV
file.

Our algorithm receives CSV files of measured current values
and corresponding timestamps, with the structure in Figure 8. The
negative timestamps correspond to the values captured by the
oscilloscopes before the trigger signal, at time 0s.

Time ( s ) | Channel A(A ) | Channel B | Channel C | Channel D

− 2 . 0 0 0 5 0 0 0 6 , 0 . 0 1 5 3 7 8 9 4 , 0 . 0 3 6 4 4 8 0 8 , 0 . 0 2 3 8 3 7 3 5 , 0 . 0 2 7 5 2 8 3 0
− 2 . 0 0 0 0 0 0 0 6 , 0 . 0 1 9 6 8 5 0 4 , 0 . 0 3 8 7 5 4 9 2 , 0 . 0 2 5 5 2 9 0 3 , 0 . 0 2 9 2 1 9 9 8
− 1 . 9 9 9 5 0 0 0 6 , 0 . 0 2 3 9 9 1 1 4 , 0 . 0 3 8 7 5 4 9 2 , 0 . 0 2 6 1 4 4 1 9 , 0 . 0 2 5 5 2 9 0 3
. . .

Figure 8: Trace Capture in CSV Format (Excerpt).
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Entries from the CSV files are read into TraceEntry data struc-
tures. The timestamp from the CSV file is read directly into the
time field. The sample values of each motor’s two phases are saved
in phase0 and phase2; the inverted values (negated) are saved in
phase1 and phase3, respectively. This duplication simplifies the peak
recognition process in a later stage.

In addition to the timestamp and values, each entry is associated
with an axismarker and a set of flags corresponding to motor behav-
iors. These flags are initially cleared; later stages of the algorithm
will set them as appropriate. Descriptions of the flags are provided
in the relevant sections.

The individual traceEntry elements are stored in sequential data
structures, one for each axis. As the sizes of the datasets range from
hundreds of thousands to hundreds of millions of these entries,
we use the NumPy library’s Array structure rather than standard
Python datatypes.

4.2 Peak Detection
Later stages of our algorithm operate primarily on peaks and their
timestamps, so we must first recognize the peaks from the trace.

The raw data has significant high-frequency noise. We first apply
a low-pass filter to remove this noise, using the SciPy butter filter.
The filter is applied with cutoff frequencies of 300 Hertz for the X-, Y-
, and Z-axes, and 275Hz for the E-axis. Our process for determining
these values is discussed in greater detail in Section 7.

After applying the filter we use the find_peaks function from
the SciPy Signals package [36] to identify the peaks, marking them
by setting the isPeak flag in the corresponding traceEntry. The
parameters of this function, height and prominence, are applied
differently per axis:
X : h e i gh t =0 . 4 prominence =0 . 3
Y : h e i gh t =0 . 4 prominence =0 . 3
Z : h e i gh t =0 . 1 prominence =0 . 1 2 5
E : h e i gh t =0 . 1 prominence =0 . 2

The selection criteria for these are also discussed in Section 7.
There are several errors that we observed in flagging peaks that

must be handled before further processing. While peaks should not
occur simultaneously, noise and level-shifting behavior means that
there are sometimes simultaneous peaks on both phases of an axis.
Even peaks that are only in very close proximity can cause issues.
The first case is handled while applying peak flags from find_peaks
to the trace; if two phases attempt to flag the same timestamp as a
peak, the phase with a higher peak is preserved. The proximity case
is handled after all peaks have been flagged. If a peak occurs on a
phase that is lower than another phase at the time, the algorithm
checks if it is within a time threshold of the nearest peak- either
within half of the average period between nearby peaks or a fixed
threshold of 0.025s. If both hold true, then the low peak is removed.

4.3 Reversals and Error Correction
The largest issue to overcome in this algorithm is handling mal-
formed segments of the trace. Because of the motors’ internal struc-
ture, there are only two valid firing orders that they can perform,
and we can only reconstruct motion that exhibits this behavior (see
Section 3 for details). The firing orders are associated with forward
and backward movement, and the motor controller switches be-
tween them to execute a reversal. Figure 9 illustrates this behavior.

130.32 130.35 130.38 130.41 130.44 130.47

1 1

0 0

1 1

A    B    C    D   A    B   C      B    A  D  C  B    A      D 

Figure 9: A reversal captured in the trace. Peaks are anno-
tated A, B, C, or D to indicate the firing order. Note how the
order reverses at 130.41s.

