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Insects and other arthropods provide critical ecosystem services 
including pollination, natural pest control and decomposition, 
while influencing plant community structure and providing 

food to humans and other vertebrates1. Indeed, declines in pop-
ulations of bumble bees and other pollinators endanger the pro-
duction of an array of crops and reveal how dependent human 
society is on insects2–5. Thus, recent reports of sudden, dramatic 
drops in insect numbers5–16 have triggered understandable fear 
that human-induced harm to the environment has reached a crisis 
point. Much evidence for what has been dubbed the ‘insect apoca-
lypse’ comes from Europe11,14, where humans have intensively 
managed landscapes for centuries and human population densi-
ties are particularly high. Indeed, insect declines there sometimes 
seem to be most rapid in the landscapes most heavily altered by 
human activity12. Other proposed drivers include relatively local-
ized factors such as changing insecticide use patterns and artifi-
cial light pollution, and globally important factors such as climate 
change, nutrient dilution and increasing nitrification that pre-
sumably would reach even the most remote natural area10,14,17. So, 
depending on the underlying cause, insect decline might variously 
be predicted to be limited to heavily degraded landscapes (for 
example, ref. 12) or reach into natural areas designated as nature 
preserves (for example, ref. 8).

However, considerable scepticism has also emerged about the 
likelihood of the collapse of insect populations18–20. Critics note 
counter-examples where insects are relatively stable or increas-
ing, even at sites heavily influenced by humans20,21. Others report 
apparent population rebounds through time22. Sometimes, sites in 
relatively human-disturbed areas exhibit insect populations with 
greater apparent stability than those in less disturbed landscapes22, 
and climate change correlates with apparent declines in some cases3 
but not in others8. Clearly, before concluding that global insect 
populations are broadly in danger, we will need evidence from 
diverse communities of arthropods, across physically and ecologi-

cally dispersed sites that span both relatively natural and relatively 
human-managed landscapes, and outside of Europe19. This knowl-
edge gap reflects a larger debate about what constitutes convincing 
evidence for global degradation of plant and animal biodiversity in 
the Anthropocene23,24.

Here we utilized a geographically and taxonomically broad suite 
of relatively long-term datasets to search for evidence of insect 
decline in the United States. The US National Science Foundation 
initiated the establishment of a network of Long-Term Ecological 
Research (LTER) sites in 1980, and these now encompass a web of 
25 monitoring locations across each of the country’s major ecore-
gions (Fig. 1). Sites were chosen to reflect a diversity of habitat types 
in the United States and, critically, to span a range of human influ-
ence from urban (for example, within the US cities of Baltimore and 
Phoenix) or farmed regions (for example, the Midwest farmland 
aphid suction-sampling network) to those that are quite remote (for 
example, Arctic tundra in Alaska and Sevilleta desert/grassland in 
New Mexico) (Table 1). Arthropod data have been systematically 
collected from at least 12 different LTERs (Fig. 1) using a variety 
of approaches (but in a consistent way over time within each data-
set; Supplementary Table 1), with some reporting multiple, separate 
datasets based on the taxa considered and/or method used for sam-
pling (‘Methods’). Types of arthropod data include grasshoppers per 
sweep in Konza Prairie (Kansas), ground arthropods per pitfall trap 
in Sevilleta desert/grassland (New Mexico), mosquito larvae per ovi-
trap in Baltimore (Maryland), pelagic macroinvertebrates per tow 
and crayfish per fyke net in North Temperate Lakes (Wisconsin), 
aphids per suction trap sample in the Midwestern United States, 
crab burrows per quadrat in Georgia Coastal Ecosystems, ticks per 
person/hour in Harvard Forest (Massachusetts), caterpillars per 
plot in Hubbard Brook (New Hampshire), arthropods per pitfall 
trap and sweep net in Phoenix metro area (Arizona) and stream 
insects per rock scrub in the Arctic (Alaska) (Table 1). When col-
lecting these data, we did not discriminate based on taxa, type of 
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Fig. 1 | Map of LTER sites. Filled black circles represent LTER sites with arthropod data that were included in our analyses (n = 12). White circles represent 
LTER sites without arthropod data or with insufficient years of tracking to estimate time trends. Black diamonds represent sites comprising Midwest 
farmland. Colours on the underlying map delineate ecoregions (as defined by the United States Department of Agriculture Forest Service: https://www.
fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/).

