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Abstract—Cloud storage systems facilitate a platform to store
and manage cyberspace data for a wide range of applications.
In cloud storage connected to the Internet, a large amount
of data is uploaded and accessed by numerous users. Thus,
security and privacy of data is of utmost importance to end
users regardless of the nature of the data being stored in clouds.
After outlining the development of cutting-edge of cloud storage
systems, we elaborate data security issues in cloud storage.
We pay particular attention to malware detection techniques
customized for cloud storage. The overarching goal of our
solution is to guarantee that data are malware free in cloud
storage prior to being accessed by end users. Inspired by the
architecture of cloud storage, we propose a popularity-aware
malware detection strategy to enhance the security of cloud
storage systems by protecting high-risk data. Data risk is gauged
through popularity, because popular data deserve high priority
when it comes to access frequencies. Our proposed technique
speculates data popularity, which is an avenue to prioritize data
objects amid time-consuming malware detection procedures. Our
technique is conducive to keeping malware at bay when popular
data are frequently accessed by clients.

Index Terms—cloud, popularity awareness, machine learning,
malware detection, data security, data process scheduling

I. INTRODUCTION

Security concerns pose a major challenge as cyber criminals
compromise individual machines and network infrastructures
to tamper with confidential data for financial gain or to launch
denial-of-service attacks. More often than not, attackers take
full advantage of malicious software or malware to impose
serious threats and vulnerability of computing and network
systems [1]. Malware detection systems are becoming an
integral part of cloud and big-data storage systems.

With the advancement of cloud computing technologies,
it is not hard to imagine that in the not-too-distant future a
growing number of business applications will be moved into
clouds. Fig. 1 shows a cloud computing architecture where
there are four layers of diversified services. Malware may
be designed to spread directly in clouds via various means.
One key factor stimulating the spread of malware is the large
number of accesses and downloads from users.

One demanding requirement of malware detection systems
is to deliver superb performance amid the diagnosis of big
data. After a thorough investigation of the well-known mal-
ware techniques, we observe that a many techniques are op-
timized by deploying machine learning algorithms in various

Fig. 1: Four lays of services in cloud computing environments.

fashions. We begin this paper by illustrating features of cloud
computing, emerging techniques in cloud storage, and security
issues in clouds. After that, we survey a diversity of malware
detection techniques and algorithms. In particular, we examine
the data processing and scheduling issues in cloud-oriented
malware detection.

Existing malware detection techniques customized for cloud
data storage systems are focused on either boosting high
detection accuracy or lowering I/O cost. Based on the records
from Indexing Service, intruders are interested in attacking
popular data rather than non-popular ones; that is, unpopular
data have semantic security but there is weaker security for
popular data [2]. Therefore, popular data that are accessed
frequently exhibit a higher risk than less popular counterparts.
We speculate that launching malware detection techniques on
high-risk data followed by low-risk one is an effective way
keep cyber intrusions at bay in the realm of online services.
Because popular data have much higher access frequency than
those of non-popular data, it is urgent to detect malware among
hot data prior to cold data that are less likely to be retrieved.
We argue that popular data entail high risks, because storage
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systems must repeatedly identify malware in hot data that are
frequently accessed and manipulated by users.

An effective way to prevent the infection of popular data
affecting numerous users is to predict data popularity from
user preferences in each time slot. With the assistance of such
a popularity predictor, the malware detector ensures that data
are malware free before retrievals. In this study, we propose
a popularity-aware malware detection scheduler to boost the
security of online cloud computing systems by deploying a
collaborative filtering algorithm.

Recommendation systems offer a prediction list to active
users. In this study, we propose deployment of a recommenda-
tion algorithm to schedule malware detection sequence. Since
active users keep changing all the time, depending on the
preference of active users, the data popularity is not stable. The
recommendation algorithm dynamically calculates data popu-
larity for cloud storage through active users’ access history.
In this case, the malware detection scheduler distinguishes
popular data and unpopular data based on the real access
possibility of active users.

To speed up malware detection in cloud storage, we devise
a popularity-aware malware detection system that seamlessly
integrates two distinct modules - a popularity predictor and
a malware detector. The first module makes data popularity
prediction possible by adopting the user-based collaborative
filtering algorithm or UBCF [3][4]. The second module is in
charge of detecting malware in data objects on the basis of
future popularity. Hot data that are likely to be frequently ac-
cessed receive a high priority to go through malware screening.
With the assistance of the popularity predictor, the malware
detector ensures that data are malware free before being
retrieved.

