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Abstract—Cloud computing over the Internet reveals a re-
markable potential to provide on-demand services to consumers
with great flexibility in a cost- effective manner. Security issues
coupled with resource allocations in cloud computing remain a
challenging problem to be tackled by the industry and academia.
While moving towards the concept of on-demand services and
resource pooling in a distributed computing environment, secu-
rity is a major obstacle for this new dreamed vision of computing
capability. At the same time, the research field of energy-efficient
networking infrastructures is of great importance for service
providers, network administrators, and equipment manufactur-
ers. In this paper, we articulate novel energy-aware scheduling
policies catered for virtual machines running on clouds, in which
service-level agreements (SLAs) are fulfilled. After addressing
security concerns in cloud computing, we advocate for a research
roadmap towards future security-aware energy management in
clouds. We proposes a high-level design for a security- and
frequency-ware DVFS model or SF-DVFS, which orchestrates
security services, security overhead analysis, and DVFS control
green cloud computing systems. We delve into the main technical
challenges associated with the proposed SF-DVFS model. We
expect that this paper will open exciting perspectives for future
security research in energy-efficient cloud computing platforms.

Index Terms—cloud computing, Security overhead, Energy
optimization, Load balancing, Real-Time Scheduling, DVFS.

I. INTRODUCTION

In this paper, we propose a research roadmap for security-
aware energy management for cloud computing infrastruc-
tures. This roadmap is inspired by the following three trends.
• Cloud computing is an effective technology that delivers

interesting services to customers over the Internet.
• There is a pressing demand to build energy-efficient

clouds housed in large-scale datacenters.
• Building trustworthy cloud environments remains a chal-

lenging issue.
With the advanced virtualization technologies deployed in

data centers, cloud infrastructures become a predominant com-
puting platform (see, for example, Amazon Elastic Compute
Cloud (EC2) [1] and Microsoft Azure [2]). Virtual computa-
tion environments furnish on-demand and elastic computation
and storage capabilities, thereby facilitating large-scale data
analytic and big-data applications. In modern virtualization
techniques, resources residing in physical machines are parti-
tioned into individual virtual machines (VMs), which isolates
one application from the counterparts running on the other
VMs. Multiple VMs assigned to one physical machine share
resources on the same machine. One or more applications may
run on a virtual machine; in contrast, an large-scale application

can make use of enormous resources across multiple virtual
machines.

In an drastically expanding digital world, big data are
changing the way we live, work, and entertain. International
Data Corporation or IDC speculates that the aggregated data
around the world will grow from 33 zettabytes in 2018 to
175ZB by 2025 at a significant annual grow rate of 61% [3]. To
accommodate such a massive amount of data, the scale of data
centers is demanded to snowball to reach an unprecedented
and unbelievable level. The global data-center market is esti-
mated to exceed $174 billion by 2023, representing an annual
rate of approximately 4% during the forecast period. To meet
such pressing demands, the largest technology companies such
as Facebook, Google, Amazon, and Microsoft are focusing
on the development of modular and hyper-scale data-center
construction facilities [4].

The energy consumption of these large-scale datacenters is
truly tremendous.For example, the global data-center power
market size will hit the bar of $10.77 billion by year 2025,
expanding at an annual rate of 6.9%, even faster than that
of the datacenter market [5]. Globally,Power consumption of
datacenters is close to 416 terawatts, representing three percent
of all electricity generated on the planet. In other words, data
center energy consumption around the world accounts for 40
percent more than all the energy consumed in the United
Kingdom [6].Nowadays, over 80% of the worlds energy still
being generated by fossil fuels [7],which could lead the CO2
emissions and other global environmental problems like global
warming.

Cloud computing offers services with scalable resources in
a protected view. Although cloud features are well understood
from a business point of view, building trustworthy cloud
environments remains a challenging issue. Cloud computing
has increasingly gained its popularity among individual users
and organizations, but recently raised security issues demand
new solutions. For example, organizations have a dire need
for secure infrastructures when data are transferred to and
managed at remote locations.

It is a conventional wisdom to handle big data in local
storage systems, where data processing, movement, and man-
agement are carried out in local domains. More often than not,
security measures developed by cloud service providers are
transparent to the public and; for this reason, some enterprise
users hesitate to rely on cloud services and infrastructure to
store and process digital assets [8] [9].