As a result of the difficulties discussed in Section 3, the trace
contains both false-negative and false-positive peaks. Our observa-
tion shows that many of these occur around reversals or dwells, or
during periods of inactivity. Either type of invalid peak is incredibly
likely to create an invalid firing order4. Until these are corrected,
it is not possible to accurately reconstruct motion. Further, if a
section is recognized as correct but not accurate to the actual motor
behavior, the reconstructed motion will drift: our estimate of the
printhead position will accumulate error based on the difference
between reconstruction and reality.

We attempt to correct these errors by first segmenting the trace
into sections with valid firing orders and sections with invalid
firing orders. The valid sections are processed according to the
normal logic of motor operation. For invalid sections, contextual
information is gathered and saved alongside the section in a list.
This list is processed by a heuristic solver, which attempts to find
the best weighted reconstruction for that sections by adding and
deleting peaks. The best solutions are applied to the trace.

4.4 Segmentation into Good and Bad Sections
With all peaks recognized, our approach next identifies the firing
order on each axis. The initial synchronization of our traces occurs
on a long, linear, multiaxial move immediately before the print.
This ensures there is a long enough section of consistent movement
on every axis to recognize the firing order dynamically.

The pseudocode in Figure 10 details the process of identifying
the firing order. Identifying the firing order from the data, rather
than using a hard-coded order makes the algorithmic approach
independent of the physical instrumentation, such as which wire is
clamped by which probe. The firing order for an axis is “locked in”
after the first 16 consistent peaks have been detected. This firing
order is maintained for the remainder of the print, although it may
be inverted when reversals occur.

Next, the algorithm scans across the list of peaks, comparing
each in sequence to the firing order. It recognizes three cases: valid
forward motion, valid reverse motion, and invalid firing orders.
The pseudocode in Figure 11 outlines the process. As in the trace
diagram of Figure 9, if the last peak to fire was, for example, B,
then the next peak can be valid if it is on phases A or C. One
phase represents forward motion, the other represents a reversal,

4Peak errors, much like parity error checking, always produce firing order errors in
sections with only one bad peak. However, sections with two consecutive bad peaks
can produce valid firing orders that are nonetheless not accurate to motor movements.
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a x i s P e ak s = ge tPeak s ( a x i s )

/ / I n i t i a l i z e f i r i n g o r d e r b u f f e r
in t FOBuf fe r [ 4 ] = a x i s P e ak s [ 0 : 3 ]

p r e d i c t i onCoun t = 0
while p r e d i c t i onCoun t < 1 6 :

p r e d i c t i o n I n d e x = nex tPeak Index % 4

i f a x i s P e ak s [ nex tPeak Index ] == FOBuf fer [ p r e d i c t i o n I n d e x ] :
p r e d i c t i onCoun t ++

e l se : / / c a p t u r e new f i r i n g o r d e r b u f f e r
FOBuf fe r = a x i s P e ak s [ nextPeak Index −3: nex tPeak Index ]
p r e d i c t i onCoun t = 0

nex tPeak Index ++

Figure 10: Identifying Firing Order.

badOrde r S e c t i on s = [ ]

while peakIndex < ax i s L eng th :

nextPeak = getNextPeak ( peak Index )

i f nextPeak == p r ed i c t F o rwa rd ( FOBuffer , peak Index ) :

i f badS e c t i on != NULL :
goodPeaksCounter ++
i f goodPeaksCount > goodPeaksNeeded :

/ / C l o s e ou t bad s e c t i o n .
endBound = F indEndOfBadSec t ion ( )
S a v eBadS e c t i on I n f o ( o r i g i n a l FOBu f f e r , mustReverse ,

s t a r tBound , endBound )
b adOrde r S e c t i on s . append ( b adS e c t i on )
b adS e c t i on = NULL

e l i f nextPeak == p r e d i c t R e v e r s a l ( FOBuffer , peak Index ) :
r e v e r s e B u f f e r ( FOBuf fe r )

i f badS e c t i on == NULL :
f l a g R e v e r s a l ( peak Index )

e l se :
/ / T o g g l e t h e mu s t R e v e r s e f l a g
mustReverse = ! mustReverse
/ / Good r e v e r s a l s a l s o i n c r emen t t h e c o u n t e r
goodPeaksCounter ++
/ / Accumula ted enough peak s t o end bad s e c t i o n ?
i f goodPeaksCount > goodPeaksNeeded :
/ / C l o s e ou t bad s e c t i o n .

endBound = F indEndOfBadSec t ion ( )
S a v eBadS e c t i on I n f o ( o r i g i n a l FOBu f f e r , mustReverse ,

s t a r tBound , endBound )
b adOrde r S e c t i on s . append ( b adS e c t i on )
b adS e c t i on = NULL

e l se :
/ / Found a bad peak . B eg in l o o k i n g f o r b o u n d a r i e s .

i f badS e c t i on != NULL :
b adS e c t i on = crea t eNewBadSec t i on ( peak Index )

/ / Any bad peak r e s e t s t h e c o u n t e r and FOBu f f e r .
goodPeaksCounter = 0
sh i f t FOBu f f e rToCu r r en tP e ak ( peak Index )

peak Index += 1

return badOrde r S e c t i on s

Figure 11: Identifying Good and Bad Sections.

depending on the history of the firing order going into that peak.
Firing on a D peak immediately after a B peak would be an error,
since these peaks are nonadjacent.