Table 1 | LTER site attributes

LTER Sites Habitat Taxa group Time 
trends

Range

Arctic 1 Arctic tundra Stream insects 14 1984–1998

Baltimore 1 Urban Mosquitoes 9 2011–2015

Bonanza Creek 1 Taiga Bark beetles 3 1975–2012

1 Aspen leaf miner 1 2004–2015

Cedar Creek 2 Savannah/tallgrass prairie Arthropods 940 1989–2006

1 Grasshoppers 60 1996–2006

Phoenix 2 Urban Ground arthropods 966 1998–2019

1 Arthropods 312 1999–2015

Coweeta 1 Temperate deciduous forest Aquatic invertebrates 10 1988–2006

Georgia Coastal Ecosystems 2 Salt marsh/estuary Crabs (fiddler, burrowing) 2 2001–2018

1 Grasshoppers 7 2007–2018

1 Planthoppers 1 2013–2018

Harvard Forest 2 Temperate deciduous forest Ants 88 2000–2015

30 Ticks 115 2006–2019

Hubbard Brook 2 Temperate deciduous forest Lepidoptera larvae 10 1986–2018

Midwest farmland 46 Row crop agriculture Aphids 2,125 2006–2019

Konza Prairie 1 Tallgrass prairie Gall insects 1 1988–1996

1 Grasshoppers 54 1982–2015

North Temperate Lakes 4 Temperate lake Pelagic/benthic macroinvertebrates 234 1981–2017

1 Crayfish 2 1981–2017

Sevilleta 1 Desert/grassland Grasshoppers 56 1992–2013

1 Ground arthropods 365 1995–2004

Select attributes of LTER sites included in this study. ‘Sites’ refers to the number of sampling points or independent sampling methods used in an LTER. ‘Taxa group’ refers broadly to the types of arthropods 
sampled. ‘Time trends’ reported depends on both the number of taxa and the number of sites/methods within an LTER that met the inclusion criteria (for example, a single aphid species in Midwest 
farmland will have associated time trends at several suction trap sites with >3 yr of data). ‘Range’ refers to the first and last year of sampling included in our analysis. See Supplementary Table 1 for 
extended details about LTER site attributes.
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study or study methods, though we excluded studies outside of 
North America (for example, Antarctica).

The LTER arthropod data are publicly available (‘Methods’) 
but have not previously been gathered into a single dataset to be 
examined for evidence of broad-scale density and biodiversity 
changes through time (but see ref. 25). The oldest datasets precede 
LTER establishment and started in the late 1800s, but data coverage 
becomes increasingly complete (that is, standardized and frequently 
sampled) from the 1980s to the present (‘Methods’). Altogether, to 
construct our LTER arthropod abundance meta-dataset, 82,777 
arthropod observations from 68 datasets were compiled into 5,375 
taxa time series spanning up to 36 years, including 48 arthropod 
orders made up of 1 to 658 taxa in a given dataset (‘Methods’). Of 
these, 3,412 time series were from the Midwest farmland, Phoenix 
and Baltimore sites most directly impacted by human development 
(63% of the total), while the remaining 1,963 time series (37% of the 
total) were from sites receiving less direct human disturbance. Of 
course, all sites would be expected to be affected by climate change, 
altered N deposition and other wide-reaching human impacts 
often suggested as possible drivers of insect decline26–28. For each 
time series, autoregressive models were fit using restricted maxi-
mum likelihood to estimate the change in abundance over time 
(‘Methods’). This method yielded slopes that are interpreted as the 
change in the number of arthropods in units of standard deviation 
per unit scaled time that in turn could be used to search for general 
patterns of decline compared across species, datasets and sites.