The remainder of this paper is organized as follows. Sec-



tion II outlines the evolution of cloud computing systems
from the perspectives of load balancing, energy conservation,
and security issues. In Section III, we introduce various of
scheduling policies in clouds. We present a research roadmap,
where approaches and directions are discussed in section III.
Finally, Section V elaborates concluding remarks.

II. CLOUD COMPUTING SYSTEMS

A. Virtual Machines and Load Balancing

The purpose of load balancing is to evenly distribute
computing workloads across multiple computing resources to
maximize the overall system performance. Load balancing
aims to achieve an array of objectives, including (1) optimizing
resource usage, (2) maximizing throughput, (3) minimizing
response time, and (4) avoiding the overload of any resource.
VM-based load balancing is implemented through live VM
migrations in data centers, where a primarily concern is to op-
timize the usage of physical computing resources by migrating
virtual machines from heavily loaded PMs to those with least
workload. By dynamically adjusting the locations of VMs, one
may optimize various objective functions to provide superb
cloud services. Sample objective functions include, but not
limited to, improving performance, boosting system security,
minimizing failure impact, and reducing energy consumption.

Fig. 1 illustrates a classic load balancing architecture in
a cloud computing platform. All user requests are submit-
ted to the load balancing module, which is responsible for
dispatching requests to virtual machines to optimize resource
utilization and energy efficiency.

Load balancing plays a critical role in guaranteeing the
service-level agreements (SLAs) of applications in cloud com-
puting. The increasing workload of applications in virtual
machines may trigger overloaded utilization in one resource
or more (e.g., CPU, memory, I/O and network bandwidth)
on physical machines. More often than not, an overly loaded
physical machine degrades application performance of all the
VMs running on the PM. Consequently, unbalanced load in-
evitably impose an adverse impact on the finish times of batch
applications and the response times of interactive applications.
To eliminate the potential bottleneck, one has to migrate excess
load from overloaded physical machines to underutilized ones
in computing clouds.

It is arguably true that load balancing techniques powered
by VM migrations confront the following challenges.
• Overhead. It is prudent to quantify the amount of over-

head involved in deploying a load balancing system.
Load balancing overhead entails VM migration cost and
communication cost. For example, load of each physical
machines ought to be periodically collected by a load bal-
ancing mechanism, which pays the communication cost
to monitor load across multiple PMs. A well-designed
load balancing algorithm should reduce such an overhead.

• Prediction. Due to the dynamic changes of application
workload in VMs, it is inefficient to make migration deci-
sions merely based on the current status of the system. An

Fig. 1. A load balancing architecture for clouds, where all user requests scheduled
and dispatched by the load balancing module to optimize resource utilization and
energy efficiency.

ideal load balancing algorithm should be equipped with a
capacity of accurately predicting workload to orchestrate
VM management prior to any sharp changes in future
load. Such proactive approaches avert making last-minute
load-balancing decisions, which are in some cases too
late.

• Performance. Various performance metrics are intro-
duced to assess the efficiency of cloud computing sys-
tems. Performance of a computing cloud can be measured
from the perspectives of system throughput as well as
user experience and satisfaction. Given performance re-
quirements prescribed by end users, computing clouds are
responsible to ensure such requirements defined as quality
of service (QoS). Modern load balancing mechanisms
seek to boost overall system performance while meeting
QoS requirements.

B. Energy Conservation in Clouds

To build energy-efficient data centers, one has to pin point
the hot spot of energy-burning components as well as deploy-
ing energy conservation techniques. Fig. 2 lists ten commonly
adopted energy conservation techniques in cloud computing
environments.

Intuitively, energy savings should not come at the the cost
of performance. The overall objective for modern data centers
is to employ energy-saving techniques without violating QoS
requirements or downgrading performance. Evidence shows
that the waste of power is likely to be originated from the
inefficient utilization of provisioned facilities. The VM consol-
idation [10] and DVFS [11] (Dynamic Voltage and Frequency
Scaling) techniques are two practical energy conservation
methods predominantly adopted in data centers. One common
approach to achieving high energy efficiency is to dynamically
scale down the size of running clusters by the virtue of VM
management. With the help of virtualization, energy consumed
by computing clusters can be curtailed by applying VM
migrations and consolidations. Such a technique aims to stack
VMs into a minimum number of physical machines (PMs)
to cut back energy consumption in data centers. Decisions
of turning on or off PMs should fulfill the requirements of



maintaining satisfied performance while reducing consumed
power.