When two nonadjacent peaks are processed in series, the algo-
rithm treats this as the beginning of an invalid section. Next, it
searches for the end of the section, which occurs when any valid

Table 1: Solutions considered for badly ordered pairs and
their effects on firing order. The beginning ABCD exempli-
fies a possible firing order prior to the badly ordered pair
(indicated in red and underlined).

Detected Corrected Solution
ABCDAC ABCDABC Insert Forward Peak

ABCDADC Insert Reverse Peak
ABCDC Delete First Peak
ABCDA Delete Second Peak

ABCDAA ABCDABA Insert Forward Peak
ABCDADA Insert Reverse Peak
ABCDA Delete Peak

sequence is detected for three peaks in a row. Three peaks are nec-
essary because the correction process (handled in the next stage)
can require changes as far as three peaks after the last invalid sec-
tion. Since there is no way of knowing how many valid peaks have
occurred since the beginning of the invalid section, we must build
up the detected firing sequence one peak at a time, determining for
each peak if it is part of a potentially valid firing order. We achieve
this by circularly shifting the firing order so that the current peak’s
phase is in the starting position, then compare the following peaks
to the forward and reverse phases of the new firing order. Because
there might be reversals in this sequence of three peaks, it may be
necessary to invert the firing order again on the second valid peak.

When the end of a bad section is detected, the algorithm saves the
endpoints and contextual information of the section to a list. The
contextual information contains whether the firing order reversed
during the section, the timestamps at the start and end of the section,
as well as on which axis the section occurred. The algorithm may
then resume normal behavior and continue detecting reversals. This
continues until all peaks in the axis are processed. The result is a
partially annotated list of peaks and a list of invalid sections. This
process is repeated for each axis.

4.5 Heuristic Correction of Bad Sections
The invalid sections produced by the previous stage are processed
individually in this stage. We recognize two forms of error: missing
peaks and duplicate peaks. Missing peaks are flagged whenever
two nonadjacent phases are detected in sequence; duplicate peaks
are flagged when the same phase is detected twice in a row. Badly
ordered sections can contain any number of badly ordered pairs,
and we have observed up to 20 in a single section in our test set.
Each badly ordered pair has multiple potentially valid corrections:
4 for missing peaks and 3 for duplicate peaks. This produces a large
problem space, and the available data does not clearly identify the
correct solution. Therefore, we have developed a heuristic approach
to search the problem space and identify the solution that best fits
a defined set of metrics.

Correcting a badly ordered section involves either deleting the
first or second peak of a badly ordered pair, or inserting a new peak
in between them. The inserted peak can be on either the forward
phase or the reverse phase. These four changes represent all of the
corrections the heuristic solver considers. All four apply to missing
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/ / C o n t a i n e r F u n c t i o n
de f b a d S e c t i o n S o l v e rCon t a i n e r ( b a d S e c t i o n s )

for s e c t i o n in b a d S e c t i o n s :
/ / ea ch s o l u t i o n document s t h e bad s e c t i o n and peak s
/ / s o l u t i o n s can be a p p l i e d t o c o r r e c t t h e s e c t i o n
s o l u t i o n s = [ ]

badPeakIndex = 0
while badPeakIndex < l en ( s e c t i o n ) :

i f mis s i ngPeakE r ro r ( badPeakIndex )
s o l u t i o n s . append ( m i s s i n g S o l u t i o n s ( badPeakIndex ) )

e l i f d u p l i c a t e P e a kE r r o r ( badPeakIndex )
s o l u t i o n s . append ( d u p l i c a t e S o l u t i o n s ( badPeakIndex ) )

badPeakIndex++

b e s t S o l u t i o n , b e s tCo s t = s e a r c h S o l u t i o n s ( s o l u t i o n s , 0 )
app l ySo l u t i onToTra c e ( b e s t S o l u t i o n )

Figure 12: Heuristic Solver Container.

peak pairs. For duplicate peak pairs, deleting the first and deleting
the second peak are functionally the same choice with respect to
the firing order. Therefore, duplicate peak pairs have only the three
solutions of deletion, insertion of a forward peak, and insertion of
a reverse peak. This is illustrated in Table 1.