Two reasons motivate us to make popular data high priority
during the course of malware detection. First, popular data
are accessed by a large number of users. When a popular data
object is approved to be malware-free, all requests accessing
the data are protected from malware. Any malware-free data
that are popular can immediately benefit a large group of users.
Second, popular data are likely to be accessed in the not-too-
distant future, making it urgent to identify malware from the
popular data. If malware detection is not carried out on popular
data in a timely manner, the data may pose potential security
threats to users. Our proposed malware detection scheduler
ensures that popular data pass through a thorough malware
detection earlier than unpopular ones.

The overarching goal of our scheduler is to optimize a
malware detection sequence of data objects by deploying a
machine-learning-enabled recommendation algorithm to prior-
itize high-risk data in cloud storage systems. More specifically,
a UBCF-based management module periodically sorts data
objects according to popularity. The schedule works in full
capacity to dynamically set up the priorities of data objects
with respect to popularity measures.

The rest of this paper is organized as follows. Section II
provides an overview of cloud storage systems. In Section III,
we articulate various malware detection, data processing, and
scheduling techniques in cloud storage. Section IV outlines
our proposed popularity-aware malware detection scheduler.

We conclude this paper in Section V.

II. CLOUD STORAGE SYSTEMS

A. Features of Cloud Computing

Clouds furnish highly scalable computing platforms by the
virtue of virtualized resources shared among users. In general,
a cloud computing architecture is divided into two layers,
namely, a bottom resource layer and an upper service layer.
The bottom resource layer, an underpinning for computing
clouds, is fueled by virtualized resources in the form of
storage and computing components. The upper service layer
is intended to offer a diversity of specific services. Fig. 2
illustrates the basic architecture of cloud computing systems.

Fig. 2: A cloud computing architecture. The bottom layer
is fueled by virtualized storage and computing resources,
whereas the upper service layer offers a diversity of services.

Cloud computing judiciously combines data-sharing models
and service statistical models. From a technical point of view,
cloud computing can be categorized into the following three
models [5].
• Software as a Service (SaaS) facilitates software services

on the cloud, where a single occurrence of a software
application can be used by multiple users or organizations
over the cloud.

• Platform as a Service (PaaS) provides a cloud-based
computing environment to scaffold the development of a
variety of services. A PaaS sometimes embraces a rich set
of libraries and Application programming interface (API),
from which applications and services can be readily built.

• Infrastructure as a Service (IaaS) is comprised of es-
sential computing and storage services over network
infrastructures. Sample network infrastructures provided
in IaaS include, but are not limited to, physical computing
resources, location, security, scaling, data partitioning,
and backup.

Regardless of the aforementioned three models, cloud ser-
vices share the following distinctive characteristics [5].
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• On Demand Self-service. Services enable provisioning
of cloud resources to vendors on demand or whenever
the resources like network storage are required without
human interaction.

• Broad Network Access. Cloud computing capabilities are
offered through network infrastructures, which are con-
nected by heterogeneous client platforms such as laptops,
tablets, and smart phones.

• Resource Pooling. Resources of cloud providers are
pooled over computing servers. Consumers are assigned
various resources - physical or virtual ones - without be-
ing aware of detailed locations of the assigned resources
except at an abstract level (e.g., state, city, country or data
center).

• Rapid Elasticity. Services are elastically provisioned in
an automatic fashion, thereby rapidly scaling outward
and inward in accordance with dynamically changing de-
mand. Cloud computing capabilities, from the perspective
of users, appear to be unlimited at any time period.

• Measured Services. Computing clouds dynamically man-
age and optimize resources by proactively monitoring and
reporting usages, which are transparent to users utilizing
the services.

B. Emerging Techniques in Cloud Storage

From the access-scope perspectives, cloud computing sys-
tems are categorized into three families, namely, public clouds,
private clouds, and hybrid clouds. Public clouds perform as
service providers to the general public; private clouds are
referred to as the computing property owned by a company;
hybrid clouds can be envisioned as a blend of public and
private clouds. Most of the existing cloud services are provided
by top-notch companies such as Google, Amazon, and IBM.
In a private cloud, only authorized users can access computing
services from the provider. In a pubic cloud, on the other hand,
anybody is enabled to make use of cloud services. The hybrid
cloud contains the mixed concept of both public and private
clouds.