Results and discussion
We found that some arthropod taxa at some sites declined in abun-
dance through the course of their time series, while at other sites a 
preponderance of taxa increased or there was no clear trend towards 
increasing or decreasing abundance (Fig. 2a). For most datasets, the 

median abundance change through time was modest, lying within 
1.6 standard deviations of zero net difference (Fig. 2a). Across all 
5,375 time series, 1,738 (~32%) exhibited decreases greater than 
one standard deviation, 1,303 (24%) exhibited increases greater 
than one standard deviation and 2,334 (43%) did not change by 
more than one standard deviation. In terms of net percent change 
per year, 2,319 (43%) and 1,665 (~31%) trends exhibited decreases 
and increases greater than 1%, respectively, while 1,047 (19%) and 
619 (12%) trends exhibited decreases and increases greater than 
5%, respectively. Consistent with this, the average abundance trend 
across LTER sites broadly overlapped with zero (Fig. 2b). These 
patterns were similar when separating taxa into aquatic versus ter-
restrial arthropods (Fig. 2a) or when separately examining feeding 
guilds (herbivores, carnivores, omnivores, detritivores, parasites or 
parasitoids; Extended Data Fig. 1). Comparison of time series from 
sites within clearly anthropogenic landscapes with those within 
more natural sites suggests no overall trend of increase or decline 
or difference for either broad disturbance category (Fig. 2a). Four 
LTER sites also collected time series for insectivorous birds, and 
three for fish (‘Methods’). We again saw no clear trend for increase 
or decrease through time among these vertebrates that likely rely, 
at least in part, on insect prey, though we note an increase in insec-
tivorous birds at the urban Baltimore site (Extended Data Fig. 2). 
Our findings were remarkably robust to whether we considered the 
time series in the meta-datasets that spanned four or more observa-
tions through time, those that spanned at least 8 yr, or only those 
that spanned 15 yr and exhibited minimal temporal autocorrela-
tion (Extended Data Fig. 3). In summary, we found no evidence 
of precipitous and widespread insect abundance declines in North 
America akin to those reported from some sites in Europe5,6,8,10,12. 
Rather, our results were broadly similar to reports for insects and 
other taxa, where ‘winners’ roughly counterbalanced ‘losers’29. The 
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lack of a clear, overall directional change in abundances was seen 
across habitats and feeding guilds and appeared to extend to verte-
brate arthropodivores.

We examined changes in the number of species present (spe-
cies richness), in the equitability of relative abundances of species 
(species evenness) and in species composition (β diversity, per site 
over time) for nine LTERs that reported time series for more than 
eight unambiguously identified arthropod taxa (‘Methods’). For 
each time series of each diversity metric, we used the same autore-
gressive model fitting procedure as for abundance, yielding slopes 
that are interpreted as change in the diversity (richness, evenness 
and β diversity) of arthropods in units of standard deviation per 
unit scaled time. Degradation of species richness and evenness is 
known to diminish the delivery of critical insect-derived ecosys-
tem services30–32, while high turnover of species composition can 
accompany non-native species invasions and rapid environmental 
change33. We found that while species richness (Fig. 3a), evenness 

(Fig. 3b) and β diversity (Fig. 3c) variously increased, decreased 
or were unchanged through time at different LTERs, the degree 
of change at most sites was relatively modest and the overall mean 
trends across sites broadly overlapped with zero (Fig. 3). Of the 63 
trends in species richness (rarefied), 15 (~24%) decreased by more 
than one standard deviation, 22 (~35%) increased by more than one 
standard deviation, and 26 (~41%) did not change by more than one 
standard deviation. Among trends in species evenness, 16 (~25%) 
were decreasing, 20 (~32%) were increasing, and 27 (~43%) did not 
change. Of trends in β diversity, 14 (~22%) were decreasing (that 
is, tending to become more similar over time), 34 (~54%) were 
increasing (that is, tending to become more dissimilar over time), 
and 15 (~24%) did not change.