The dynamic voltage frequency scaling (DVFS) technique
[11] has been widely investigated by the research commu-
nity as a feasible solution to reduce energy consumption
of IT equipment. DVFS allows processors to be running at
multiple frequencies under different supply voltages, thereby
offering ample opportunities to slash energy consumption of
cloud computing platforms by scaling back processor supply
voltages. The energy consumption of a processor is approxi-
mately proportional to processor frequency and the square of
the processor voltage. Decreasing the processor voltage and
frequency will conserve energy by lowering down processor
performance. Nevertheless, such slowed down performance for
the purpose of energy saving is acceptable as long as QoS
requirements or service-level agreements are met.

Apart from DVFS and VM consolidation, a diversity of
power management strategies were constructed to make clouds
energy efficient. For example, Gu et al. proposed a multi-sleep
model, where one active state may transition into multiple
sleep states [12]. The multiple sleep state entail different
sleep power and transition delays. A growing attention has
been paid to energy-efficient disk arrays [13] and storage
clusters [14]. Similar to VM consolidation, virtual-machine
provisioning [15] offers energy savings for VM-based clouds.

Numerous prior studies are evident that thermal manage-
ment can boost the energy efficiency in cloud computing.
For instance, Amritpal and Kinger applied temperature-aware
scheduling to reduce energy consumption [16]. Arroba et
al. devised novel power and thermal-aware strategies to
provide joint cooling and computing optimizations from a
local perspective based on the global energy consumption of
metaheuristic-based optimizations [17]. Nowadays, machine
learning becomes a game changer for the development of green
cooling policies in thermal management [18].

Fig. 2. Ten commonly adopted energy conservation techniques for clouds.

C. Security Issues in Cloud Computing

Fig. 3 summarizes the five major data security issues to be
addressed in the arena of cloud computing. A risk of data
misuse is likely to occur when resources are shared among
multiple organizations. To avert such a risk, it is prudent
to secure storage infrastructures along with processed and

archived data. Data protection, a vital and challenging feature
of cloud computing, keeps any potential security threats at bay.
Authentication, authorization, and access control services are
devised for to enhance data security in clouds.

Fig. 3. There are five major data security issues to be addressed in the arena of
cloud computing.

Confidentiality, integrity, and availability, which are known
to as the CIA triad, are the three critical properties of data
centers. Confidentiality ensures that data owned by cloud
service consumers should not be revealed to unauthorized
parties under any circumstance [15]. Various encryption tech-
niques [19] and key management [20] mechanisms are de-
ployed to ensure high confidentiality of cloud services. Data
integrity entails confidence that data stored in and transferred
to/from clouds are not fiddled by unauthorized users. Data
integrity can be detected by modern techniques like mirror-
ing, parity, or checksumming at either the file or the block
levels [21]. Data availability implies that data should be readily
accessed by users without any delay or deny of service when
the users issue requests. A handful of leading solutions are
available to achieve high data availability. For example, data
replication [22] and prewrite operation [23] are two common
practices to furnish high data availability to cloud computing
systems.

When it comes to distributed computing in clouds, two
security challenges to be tackled are locality and access.
Nowadays, data tends to be distributed across multiple regions,
where pinpointing the location of data is non-trivial. When
data are moved or migrated to from one geographic location
into another, the laws and regulations governing on the data
may change. Consequently, cloud service providers have to be
compliant with data privacy laws according to the geographic
locations. This emerging challenge is referred to as locality
issues of data security in cloud computing environments. Such
a data locality issue is handled by clouds in two fashions.
On one hand, cloud service providers make data locality
transparent to end users. On the other hand, users are in
full control of data locations to meet prescribed security
requirements. We refer the former one as transparent data
locality and the later one as non-transparent data locality. A
benefit of the transparent approach is that users can easily
access their data without being aware of the locations of data.
In contrast, non-transparent location policies enable cloud user
to elect desired service locations to safeguard data with respect



to locality.
Access control is regarded as a second security issue in

distributed computing over clouds. In an organization where
computing platforms are outsourced to clouds, members of
the organization are authorized manage a portion of data in
accordance to access policies. Such data may not be retrieved
or modified by the other members of the organization in the
distributed computing environments. Most leading-edge access
control techniques applied to cloud computing fall into two
camps, namely, role-based and attribute-based schemes. For
example, Zhou et al. designed a role-based encryption scheme
to enforce access control policies for encrypted data stored
in public clouds [24]. Yang et al. developed a time-domain
attribute-based access control scheme, which allows a group
of users to securely share videos in clouds [25].

