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ABSTRACT
Additive Manufacturing (AM) adoption is increasing in home and
industrial settings, but information security for this technology is
still immature. Thus far, three security threat categories have been
identified: technical data theft, sabotage, and illegal part manufac-
turing. In this paper, we expand to a new threat category: misuse
of digital design files as a subliminal communication channel. We
identify and explore attacks by which arbitrary information can
be embedded steganographically in the most common digital de-
sign file format, the STL, without distorting the printed object.
Because the technique will not change the manufactured object’s
geometry, it is likely to remain unnoticed and can be exploited for
data transfer. Further, even with knowledge of our methods, defend-
ers cannot distinguish between actual data transfer and random
manipulation of the files. This is the first info-hiding attack on this
system, conducted despite the fact that random changes may spoil
the physical artifact and result in detection.

CCS CONCEPTS
• Applied computing → Computer-aided manufacturing; •
Security and privacy → Cryptography.
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1 INTRODUCTION
Additive Manufacturing (AM), often referred to as 3D Printing, is
a computerized direct digital manufacturing technology in which
three-dimensional objects are built up, layer by layer, based on the
information specified in a design file [34]. Because of the numerous
advantages that this technology brings, over the past 29 years AM
enjoyed an impressive 26.6% average annual growth rate of world-
wide revenues for products and services [64]. Over the last three
years alone, the number of enterprise-class printer manufacturers
has more than doubled [23]. Meanwhile, more than 1200 compa-
nies offer 3D printing as a service [2], allowing flexible on-demand
manufacturing based on customer designs. Additionally, the hob-
byist 3D-printing community is growing rapidly, a trend supported
by a confluence of factors like falling desktop 3D printer prices,
increased automation and quality of 3D-printed objects, as well as
access to a wide variety of design files on the internet.

As a consequence of these developments, the design files used
in 3D printing are becoming increasingly available. These files are
downloaded from a variety of free or paid websites, uploaded to
cloud services offered by printer manufacturers, and/or exchanged
among friends or business partners via e-mail, making them a
common payload in internet traffic. The same files are also routinely
stored on personal or company computers along with the .docx,
.pdf, .jpg, .mp3, and other common file formats.

The information security community is well aware of how easy
it is to embed additional data in pictures, text, or video files. Even
though the embedded covert information may change the underly-
ing data, the introduced distortions are small enough they will be
hard to detect by humans. The common nature of the files provides
malware (Trojan) or other malicious actors an opportunity to “blend
in” secret messages with normal network traffic. Considering the
increased proliferation of digital design files for 3D printing, we
must investigate whether these files can be similarly exploited as a
covert channel for arbitrary information stealing.

The answer, however, is nontrivial. As opposed to images, text,
and video files, 3D-printing design files are interpreted by software
to produce (3D-print) carefully designed physical artifacts. Partic-
ularly with functional parts, the 3D-printed objects must adhere
to tight tolerances. Alterations to design files can have detrimental
effects on their ability to be integrated into a system, or impact the
part’s mechanical properties (known as function) [66]. Less obvious
alterations of the 3D object printing orientation can also degrade
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a part’s function because of the inherent anisotropic properties of
3D printing [67, 73].

Changes to design files have already been exploited by inten-
tional cyber-physical sabotage attacks [7, 56] and in a proposal to
prevent part infringement [15]. In the case of the dr0wned attack [7],
the failure of a sabotaged 3D-printed propeller mid-flight led to
the destruction of the quad-copter UAV on which it was installed1.
Observable impacts like this will draw attention to a covert com-
munication channel, an outcome that a malicious actor normally
would like to avoid.

Therefore, the central question we pose in this work is: How
easy is it, despite the required accuracy for 3D printing, to use the
exchange of 3D-printing files as a channel for arbitrary informa-
tion stealing? Then, if yes, can this information be hidden? (Note
that important trade secrets can reside in the environment of 3D-
printing files, so covert information hiding is very tempting!) In
this paper, we answer this question for STL (STereoLithography)
files, which are the most widely adopted digital design file format
used in AM [18], both in industrial and hobbyist settings.

The remainder of this paper is organized as follows. In Section 2
we introduce considered attack characteristics, including the con-
cepts of steganography and subliminal channels, selected use cases
for the considered attack, and an outline of mechanisms that de-
termine the strength of attack. In Section 3, we provide further
background necessary for the discussion of our proposal. This in-
cludes a brief introduction of the STereoLithography (STL) design
file format, and an overview of the related literature. In Section 4,
we present our proposal for encoding individual bits into an STL
file, then show how it can be scaled up to a raw steganographic
channel that can encode or decode bytes while updating internal
positioning in a carrier STL file. Then, we present how an arbitrary
binary file can be stored in and recovered from a carrier STL file
using the defined functions. In Section 5, we present our proposal
for the strong attack, which constitutes a fully encrypted unidirec-
tional steganographic covert channel. We demonstrate the validity
of the proposed attack using the legally questionable Liberator gun
files in Section 6. Next, in Section 7, we offer further discussion,
such as the implications of the proposed attack on the AM Security
field as a whole, three different contexts of attack distinguishability,
and the robustness of the introduced channel against sanitation
efforts. We conclude, in Section 8, with a brief review and summary
of the major results of this paper.

2 ATTACK CHARACTERISTICS
In this section, we first discuss steganography and subliminal chan-
nels, then consider use cases for our attacks, and then cover the
attack mechanisms.

2.1 Steganography and Subliminal Channels
Steganography is a term of art associated with techniques to hide the
presence of a secret message. With its recorded origins dating back
to 440BC [48], steganography has had numerous implementations.
In the classical, pre-computer age, examples include the insertion
of secret messages in a painting (e.g., in the form of water ripples

1The attack is summarized in a short YouTube video: https://www.youtube.com/watch?
v=zUnSpT6jSys

representing Morse code, or in a handwritten letter, or as the N th
character of each line or sentence).

In the computer age, despite the rise and pervasive use of cryp-
tography, steganography has found a variety of new forms [48, 51].
The theoretical possibilities of steganography in digital documents
has been extensively studied in the literature [4, 6, 19, 30, 60]. If
an underlying channel contains a source of entropy, i.e., redundant
information that can be modified without disrupting the usability
of the digital data, it can be used for embedding a secret message. A
classical example is the encoding of an arbitrary bit stream in a .bmp
file, where each pixel can be represented through its three RGB (red,
green, blue) components. To encode individual bits of the stream,
the least significant bits of the RGB values can be modified. As the
resulting distortions of color are not perceptible by a human eye,
the encoded data has the potential to remain undetected. Steganog-
raphy can be found in numerous practical applications, such as
digital media watermarking [13, 17, 26, 40] or in circumventing
censorship [21, 33, 62, 63].

Closely related to steganography are subliminal (and covert chan-
nels). Here, the idea is to “piggyback” on the legitimate or legitimate-
looking communication channel between two parties and embed
in it an additional secret message. For example, a .bmp file could be
sent that contains a secret message that was embedded using the
approach outlined above.

In addition to the possibility of message encoding is the question
of its distinguishability. Ideally, the distribution of the encoded
message is close to the distribution of a normal message, making it
impossible to determine whether a hidden message is present or
not.

For a more formal treatment of steganography and information
hiding in media channels see [10, 36]. For kleptographic attacks
and exploitation of channels combined with cryptographic tools
see [69–71].

2.2 Use Cases for Considered Attacks
We consider attacks that attempt unauthorized transmission over
hidden channels, as well as concealment of the associated stolen
or illegal data. While this behavior can be exhibited by all kinds of
attacks, a certain degree of concealment is common to real-world
targeted attacks and attack campaigns [57]. Balancing between risks
and rewards [54], exploiting existing communications channels like
the transfer of design files would allow criminals to significantly
reduce both the risk of and investment in the attack. We offer these
for a few realistic examples.