Several possible explanations for the apparent overall robustness 
of US arthropod populations at the LTERs were considered. A par-
ticularly comprehensive study in Germany, spanning from 2008 to 
2017, found the steepest arthropod declines in the landscapes most 
intensively affected by human activity12, although this relation-
ship is not consistent even across European studies (for example, 
refs. 5,22). While the majority of LTER sites are located in areas of 
low human population density, more than half of the time series 
in our meta-dataset were for urban insects in Phoenix, Arizona, 
mosquitoes in Baltimore, Maryland and aphids across the heav-
ily farmed US Midwest, all of which showed unchanged or slightly 
increasing overall insect densities, species richness and/or even-
ness broadly consistent with the less disturbed sites (Figs. 2 and 3). 
We also did not find an association between a measure of human 
impact (Human Footprint Index27) and time trends among LTER 
sites using random forests analysis (Extended Data Figs. 4 and 5). 
Indeed, none of the variables included in the random forests analy-
sis (temperature, precipitation, LTER or start year) could reliably 
predict the direction or magnitude of abundance trends (Extended 
Data Figs. 4 and 5). A second possibility is that our meta-dataset 
included some time series that ended a decade or more ago, perhaps 
predating and masking declines that accelerated only recently12. 
However, when we divided our time series into relatively old (pre-
dating 1990) or new blocks (decades between 1990 and 2019), we 
did not see any detectable change in trends through time (Extended 
Data Fig. 6). Our meta-dataset has notable strength in that it spans 
several different ecoregions that are widely dispersed at a continen-
tal scale and includes species that occupy distinct habitats and with 
different ecological roles. Overall, our findings are most consistent 
with those European studies reporting decreasing insect numbers 
for some taxa at some sites, counterbalanced by gains or relative 
stability elsewhere29, rather than providing any clear indication of 
widespread decline.

Recently, van Klink et al.25 reported total abundance and/or 
biomass trends for insects and arachnids from 166 studies around 
the world, spanning as far back as 1925. This impressive dataset 
suggests that, globally, over the last century terrestrial insects have 
been steadily declining while aquatic insects have been increasing. 
They found that these trends were strongest in the US Midwest, 
with terrestrial declines and aquatic increases there the stron-
gest contributor to overall global patterns25. In stark contrast, we 
found little consistent degradation of arthropod communities 
for this same region, despite sharing several LTER sites in com-
mon. Comparison of the two studies suggests several possible 
reasons for this apparent discrepancy. First, four of the five LTER 
sites included here but not in van Klink et al.25 report increasing 
arthropod abundances (Supplementary Table 2), partly counter-
balancing decreasing abundances found at sites included in both 
studies. Second, measures of total abundance across species can 
give particular weight to a relatively small number of numeri-
cally dominant species. For example, for Konza Prairie grasshop-
pers, total grasshopper abundance decreases when species are 
pooled17, but this pattern is driven by falling numbers of just two 
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once-dominant species, Phoetaliotes nebrascensis and Orphulella 
speciosa, whereas many other formerly rare species have become 
more abundant and both evenness and species richness have 
increased (Figs. 3 and 4a). Likewise, declining total abundance 
among Midwest aphids reflects dropping numbers of two inva-
sive (Aphis glycines and Rhopalosiphum maidis) and one native 
(Rhopalosiphum padi) agricultural pest species, whereas changes 
in abundance of the many other aphid species were variable and 
minor in comparison (Fig. 4b). This pattern highlights the value 
of reporting multiple biodiversity and abundance metrics and 
analysing trends at fine taxonomic level (this study) versus broad 
abundance measurements8,9,25 to gain a more comprehensive pic-
ture of overall ecological health. Similarly, species richness loss was 
sometimes accompanied by gains in evenness (Extended Data Fig. 
7; one Cedar Creek sweep net and two Midwest farmland sam-
pling points) or vice versa (Extended Data Fig. 7; Arctic stream 
insects, Cedar Creek grasshoppers, Harvard Forest ants and three 
Midwest farmland sampling points), indicating that degradation 
in one aspect of biodiversity does not necessarily mean a wholesale 
decline. Finally, the coverage of the LTER data is greatest only in 
the last few decades, a period where van Klink et al.25 found attenu-
ation of the stronger trends seen in earlier time series.