Cloud storage systems mainly offer data storage as a service
to users through a unified interface. Users can easily store,
retrieve, and manipulate data in a large-scale cloud storage
infrastructure. Moreover, the storage service can be subscribed
at any time on a pay as you go basis; the service is released
freely when it is no longer needed. A wide range of storage
services are governed by service-level agreements or SLAs
configured between users and service providers.

A variety of emerging techniques have been advanced in
the realm of cloud storage services. For example, Tawalbeh et
al. proposed the master-cloudlet-based cloud computing model
for mobile users [6]. Huo et al. developed the layered view for
a cloud storage architecture, which delivers high parallel I/O
performance [7]. ACDAS [8] investigated a data access model
for cloud data storage systems, where the model achieves the
security goals along with the practical efficiency of storage,
computation, and communication compared with the other
related schemes. Xu et al. devised a scalable data storage
and sharing system for the Internet of Things (IoT) cloud, in

which a ciphertext-policy attribute-based encryption scheme is
implemented and deployed [9].

C. Security Issues in Cloud Storage

Security concerns should be rectified to make a cloud
environment trustworthy for individual and enterprise users.
A trustworthy environment becomes the vital prerequisite
to win confidence of users to adopt the cutting-edge cloud
storage technology. Cloud providers are aiming to boost
system resource utilization while cutting down operational
cost. On the flip side, consumers have a desire to operate
resources as far as needed while being able to expand or shrink
resources consumption based on dynamic demands. The cloud
computing model fulfills user requirements by delivering two
key characteristics - multitenancy and elasticity. Multitenancy
refers to the concept of sharing computational and storage
resources as well as services and applications among a group
of tenants. Elasticity implies the capability of scaling up or
down resources on the fly to meet dynamically changing
demands. Scaling up and down of resources for a tenant
offers ample opportunities to the other tenants to utilize pre-
viously assigned resources [10]. Confidentiality issues should
be addressed from the perspectives of both multitenancy and
elasticity. Traditional approaches to solving such a problem
largely rely on the theories of isolation [11] and location
transparency [12].

In what follows, we point out an array of challenges to be
examined in the development of cloud storage.
• The number of users changes dynamically in cloud

storage. By the same token, services requested by users
drastically change over time. Such a dynamic nature of
user behaviors makes it extremely difficult if not futile to
carry out user classifications [13].

• New service delivery models of cloud computing suggest
that cloud services and resources may be jointly owned
and handled by multiple providers. Due to various secu-
rity policies implemented by multiple parties, deploying
unified security measures becomes a nontrivial task [14].

• Protection for user data. This issue includes location of
user data stored, the way of data storage, data recovery,
data encryption and data integrity protection [15].

Cloud service providers have to proactively keep track of
data health. To prevent data from being corrupted by malicious
code, continuously monitoring and protecting data become
necessities. Such a safeguard can guarantee continuous data
availability to users in the event of any faulty storage nodes due
to accidents and natural calamity [16]. Moreover, user-cloud
interactive is a noteworthy factor affecting the overall security
of clouds. To address the above challenges, we propose in
Section IV an approach to boosting the malware-detection
efficiency in cloud storage systems.

III. DETECTING MALWARE IN CLOUD STORAGE

Machine learning techniques are widely adopted in the
malware detection field [17]. We start this section with a brief
introduction on leading-edge malware detection techniques fu-
eled by machine learning algorithms (see Section III-A). Then,
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we elaborate a handful of advanced data processing techniques
applied in cloud computing systems in Section III-B.

A. Machine-Learning-Based Malware Detection in Clouds

Malware detection techniques generally fall into two
camps, namely, static analysis [18] and dynamic analysis
approaches [19]. In what follows, we articulate malware
detection solutions from these two angles - static and dy-
namic malware detection. Fig. 3 summarizes the high-level
procedures of static and dynamic malware detection schemes.

Fig. 3: The high-level procedures of static and dynamic
malware detection schemes.

Static Analysis Approaches. Amid a static analysis of mal-
ware detection, no execution of executable programs takes
place. The goal of static-analysis-based approaches is to finish
up malware detection tasks in a swift manner without being
interrupted and slowed down by third-party programs. Such
malware detection solutions entail the process of analyzing
executable files by examining the code without executing
them. A static analysis procedure is comprised of two steps.
First, an executable file is disassembled or reverse engineering
disassembled to retrieve the code. Next, detection of malware
is carried out by scanning the executable code derived from the
previous step. Smart malware may evade static-analysis-based
methods by embedding syntactic code errors that mislead
disassembly while performing functions during executions.
Alternatively, an analysis can be accomplished by looking
through executable binary files followed by applying machine-
learning-based detectors to diagnose malicious software [20].