Information Stealing/Leaking: Malicious insiders remain one
of the biggest security threats for both public and private organi-
zations [29, 59]. They often have access to classified, proprietary,
or otherwise sensitive information that can be of great value to
external actors, and can themselves initiate an attack [8]. Since
internet access is ubiquitous, malicious actors might be tempted to
use it to exfiltrate2 stolen information. However, external network
connections are routinely monitored for suspicious activities and

2Henceforth in this paper we use term exfiltration to indicate an unauthorised data
transfer. It can be conducted either by a malicious actor or by malware. The same
technique can be used to transfer data out of or into a protected environment. To
clearly distinguish the latter case, we will use term infiltration.
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outgoing communications containing encrypted content can be ex-
plicitly blocked. In this setting, the question faced by the malicious
insider becomes whether the stolen data can be exfiltrated through
legitimate-appearing internet activities.

A similar scenario applies to malware, such as spyware Trojans
that steal information and transmit it to external parties automat-
ically. If such activities are discovered, they can be blocked and
investigated, eventually leading to the discovery and removal of
the malware. To prevent or delay detection, communication has to
appear legitimate and blend in with other network traffic.

Downloading Malicious Content: To obtain access to the desired
information, malicious insiders might need specialized tools, such
as network sniffers or password crackers. However, potentially
malicious software is routinely recognized and blocked by firewalls.
This raises a reverse challenge to the malicious insider: how to
infiltrate the necessary malware while disguising the traffic with a
legitimate purpose.

Malware can be confronted with similar obstacles. In the case
of droppers, malware whose sole purpose is to install additional
malware, this functionality depends on the ability to download ad-
ditional malware from the internet while bypassing firewall checks.

Enabling Reverse Shell to a Command & Control (C&C) Server:
Among the malware that a malicious insider or dropper can install
on a corporate computer is a reverse shell: malware that “calls out”
to an external Command & Control (C&C) Server and provides it
with remote shell access to the compromised computer. It is com-
mon to use reverse shells to browse through files, download and
upload files, and execute arbitrary commands including the instal-
lation of additional programs. On the C&C Server side, either a
malicious actor or automated malware exercises control and com-
municates commands. Obviously, this communication, including
commands, console outputs, and file transfers, needs to avoid de-
tection by firewalls or other sophisticated intrusion detection and
prevention systems (IDS/IPS).

Storing Stolen/Illegal Data on a Computer: Since sensitive infor-
mation might be accessible on an agency or corporate network,
activities like storing such information on a computer connected
to the Internet might be tightly monitored. This poses a challenge
for malicious actors, such as those connected to a compromised
computer via a reverse shell, who need to temporarily store the
stolen data prior to its leaking without raising red flags.

Eventually, malicious actors on the outside would also face a
similar challenge of hiding the presence of stolen and illegally pos-
sessed data. In order to avoid prosecution if incriminating evidence
should be discovered, they might want to conceal the illegally ob-
tained data from digital investigation efforts. This applies also to
data that is outright illegal in a country, such as the designs of
3D-printed guns, the production of which has already led to a jail
sentence in Japan [22].

2.3 Attack Mechanisms
Our Steganographic/info-hiding attack stores or sends data in a
disguised manner so the fact of sending the data is, to an extent,
concealed. In our attacks, the payload can be any information, as
in the examples above, to be sent or stored secretly. The “carriers”

(stego-containers) which we examine are STL (STereoLithography)
files. The carrier will be put in a channel to be communicated (or
stored). The channels considered are between network elements
which are part of the additive manufacturing ecosystem. The overall
“Stego-system”, which is the methods and means used to create
the concealed channel for communicating information, will be a
software system that performs the embedding in and extraction
from the carrier and the communication/storage. It is assumed that
the system is either run by the adversary, or runs in an undetected
way as a Trojan in a compromised hosting environment.

The actual attack will consist of identifying redundant data in
the STL files, and methods which embed secret information in
them for the above attacks. Such attacks are known as “Payload
Embedding.” Based on the degree a channel is resistant against
discovery and extraction of the transported secret message, we
distinguish between the following three categories:

• Weak Attack: Plaintext Steganographic Channel. The
simplest attack is to embed the information directly, as is,
and rely on the fact that as long as the carrier STL files
produce the expected result (i.e., the proper 3D object is
printed without distortions) no investigation will be started
that could reveal the presence of the covert channel. We will
present our proposal for the weak attack in Section 4.
Claim 1: If one relies on the AM process to be successful as
an indication of non existence of a hidden channels, one will
fail.

• Regular Attack: Encrypted File over a Steganographic
Covert Channel. The weak attack implicitly assumes that
the embedded information is “plaintext.” A commonly used
improvement is to embed and encrypted file, such as a pass-
word-protected zip archive. We will use this approach when
we demonstrate the attack in Section 6
Claim 2:Assuming the cryptosystem is strong: If the regular
attack is used and the cryptographic key is not found in the
malware, even knowing the attack, one cannot find after the
fact what information was embedded.

• StrongAttack: Fully Encrypted SteganographicCovert
Channel. In the regular encryption attack, if one analyzes
themalware onemay find the key, which is aweakness of this
attack. A strong attack would implement a fully cryptograph-
ically encrypted communication channel that is transported
over the steganographic covert channel, where analyzing
the malware will not help in recovery of the file stolen. We
propose to use a KEM/DEM3 approach. While the principles
of this approach are well established, this approach needs to
be adjusted based on the characteristic aspects of the under-
lying steganographic channel. In Section 5, we derive our
approach for KEM and DEM from the ransomware/ klepto-
graphic type of attack [68, 70], and show which adjustments
need to be made to ensure that the actual payload consisting
of the {KEM||DEM} pair remains indistinguishable from a
random string of bits after the attack, or:

3KEM - Key Encapsulation Mechanism. DEM - Data Encapsulation Mechanism. DEM
is used to encrypt the payload message with a symmetric session key, while KEM
encrypts the used session key with the public key of the message recipient. The results
of both are concatenated and constitute the message that is embedded.
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Claim 3:Assuming the KEM and DEM generated are crypto-
graphically strong:With access to the output file, the receiver
public key, and full access to the malware, one cannot guess
after the fact what the information embedded in the file is.

• Note: Fighting Traffic Analysis. Given that we can either
encrypt a file in our channel or embed an utterly random
string instead, the cryptographic attacks when the key is
not known can be done in a way that the intended recipient
receives encrypted data while the rest get a file with random
information.
Claim 4: In a cryptographic attack where files sent to in-
tended recipients embed an encrypted data, and other files
embed properly randomized information, one can view the
traffic but cannot tell who is the actual recipient.

The two crypto transformations of the basic weak channel are
generic strengthening of the subliminal channel attack. As has
been demonstrated with other attacks, such as in ransomware or
doxware attacks [37, 72], detecting the above mentioned attacks
poses difficulties to end-users. The systematic methods required
for dealing with them (combining early detection and elimination
of malware, recovery, backups, etc.) are out of scope for this paper,
but our point is that they need to be addressed in the area of AM.

3 FURTHER BACKGROUND
We discuss the STL file format and other related work here.

3.1 STereoLithography (STL) File Format
STereoLithography (STL) files describe a 3D body by specifying a set
of triangles that enclose its surface. They are usually generated by
a computer-aided design (CAD) program, but can also be produced
by scanning real-world objects. STL can be in either ASCII or binary
formats, which are semantically equivalent in the AM process. The
binary format significantly reduces file size, while the ASCII format
is human-readable and can be easily edited or inspected for errors
manually.