The solutions themselves can be compared on the quality of the
peaks inserted or deleted. We do this by defining a cost function
for each of the solutions that considers the height, prominence,
proximity to other peaks, and several other characteristics of the
peaks to insert or delete. The insertion cost functions operate on the
segment of a trace in between the badly ordered peaks, searching
for the best point to insert a new peak on the target phase. The
deletion functions evaluate the first and second peaks of the badly
ordered pair to determine which is more likely to be a false positive.
Both use a relatively complex set of metrics and weightings, which
we tuned by gradually identifying error cases in our test set and
creating general metrics to correct them.

In addition to the heuristic costs for individual pairs, the solution
must consider the entire section and its context to ensure the firing
order is still valid. For example: consider the sequence ABCDACD.
The badly ordered pair, AC, is identified as a missing peak pair
and can be repaired by any of our four solutions. However, in
the context of the surrounding sequence, different choices could
produce an additional reversal, multiple reversals, or none at all.
Based on the surrounding sequences, a badly ordered section should
contain either an even or odd number of reversals; this is taken into
account by the solver, which discards solutions that do not satisfy
this constraint.

Pseudocode summarizing the heuristic process is presented in
Figures 12 and 13. The solver consists of two portions, a non-recur-
sive container and a recursive search function. The non-recursive
container iterates over all badly ordered sections for each axis. The
recursive search explores the solution space for each badly ordered
section, eventually returning the solution with the lowest cost. The
container then applies this solution to the trace, annotating the
appropriate peaks with reversals. After the list of badly ordered
sections is exhausted, the trace is fully annotated and can be used
to produce a point cloud reconstruction of the 3D printed object.

de f s e a r c h S o l u t i o n s ( s o l u t i o n s , c o s t )

i f l e n ( s o l u t i o n s ) == 0 :
/ / We ' ve a r r i v e d a t a l e a f node i n t h e s e a r c h

t empF ixedPeaks = app l ySo l u t i onToTra c e ( s o l u t i o n )
/ / App ly ing s o l u t i o n makes a l i s t o f p eak s
/ / We p r o c e s s t h e s e wi th t h e same l o o p i n F i g . 1 6
r e v e r s e d = c oun tR e v e r s a l s ( t empF ixedPeaks )

i f r e v e r s e d % 2 == mustReverse
/ / The s o l u t i o n i s a c c e p t a b l e ; r e t u r n i t s c o s t

return s o l u t i o n , c o s t
e l se :
/ / The s o l u t i o n do e sn ' t match r e v e r s a l b e h a v i o r
/ / R e t u rn i n f i n i t e c o s t

return s o l u t i o n , c o s t = I n f

for peakPa i r in s o l u t i o n s :
i f peakPa i r . e r ro rType == " mi s s ing " :

FWCost = i n s e r t C o s t ( peakPa i r , fo rward )
t empSo lu t i on = takeBranch ( s o l u t i o n s , i n s e r t F o rwa r d )
FWSolution , FWCost =

s e a r c h S o l u t i o n s ( t empSo lu t ion , c o s t + FWCost )

RVCost = i n s e r t C o s t ( peakPa i r , r e v e r s e )
t empSo lu t i on = takeBranch ( s o l u t i o n s , i n s e r t R e v e r s e )
RVSolut ion , RVCost =

s e a r c h S o l u t i o n s ( t empSo lu t ion , c o s t + RVCost )

DCCost = d e l e t eC o s t ( peakPa i r , c u r r e n t )
t empSo lu t i on = takeBranch ( s o l u t i o n s , d e l e t eCu r r e n t )
DCSolut ion , DCCost =

s e a r c h S o l u t i o n s ( t empSo lu t ion , c o s t + DCCost )

DNCost = d e l e t eC o s t ( peakPa i r , nex t )
t empSo lu t i on = takeBranch ( s o l u t i o n s , d e l e t eNex t )
DNSolution , DNCost =

s e a r c h S o l u t i o n s ( t empSo lu t ion , c o s t + DNCost )

b e s tCo s t = minCost ( FWCost , RVCost , DCCost , DNCost )
i f b e s tCo s t == FWCost

b e s t S o l u t i o n = FWSolut ion
e l i f b e s tCo s t == RVCost

b e s t S o l u t i o n = RVSo lu t ion
e l i f b e s tCo s t == DCCost

b e s t S o l u t i o n = DCSolut ion
e l i f b e s tCo s t == DNCost

b e s t S o l u t i o n = DNSolut ion

return b e s t S o l u t i o n , b e s tCo s t

e l i f p e akPa i r . e r ro rType == " d u p l i c a t e "
/ / D u p l i c a t e p eak s a r e hand l ed as above

Figure 13: Heuristic Recursive Solver.