On the surface, our finding of no overall net change in arthropod 
abundance and biodiversity may seem reassuring, but reasons for 

concern remain. Particular insect species that we rely on for the key 
ecosystem services of pollination, natural pest control and decom-
position remain unambiguously in decline in North America14,34–36. 
We know that shifts in species composition can impact ecosystem 
function even when overall biodiversity and abundance remain 
unchanged37. Indeed, at least two of the LTER sites were dominated 
by relatively recently arrived invasive species: soybean aphid (Aphis 
glycines), which has been a major component of Midwest aphid 
communities (though note the increasing numerical dominance of 
the native bird cherry-oat aphid, Rhopalosiphum padi), and Asian 
tiger mosquito (Aedes albopictus), which is found in the Baltimore, 
Maryland mosquitoes data (Fig. 5a,b). Yet, the changes in the abun-
dance of these invasive species mirrored large fluctuations in native 
species within less disturbed sites (Fig. 5c,d), and their net effects 
on the structure of surrounding arthropod communities, if any, 
remain unclear. Changes in food web structure can also have impor-
tant ecosystem consequences30, and the LTER data did not include 
information on trophic connections. Finally, several sites showed 
declines in abundance and biodiversity through time (for example, 
ground-dwelling arthropods at the southwest desert Sevilleta site; 
Figs. 2 and 3) that may indicate worrying ecological degradation 
at those particular locations. We note, however, that recent trends 
might obscure past population fluctuations or even increases, as has 
been found in deeper time series22.
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There is no doubt that the near-wholesale conversion of 
Midwestern US prairies to agricultural fields has dramatically 
altered insect communities. For example, North American tallgrass 
prairies have been reduced over 90% in the last 150 years38, certainly 
reducing the abundance of arthropods in these habitats on a conti-
nental scale. Yet, at a protected tallgrass site in the Flint Hills (the 
largest block of surviving tallgrass prairie), we found that arthropod 
species did not show dramatic losses, a pattern indicative of local 
stability (but see ref. 17). The emerging ‘insect apocalypse’ narra-
tive focuses on a recent, sudden and dramatic degradation of insect 
communities that compounds past changes that probably occurred 
during past habitat conversion. For the sites we studied though, this 
degradation was not apparent.

Separating natural year-to-year density variation from that driven 
by emerging human impacts is a challenge for many species of con-
servation concern39 but is particularly daunting for arthropods with 
relatively high species and functional diversity and high reproduc-
tive potential. After all, insects can undergo dramatic increases and 
declines through time among particular taxa at particular sites even 
without new human-derived drivers40. Vigilance against emerging 
broad declines will benefit from expansive monitoring networks 
that collect environmental data and welcome contributions from 
citizen scientists (for example, refs. 41,42), greater monitoring of 
arthropod communities outside of Europe14, a broader search for 
historical descriptions of insect communities at spatially dispersed 

and ecologically different sites that can be resampled (for exam-
ple, ref. 43) and an improved theoretical understanding of how to 
definitively isolate changes in the underlying causes of population 
dynamics (for example, ref. 40). These components will be needed 
to decide between relatively focused conservation schemes aimed at 
particular at-risk species or sites versus the need for much broader 
socio-environmental change at a global scale, when seeking to 
maintain robust insect communities44.