Deep learning models have been introduced into malware
detection systems [20][21][22], where malware files are di-
agnosed without being executed. When it comes to online
malware detection, most static analysis schemes found in the
literature cope with single samples without addressing the
mislabeling problem or time windows of identifying malicious
patterns. [23]

Dynamic Analysis Approaches. Unlike static analysis coun-
terparts, dynamic analysis approaches are normally deployed
in an isolated environment such as sandboxes or virtual
machines (VM). In such detection schemes, information is
gathered during executions like system calls, memory ac-
cesses, and network communications. The family of dynamic
analysis solutions is applicable for malware-file classification
in addition to online malware detection. It is noteworthy

that online malware detection is closely related to intrusion
detection systems [24].

Dahl et al. proposed a dynamic analysis solution to collect
features from malware code that runs in a lightweight virtual
machine [25]. Unfortunately, this approach is inadequate for
online malware detection. Abdelsalam et al. devised an online
malware detection system in clouds. This online detection
system makes use of convolutional neural network (CNN)
to maintain an optimal number of running virtual machines
according to dynamic workload. More specifically, the number
of virtual machines is dynamically scaled up or down based
on load incurred malware detection. The online detection
system is quite practical, because the system detects malicious
behaviors while the other applications keep running on clouds.
In a nutshell, machine-learning algorithms such neural network
techniques are widely and judiciously employed to detect
malware in clouds [26][17].

More often than not, hackers embark on large-scale dis-
tributed denial of service attacks or DDoS through malware
code, phishing, and email spamming [27]. Many prior studies
(see, for example, [9]) have addressed cloud security issues
from various aspects such as networks, hypervisors, virtual
machines, and operating systems, to name just a few. These
cutting-edge security solutions are derived from rule-based in-
trusion detection systems accompanied by statistical anomaly
detection models.

B. Data Processing and Scheduling

Existing malware detection techniques are mainly focused
on accuracy, I/O resources, and online/offline strategies. Due
to exploiting vulnerabilities in web browsers, however, a drive-
by download is likely to fetch malicious codes from the
Internet followed by executing the codes on victims’ local
machines [28]. Evidence clearly indicates that approximately
70-80% of malware codes in software originate from data
downloading processes in popular websites [29].

Thanks to online services, cloud computing systems are
widely used to support a variety of application domains.
Active users may access cloud-based applications at any time
from anywhere through the Internet. There is a dire demand
to embark on time-consuming malware detection procedures
while users are accessing data from the clouds. There are two
concurrent research paths toward tackling this challenge.

• First, resources must be fittingly partitioned and allocated
among users, systems, and malware-detection services.
Making a good tradeoff is the fundamental key in re-
source management for future malware detection systems
in clouds. On the one hand, if the majority of resources
are dedicated to malware detection, user experience will
be dragged down. On the other hand, if we favor user re-
sponse time by limiting resources for malware detection,
data are likely to be accessed without malware diagnosis.

• Second, it is difficult, if not futile, to scan a massive
amount of data to detect malware in big data arenas.
This issue can be addressed by either detecting subsets
of the big data or lowering the detection frequency. Data
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selection algorithms should be developed to pick security-
sensitive data from non-sensitive ones. A malware detec-
tion system ought to guarantee that high-risk data are
diagnosed before being accessed by users. Frequency
selection algorithms should be in charge of determining
the most appropriate interval between two consecutive
detection instances.

• Third, after security-sensitive data are elected for the
malware detection procedure, high-risk data deserve to
be handled in a swift manner. Given limited comput-
ing resources assigned to malware detection services, a
scheduler has to be devised so that high-risk data will be
processed before imposing any threat to users.

Data processing and scheduling are among the dominant
methods to optimize the efficiency of malware detection
systems deployed in a wide range of online cloud services. In
what follows, we shed bright light on novel data processing
and scheduling techniques aiming to improve system execution
efficiency.

In the past few years, data-driven methods have been
gaining popularity in detecting unknown attack patterns while
keeping a low false alert level [30]. Among the data-driven
approaches, a practical algorithm family is clustering and
classifying outliers [31], which is adroit at addressing the
weaknesses of knowledge-base intrusion and anomaly de-
tection techniques. Supervised learning methods significantly
outperform the unsupervised ones if the test data contain no
unknown attacks.