4.6 Point Cloud Generation
Upon completion of the heuristic search and correction process,
the trace contains valid timestamped peaks on the X-, Y-, Z-, and
E-axes, all properly tagged wherever a reversal occurs. Although
the firing order is now fully correct, there may still be discrepancies
between the listed peaks and the real behavior of the printer. In the
final stage, we implemented a state machine to track the position
and behavior of the print head and translate its motions into a point
cloud, with each entry an (X, Y, Z) tuple.

The state machine is initialized with a starting position of (0,
0, 0), then begins to iterate through the peaks in timestamp order.
Processing a peak updates the position of the printhead based on
the axis and movement direction of the peak. The E-axis is tracked
to determine whether a new position is a part of an extruding or
non-extruding move. Dwell annotations on the E-axis peaks mark
the beginning and end for periods of extrusion. If the E-axis is
inactive, the position is updated but not saved to the point cloud.
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After every peak is consumed, the output from the state machine
is the full point cloud representation of the print. By default, it
is in units of discrete motor steps; we convert to millimeters to
compare the reconstructions to the original models more easily. We
used per-axis steps to millimeter ratios of: 6 : 1 for X, 6 : 1 for Y,
and 95.2 : 1 for Z. The E-axis is used only to track extrusion and
non-extrusion, and does not need to be converted. The point cloud
can be exported as a .XYZ file, a common format for point clouds
and meshes, and manipulated by external modeling programs.

5 EXPERIMENTAL EVALUATION
For our experiment, we selected a range of models that vary in
size and geometric complexity. The simplest is a cube, 10mm on
a side, which prints entirely in linear movements (G0 or G1 G-
code commands). The remaining figures contain both linear and
non-linear movements such as arcs and splines (G2, G3, and G5
G-code commands) and complex surfaces. The models are rendered
in Figure 14.

These models are sliced5 in Cura Lulzbot Edition 3.6.20 for print-
ing on our Lulzbot Taz 6. The slicer settings are consistent across all
models. We use an infill parameter of 20 % with 45 degree rotation
and the default behavior of thicker base layers and full infill for
top and bottom layers. We are therefore reconstructing realistic
sliced and printed models, rather than handmade or simplified print
patterns.

The reconstruction process runtime varied between 15 minutes
to 2 hours, depending on model size. Given the threat model, we
do not consider this restrictive.

The results of our process are given in Table 2. Simpler and
shorter models such as the Cube and Ninja Star are reconstructed
perfectly, while some of the more complex models such as the
Stanford Bunny exhibit visible misalignments across layers. Most
models are only moderately distorted and remain recognizable. A
human engineer could correct the errors and achieve the quality of
the simple objects.

Quantifying these errors and determining their meaningfulness
has presented a novel challenge not appropriately addressed in the
literature. Chhetri et al. [11], who first demonstrated an acoustic
side-channel attack on AM systems, quantified their reconstruction
using average percentage of axis recognition and average move-
ment distance error. They achieved 78.35 % accurate axis recognition
and 17.82 % movement distance error for their test prints, which
were zero-infill perimeter polygons.

Using these distance-oriented metrics, we achieved 100 % axis
recognition (because all individual motors were instrumented).
Across our tested models, we can calculate total distance error
as bad_section_steps/total_steps . This produces a maximum error
of 1.7 % for the Rook model, and a minimum of 0.07 % for the
Wrench. On average, the error was 0.79 %. This figure represents an
upper bound of error, because not every step within a bad section
is incorrect.

Gao et al. [17] evaluated their reconstruction of the infill path
using a metric derived from the Hausdorff Distance. Their approach

5Slicer is. a common term for the software used to generate a printer-executable
toolpath from a model file and printer configuration parameters, controlling elements
such as infill patterns and support structures.

(a) Cube (b) Ninja Star

(c) Wrench (d) Rook

(e) Gear (f) Bucky Ball

(g) Octopus (h) Turbine Blade

(i) Stanford Bunny (j) Stanford Lucy

Figure 14: Original STL models used in the experiment.

locates the point in the reconstructed path that is most distant from
any point in the original path, and reports that distance as an upper
bound on error.

However, we believe all approaches to date for measuring accu-
racy have limited use in the context of AM reconstruction. This
topic is explored further in Section 7.1.
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Table 2: Point cloud renderings and metrics of the reconstructed models. Any support structure is included in the rendering.
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Table 2: Point cloud renderings and metrics of the reconstructed models. Any support structure is included in the rendering.