The recent avalanche of studies reinforcing or critiquing the 
‘insect apocalypse’ narrative echoes a broader discussion about 
global biodiversity change and ecosystem functioning45, which is 
itself contentious23,24. Despite agreement that Anthropocene forces 
threaten biodiversity, evidence of wholesale declines remains elu-
sive21,46–48. Sceptics of biodiversity meta-analyses argue that conclu-
sions of no net biodiversity change are reached because available 
data are neither globally representative nor of sufficient duration to 
refute the axiom of global biodiversity declines23. While acknowl-
edging the need for more spatiotemporally extensive biodiversity 
monitoring, we contend that timely, cautious interpretations of 
findings from imperfect data will be more fruitful than dismissing 
them altogether. Our synthesis of US LTER arthropod trends shares 
many weaknesses with previous datasets, but the broad representa-
tion of taxa, habitats, feeding guilds and sampling methods makes 
our data well suited to detect any broad decline in arthropod biodi-
versity. Though the implications of species turnover for ecosystem 
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services remain to be examined, our data clearly indicate no evi-
dence of wholesale declines in arthropod abundance and diversity 
in the United States.

Methods
Data sources. We visited the website of each of the US National Science 
Foundation’s LTER sites to search for publicly available data files reporting the 
tracking of arthropod populations through time. When collecting these data, we 
did not discriminate based on taxa, type of study or study methods, though we 
excluded studies outside of North America (for example, Antarctica). We included 
studies that were terrestrial, freshwater and estuarine, but excluded exclusively 
marine studies. Source data varied widely in their formats, including, for example, 
grasshoppers per sweep in Konza Prairie (Kansas), ground arthropods per pitfall 
trap in Sevilleta desert/grassland (New Mexico), mosquito larvae per ovitrap in 
Baltimore (Maryland), pelagic macroinvertebrates per tow and crayfish per fyke 
net in North Temperate Lakes (Wisconsin), crab burrows per quadrat in Georgia 
Coastal Ecosystems, ticks per person/hour in Harvard Forest (Massachusetts), 
caterpillars per plot in Hubbard Brook (New Hampshire), arthropods per pitfall 
and sweep net in Phoenix (Arizona) and stream insects per rock scrub in the Arctic 
(Alaska) (Table 1). We acknowledge that some datasets, such as Harvard Forest 
ticks, Konza Prairie gall insects and Georgia Coastal Ecosystems crab burrows, 
more directly measure arthropod activity, but they are nonetheless included in our 
abundance time series meta-dataset. In addition, data on aphid abundance in the 
Midwest from 2006 to 2019 were obtained from the Suction Trap Network website 
(https://suctiontrapnetwork.org/), which is supported by the University of Georgia 
Center for Invasive Species and Ecosystem Health (‘Bugwood Center’) as part of 
the Southern IPM Center’s IPM Information Supplement funded by the United 
States Department of Agriculture National Institute of Food and Agriculture. 
The Midwest Suction Trap Network included data from an additional 46 sites 
representing 11 Midwestern states. This trap network documented 152 aphid 
species as of 202049, 82 of which were identified consistently over time among 
sampling points that met our inclusion criteria. We refer to these data as ‘Midwest 
farmland’ throughout.

Source data included various inconsistencies, for example, in how a single 
species’ name was designated. To create a single data file with consistent formatting 
for analysis, we processed each data file in R 3.6.250, used automated workflows 
to identify and correct inconsistencies/errors, and extracted a consistent set 
of variables (species/taxon code, site/sampling method, year and abundance/
count) for estimation of abundance time trends, calculation of diversity metrics 
and estimation of diversity time trends (‘Analysis’). We combined data for each 
arthropod species across sampling points within LTERs if sampling methods were 
consistent and if the arthropods inhabiting sample points could reasonably be 
considered a single population or meta-population, such that we could obtain one 
trend per species per site. Summing arthropod abundances across sample points 
minimized non-independence of species counts within LTERs and improved 
estimates of trends in species abundance over time. Two LTER databases (Harvard 
Forest and North Temperate Lakes) contained data from sample points that utilized 
different collection methods (for example, pitfall trap versus litter bag); in these 
cases, we treated species abundance according to each method as separate time 
series. Because abundance data were ultimately natural log- and Z-transformed and 
used to estimate time trends measured in units of standard deviation (‘Analysis’), 
we did not standardize reported arthropod abundances by sampling effort. Indeed, 
due to the variability in how source data were reported (Supplementary Table 
1), arriving at comparable, sampling effort-standardized measures of arthropod 
abundance among LTERs would not be possible.