III. SCHEDULING IN CLOUDS

At the heart of a cloud computing platform that orchestrates
a diversity of virtualized resources, scheduling mechanisms
become a vital component to optimize resource utilization. A
client may leverage multiple virtualized computing resources
to accomplish tasks submitted to clouds. An overarching goal
of task scheduling is to slate tasks running on computing
clouds to achieve specific objectives. Sample objectives in-
clude minimizing response time, maximizing performance,
reducing energy consumption, improving system security, and
to name just a few.

Fig. 4 depicts a scheduling architecture designed for cloud
computing platforms, in which scheduling mechanisms and
security-service optimization modules are fully integrated.
Similar architectures can be found in the literature (see, for
example, [26] [27]). In the illustrated architecture, a cloud is
highlighted in a dotted box. Cloud users dynamically submit
a wide range of tasks to the scheduler, which oversees virtu-
alized resources in the cloud. After scheduling decisions are
made by the schedule, tasks are dispatched to corresponding
virtual machines. As a part of the scheduling mechanism, a
monitor periodically keeps track of the utilization of the virtual
machines as well as physically machines in the cloud. Apart
from scheduling tasks, the scheduler is in charge of launching
appropriate security services for input and output data of tasks
to fulfill user requirements.

A. Real-Time Scheduling

The timeliness of to real-time applications is a key toward
high quality of service (QoS) on clouds. Virtual machines
can be handled as tasks from the perspective of real-time
scheduling. Therefore, we use terms virtual machines and tasks
interchangeable throughout this manuscript.

For hard real-time applications, the timeliness measures the
system capability of guaranteeing deadlines specified by users.
In the realm of cloud computing, timeliness is referred to as a
performance metric that entails the sum of utility or benefits
obtained by real-time tasks or services [28].

Real time tasks embrace deadlines, which are specified in
the format of QoS requirements. Missing deadlines is treated

Fig. 4. The scheduling architecture for cloud computing platforms, which embrace
scheduling mechanisms and security-service optimization modules.

as a failure or an error for the real-time tasks submitted
to clouds. The ability to satisfy deadlines (a.k.a., timing
constraints) of real-time tasks is an overarching goal to be
achieved by schedulers managing virtualized resources in
cloud computing environments.

As conventional schedulers, real-time schedulers cus-
tomized for clouds aim to make good trade-off among multiple
factors such as scheduling complexity, real-time performance,
energy efficiency, and security [29]. Real-time tasks ought
to be correctly and timely carried out by clouds. Evidence
shows that obtaining a minimal schedule for a set of real-
time tasks running in multiprocessor systems is a NP-hard
problem [30]. Unsurprisingly, real-time schedulers are unable
to deliver deterministic response times, which are an impor-
tant metric gauged for system robustness analysis. Security-
sensitive real-time tasks running on clouds must be protected
against cyber-security threats, which make the design of re-
source management systems for clouds a grand challenge. To
address the aforementioned challenging issues, we will pilot
a security- and frequency-aware DVFS model (SF-DVFS) to
incorporates security services and energy management in a
computing cloud. Please refer to our roadmap elaborated in
Section IV-D for a detailed research plan on FS-DVFS.

B. Energy-aware Scheduling

In the past decade, high energy consumption in cloud-based
data centers has motivated the research community to develop
energy-efficient techniques, among which a growing number
of energy-aware scheduling algorithms offer impressive energy
savings to computing clusters on clouds [31] [32]. Generally
speaking, energy-efficient scheduling approaches can be cate-



gorized into two camps, namely, DVFS-based (Dynamic Volt-
age and Frequency Scaling) and VM-based (Virtual Machine)
techniques.