Metrics Render
Name: Cube
Print Duration: 13.63 min
Steps Traveled: 98,098
Points in Cloud: 80,196
Sections: 2,344
Bad Sections: 351
B.S. Max. Length: 2
B.S. Avg. Length: 1.00
Name: Wrench
Print Duration: 44.33 min
Steps Traveled: 774,063
Points in Cloud: 563,305
Sections: 21,445
Bad Sections: 5,334
B.S. Max. Length: 7
B.S. Avg. Length: 1.05
Name: Gear
Print Duration: 50 min
Steps Traveled: 728,078
Points in Cloud: 611,807
Sections: 25,893
Bad Sections: 5,572
B.S. Max. Length: 6
B.S. Avg. Length: 1.15
Name: Octopus
Print Duration: 66.58 min
Steps Traveled: 959,332
Points in Cloud: 715,662
Sections: 19,375
Bad Sections: 5,684
B.S. Max. Length: 7
B.S. Avg. Length: 1.08
Name: Stan. Bunny
Print Duration: 302 min
Steps Traveled: 5,629,158
Points in Cloud: 4,490,563
Sections: 82,030
Bad Sections: 23,167
B.S. Max. Length: 11
B.S. Avg. Length: 1.10

Metrics Render
Name: Ninja Star
Print Duration: 4.48 min
Steps Traveled: 65,534
Points in Cloud: 49,297
Sections: 1,384
Bad Sections: 349
B.S. Max. Length: 4
B.S. Avg. Length: 1.1
Name: Rook
Print Duration: 49.98 min
Steps Traveled: 429,117
Points in Cloud: 340,909
Sections: 23,735
Bad Sections: 6,497
B.S. Max. Length: 9
B.S. Avg. Length: 1.15
Name: Bucky Ball
Print Duration: 154 min
Steps Traveled: 1,731,428
Points in Cloud: 1,126,327
Sections: 68,796
Bad Sections: 21,269
B.S. Max. Length: 7
B.S. Avg. Length: 1.09
Name: Turbine Blade
Print Duration: 84.98 min
Steps Traveled: 879,667
Points in Cloud: 629,200
Sections: 25,192
Bad Sections: 8,386
B.S. Max. Length: 5
B.S. Avg. Length: 1.07
Name: Stan. Lucy
Print Duration: 242 min
Steps Traveled: 3,827,019
Points in Cloud: 2,578,250
Sections: 98,730
Bad Sections: 29,193
B.S. Max. Length: 7
B.S. Avg. Length: 1.13

6 FUNDAMENTAL LIMITATIONS

While our approach achieved significantly higher accuracy on
more complex models than prior reconstruction attempts it still
contains uncorrected errors. We suspect that some can be corrected,
while others are fundamental to the approach. The most fundamen-
tal limitations are discussed below.

The most interesting limitation arises from the disconnect be-
tween the toolpath motions and the true shape of the printed part.
When the printhead is positioned, the nozzle is placed slightly above
the extrusion position to leave room for filament to extrude and

attach without collisions. The extruded filament also has a diameter,
which changes shape while it solidifies. During printing motions,
the elasticity of the molten filament means that it will continue to
extrude after the extruder motor stops moving. When planning a
toolpath, the slicer attempts to account for these and other physical
characteristics of the material and printing system. Many of these
compensation techniques are adjusted by the user, vary according
to printer and settings, and are largely opaque to our side-channel
analysis. Producing a mesh directly from the reconstructed point
cloud will produce a smaller mesh than the original because of these
offsets, and it will contain small gaps due to flow-rate manipulation.

6 FUNDAMENTAL LIMITATIONS

While our approach achieved significantly higher accuracy on
more complex models than prior reconstruction attempts it still
contains uncorrected errors. We suspect that some can be corrected,
while others are fundamental to the approach. The most fundamen-
tal limitations are discussed below.

The most interesting limitation arises from the disconnect be-
tween the toolpath motions and the true shape of the printed part.
When the printhead is positioned, the nozzle is placed slightly above
the extrusion position to leave room for filament to extrude and

attach without collisions. The extruded filament also has a diameter,
which changes shape while it solidifies. During printing motions,
the elasticity of the molten filament means that it will continue to
extrude after the extruder motor stops moving. When planning a
toolpath, the slicer attempts to account for these and other physical
characteristics of the material and printing system. Many of these
compensation techniques are adjusted by the user, vary according
to printer and settings, and are largely opaque to our side-channel
analysis. Producing a mesh directly from the reconstructed point
cloud will produce a smaller mesh than the original because of these
offsets, and it will contain small gaps due to flow-rate manipulation.