Figure 1 shows an example of a 3D model represented as a STL
file. Figure 1a depicts the model of the 3D object itself, as well as a
zoom-in excerpt showing its composition from adjacent triangular
surfaces, known as facets. Figure 1b is an excerpt from the ASCII
STL file that describes this model; this excerpt shows two of the
object’s facets, each of which is defined by three vertices with their
respective x, y, and z coordinates.

In the STL file format, the description of 3D objects is defined as
a series of nested blocks. The outermost block describes a single
solid body and is enclosed by the tags solid and endsolid. Both tags
can be followed with additional comment text, which is commonly
used to specify the model name or author.

Each solid 3D object is described as a series of triangular surfaces
defined within the solid block. The description of each facet is
enclosed within facet and endfacet tags. Each facet is defined by
two distinct elements: its three vertices define the boundaries of
the facet, and the normal vector defines the outwards orientation
of the surface. The latter is indicated by the normal element, which
provides the vector’s x, y, and z coordinates. The STL format defines
a relationship between the normal vector and the vertices describing
the facet: The normal vector should follow the “right hand” rule,

(a) Solid and Wired (Triangular Facets) Representations

s o l i d S t an fo rdLucy
f a c e t normal −0 .1128 −0 .818 −0 .5641

ou t e r loop
v e r t e x −13 .101 0 . 5 2 7 9 9 8 5 2 . 2 0 6
v e r t e x −13 .035 0 . 7 9 1 9 9 9 5 1 . 8 1
v e r t e x −12 .771 0 . 5 2 7 9 9 8 5 2 . 1 4

endloop
end f a c e t
f a c e t normal −0 .0573 0 . 7 7 4 0 . 6 3 0 6

ou t e r loop
v e r t e x 5 . 9 0 6 9 9 9 7 . 5 8 9 9 9 8 5 0 . 8 8 6
v e r t e x 5 . 9 7 2 9 9 9 7 . 3 2 5 9 9 7 5 1 . 2 1 6
v e r t e x 6 . 2 3 6 9 9 8 7 . 7 2 2 5 0 . 7 5 4

endloop
end f a c e t

. . .
e n d s o l i d S t an fo rdLucy

(b) ASCII STL File (Excerpt: Two Triangular Facets Shown)

Figure 1: 3D Digital Design Model—Stanford Lucy [1]

meaning that the vertices are listed in counter-clockwise order
when viewed from the normal.

The vertices of a facet are defined in the innermost nested block,
which is enclosed by the tags outer loop and endloop. Each vertex
is specified as vertex vx vy vz. The three v’s are single-precision
floating point values that represent the x, y, and z coordinates,
respectively.

For both facets and vertices, there is some freedom in their order-
ing within blocks. Facets can be freely reordered within the solid;
there is no specification for them. Vertex orderings are required
to form a “right-hand” rule with the normal vector, but there are
multiple valid orders for any facet. This freedom for semantically
equivalent representations in STL format is what allows us to use
it as a carrier.

3.2 Related Work
Several authors survey the entire field of AM Security [43, 50, 66].
So far, three security threat categories have been identified for AM:
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theft of technical data, sabotage attacks, and illegal part manufac-
turing [66]. While these threats are not unique to AM, it has been
shown that in the AM context numerous characteristic aspects
exist that require special consideration [24, 65]. To the best of our
knowledge, the security threat discussed in this paper has not been
identified in the research literature before.

Kuznetsov et al. [39] recognized that 3D Printing technology
can be used to steganographically hide information. However, as
opposed to the attack settings considered in this paper, the authors
propose to hide information inside of a 3D-printed object. The
authors encode a secret message as a three-dimensional matrix
“embedded” within the boundaries of the actual 3D-printed object.
While this approach can be used in certain attack settings, it violates
the constraint considered in this paper – avoiding modifications of
the 3D model. When the original 3D geometry is known, such in-
sertions in the model can be detected with non-destructive testing.
Most importantly, in the case of functional parts, such modifica-
tions will likely impact the part’s mechanical characteristics, as has
been demonstrated by several publications focusing on intentional
sabotage attacks [7, 56, 73].

The remaining related literature focuses on addressing the threat
of Intellectual Property (IP) violation. Numerous works suggested
watermarking techniques that could be used for copyright protec-
tion, theft deterrence, and inventory. Wang et al. [61] summarized
3D mesh watermarking techniques and their attack robustness in
their survey. They categorized techniques as fragile, for authenti-
cation and integrity applications, or robust, for copyright protec-
tion. The authors identified the two major categories of attacks as
geometric (modifying vertex positions) or connectivity (modifying
vertices, edges, and facets adjacency relations). In an AM water-
mark integration survey, Macq et al. [42] assessed watermarking as
a traceability mechanism to be used against already-printed models.
They focused on each method’s resistance to alteration (robust-
ness) and visual imperceptibility (fidelity). The authors concluded
that, while attainable, no method currently provided a satisfactory
watermarking solution.

Ohbuchi et al. [45, 46] presented algorithms for embedding data
into 3D models using vertex coordinates and topology. One ap-
proach, the Triangle Strip Peeling Symbol (TSPS) sequence, embed-
ded a sequence of binary digits by constructing a strip using triangle
edges and adjacency states [45]. Flaws in their method included
reaching mesh boundary limits, circling back, and erroneous extrac-
tion. Kanai et al. [35] suggested embedding watermarks in models
using wavelet transforms. The embedded watermarks were percep-
tually invisible and invariant to affine transformations; however,
the algorithms produced geometric errors and were restricted to a
specific topological class of mesh. Also in the frequency domain,
Praun et al. [49] proposed a method to determine the probability
that two models were created independently through watermark
comparisons. However, the method resulted in vertex modifications
which impacts geometry. Ohbuchi et al. [47] integrated a watermark
into 3D mesh models using the spectral domain. Using vertex con-
nectivity and coordinates, the authors embedded a binary bitstream.
Their method perceptibly affected the object. Cayre and Macq [11]
introduced a substitutive, blind scheme in the spatial domain. The
process introduced modifications of vertex positions. Based on ex-
periments with 11 different models, the authors reported distortion

rates ranging from 0.15 to 0.25%. Hou et al. [31] specifically con-
sidered 3D mesh watermarking with regards to 3D printing. The
authors used the layers created by the STL 2D cross-sections to
design a rotating disk embedding system where the relative rota-
tion contains the payload. Their method required knowledge of the
original model, and, while visually imperceptible, resulted in geo-
metric distortion. Hou et al. [32] proposed estimating the printing
direction from the printed layer artifact as a way to synchronize
and recover a cylindrical coordinate system watermark. Although
their solution was blind, among the listed limitations was that the
printing direction and z-axis must be aligned and fixed without any
model rotation after watermarking.

Recent efforts in addressing AM IP protection have focused on
modifying the printed object. For example, Delmotte et al. [20] mod-
ified the layer thickness in multiple locations to embed a watermark,
an approach which resulted in object deformation. Silapasuphako-
rnwong et al. [55] modified the object material, using a two nozzle
print system with iron added to the material in the second nozzle.
While this produced a re-writable watermark, it requires adding a
magnetic material to the object. Chen et al. [14, 16] introduced an
approach to imprint a QR code in the 3D printed part. Individual
segments of QR code can be distributed across multiple layers and
produced either with voids or support material substituting for
source material; a CT scanner can be used to read out such a code.
In all these approaches, the proposed modifications might not be
acceptable for functional parts.

Additionally, patents have been filed for STL model watermark-
ing [41, 74], digital rights management of modeling data using
passwords with barcodes [44], model protection via machine in-
struction masking [58], and a 3D printing environment watermark
embedding and detecting apparatus [27]. Recently, Treatstock has
begun offering Watermark3D, an online watermarking solution for
STL files [3, 53]. Under their patent pending system [53], a user
uploads an STL file, provides information to be used for a water-
mark, chooses whether to make the watermark public, and then
downloads a watermarked file [3].