In total, arthropod data curation compiled 82,777 arthropod observations 
from 68 sample points, yielding 6,501 abundance time series; 4,310 time series 
came from 12 LTERs (and from a total of 22 sample points within these LTERs; 
Supplementary Table 1), and 2,191 time series came from 46 sample points within 
Midwest farmland. However, we present results from analyses with 5,375 species 
time series (3,250 from LTERs and 2,125 from the Midwest farmland) that meet 
our criteria for inclusion in the study (‘Analysisrsquo; and Supplementary Table 
1). Curated data on arthropod abundances and time trends (‘Analysis’) as well as 
R code that can be used to replicate our data curation and analysis are available at 
Dryad (https://doi.org/10.5061/dryad.cc2fqz645).

We also utilized bird and fish community samples that were taken in 
association with (that is, found in the same general location of) arthropod 
samples. These data were available from four LTER sites for birds and three sites 
for fish, representing 775 and 171 species time series, respectively. Our goal was 
to determine whether birds and fish, organisms that often feed on arthropods, 
exhibited density changes alongside any found for local arthropods.

Data classification. Using literature searches, we classified each arthropod species 
within each study according to taxonomic classification (order level), habitat 
(aquatic or terrestrial) and feeding guild. Many insects have both an aquatic and 
terrestrial stage of development, creating a complexity in how to classify their 
habitat and, in many cases, their feeding guild. We therefore classified each species 
according to the habitat from which the specimen was collected (for example, 

dragonflies reported from sweep-net sampling of prairie plants were classified 
as terrestrial). For feeding guilds, we assigned each species one of the following: 
herbivore, carnivore, detritivore, omnivore, parasitoid and parasite (or ‘none’ if the 
life stage collected does not feed). As in the habitat classification, we also classified 
feeding by the habitat-specific stage collected. For example, Chironomidae adults 
collected in a terrestrial study would have feeding classified as ‘herbivore’ since 
many are nectarivorous (or none for some species), while the larvae collected in 
an aquatic study would have feeding classified as ‘omnivore’ (unless there was a 
different species-specific feeding strategy). Feeding guild assignments were based 
on their general feeding behaviour, and we recognize that in some cases there could 
be debate about our assignments.

For birds, all species that are obligate or facultative arthropodivores 
(insectivores and/or crustaceovore51) were included in the analysis (n = 50). Birds 
that do not typically feed on arthropods were excluded. Fish are highly variable 
in their feeding, depending on life stage, so we did not exclude any fish species 
from the population analysis. Changes in bird and fish abundance over time were 
estimated using the same procedure as for arthropods (‘Analysis’).

Analysis. For each taxon time series, we estimated a temporal trend using an 
autoregressive model fit using restricted maximum likelihood52. Before fitting 
models, we scaled time such that the distance between consecutive years was 
equal and spanned 0 to 1, and we Z-transformed the natural log of species counts. 
Resulting trends can be interpreted as the change in species abundance in standard 
deviations per unit scaled time. Our autoregressive models also estimated the 
temporal autocorrelation coefficient, b, which was used to remove time series 
whose trends could not be well estimated due to high temporal autocorrelation. 
We filtered time series based on three levels of stringency in quality criteria, and 
examined whether our degree of filtering stringency altered median trends among 
LTER sites. Our relaxed criteria required at least four years of counts, one of which 
had to be non-zero (n = 5,328 out of 6,501 trends remained). Moderate criteria 
required at least 8 years of counts, of which 4 had to be non-zero (n = 2,266 trends 
remained). Strict criteria required at least 15 years of counts, of which 10 had to 
be non-zero, and that temporal autocorrelation be <1 (n = 308 trends remained). 
Because LTER site median time trends were insensitive to filtering stringency by 
these criteria (Extended Data Fig. 3), we present results from the relaxed criteria 
that retained abundance time trends for the most taxa and that were most inclusive 
of large trends. We present overall patterns in time trends among LTERs and 
sample points within LTERs in terms of percentiles. Because Midwest farmland 
spanned several ecoregions, we further separate aphid abundance trends from this 
dataset by ecoregion (Extended Data Fig. 8). We use a one-sample T test (using 
the t.test R function) to test whether mean trends among LTERs are different 
from zero at α = 5%. For this analysis, we grouped datasets by LTER (d.f. = 12) 
or site–taxa group (d.f. = 22) (Table 1). We note that no means were significantly 
different from zero at α = 5% (Supplementary Table 1). To represent trends in 
terms of net percent change per year, we regressed log10-transformed abundance 
on year (scaled between 0 and the length of the time series); because the slope of 
this regression represents proportional change, we calculated percent change as the 
slope multiplied by 100.