Many data processing techniques boost system performance
from multiple perspectives. For example, Mao et al. pro-
posed Decima to optimize data processing clusters through
reinforcement learning and neural network algorithms [32].
Recognizing that data preprocessing plays a vital role in
anomaly detection, Davis and Clark investigated the data
preprocessing techniques designed for anomaly-based network
intrusion detection systems [33]. The findings show that data
preprocessing predominantly depends on domain knowledge
of experts to identify relevant parts of network traffic and
to build candidate traffic features. Automation is kicked in
to extract features for the purpose of data dimensionality
reduction as well as feature selection.

When it comes to advanced scheduling techniques, Li
et al. devised a predictive algorithm to assign threads to
machines under the guidance of prediction results [34]. The
novel scheduling algorithm pushes the distributed stream-data
processing to the next high level by virtue of a topology-aware
model facilitating performance prediction. Very recently, we
have developed the POST system to schedule data recon-
struction sequences in distributed storage systems, thereby
substantially reducing average waiting time of I/O requests
issued by active users [35].

Inspired by the above newly developed algorithms and
techniques, we envision that scheduling mechanisms will be
an immaculate game changer in enhancing the efficiency of
modern malware detection systems. In the next section, we
propose a research road map leading to popularity-aware mal-
ware detection, at the heart of which schedulers are positioned
to speed up the detection process.

IV. POPULARITY-AWARE MALWARE DETECTION
TECHNIQUES

In Section IV-A, we start the research road map by pre-
senting a basic idea for the development of popularity-aware
malware detection techniques. We depict a system architecture
for schedulers supporting popularity-aware malware detection
in cloud computing platforms in Section IV-B. Then, we
elaborate the concepts and main steps in Section IV-C. Finally,
in Section IV-D we outline the scheduling algorithms that
optimize the performance of malware detection systems.

A. Basic Idea

It is arguably true that cloud computing platforms can be
jointly optimized by incorporating multiple dimensions like
connection efficiency, access security, data placement, and
scheduling. In this study, we pay heed to security issues
centered around cloud storage systems. The evidence from
the prior studies (see, for example, [36] and [37]) shows that
they cannot unify the service because of the untrusted remote
machines. In addition, any security solution customized for
cloud storage is required to impose a negligible performance
overhead. In our pilot study, we aim to demonstrate that
scheduling techniques are capable of enhancing the perfor-
mance of malware detection deployed in modern cloud stor-
age.

The basic idea of our solution is to schedule a sequence
of data objects in which malware are detected. Scheduling
decisions should be made in a way that high-risk data are
scanned by a malware detector in an early phase followed by
low-risk data. When we set the high risk data object prior to
low risk data on malware detection sequence, data security
will be improved because the high-risk data experience a high
intrusion possibility to systems and a high infection possibility
to users.

One of the vital factors affecting the probability of success-
ful intrusions is the number of access points [38]. As such, we
advocate for gauging the risk of data objects using popularity
measures. Compared with non-popular data, popular data ob-
jects have a high access frequency from active users. Popular
data are treated as high-risk data because of the following two
reasons.
• First, malware infection in popular data becomes a serious

threat for enormous number of users. Each popular data
object is retrieved by a large group of users, who will be
victimized the malware codes.

• Second, there is a strong likelihood for popular data to be
frequently accessed in a short time period. The malware
detection system ought to ensure that the popular data are
malware-free before being accessed by users.

For the above reasons, scheduling a detection sequence
among data objects according to access popularity improves
the data security of cloud storage systems by detecting mal-
ware of high-risk data in the first place.

B. System Architecture

Fig. 4 depicts the system architecture of our proposed mal-
ware detection scheduling system, where a malware detection
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manager collaborates with a scheduler in clouds. The entire
system is responsible for scheduling a detection list in which
data objects are scanned for malware before being actively
accessed by users. During the online malware detection proce-
dure, the scheduler makes judicious decisions on a detection
order, in which popular data are assigned high priorities to
mitigate malware threats.

Fig. 4: The architecture of a malware detection scheduler
running in clouds. Popular data objects receive a high priority
to be scanned earlier than unpopular data objects.

In cloud computing environments, data are distributed
across multiple storage nodes in data centers. Unsurprisingly, it
is straightforward to incorporate prevalent malware detection
techniques into cloud computing systems. For example, the
leading-edge malware detection systems reported in [19] and
[39] can be applied to fight malware in cloud storage services.