1) DVFS-based Scheduling: Recall that (see Section II-B)
DVFS-based schemes strive to make good trade-offs between
energy consumption and performance in processors, which are
a major player in reducing power consumption of data centers.
For example, Garg et al. developed the near-optimal energy-
efficient scheduling algorithms, where DVFS is employed to
minimize carbon emission by scaling down CPU frequency
while maximizing profits of cloud providers [33]. Fettes et al.
designed practical scheduling policies, which seamlessly inte-
grate DVFS and the virtual-machines consolidation scheme to
make cloud-based data centers energy efficient [34]. Maroulis
et al. applied DVFS to curb the energy consumption of
MapReduce applications running on computing clusters [35].
Suleiman et al. merged the thermal-aware approach and DVFS
in a smart way to offer power management in data centers [36].
Duan et al. devised an algorithm to judiciously tunes CPU
frequency in accordance with QoS requirements [37]. In this
algorithm, a prediction method was incorporated to adapt
CPU frequency by jointly considering QoS and available slack
time. Consequently, the novel scheduler is capable of reducing
energy consumption in heterogeneous Hadoop clusters. Sim-
ilarly, Ibrahim et al. mixed the DVFS and machine learning
approaches to slash energy consumption in network-on-chips
systems (NoCs) [38].

2) Virtual-Machine-based Scheduling: A tremendous effort
in building energy-aware schedulers over the past several
years has concentrated on dynamical consolidation of virtual
machines. A vast majority of such scheduling algorithms aim
to manage virtual machines according to dynamic system
workload, thereby cutting back the number of physical hosts
so that idle hosts are switched off to conserve energy. Recently
developed scheduling strategies leverage live migrations of
virtual machines to support multiple fields, including scientific
workflows and real-time tasks. For example, Xu et al. designed
an energy-aware resource allocation method to allocate virtual
machines in support of scientific workflow executions [39]. Af-
ter proposing a novel rolling-horizon scheduling architecture
for real-time tasks running on clouds, Zhu et al. implemented
an energy-aware scheduling algorithm called EARH for real-
time, aperiodic, independent tasks [40].

A wide range of scheduling algorithms were designed to
conserve energy consumption in clouds by the virtue of virtual-
machine migrations and consolidation. For instance, Khazaei
et al. proposed a scheduling technique to minimize service
delay in clouds by lowering transmission and processing times
through virtual-machine migrations [41]. After investigating
a way of dynamically consolidating tasks to boost resource
utilization and to reduce energy consumption, Hsu et al.
presented an energy-aware task consolidation (ETC) method to
optimize energy efficiency in clouds [42]. To take uncertain-
ties into account, Chen et al. employed proactive and reactive
algorithms to mitigate adverse impacts of uncertainties on
scheduling quality of cloud-based data centers [43].

C. Cloud-aware Scheduling

1) Online Scheduling: Much attention has been paid to-
wards online scheduling of multiple tasks and jobs. For
example, Shin et al. extended the conservative back-filling
algorithm by utilizing the earliest deadline first and the largest
weight first policies to schedule real-time jobs [44]. Ge et al.
dived into a GA-based task scheduler, which manages waiting
tasks through a genetic algorithm with a goal of balancing
load [45]. Liu and Han proposed an online scheduler allowing
virtual machines to obtain extra CPU shares when blocked
by I/O interrupts, thereby curtailing energy-efficiency losses
caused by I/O intensive tasks [46].

2) Scheduling for Multi-processors: When cloud com-
puting platforms are fueled by multi-processor systems,
scheduling algorithms is focused on enhancing the over-
all performance of multi-processor systems. For instance,
Dorronsoro.et al. presented a two-level strategy for schedul-
ing large workloads on multicore distributed systems, taking
into account their total execution time and energy consump-
tion [47]. Kwok and Ahmad devised an array of optimal static
algorithms to schedule task graphs with random parameters
for multiple homogeneous processors [48]. Similarly, Mo-
hamed and Awadalla proposed multi-processor-based schedul-
ing approaches, namely the modified list scheduling heuristic
(MLSH) and the hybrid genetic algorithm (GA) [49].

3) Performance-aware scheduling: Performance-aware
scheduling solutions were deployed to optimize system
performance measured in terms of response time, makespan,
and completion time. Please refer to [50] and [51] for the
comprehensive surveys on task and resources scheduling
policies that are intended to speed up system performance
of clouds. For example, Tang et al. designed a self-adaptive
scheduling algorithm for jobs running on MapReduce-
based computing clusters [52]. This algorithm dynamically
decides the start time of each reduce task according to the
corresponding job’s context such as task completion time
and map tasks’ output size. Gan et al. implemented a genetic
simulated annealing algorithm to optimize the makespan
of a set of tasks. In this approach, simulated annealing
is used to optimize each offspring yielded by the genetic
algorithm [53]. Furthermore, an improved genetic algorithm
was developed to apply the outputs of Max-Min and Min-Min
as initial solutions to schedule independent tasks [54]. Zuo
et al. proposed a multi-objective ant colony algorithm to
address the task scheduling problem. The focal point of
this multi-objective algorithm is to minimize makespans by
incorporating user-budget costs as constraints during the
course of task scheduling [55].