4 WEAK ATTACK: PLAINTEXT
STEGANOGRAPHIC COVERT CHANNEL

Our new approach for establishing a steganographic covert channel
in STL files consists of three parts: (i) a transformation primitive
that can be used to encode/decode individual bits of information, (ii)
a raw steganographic channel that consists of functions to encode
and decode individual bytes bit-by-bit while advancing internal
position in the carrier STL file, and (iii) an approach building upon
these functions to encode an arbitrary binary file in a carrier STL
file.

4.1 Encoding/Decoding Individual Bits
We identified several sources of entropy in the STL file format4, each
of which can be used to encode individual bits of information. These
are: the position of the facet descriptions in the file, compliance of
the normal vector to the right hand rule, and the order in which
vertices are listed within the facet definitions; additionally, number

4Due to the simplicity of the format, this was done manually rather than with an
automated tool.
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vertex   5.972999   7.325997   51.216

vertex    6.236998   7.722   50.754

vertex    5.906999   7.589998   50.886

(a) 3D Facet Defined by its Three Vertices

f a c e t normal −0 .0573 0 . 7 7 4 0 . 6 3 0 6
ou t e r loop

v e r t e x 5 . 9 0 6 9 9 9 7 . 5 8 9 9 9 8 5 0 . 8 8 6
v e r t e x 5 . 9 7 2 9 9 9 7 . 3 2 5 9 9 7 5 1 . 2 1 6
v e r t e x 6 . 2 3 6 9 9 8 7 . 7 2 2 5 0 . 7 5 4

endloop
end f a c e t

f a c e t normal −0 .0573 0 . 7 7 4 0 . 6 3 0 6
ou t e r loop

v e r t e x 5 . 9 7 2 9 9 9 7 . 3 2 5 9 9 7 5 1 . 2 1 6
v e r t e x 6 . 2 3 6 9 9 8 7 . 7 2 2 5 0 . 7 5 4
v e r t e x 5 . 9 0 6 9 9 9 7 . 5 8 9 9 9 8 5 0 . 8 8 6

endloop
end f a c e t

(b) Two Options Representing Bit Value 0

f a c e t normal −0 .0573 0 . 7 7 4 0 . 6 3 0 6
ou t e r loop

v e r t e x 6 . 2 3 6 9 9 8 7 . 7 2 2 5 0 . 7 5 4
v e r t e x 5 . 9 0 6 9 9 9 7 . 5 8 9 9 9 8 5 0 . 8 8 6
v e r t e x 5 . 9 7 2 9 9 9 7 . 3 2 5 9 9 7 5 1 . 2 1 6

endloop
end f a c e t

(c) Represents Bit Value 1

Figure 2: Steganographic Encoding of a Single Bit in a Facet

representations and spaces can be used with the ASCII-style STL
file format. We present a brief discussion of alternative bit encoding
approaches and their drawbacks in Appendix A.1.

After considering these options, we elected to encode individual
bits of information via the order in which vertices are specified
within a facet. This choice is motivated by several factors. First, we
think that this approach renders the steganographically encoded
information least likely to be detected either manually or by an au-
tomatic distinguisher. Second, using the approach described below,
a recipient can decode the transmitted information “blindly,” i.e.,
without having access to the original STL file. Lastly, the proposed
bit encoding primitive should neither interfere with the printability
of nor introduce any distortions in the 3D geometry of the object
specified in the STL file.

The proposed bit encoding approach is based on the following
observation. Each facet is uniquely defined and identified by its
three vertices, which we can refer to as v1, v2, v3 (see Figure 2a). In
a well-formed STL file, the order of these vertices should follow the
right hand rule with the normal vector (see Section 3). However,
beyond this, the order in which the vertices should be specified
is neither defined nor impacts the triangular facet they describe.

This means that the sequence in which the three vertices are listed
can be used to encode bits of information. The correlation with
the normal vector restricts the valid sequences of listed vertices to
the cyclical rotation of their order, i.e., (v1, v2, v3), (v2, v3, v1), and
(v3, v1, v2).

If all three vertices are distinct, i.e., no two vertices have the same
x, y, z coordinates, up to three values (0, 1, and 2) can be encoded per
facet. This, however, would require that the bit stream is converted
to base 3 (instead of base 2 for the binary value representation).
While the obvious advantage would be the increase of encoding
capacity to up to ⌊log2(3FN )⌋ binary bits of information in a STL
file with FN facets, this will increase the complexity.

Alternatively, if only a single binary value is encoded using
vertices rotation, the encoding capacity is limited to FN bits. While
decreasing capacity, this approach eliminates base 2 to 3 conversion.
In the remainder of this paper, we will proceed with the encoding
of a single bit of information per facet.

In theory, all the vertices should be distinct, with different x,
y, z coordinates. This is not guaranteed in real STL files, which
often need to be “repaired” before 3D printing. To account for this
situation, we will skip facets in which all three vertices have exactly
the same coordinates. For the remaining facets, we elect to encode a
0 bit value by starting with the vertex whose combined coordinate
value is minimal, and 1 otherwise. For the example facet in Figure 2a,
steganographic representations of bit values 0 and 1 are depicted
in Figures 2b and 2c, respectively).

More formally, for any facet with at least two distinct vertices
we define the encoded bit value as follows:

Encoded Bit =

{
1, if v1=max(v1, max(v2,v3))
0, otherwise.

The comparison between two arbitrary vertices vi and vj can
be defined as a successive comparison of their respective x, y, z
coordinates, treating these as components of a larger number.

The max function can be implemented as follows:

max ( v1 , v2 )
{

i f ( v1 . x < v2 . x ) return v2 ;
i f ( v1 . y < v2 . y ) return v2 ;
i f ( v1 . z < v2 . z ) return v2 ;

return v1 ;
}

Please note that, even for the selected vertex order, alternative
encoding strategies exist.

Figure 3 shows pseudo-code for encoding and decoding a single
bit of information using the proposed approach. In both functions,
the parameter facet is a reference to a facet in which a bit should be
encoded or from which it should be decoded. Both functions rely
upon the function max that compares two vertices based on their
combined x-y-z values. In the EncodeBit function, if the bit value 1
should be encoded and the first vertex already has the greater value,
no additional action is required. Otherwise, the order in which
vertices are described in the facet should be cyclically rotated either
left (if v2 is the maximum value) or right (if v3 is the maximum).
The encoding of bit value 0 is similar: a rotation is needed only if
the value of the first vertex is maximum. In the pseudo-code, we
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EncodeB i t ( f a c e t , b i t V a l u e )
{

i f ( b i t V a l u e == 1 )
{
i f ( f a c e t . v1 == max ( f a c e t . v1 ,

max ( f a c e t . v2 , f a c e t . v3 ) ) )
return ;

e l se i f ( f a c e t . v2 == max ( f a c e t . v1 ,
max ( f a c e t . v2 , f a c e t . v3 ) ) )

/ / R o t a t e L e f t
f a c e t . v1 , f a c e t . v2 , f a c e t . v3 =
f a c e t . v2 , f a c e t . v3 , f a c e t . v1 ;

e l se
/ / R o t a t e R i g h t
f a c e t . v1 , f a c e t . v2 , f a c e t . v3 =
f a c e t . v3 , f a c e t . v1 , f a c e t . v2 ;

}
e l se
{
i f ( f a c e t . v1 == max ( f a c e t . v1 ,

max ( f a c e t . v2 , f a c e t . v3 ) ) )
/ / R o t a t e L e f t
f a c e t . v1 , f a c e t . v2 , f a c e t . v3 =
f a c e t . v2 , f a c e t . v3 , f a c e t . v1 ;

}
}

DecodeBi t ( f a c e t )
{

i f ( f a c e t . v1 == max ( f a c e t . v1 ,
max ( f a c e t . v2 , f a c e t . v3 ) ) )

return 1 ;

return 0 ;
}

Figure 3: Encoding/Decoding of a Single Bit in/from a Facet

rotate left. The DecodeBit function checks whether the value of the
first vertex described in the facet is the greatest of all three. If so,
the function recognizes it as bit value 1, which is returned to the
caller; otherwise, it returns 0.