The overarching goal of the system is to optimize malware-
detection performance by alleviating malware risks. To achieve
this design goal, a management module is engaged to gauge
data popularity measures, which are maintained as key com-
ponents in metadata. Popular data objects are likely to be
accessed by a growing number of users within in a short time
period. It is arguably true that the scheduler in this architecture
is adroit at governing the malware detection procedure, where
detection priorities are configured in accordance to monitored
data popularities. With the scheduler in place, popular data
objects are handled by the detection module earlier than
unpopular counterparts. Such scheduling decisions play a vital
role in speeding up malware detection performance, because
the time spent in identifying malware can be conserved by
postponing the detection of unpopular data that impose low
risks in clouds.

C. Concepts and Main Steps

To assess the popularity of data objects, we adopt a
recommendation scheme in the malware-detection schedul-
ing module. The recommendation scheme predicts a list of
recommended data objects for each user who is actively
accessing data from cloud storage. The malware-detection
manager merges individual recommendation lists of multiple
users into a single scheduling list for the malware detector in
our system. Specifically, the manager carries out the four steps
to consolidate multiple recommendation lists into a detection
list, where the most popular data are scanned by the malware
detector in an early stage. The data structure of detection lists

is an array of object-weight pairs, which is defined below.
Given object oi and its weight wx,i with respect to user ux,
we express object-weight pair φx,i as:

φx,i =< oi, wx,i > . (1)

Table I summarizes a list of recommendation algorithms that
can be plugged into the malware-detection scheduler. The pop-
ularity of data objects can be assessed by one of the following
recommendation algorithms in Table I. Each recommendation
algorithm has its unique advantages, depending on workload
conditions such as number of active users, number of data
objects, and the performance of cloud storage. As a case study,
we import user based collaborative filtering as an underpinning
technique to implement the popularity-aware scheduler.

Let us introduce the fundamental concepts of key, key-value
pairs, weight, and blocks before diving into the description of
the following four steps. We define data objects’ identifiers
(IDs) as keys, meaning that any data object can be readily
referenced through its key. A data object is organized in the
data structure of a key-value pair, where value is the content
of the data object. We refer to the access frequency of a
data object as a weight - an importance feature to capture
the popularity of the data object. In a cloud storage system,
data objects are basic storage units, which form large chunks
called blocks. In other words, a data block is comprised of a
group of data objects; all the data blocks share a fixed size. It
is noteworthy that the block size can be configured by in the
cloud storage, in which the default block size of our system
is 64 MB.
• To retrieve data objects and the corresponding weights in

a single user recommendation list to calculate the number
of occurrences and weight for each key.

• Data blocks and data objects entail a two-layer data
organization, where each data object belongs to a parent
data block. The second step is to map the data objects’
keys to their data blocks in the cloud storage.

• To calculate the summation of weights of each data block
so that a detection list is constructed to embrace to-be-
scanned data blocks accompanied by the corresponding
weights. The weight of each data block indicates the
block’s popularity, which measures the future access
frequency of the block.

• To schedule the items in the detection list according to
the decreasing values of weights associated to the data
blocks. In this step, data blocks with high weights are
treated as popular data that are likely to be accessed by
a large group of users in the not-too-distant future.

D. Algorithms

Algorithm 1 depicts the procedure of a popularity-based
malware detection system in cloud storage, in which the above
four steps (see Section IV-C) are carried out to schedule
a detection list by merging all the recommendation lists
predicted for active users in clouds.

The input information of Algorithm 1 includes user I/O
access history and ratings as well as a set of data blocks
in a cloud storage, which is formally defined as B =
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recommendation type basic idea advantages common algorithms

Content-based recommendation [40] recommend an item to a user based on a description
of the item and a profile of the user’s interests small number of structured attributes, simplicity, understandability decision tree

Collaborative Filtering Recommendation [3] [41] use the existing user’s past behavior or comments to provide
the product which conforms with the current user’s requirements good performance on large number of user and items user based collaborative filtering

item based collaborative filtering

Knowledge-based Recommendation [42] [43] Systems that rely on knowledge sources
of user requirements and domain knowledge

rely on knowledge sources that were not being
employed by the more widely-used techniques

case-based recommendation
constraint-based recommendation

Hybrid recommendation [44] a combination of recommendation components or logic high accuracy, easy to implement Feature combination, weighted, switching

TABLE I: A list of candidate recommendation algorithms are readily plugged into the popularity-aware malware detection
scheduler.

{b1, b2, ..., bn}. Here, we assume the total number of blocks
managed in the cloud storage is n.