IV. A RESEARCH ROADMAP

In Section IV-A, we start the roadmap description by
presenting the concepts of security services and strengths.
Next, Section IV-B discusses the development of security
overhead models for various security services. We propose
in Section IV-C an idea of incorporate security and frequency
awareness into the context of qualify of service (QoS). Finally,



Section IV-D presents a security- and frequency-aware DVFS
model (SF-DVFS) in clouds.

A. Security Services and Strengths

The security of a cloud computing system entails a capa-
bility of keeping various attacks at bay. A security system
built for clouds consists of a diversity of security services
like data integrity, confidentiality, and authentication. Because
security services are implemented by different algorithms, the
security services experience various strength associated with
computational overhead. For instance, data confidentiality may
be furnished by the RC4 or AES cryptographic algorithms.
RC4 is a fast algorithm with low memory space overhead [56].
Importantly, Fluhrer et al. discovered a few vulnerabilities in
the RC4 algorithm, meaning that RC4 is unsafe for any key
size [57]. In contrast, AES encryption was rigorously reviewed
for potential security loopholes before being standardized by
NIST in 2001. Compared with RC4, AES is more secure at
the cost of high overhead.

The security strength of a cryptographic algorithm largely
depends on key size and the number of operation rounds.
The key size directly resembles the strength of the algorithm
against key search attacks. In the AES case, the key size can be
configured at 128, 192, and 256 bits. Theoretically speaking,
the number of guesses to crack AES protected data is 3.41038

for the 128-bit key, 6.21055 for the 192-bit key, and 1.11077 for
the 256-bit key. On the other hand, expanding the number of
operation rounds makes ciphers more secure, because a large
number of rounds leaves no trails of original data. Therefore,
one may make use of the number of operation rounds to
gauge the quality of ciphers against potential cryptanalysis
attacks [58].

To optimize the security strength of applications running
on computing clouds, we advocate for future efforts to quan-
titatively measure the strength and computational overhead of
different security services implemented by cutting-edge algo-
rithms. It is arguably true that the strength of a security service
is proportional to the service’s computing and communication
overhead, because low-quality security services that bear high
overhead should be replaced by either fast-service counterparts
or high-quality services with high overhead.

B. Security Overhead Models

Among a variety of security services, confidentiality, in-
tegrity, and availability are three common services to safeguard
sensitive data. Among these three types of services, we first
focus on the security overhead models developed to capture
the correlation between strength and overhead in the confi-
dentiality and integrity services. Then, we shed some light on
the idea of construction a security overhead model for data
availability services.

1) Confidentiality and Integrity: A security service may be
implemented by multiple implementation instances, each of
which have distinctive security strength and the computing
overhead. In this study, we refer to the implementation in-
stances as security service instances or security instances for

short. Given a security service, we assign 1 as the strength
value of the strongest security instance. The strength values of
the other security instances in this service type are normalized
based on the strongest instance. The overhead of each security
instance should be derived from a program profiling study.
Let us take the confidential service security as an example.
Table I summarizes the strengths and speed of the encryption
algorithms implemented in the five confidentiality instances.
Similarly, Table II lists the hash functions supporting the five
integrity instances. The details on these security overhead
models can be found in the literature [19] [59].

The overhead of the cryptographic instances are measured
on virtual machines running on a physical machine powered by
a 3.3 GHz duo-core CPU, 2.0 GB main memory, and 400 GB
disk [60]. The overhead of each security instance is heavily
reliant on the size of data to be protected and the security
instance’s speed. More specifically, the overhead of securing
data equals to data size divided by the speed of the given
security instance. Such a security overhead plays a key role in
utilizing slack time to adjust security and frequency levels in
a resource management system articulated in Section IV-C.

TABLE I. The Encryption Algorithms for Confidential Service.

Encryption algorithms Strength Speed (Mb/s)

IDEA 1.00 17.34

DES 0.90 18.21

Rijndael 0.64 39.88

Blowfish 0.36 39.96

RC4 0.30 87.07

TABLE II. The Hash Functions for Integrity Service.