144



Encryption is Futile RAID ’21, October 6–8, 2021, San Sebastian, Spain

Another key limitation is that the approach cannot distinguish
between body and supporting printed material. Many objects must
be printed with support material to allow for large overhangs and
prevent print defects such as sagging or non-adhesion. Given vari-
ation in support structure design and use, recognizing it automat-
ically based on geometric characteristics would appear to be a
difficult proposition.

These key limitations are based on the characteristics of the 3D
printer, filament, and options available in the slicer. Undoubtedly,
further study will uncover more limitations but also the means to
overcome them. The techniques necessary to evaluate and compen-
sate for these are beyond the scope of the present work.

7 FURTHER DISCUSSION
7.1 Measuring Error in Reconstruction
From a security perspective, the key benefit of disclosing this attack
is to enable realistic risk analysis. For infringement, an attacker
needs an accurate enough reconstruction method. As defenders, we
must therefore assess the quality of the attack from this perspec-
tive. However, there are several fundamental issues in assessing
reconstructions of printed models.

The point cloud generated by our method not only describes the
exterior surface of the object, but also describes the interior points
corresponding to infill, internal voids, support structures, and other
features. Established methods for comparing similar paths, such
as the Hausdorff Distance [21], can be adapted by restricting their
application to individual layers (as in Gao et al. [17]), but even then
questions remain.

Most importantly, it is difficult to ascertain if any existing met-
rics correspond meaningfully to the printability of an object. For
example, one step of drift in our system corresponds to 0.16mm.
This may seem like an inconsequential amount of drift, but it could
be enough to completely collapse a support structure, which is
often only one step wide. Drift on a support structure, even in this
smallest possible increment, could lead to a failed print. If it occurs
elsewhere, it may not even be visible to the naked eye. Figure 16
demonstrates this difference: the degree of drift in the Octopus print
is consistently 1-4 steps, which is barely noticeable in the main body
but would cause a print failure in the fine details. The impact of
error on printability, therefore, is not necessarily proportional to
simple measures like distance.

New metrics must be developed for assessing the quality of re-
constructions in AM. The preceding discussion implies that these
metrics may only be meaningful for specific AM technologies. Solv-
ing these and eventually further to-be-identified challenges requires
dedicated investigations that are outside the scope of this paper.

7.2 Implications for Risk Management
The presented reconstruction attack poses a threat to outsourced
FDM printing processes that circumvents encryption-based DRM
technology. But what risk does this pose for a business relying on
an AM service provider using FDM printing? A business facing
such a risk must decide on a response: in-house their printing
operations, deploy technical and policy strategies, or accept the
risk and proceed without a mitigation strategy.

PR.DS-5: Protections against data leaks are 
implemented

ID.AM-4: External information systems are 
catalogued 

ID.AM-5: Resources are prioritized based on 
classification, criticality, and business value

ID.AM-6: Security roles and responsibilities for
workforce and stakeholders are established

Data Security 
(PR.DS)

Asset Management 
(ID.AM)

Supply Chain Risk 
Mgmt (ID.SC)

IDENTIFY (ID)

PROTECT (PR)

RECOVER (RC)

RESPOND (RS)

DETECT (DE)

Figure 15: Cybersecurity Framework Core subcategories [1].

To support this decision process, organizations might turn to
NIST’s guidance in the Cybersecurity Framework [1]. While this
framework is voluntary in U.S. industry, its use is mandated within
the U.S. government itself [23]. The Framework is hierarchical with
five high-level risk management functions at the top, categories
of security outcomes in the middle, and over 100 distinct outcome
subcategories at the bottom. Each subcategory includes informative
references to existing standards and best practices. Figure 15 pro-
vides a top-level view of the Framework’s structure, with relevant
categories and subcategories. Below, we provide specific exam-
ples where the threat of attack developed in this paper could be
accounted for from within the cyber-security Framework.

A straightforward subcategory to apply is Data Security (PR.DS-
5), stating that protections against data leaks should be imple-
mented. Side-channel theft of design datawould represent a substan-
tial data leak. We have supported that no technical, cyber-security
means exists to mitigate this risk, and therefore it should be ad-
dressed with other security measures. Within the framework this
could include ID.AM-4, for cataloging external information systems
(which must include the manufacturer’s equipment). It could also
include ID.AM-5, for prioritizing resources based on criticality (the
existence of a practical attack increases criticality), and ID.AM-6
requires establishing cyber-security roles for the workforce and
for third-party stakeholders (such as outsourced manufacturers).
Further subcategories can also be applied to particular organiza-
tions and manufacturing arrangements. For example, subcategories
of Supply Chain Risk Management specify routine assessment of
suppliers for compliance with contractual obligations.