4.2 Raw Steganographic Channel: Encoding/
Decoding Bytes with File Position Update

The bit encoding/decoding primitives described in Section 4.1 can
be used as a building block for the encoding/decoding of bytes.
Encoding individual bits in a byte can be done in an arbitrary order
as long as it is “mirrored” by the decoding routine. The two simplest
bit encoding orders would be to start with the most significant bit
(MSB) and proceed bit by bit to the least significant bit (LSB), or
similarly from LSB to MSB.

Pseudo-code for the encoding and decoding of individual bytes
is shown in Figure 4. The most notable feature is the use of the
GetNextFacet function which, in addition to returning a reference
to the facet, advances an internal pointer in the STL file to the
next facet. Both functions also use a mask byte to either determine
which bit value should be stored in the facet (for the EncodeByte
function) or to reflect the decoded bit value in the return byte (for
the DecodeByte function).

The encoding/decoding of an individual byte can in turn provide
a building block for the encoding/decoding of other data types, such
as double word integers or binary byte arrays. The latter can be
used to encode a raw byte stream, an approach that can be used in a
strong attack with a block cipher over the proposed steganographic
STL channel. Similarly, the bit encoding/decoding combined with

EncodeByte ( by t eVa lue )
{

b i tMask = 0 x80 ;
for ( i = 0 ; i < 8 ; i ++)
{

f a c e t = Ge tNex tFace t ( ) ;
i f ( by t eVa lue & bi tMask )

EncodeB i t ( f a c e t , 1 ) ;
e l se

EncodeB i t ( f a c e t , 0 ) ;

b i tMask = bi tMask >> 1 ;
}

}

DecodeByte ( )
{

by t eVa lue = 0 x00 ;

b i tMask = 0 x80 ;
for ( i = 0 ; i < 8 ; i ++)
{

f a c e t = Ge tNex tFace t ( ) ;
i f ( DecodeB i t ( f a c e t ) == 1 )

by t eVa lue = by teVa lue | b i tMask ;

b i tMask = bi tMask >> 1 ;
}

return by teVa lue ;
}

Figure 4: Encoding/Decoding of a Single Byte (MSB to LSB)

the advancing facet pointer can be used in a strong attack using a
stream cipher over the steganographic channel. Below we outline
how the functions of a raw steganographic channel can be used to
encode a single binary file in a carrier STL file.

4.3 En-/Decoding Arbitrary Binary Files
Our proposal for an attack using an STL file to encode an arbitrary
sequence of bytes (such as a binary file) is depicted in Figure 5. The
binary file is the secret message that needs to be transmitted. To
facilitate the encoding and decoding of variable-length binary files,
the size has to be included in the encoded message. Therefore, the
encoded message M consists of a fixed-length size field (specifying
a number of bytes) and a variable length secret field (see Figure 5a).
We use a size field 4 bytes long, supporting the encoding of up to
4GB long secret byte streams. The result of encoding a messageM in
an innocent-seeming carrier STL file is STLM, which contains both
the original 3D model and the steganographically encoded message.
When sent to an external source over the Internet (e.g., as a part of
the attack setting described in Section 2), this approach aims to fool
firewall and IDS/IPS systems, which should let it through without
raising a red flag.

Figure 5b depicts pseudo-code for an EncodeFileInSTL function
that implements the encoding part of the approach. The encoding
function takes three parameters: a carrier STL file name, fnSTL, a
binary file name, fnSecret, and a destination STL file name, fnSTLdest.
The carrier STL file is the original STL file that will be encoded with
the secret message. The binary file contains the secret message to
be encoded. The destination STL file will contain the combined
carrier file and binary file. To start encoding, the entire mesh of
the carrier STL file is loaded. Next, the entire secret binary file is
read, obtaining a sequence of bytes as well as the total number of
bytes in the file. At this stage, the carrier STL file is evaluated for
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Organizational 
Boundary

M STLM

Enc.

STL

size secret

sizeof

SECRET (sequence of bytes)

Firewall, 
IDS/IPS

Internet

(a) Encoding Approach

EncodeF i l e InSTL ( fnSTL , f n S e c r e t , f nSTLdes t )
{

s e c r e t B y t e s = R e a d F i l e By t e s ( f n S e c r e t ) ;
s e c r e t S i z e = s i z eo f ( s e c r e t B y t e s ) ;

c a r r i e r STL = LoadSTL ( fnSTL ) ;
s t l C a p a c i t y = Face tCount ( c a r r i e r STL ) / 8 ;

i f ( s t l C a p a c i t y >= s e c r e t S i z e +4 )
{
STLSeek2Face t ( SEEK_SET , 0 ) ;

EncodeLong ( c a r r i e r STL , s e c r e t S i z e ) ;
EncodeBytes ( c a r r i e r STL , s e c r e t By t e s , s e c r e t S i z e ) ;

SaveSTL ( c a r r i e r STL , fnSTLdes t ) ;
}

}

(b) Encoding Function, Pseudo-Code

Figure 5: Encoding Single Binary File into an STL File

sufficient capacity to encode the secret message together with the
size field. If the capacity is sufficient, the encoding is conducted on
the loaded STL mesh. The call to function STLSeek2Facet positions
the seek pointer on the first facet in the carrier STL file. Four bytes
indicating the secret size are encoded at this position, offset 0. The
secret is then encoded starting at an offset of 4 encoded bytes. In
the pseudo-code, all encoding functions are assumed to advance
the facet pointer, similar to the common behavior of file write
functions. After the encoding is completed, the mesh is saved to
the destination file indicated by fnSTLdest.

Conceptually, before decoding can start, the STLM file received
from the Internet might also need to go through firewall and IDS/IPS
checks (see Figure 6a). The decoding of the message is also a two
stage process. It starts with the decoding of the first four bytes from
STLM at offset 0, which represent the size field. Then the size bytes
of secret are decoded, starting at an offset of 4 encoded bytes in the
encoded message. All decoding operations are conducted byte by
byte and bit by bit, mirroring the encoding procedure.

STLM

Dec. 
(0, 4)

SECRET 

Dec. 
(4, size)

size

Retrieve encoded Secret – 
size bytes starting at the 
offset 4 bytes in M 

Firewall, 
IDS/IPS

Internet

Obtain size (in bytes) of encoded Secret – 
4 bytes at the offset 0 of the encoded M

(a) Decoding Approach

DecodeFi leFromSTL ( fnSTL_M , f n S e c r e t )
{

c a r r i e r STL = LoadSTL ( fnSTL_M )

STLSeek2Face t ( SEEK_SET , 0 ) ;
s e c r e t S i z e = DecodeLong ( c a r r i e r STL ) ;
s e c r e t B y t e s = DecodeBytes ( c a r r i e r STL , s e c r e t S i z e ) ;

S a v e I n F i l e ( f n S e c r e t , s e c r e t B y t e s , s e c r e t S i z e ) ;
}

(b) Decoding Function, Pseudo-Code

Figure 6: Decoding Single Binary File from an STL File

The decoding function DecodeFileFromSTL closely follows the
outlined process (see 6b). It takes two parameters: an STL file name
that contains encoded secret information, fnSTL_M, and a name for
a binary file in which the decoded secret will be saved, fnSecret. To
start decoding, the mesh of the STL_M file is loaded. Then, at offset
0, the four bytes indicating secret size are decoded. At an offset of 4
encoded bytes, the remaining bytes are read and decoded to extract
the secret. Finally, the extracted byte stream is saved in the binary
file indicated by fnSecret.