Hash functions Strength Speed (Mb/s)

TIGER 1.0 48.03

RIFDMD-160 0.77 71.27

SHA-1 0.63 80.67

RIFDMD-128 0.36 86.97

MD5 0.26 138.12

2) Data Availability: Now we propose an approach to
building overhead models for data availability services in cloud
storage. High data availability becomes possible with the full
support of replication services or erasure code services, which
are summarized as follows.

Data replication is a simple yet effective approach to tol-
erating failures in cloud storage. In case of a lost data block,
one replica block is sufficient to fix the problem with the
minimum data movements over networks. A high replica factor
like triplication boost storage system performance via parallel
I/Os [61]. An overhead model dedicated to data replication
is comprised of replication service instances representing
different replica factors. In this model, a high replica factor
offers high data availability at the cost of creating replications.
On the flip side, the overhead can be reduced by lowering the
replica factor. Intuitively, in this model security levels of data
availability are measured by replica factors. The overheads of
read operations are in stark difference from those of write
operations. A high replica factor leads to fast reads and



expensive writes; the opposite is true for a low replica factor.
Thus, the overhead model must be separately developed for
reads and writes.

Erasure codes are widely adopted in cloud storage housed
in data centers [62] [63] [64]. The Reed-Solomon (RS) code is
a popular erasure-code solution, thanks to its optimal storage
efficiency and high level of data availability tolerance [65].
(k+r,k) RS codes encode source data with a k×(k+r) Generator
Matrix, which involves a k×k Identity Matrix and a k×r
Redundancy Matrix (see the details in [66]). In RS encoding,
parity strips are originated by multiplying k data strips with
the k×r redundancy matrix. In the security overhead model for
data availability services fueled by RS code, security levels and
overhead are obtained from parameters k and r. In general,
the large values of r offers a high level of availability (high
security level) at an expensive cost of constructing parity
strips. Reducing r value curtails the overhead by sacrificing
data availability.

C. Security and Frequency Awareness in QoS

The security overhead models articulated in Section IV-B
can be incorporated into a QoS model to speculate the time
spent in performing assigned security services. Specifically,
security overhead prolongs task execution times, which in turn
triggers performance degradation. Nevertheless, tasks that are
slowed down by such security overhead are acceptable as long
as QoS requirements can be fulfilled.

In conventional real-time task models, the worst case
excution-time (WCET) and deadlines are two key parameters
capturing QoS requirements of real-time applications. Besides
WCET and deadlines, CPU frequency is a practical parameter
to prescribe QoS requirements. Given memory and I/O re-
sources, a task’s execution time largely depends on an assigned
processor and its CPU frequency level. It is feasible to convert
time-aware requirements into frequency-aware requirements.

Fig. 5 outlines a model of converting frequency require-
ments from deadlines and WCET specified as timing con-
straints. In this modeling procedure, task requirements are
modeled in the format of minimum frequency requirements.
By the same token, security overhead incurred in security-
sensitive applications should be integrated into the WCET
measures, which are converted into frequency requirements.
As a future research direction, tremendous efforts will be
dedicated to ways of constructing frequency requirements from
WCET values that are reliant on time spent in performing
security services. Such security service times will be derived
from security overhead model (see also Section IV-B).

We investigate multiple virtual machines running on a
group of physical machines modeled as C = {c1, c2, ..., cm}.
Let us define a set of n virtual machines as V =
{vm1, vm2, ..., vmn} running on machine c, where we have
c ∈ C. Each virtual machine is denoted as a pair vmi =
(ai, f

req
i ), where ai is the creation time of virtual machine

vmi, freq
i is the minimum frequency requirement of vir-

tual machine vmi. The correlation between an overall tasks

Fig. 5. A procedure of converting frequency requirements from deadlines and
WCET specified as timing constraints. Task requirements are modeled in the format
of minimum frequency requirements in clouds.

frequency requirement and each virtual machine’s frequency
requirement is formally expressed as:

freq
V,c =

∑
i∈V

freq
i,c . (1)

We define a security-related frequency requirement cofre

as the frequency requirement that is derived from the corre-
sponding security overhead. We layout in Eq. (2) the relation
between an overall security-related frequency requirement and
each virtual machine’s security-related frequency requirement.
The security-related frequency requirement of virtual-machine
set V running on physical machine c is an accumulated
measure of the security-related requirements of all the virtual
machines in set V . Thus, we have

cofreV,c =
∑
i∈V

cofrei,c . (2)

Considering the minimum security-related frequency re-
quirement cofreV,c , we show that physical machine c has a
capability to support all the virtual machines in V without
violating SLAs as long as the following requirement (3) holds.

f conf
V,c ≥ freq

V,c + cofreV,c . (3)

where f conf
V,c is a frequency configured for virtual-machine set

V on physical machine c. To meet specified SLA requirements,
one has to regulate the frequency f conf

V,c in a way to exceed a
threshold of freq

V,c + cofreV,c .