The output of Algorithm 1 is a scheduled detection list
detList, which contains an array of block-weight pairs. Ide-
ally, the length of scheduled list detList is identical to the
size of set B. Thus, we have

detList.size() = |B| = n. (2)

If system administrators opt for cutting back the overhead
spent in diagnosing a large number of blocks, a subset of set B
will be elected to originate scheduled list detList. Intuitively,
increasing the length of list detList can substantially raise the
overhead of scheduling data blocks and detecting malware.
List detList’s length ought to be appropriately chosen based
on the system utilization and workload of the cloud storage.

Given data block bk and its weight wk, we define αk =
(bk, wk) as a block-weight pair for the kth block bk. The
detection list - an output of Algorithm 1 - is formally expressed
as Eq. 3, where all the block-weight pairs are scheduled by the
Algorithm in a decreasing order of the weights in the block-
weight pairs.

detList = {α1, α2, ..., αn} = {(b1, w1), ..., (bn, wn)},
where w1 ≥ w2 ≥ ... ≥ wn. (3)

It is noteworthy that the weight of a block captures the
popularity of data objects residing in the block. The most
popular blocks are scheduled to be detected at the beginning
of detList; the least popular ones are postponed toward the
end of the list.

In Algorithm 1, Steps 1-3 repeatedly carry out user-based
collaborative filtering to construct recommendation lists for
the users in set U . More specifically, the collaborative filtering
strategy is implemented by function UbasedCoFiltering() in
Step 2.

In our design, user-based collaborative filtering ought be
performed in Step 2 prior to establishing recommendation
lists. This order is expected, because recommendation lists (see
Step 2) are judiciously maintained by cloud storage regardless
of the malware detection procedure. In a real-world cloud,
the recommendation lists are proactively updated while data
objects are being accessed by users.

Steps 4-6 control the initialization of the weights of the
block-weight pairs in detList; the initial value of the weights
is 0. Let U ′ represent a set of users who are actively accessing
cloud storage amid the malware detection process. Because
user information is retained in user set U , U ′ is a subset
of U (i.e., U ′ ⊆ U ). Steps 7-14 repeatedly calculate each

Algorithm 1: The high-level controller of malware detec-
tion.

Input:
User I/O access history and rating records;
B = {b1, b2, ..., bn}; /* data blocks to be detected */

Output:
DetList = {α1, α2, ..., αn}; /* A detection list */

1: for all ux ∈ U do
2: P (ux) = UbasedCoFiltering(ux);
3: end for
4: for all αk ∈ DetList /* Initialize DetList */ do
5: SetWeight(αk, 0); /* Initialize the weight of αk */
6: end for
7: for all ux ∈ U ′ do
8: for all φx,i ∈ P (ux) do
9: oi = GetDataObject(φx,i);

10: wx,i = GetWeight(φx,i);
11: bk = GetBlock(oi, B);
12: detList[wk]+= wx,i;
13: end for
14: end for
15: Sort(detList[wk]);
16: return detList;

user’s weights with respect to data objects. In particular, Step 9
derives data object oi from object-weight pair φx,i (see also the
GetDataObject() function). Steps 10 and 11 obtain weight
wx,i and block bk from object oi (see also the GetWeight()
and GetBlock() functions). In Step 12, weight wk is modified
by augmenting intermediate result wx,i yielded from Step 10.

Finally, Step 11 sorts block-weight pairs in a non-increasing
order of weights in detection list detList. Such a detection
schedule is made by the sort() function in the algorithm.

We reckon that the malware detection scheduler imposes
relatively low computation overhead, because recommendation
lists normally are originated prior to the malware detection
procedure. In the worst case scenario, the lack of user requests
(e.g., U ′ = ∅) makes it strenuous build a recommendation list
to project data popularity. In this case, the system gracefully
downgrades to offline malware detection, in which a detection
schedule is no longer needed. In such an offline malware
detection case, Steps 7-14 In Algorithm 1 will be excluded.

V. CONCLUSIONS

We started this paper with an overview of cloud storage sys-
tems. After presenting a list of emerging techniques adopted
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in cloud storage, we discussed cloud security issues to be
addressed in data storage systems in clouds. The focus of our
study is centered around malware detection in cloud storage.
We illustrated multiple ways of applying machine learning
solutions to efficiently identify malware codes in clouds. Next,
we shed bright light on the challenges confronted in malware
detection in the realm of cloud storage. To overcome these
challenges, we proposed a popularity-aware malware detection
system, which schedules a malware- detection sequence in
a way that high-risk data are detected prior to low- risk
counterparts in clouds.