5 STRONG ATTACK: FULLY-ENCRYPTED
STEGANOGRAPHIC COVERT CHANNEL

A strong attack can use the raw steganographic covert channel
defined in Section 4 as a carrier, similar to how higher level network
protocols are transported over the underlying network layers. For
a strong attack, several more factors have to be taken into account.

First, classical bi-directional key exchange protocols might not
be possible, for example because transfer of STL files (used as a
carrier) may be permitted only in one direction. Furthermore, bi-
directional communication, implemented via consecutive sending
and receiving of STL files, might be identified as a suspicious activity
and lead to the discovery of the communication channel. Thus the
communication channel should be unidirectional.
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Figure 7: Strong Attack, Encoding Approach (Padding: pad1
is used to increase length of size||secret to a multiple of a
block size in used symmetric encryption (128 bits for AES);
pad2 increases the length ofDEM, so that togetherwithKEM
it overwrites all bits in the carrier STL file)

Second, while encryption using a symmetric key stored in mal-
ware is possible, the detection and reverse engineering of the mal-
ware would recover this key. This will degrade the cryptographic
channel to the level of the weak attack, and eventually allow iden-
tification of secretly transmitted data if transmitted STL files are
logged in their entirety.

To address these concerns, we argue that the strong attack should
build upon public key technology, and the KEM/DEM approach in
particular. In this approach, for every new transmitted message a
new session key is generated. In the Data EncapsulationMechanism
(DEM), this key is used to encrypt the exfiltrated message with
a state-of-the-art symmetric encryption algorithm, such as AES
(Advanced Encryption Standard) based method. In general, the
encoded payload will be larger than the block size of AES (which is
128 bits). Therefore, modes of operation, such as a variant of Cipher
Block Chaining (CBC), have to be used, or other modes like GCM.
A Key Encapsulation Mechanism (KEM) generates information that
a recipient can use to recover the session key, e.g., by encrypting
it with a public key (stored in malware) of the recipient. A state-
of-the-art asymmetric encryption algorithm, such as Elliptic Curve
Cryptography (ECC), e.g., EC-DH, can be used. The results of both
KEM and DEM are concatenated and together (i.e., KEM||DEM)
constitute the transmitted message. The local malware erases both
his random choice for the session and the keys derived from it.

The selection of a KEM/DEM approach has an immediate impact
on the size of the secret message that can be transported. As the
STL files describing different models have different amounts of
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Figure 8: Strong Attack, Decoding Approach (Padding: pad2*
is amultiple of block size (128 bits for AES), and corresponds
to the part of pad2 that could be encoded in the carrier STL
file)

vertices, so too will their encoding capacity vary. This encoding
capacity should be sufficient to incorporate the entire KEM||DEM
outcome. The size of KEM depends on the selected approach, but
for the purpose of discussion we can consider it fixed. Similar to the
discussion of the weak attack (see Section 4), the message processed
by DEM should consist of at least the fields size and secret, so that
the recipient can extract the secret. TheDEM can be based on stream
cipher or a block cipher mode and may include an authentication
field as well.

A carrier STL suitable to transport the message will generally
have encoding capacity exceeding the combined KEM||DEM size.
This raises the concern of distinguishability of the encoded KEM/-
DEM from the rest of the file. Should the distinction be possible,
it could act as an indicator of the covert message’s presence and
simplify cipher extraction for the analysis. To prevent this from
happening, all remaining bits in the carrier STL should be encoded
with an extended DEM part. This can be achieved by padding the
input of the DEM encryption (size||secret padded by pad1 to a mul-
tiple of the block size) with additional padding pad2 of the length
sufficient to extend the encrypted random blocks till the end of the
file; in general, not all bits of the final cipher block will be encoded.

Our proposal for KEM and DEM are as follows. The KEM can be
realized using either off-the-shelf implementation of state of the
art asymmetric encryption, such as Elliptic Curve Cryptography
(ECC), or with custom-made derivatives. ECC is using an elliptic
curve as a generator of a group, and exponentiation as an oper-
ation on the group elements known as “multiplication along the
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curve.” The group generator and the operations on the group are
shared by both the attacker (on the receiving end of the message)
and the malware (that sends out the message). Given that G is a
generator in the right group, an attacker can generate a public
key as Y=Gx, where x is only known to the attacker and Y can
be integrated in the malware. At the time when malware needs
to send a secret message, it randomly chooses a value u and uses
it to compute Z=Gu and K=Yu. The value Z is embedded in the
channel as a result of the KEM mechanism. The attacker who re-
ceives the message can use it to recover the value of K as follows:
Zx=(Gu)x=Gu·x=Gx·u=(Gx)u=Yu=K.

In the DEM, a session key k for the data encryption can be derived
by what is called KDF (Key Derivation Function) which is based on
cryptographic hash functions K : k=KDF(K). The result is a (say, 256
bit random looking) value that can be used as keys by encrypting the
payload with AES in some mode: cipher=eAES(k, message). As K can
be recovered by the recipient of the message, so can the session key
k, and the message can be decrypted. After the message is encoded
in the carrier STL file, the malware erases K and k, preventing
recovery of the sent message at the compromised site, even if the
malware is discovered and reverse-engineered. This attack follows
the malicious cryptographic approach of Adam Young and Moti
Yung [70, 72]. To get the key one has to break the Decisional Diffie-
Hellman assumption.

Encoding and decoding in this way are summarized in Figures 7
and 8, respectively, with some concrete functions choices. Encod-
ing a message in an STL file can be easily implemented with the
functions defined in Section 4; that pseudo-code is omitted here. In
Figures 7, pad1 expands size||secret to a multiple of the block size
in the symmetric encryption algorithm, while pad2 does the same
to ensure that the cipher overrides all bits in the carrier file; both
pads are generated randomly. In Figure 8, the encoded portion of
encrypted pad2 is indicated by two fields pad2* and pad2**. The
first indicates the portion of encrypted pad2 that resulted in the
cipher blocks encoded in their entirety; the second is the very last
cipher block generated over pad2 which could be only partially
encoded in the carrier STL file. This is just a demonstration, and
we can employ other DEM methods (e.g. GCM which takes care of
encryption and authentication). The decoding approach presented
in Figure 8 simplifies its visualization, i.e., the decryption is con-
ducted over size||secret||pad1||pad2*. The decoding performance can
be optimized by first extracting and decrypting the very first cipher
block of DEM and then, based on the value of secret, determine how
many further blocks should be decoded and decrypted; this will
reduce the operation to size||secret||pad1.

Lastly, while the description above defines a fully-encrypted
steganographic channel over STL files, one concern remains - the
ability of a defender to distinguish between STL files containing
secret messages and those that don’t. Even without the ability to
decrypt the embedded information, defenders might identify an
attacker’s e-mail or IP address (this is akin to "traffic analysis"
methods). To establish indistinguishability, automated malware can
generate a random bit sequence r composed of a group element
and a random string, and embed a new version in each STL files
on the compromised system using the above described method.
This way, all STL files sent from the compromised system to both

(a) Secret: Selected Liberator
Design Files in a Password-
Protected ZIP File

(b) Stanford Lucy used as a
“Carrier” STL File

(c) Exfil3Dtion - Encoding, Console Output

Figure 9: Encoding Secret in STLCarrier File, before Sending
to a Recipient over Internet or Covertly Storing on PC

attacker and to innocent recipients will be indistinguishable, as
they all contain the secret message look-alike part. Distinguish-
ing dummy-cipher from cipher with any advantage higher than
1/2+ϵ for non-negligible ϵ means that the Decisional Diffie-Hellman
problem DDH in the group is violated or the symmetric encryption
semantic security is violated (i.e., the encryption is distinguishable
from a random string, violating its Pseudo-random function prop-
erty). After the embedding when the keys are erased, the address of
the intended receiver is erased as well. Namely, in compromised sys-
tems operating this way, we cannot tell to where stolen information
is being sent (the thief is hidden in the crowd).