D. Security- and Frequency-aware DVFS Modeling

Fig. 6 unravels a high-level architecture of the security-
and frequency-aware DVFS model or SF-DVFS, in which
the frequency-aware DVFS, a security overhead model, and
security services are seamlessly integrated.

In one of our recent studies [67], we proposed a frequency-
aware DVFS model aiming to conserve energy consumption of
tasks with QoS requirements. In our DVFS model, the energy
consumption of processor c is calculated as:

Ec =

∑
i∈V Γi

fmax
c

(
P sta
c

rc
+ P dmax

c (rc)
2). (4)

where Γi is the total number of clock cycles of vmi, fmax
c is

the max frequency level of processor c, frequency retio r is
the ratio between the current processor frequency f and the



Fig. 6. The security- and frequency-aware DVFS model SF-DVFS integrates the
frequency-aware DVFS, a security overhead model, and security services in the
context of quality of services (QoS).

maximum frequency fmax held by a processor. P sta
c is the

static power of processor c; P dmax
c is the maximum dynamic

power of processor c.
Let ropt be an optimal frequency ratio that curbs the energy

consumption in the system. We obtain optimal ratio ropt as:

roptc = 3

√
P sta
c

2P dmax
c

. (5)

Given the optimal frequency ratio ropt in Eq. (5), we derive
the minimized energy consumption Eopt from this ratio ropt,
static power P sta

c , and maximum dynamic power P dmax
c .

Thus, we have

Eopt
c =

∑
i∈V Γi

fmax
c

(
P sta
c

roptc

+ P dmax
c · (roptc )2). (6)

In the system architecture depicted in Fig. 6, the QoS
requirement module outputs a minimum frequency require-
ment from two input parameters, namely, (1) the minimum
frequency requirement freq and (2) the security-related fre-
quency requirement cofre prescribed in virtual machines. On
the left-hand side of the architecture, our frequency-aware
DVFS model incorporates the static and maximum dynamic
power constants to obtain an optimal frequency ratio ropt.
Finally, the frequency adjusting module compares the optimal
frequency ratio and the overall minimum frequency require-
ment to configure the most appropriate frequency level to
reduce the energy consumption of the virtual machines running
on a physical machine.

To enhance the system architecture outlined in Fig. 6, we
advocate for the following future research directions. First,
practical VM consolidation and management policies should
be blended with DVFS to build energy-efficient clouds running

tasks with QoS requirements. Second, machine-learning-based
prediction techniques are expected to boost the performance
of the VM consolidation and management policy. Third, the
security overhead (see also Section IV-B) largely depends on
security levels. Hence, it is desirable to dynamically configure
security levels to fulfill QoS requirements in our proposed
security-aware energy management system. For example, if
QoS requirements are permitted, security service instances
with strong strengths should be elected to maximize security
in clouds. Otherwise, security levels must be lowered to avert
performance degradation.

V. CONCLUDING REMARKS

In this paper, we introduced the evolution of cloud comput-
ing systems from the three aspects - load balancing, energy
conservation techniques, and security issues. We showed that
the various types of scheduling policies orchestrate a diversity
of resources to optimize resource utilization in clouds. Among
all the energy-saving schemes for cloud computing, we fo-
cused on DVFS-based and VM-based scheduling solutions to
offer energy savings in clouds.

As the research roadmap towards the security-aware energy
management in clouds, there are four connected compo-
nents: (1) security services, (2) security overhead models, (3)
security- and frequency-aware QoS, and (4) security-enabled
DVFS. Currently, we are in a process of developing a security-
aware energy management system for cloud computing envi-
ronments. Our novel energy management system is expect to
achieve high security and energy efficiency in clouds by seam-
lessly integrating the security services, a security overhead
model, and the security- and frequency-aware DVFS model.
As a final remark, we emphasize that the development of a
security-aware energy management system should incorporate
underpinning techniques from multiple areas like machine
learning solutions, DVFS techniques, real-time scheduling,
security services, security strength evaluation, and security
overhead analysis.
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