The Framework can provide a roadmap for addressing newly
emerged threats such as this side-channel attack within the con-
straints of business objectives and organizational risk tolerance. The
selected examples we provide are not comprehensive, and future
work will be required to address this threat within this framework.
Encryption may be futile in some scenarios, but business operations
should not be. Security must reach beyond encryption when it isn’t
sufficient to the task.

7.3 Implications for Standards
The attack presented in this paper has shown that AM is susceptible
to vulnerabilities beyond those addressed in well-known cyber-
security and even cyber-physical security standards, such as those
referenced by NIST in [38]. The processes for creating AM-specific
digital representations, the subsequent transformations they un-
dergo, and their eventual realization as a physical object create
vulnerabilities not present in other manufacturing systems [20].
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Figure 16: The reconstructed Octopus model, visualized as a point cloud. While the degree of drift present here would not
affect the main body of the print, it would likely cause print failure in the fine detail of the raised hand.

These vulnerabilities are not restricted to a single location, and may
exist across a supply chain. A standards-based approach to identi-
fying and addressing the vulnerabilities would help organizations
better secure their AM processes.

A publicly available standard for AM should provide a schematic
reference for the design to product transformation, with detailed
information models of each step of the process and associated
security threats. These information models must break down the
larger activity of “AM part production" into sub-activities, similar
to [16]. A standards-based approach to modeling the information
flow of AM processes will bring together the industry’s knowledge
of when and where security threats can exist and how they can be
exploited. This could lead to documentation of threat models, attack
surfaces, and vulnerabilities in AM, providing similar benefits to
the Common Vulnerabilities and Exposures (CVE) List, a widely
used list of cyber-security vulnerabilities and their identifiers [13].

In the scenario described in this paper, the sub-activity of a part
build is exploited to compromise an AM part while bypassing cyber-
securitymeasures. A baseline reference of the part build sub-activity
would include the exposure of design data via this side-channel.
Standards can inform organizations in this way by enumerating the
attack surfaces associated with AM activities, thereby helping to
identify vulnerabilities and supporting risk analyses. Such standards
would enable organizations to develop informed policies to better-
secure their own systems.

8 CONCLUSION
To support distributed manufacturing with AM, multiple cyber-
security models have emerged that protect digital representations of
the design and other technical data. Under a Man-at-the-End threat
model, which applies in the case of a malicious service provider or
insider, the adversary’s possession of the target hardware makes
side-channel attacks possible. In this paper, we have demonstrated
the effectiveness of a side-channel approach to technical data theft.

The instrumentation system and approach developed in this
paper were able to reconstruct complete printed parts entirely
from the electrical side-channel, without any information about
the digital design files. Many of our tested models were reproduced
with no noticeable aberrations, resulting in functionally identical
counterfeit versions. Others demonstrated the limitations of a fully
automated reconstruction, but still contained enough information

that a dedicated manual process could recover the object in full.
All observed errors were in the form of fixed-size shifts in the 1-10
step range corresponding to 0.16-1.6mm; these can be identified
and repaired manually. These results constitute a significant step
forward in the art of AM reconstruction.

Current defensive technologies would not be able to detect or
prevent this attack. Cyber-security measures would be circum-
vented. The mutual-information reduction of Al-Faruque [5] or
Chhetri [12] will be difficult to apply when the sampled channel is
in direct control of the actuator. Future countermeasures research
might investigate impedance monitoring to detect probing, creating
signal artifacts that impede reconstruction, or identifying recon-
structed products. Interesting work has been done in the industrial
controls space on control signal watermarks to detect spoofed sen-
sor readings [28, 34], which might be adapted to use here. It must
be noted, however, that improvements to the approach could make
such solutions unworkable. The most effective countermeasures
available today appear to be the non-technical, procedural controls
discussed in Section 7.2.

In a direct followup, we intend to test the applicability of this
approach across multiple FDM printers, of the same and differing
models. If the attack is portable between different models of printer
and tolerant of drift in equipment behavior over time, it significantly
changes the economics of the attack. This would enable a business
model in which an adversary develops this technique and sells to
less-skilledmalicious insiders ormanufacturers, much as is common
in cyber-attacks today.

While this paper demonstrates the attack for an FDM 3D printer,
the same approach should be viable for other AM processes and
actuators. We believe that further refinement can push the accuracy
of this approach to 100 %, producing reconstructions functionally
identical to the original part. Consequently, this attack has direct
and serious implications to the AM outsourcing model. No purely
digital system of ensuring intellectual property protection is suffi-
cient against a Man-at-the-End attack. Our work demonstrates that
when side-channels are exploited, encryption is futile.
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