The above can be described in a formal proof essentially follow-
ing the security proof of the original KEM/DEM hybrid encryption
system.

6 EXPERIMENTAL EVALUATION: HIDING
LIBERATOR GUN DESIGN FILES

We implemented the describedweak attack approach for embedding
and extracting a single binary file as a Python script, calling the
program exfil3Dtion. To demonstrate the feasibility of our method
with a real-life application, we simulated a malicious actor scenario
in which “restricted” files were encrypted, password protected,
and hidden inside a benign STL file. As our restricted content we
selected a few Liberator gun [28] design files.
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The Liberator gun is a 3D printed handgun whose manufacturing
and design file distribution has been controversial [9, 12]. Although
file distribution by the designer is currently blocked, the files were
previously available online and were downloaded over 100,000
times in a two-day period [25]. Given the popularity and continued
online presence of the files [52], it is reasonable to assume that
interested parties might attempt clandestinely distributing the files
using the exfiltration approach presented in Section 4.

To begin, we selected two of the Liberator design files and com-
pressed them into a single .zip file. The .zip file was encrypted using
password PW123, with a resulting file size of 36,004 bytes. Figure 9a
depicts the files.

For the benign carrier file, we used the Stanford_Lucy_ASCII.stl
file depicted in Figure 9b. The file contained 68,646 facets. Based
on our usage of the vertex order encoding primitive, the maximum
capacity of the carrier file was 46,080 bytes. Considering the reser-
vation of four bytes for the size field, up to 46,076 bytes of secret
can be encoded in this carrier STL file, which is sufficient for the
selected example.

The console output of the encoding process is presented in Fig-
ure 9c. With the above mentioned carrier file and payload, the
overall duration of encoding was 9 sec and of decoding 5 sec. To
verify the lossless extraction of the data, we calculated and printed
out on the console the MD5 cryptographic hash sum of the en-
coded secret. We further calculated the checksum over the secret
extracted from the used carrier STL file. The MD5 value for the
decoded secret was exactly the same. This indicates that the hidden
binary file can be retrieved without loss.

We verified the ability of the proposed approach to avoid de-
tection by loading models in two different slicers (Cura and Cat-
alystEx), and 3D printing both the original design and the carrier
file with encoded secret on two different 3D printers Lulzbot Taz
6 and Stratasys Dimension Elite 5. Neither showed indicators of
manipulation from the embedded payload. Screenshots and photos
for side-by-side comparison are in Appendix A.2.

7 DISCUSSION
7.1 Steganography with Engineering Designs
There is a large body of literature covering both theoretical and
practical steganography (see Section 3.2 for a brief outline). This
raises the question of novelty, considering the existence of stegano-
graphic techniques for other document formats. A major difference
is that, while the file formats traditionally used in steganography
are “end-user facing” digital audio, video, image, or text documents,
the proposed approach manipulates an engineering design file.

In any approach, the steganographically encoded information
should not interfere with the ability of programs to correctly process
it. With data formats for audio, video, and textual information, this
corresponds to the ability to represent it to an end-user. In the case
considered in this paper, modifications introduced in the digital
design file should not interfere with the ability to 3D print the
object. In Section 6 we demonstrated that encoding data in an STL
using the proposed approach does not interfere with 3D printing.

5Equipment and software identified in this paper do not imply recommendation or
endorsement by the authors or their organisations.
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Figure 10: Extended Taxonomy of AM Security Threat Cate-
gories – Introduced in this Paper Use of 3D Printing Design
Files for Data In- and Exfiltration is New (based on [24, 66])

To evade suspicion, the distortions introduced in user-facing
data formats should be imperceptible to a human. In the case of en-
gineering design files, it is more complicated. Geometric distortions
introduced in manufactured parts could interfere with their integra-
tion in a designated system. Furthermore, distortions introduced
in the 3D printing process could degrade the part’s mechanical
characteristics, and cause its premature failure (like in the case
of deliberate sabotage attacks outlined in Section 3.2). All these
“side effects” would likely trigger an investigation and lead to the
discovery of the channel.

7.2 Implications for the AM Security Field
The presented attack has profound implications for the AM Secu-
rity field as a whole. As discussed in Section 3.2, up until now only
three security threat categories have been identified and discussed
(theft of technical data, sabotage attacks, and illegal part manu-
facturing) [66], with the theft of technical data being a common
prerequisite for illegal part manufacturing and targeted sabotage
attacks [24]. The presented work extends the threat categories with
yet another, Data In-/Exfiltration (see Figure 10).

As mentioned throughout this paper, the introduced stegano-
graphic communication channel can be used in a variety of attacks
(see specifically Section 2). Among others, this channel can be used
for malicious actions like the exfiltration of stolen information,
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infiltration of malicious software, or hidden storage of content the
possesion of which is illegal.

In the AM Security context, the attacks introduced in this paper
can be used as an additional communication channel through which
the stolen AM technical data can be exfiltrated. Therefore, it can
also act as an additional precursor for two other threat categories.

Considering that the works on the 3D printed object water-
marking via modifications of the 3D object geometry (discussed in
Section 3.2) can be re-purposed as a hidden communication channel,
we propose two sub-categories for the new security threat: Encoded
in Design File and Encoded in 3D Printed Object.

7.3 Three Contexts of Distinguishability
Throughout Sections 4 and 5, we introduced and discussed three
distinct contexts of distinguishability. We think that this is impor-
tant to reiterate these in a condensed manner, because each and any
of these can determine a defender’s ability to detect the subliminal
steganographic channel and even extract the encoded message for
further analysis. Such detection is critical for follow-on security
procedures, such as attribution of the communication to IP/e-mail
addresses and thus attribution of the malicious actors.

First, in the case of the weak attack (defined in Sections 4), the
question is whether it is possible to distinguish between parts of the
carrier STL file that are steganographically encoded with the sub-
liminal message and those that are not. This distinction would allow
extraction and analysis of the embedded message. This depends
on the behavior of the CAD program using the modified STL file.
Should the order in which vertices are specified be fully random, the
weak attack could be distinguishable because the encoded content
is not distributed pseudo-randomly. Should a CAD program exhibit
deterministic behavior here instead, both the altered distribution of
a weak attack and the pseudo-random distribution of the encrypted
file in a regular attack could stand out when the encoded file does
not exhaust the encoding capacity of the carrier STL.

In the strong attack (described in Section 5) we addressed the
concern of distinguishability within a carrier file by encoding every
single bit with either the secret message or a random pad. This
ensures that the distribution of vertex order within STL files with an
encoded message is always pseudo-random. However, we identified
a second distinguishability context – between STL files that contain
a fully-encrypted steganographically encoded message and those
that don’t. To address this, we proposed to encode a random bit
stream even when no real message is embedded in the STL.

This led us to the third context of distinguishability – between
system(s) on the corporate network that are compromised and
encode messages (either real or random) in all STL files and those
that are benign. Currently, we see no way an attacker can address
this kind of distinguishability. Therefore, this might be used by a
defender to identify systems that are compromised.

We should note that the distinguisheability has to be addressed
for all alternative encoding approaches described in Appendix A.1.

7.4 Robustness Against STL File Sanitation
Countermeasures to the proposed attack can fall into different cate-
gories, similar to ransomware countermeasures [5, 38]. In addition
to the question of detection (based on the distinguishability), there

is the question of prevention. Specifically, how robust is the pro-
posed steganographic communication channel against disruption
efforts that are limited by the same constraint – avoiding impacts
on the 3D design? Such efforts are especially relevant in environ-
ments where exfiltration of highly sensitive information might be a
security concern, and can be applied in addition to attack detection.