At the heart of our proposed malware detection system,
we designed a user-based collaborative filtering module to
predict data popularity using established recommendation lists.
We delineated the popularity-aware algorithm to (1) prioritize
data blocks and (2) make detection schedules in a way to
enhance the security of cloud storage systems. Along this
line, we expect that a diversity of machine learning techniques
can be employed to forecast data popularity, which in turn
can determine malware-detection schedules. It is intriguing to
quantitatively compare a handful of prediction solutions to
figure out which one delivers the best performance for the
malware detection system in cloud computing environments,
where big data must be constantly scanned.
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[1] R. Anderson, C. Barton, R. Böhme, R. Clayton, M. J. Van Eeten,
M. Levi, T. Moore, and S. Savage, “Measuring the cost of cybercrime,”
in The economics of information security and privacy. Springer, 2013,
pp. 265–300.

[2] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data
deduplication scheme for cloud storage,” in International conference on
financial cryptography and data security. Springer, 2014, pp. 99–118.

[3] Z.-D. Zhao and M.-S. Shang, “User-based collaborative-filtering rec-
ommendation algorithms on hadoop,” in 2010 Third International Con-
ference on Knowledge Discovery and Data Mining. IEEE, 2010, pp.
478–481.

[4] J. Hu, J. Liang, Y. Kuang, and V. Honavar, “A user similarity-based
top-n recommendation approach for mobile in-application advertising,”
Expert Systems with Applications, vol. 111, pp. 51–60, 2018.

[5] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.
[6] A. T. Lo’ai, W. Bakheder, and H. Song, “A mobile cloud computing

model using the cloudlet scheme for big data applications,” in 2016
IEEE First International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE). IEEE, 2016, pp. 73–
77.

[7] Y. Huo, H. Wang, L. Hu, and H. Yang, “A cloud storage architecture
model for data-intensive applications,” in 2011 International Conference
on Computer and Management (CAMAN). IEEE, 2011, pp. 1–4.

[8] D. Tiwari, G. K. Chaturvedi, and G. Gangadharan, “Acdas: Authen-
ticated controlled data access and sharing scheme for cloud storage,”
International Journal of Communication Systems, vol. 32, no. 15, p.
e4072, 2019.

[9] S. Xu, G. Yang, Y. Mu, and X. Liu, “A secure iot cloud storage system
with fine-grained access control and decryption key exposure resistance,”
Future Generation Computer Systems, vol. 97, pp. 284–294, 2019.

[10] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud
computing security problem,” arXiv preprint arXiv:1609.01107, 2016.

[11] I. Alobaidan, M. Mackay, and P. Tso, “Build trust in the cloud
computing-isolation in container based virtualisation,” in 2016 9th
International Conference on Developments in eSystems Engineering
(DeSE). IEEE, 2016, pp. 143–148.

[12] M. A. L. Peña and I. M. Fernández, “Sat-iot: An architectural model
for a high-performance fog/edge/cloud iot platform,” in 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT). IEEE, 2019, pp. 633–
638.

[13] X. Jing and Z. Jian-Jun, “A brief survey on the security model of
cloud computing,” in 2010 ninth international symposium on distributed
computing and applications to business, engineering and science. IEEE,
2010, pp. 475–478.

[14] D. Chen and H. Zhao, “Data security and privacy protection issues
in cloud computing,” in 2012 International Conference on Computer
Science and Electronics Engineering, vol. 1. IEEE, 2012, pp. 647–
651.

[15] Z. A. Almusaylim and N. Jhanjhi, “Comprehensive review: Privacy pro-
tection of user in location-aware services of mobile cloud computing,”
Wireless Personal Communications, vol. 111, no. 1, pp. 541–564, 2020.

[16] P. R. Kumar, P. H. Raj, and P. Jelciana, “Exploring data security issues
and solutions in cloud computing,” Procedia Computer Science, vol.
125, pp. 691–697, 2018.

[17] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, “Malware
detection in cloud infrastructures using convolutional neural networks,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 162–169.

[18] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

[19] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in computer
Virology, vol. 7, no. 4, pp. 247–258, 2011.

[20] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2482–2486.

[21] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE).
IEEE, 2015, pp. 11–20.

[22] S. Seok and H. Kim, “Visualized malware classification based-on con-
volutional neural network,” Journal of the Korea Institute of Information
Security & Cryptology, vol. 26, no. 1, pp. 197–208, 2016.

[23] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
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