With the proposed bit encoding scheme, the “sanitization” of STL
files is fairly simple and straightforward. Defenders can overwrite
all facets in the file with either the same value (0 or 1) or with a
completely random value. As mentioned before, due to the semantic
equivalency of the vertex cyclical rotation, it should not affect
the described 3D object geometry. However, while theoretically
sound, this assumption needs to be verified empirically; we plan to
conduct such an investigation in a follow-up work. Consequently,
the proposed approach is fragile, and can be easily disrupted by the
described sanitation approach.

We should note, however, that alternative encoding techniques
are possible (see Appendix A.1). Similar to distinguishability, each
of these encoding techniques would require a different sanitation
approach. Any technique meeting the same criteria as our selected
encoding, non-interference with printed geometry, would exhibit
the same level of fragility against sanitation.

Alternatively, incoming and outgoing STL files can be read into
a CAD program and re-saved, assuming that this step will remove
all possible steganographically encoded information, regardless of
the encoding primitives used. However, if such a CAD program is
trojanized, it can be used by a malicious actor for the encoding of
secret information instead of removing it.

8 CONCLUSION
In this paper we demonstrated that even engineering design files
can be used as steganographic channels. While the ability to encode
information is not surprising, the restrictions on such files are sig-
nificantly tighter than in the case of user-facing audio, video, and
text data formats. In the case of Additive Manufacturing (AM), en-
coding at a minimum should not disrupt the ability to manufacture
the part; furthermore, in the case of functional parts, even slight
distortions can be unacceptable.

We focus on the most popular digital design format in 3D print-
ing, STL. We identified several sources of entropy that can be used
to encode individual bits of information. Upon choosing one—the
order in which vertices are listed—we showed how a raw stegano-
graphic channel can be defined. We further introduced a strong at-
tack, an approach that illustrates how the proposed steganographic
channel can be fully encrypted. To demonstrate a legally question-
able application, we encoded and later recovered several design
files for the Liberator printed pistol. We used this example to verify
that the proposed approach does not interfere with printability nor
does it introduce any visually noticeable distortions.

In the future, we plan to develop an automatic distinguisher for
the sources of entropy we identified. We intend to use it to study the
actual distribution of STL files produced by various CAD programs,
and to explore all three contexts of distinguishability we identified
for STL. We further believe that the steganographic channel could
be used to integrate watermarks in STL files, thus protecting IP in
Additive Manufacturing.
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A APPENDICES
A.1 Alternative Bit Encoding Primitives
In addition to bit encoding via vertex order in a facet, the STL file
format allows several alternatives that we identified and discarded
for this particular work. Below we outline those alternatives and
provide reasons why we deemed these deficient for the purpose of
data exfiltration. Please note that for other application scenarios,
such as watermarking, these might be more valuable.

First, specifically for ASCII STL files, delimiters (space and tab-
ulator characters) as well as comment characters can be used to
encode information. For example, at the end of every line that does
not contain a comment, a single space added can represent encoded
bit value 0 and two spaces can represent encoded bit value 1, and
any other number of spaces would indicate that this line contain no
valid encoded bit and can be skipped. This is a very simple encoding
scheme that would result in an encoding capacity of up to 7 bits
per facet (corresponding to opening tags facet normal and outer
loop, three vertex entries, and closing tags endloop and endfacet
(see Figure 1); this encoding capacity can be further expanded if
delimiters within the particular lines are used as well. The biggest
drawback of this encoding scheme is that it can be immediately
detected by a simple statistical analysis of the file. Its sanitation
would also be simple by the replacement of any number of spaces
by a single space.

All coordinate values in the description are float pointers and can
be specified using an exponent. This can provide a way to encode
one or more bits at once per value. For example, if 0 is the first
or only character specified before decimal point, it can represent
encoded bit value 0, and if the first number before the decimal point
is non-zero - value 1. The impact of this bit encoding technique on
the 3D printed object is not clear, because it can depend on how the
3D printing software imports and processes the values. This could
cause slight but eventually impactful deviations due to numerical
errors. The biggest drawback of this encoding technique is that
the presence of the encoded bit stream can be easily spotted. The
sanitation is also simple, but its potential impact on the 3D printed
part has to be investigated.

Another alternative for the bit encoding primitive is “flipping”
the facet’s normal. For example, the normal direction following the
right hand rule could represent encoded bit value 0, and if it violates
the rule - bit value 1. As the description indicates, it will violate the
right hand rule and eventually impact the 3D printed object (even
though some AM software simply ignores the specified normal
value and re-calculates it from the vertices defining the facet). For
data exfiltration, it will also provide an easily detectable encoding
approach. Sanitation would require re-calculating and updating
each normal value.

Something similar can be achieved by reversing the direction in
which the vertices are listed. The only advantage of this approach
is that it will increase the encoding capacity, because, in addition
to selectively violating the right hand rule, the bit encoding can be
structured similarly to the approach selected for this paper. The
drawbacks are similar to flipping the normal vector direction - there
is a potential impact on the 3D printed object and the approach is
easily detected. The sanitation as well can be done by re-calculating
normal value; this, however, might also have an impact on the 3D
printed object.

The last encoding alternative that we identified is the represen-
tation of bits of information through the order in which individual
facets are listed. Assuming that no two facets in a STL file have
exactly the same coordinates of all three vertices, facets can be
distinguished from each other, and as such their position in STL
file can represent the encoded value. A simple encoding scheme
based on this observation would be to leave two consecutive facets
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(a) Original Carrier STL File (Unmodified), loaded
in Cura

(b) Carrier STL File with Embedded Payload,
loaded in Cura

(c) 3D-Printed Model using Original Design File,
front view

(d) 3D-Printed Model using Modified Design File
(with encoded information), front view

Figure 11: Side-by-Side Comparison using Cura Slicer and Lulzbot Taz 6 3D Printer

in their original order to represent bit value 0 and swap them to
represent bit value 1. Whether or not this approach will cause slight
deviations of 3D geometry rooted in numerical errors need to be
investigated; this is a task that is outside of this paper’s scope. The
potential advantage of this encoding technique is that a bit stream
encoded with it might be harder to detect in the STLM file if the
original STL file is not available to the analyst. However, this is
also the biggest drawback of this technique – in order to decode a
bit stream, a recipient needs to have access to the “original” STL
file. Sanitation can be achieved by randomly swapping consecu-
tive facets; like with the encoding itself, the implications of this
approach on the 3D printed object are not clear.

A.2 Verification of 3D-Printability
We verified the ability of the proposed approach to avoid detection
by loading models in two different slicers (Cura and CatalystEx),
and 3D printing both the original design and the carrier file with
encoded secret on two different 3D printers, the Lulzbot Taz 6 and
the Stratasys Dimension Elite.

Figure 11 shows a side-by-side comparison of the STL files loaded
in Cura and then 3D-printed on the Lulzbot Taz 6. Figure 12 shows
a side-by-side comparison of the STL files loaded in CatalystEx and
then 3D-printed on the Stratasys Dimension Elite.

Neither side-by-side comparison of the sliced digital models nor
of the 3D printed objects show indicators of manipulation from
the embedded payload. Therefore, if the detection of the presented
attack depends solely on the ability to 3D print a correct model, it
will fail.
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(a) Original Carrier STL File (Unmodified), loaded
in CatalystEx

(b) Carrier STL File with Embedded Payload,
loaded in CatalystEx

(c) 3D-Printed Model using Original Design File,
front view

(d) 3D-Printed Model using Modified Design File
(with encoded information), front view

(e) 3D-Printed Model using Original Design File,
rear view

(f) 3D-Printed Model using Modified Design File
(with encoded information), rear view

Figure 12: Side-by-Side Comparison using CatalystEx Slicer and Stratasys Dimension Elite 3D Printer
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