We evaluated the importance of LTER and taxon attributes in predicting the 
direction and magnitude of time trends using random forests analysis53. Random 
forests analysis uses machine learning to classify observations according to 
suites of associated variables and attempts to minimize the classification error by 
integrating outcomes across many decision trees. Relevant to our analysis, the 
importance of variables for increasing prediction accuracy can then be assessed. 
Predictor variables in our analysis included taxon attributes (feeding guild and 
terrestrial/aquatic habitat) and LTER attributes (LTER, start year, mean annual 
temperature (1970–2000), mean cumulative annual precipitation (1970–2000) 
and Human Footprint Index (average of data in available years between 1993 and 
2009)). Temperature and precipitation variables were obtained from WorldClim 
climate rasters54, and the Human Footprint Index was obtained from Venter 
et al.55,56; values were associated with LTERs by averaging raster pixel values 
that were within 10 km of the LTER central coordinates (External Database S3). 
Comparison of the distribution of Human Footprint Index values across the United 
States with the distribution of values among LTER sites suggests that LTER sites 
span a range levels of human disturbance (Extended Data Fig. 9). The response 
variable was the slope of time trends, treated as a continuous variable (n = 5,328) 
or as categorically high versus low (magnitude of slope exceeding two standard 
deviations per unit scaled time; n = 1,318). We trained the random forests classifier 
with a random sample of half of the time trends. Decision trees were constrained 
to use five of the seven predictor variables. The random forests algorithm was 
implemented using the randomForest R package57. The importance of predictor 
variables was then assessed by examining the decrease in prediction accuracy 
(increase in mean square error) when a variable was excluded from decision 
trees. Results from this analysis suggested that the start year of time series best 
predicted whether a trend was increasing or decreasing, improving the random 
forests prediction accuracy threefold more than other predictors (feeding guild, 
terrestrial/aquatic habitat, LTER, mean annual temperature, cumulative annual 
precipitation and Human Footprint Index), none of which appreciably increased 
prediction accuracy (Extended Data Figs. 4 and 5). This result was consistent 
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whether random forests were predicting time trends as a continuous or categorical 
variable (considered strongly increasing or decreasing if the change in abundance 
was greater than two standard deviations per unit scaled time). Examination of 
arthropod abundance time trends along a gradient of starting years, however, 
revealed no consistent directional effect of starting year (Extended Data Fig. 4). In 
addition, predictor variables together only explained 19% of the variance in time 
trends, and prediction error rates were as high as 36%, suggesting that the random 
forests classifier could not reliably predict the magnitude or direction of arthropod 
abundance time trends.

Because our meta-dataset included some time series that ended a decade 
or more ago and potentially predated or masked declines that accelerated only 
recently, we compared abundance trends among LTER sites where sampling start 
years were earlier than 1990, spanned 1990–2000, spanned 2000–2010, or were 
after 2010. Still, average abundance trends did not differ significantly from zero at 
α = 5% (Extended Data Fig. 6). Results were the same when trends were grouped 
according to final sampling years (except that no final sampling years predated 
1990) (Supplementary Table 3).

We estimated taxa richness, evenness and β diversity, per LTER that had at 
least nine unambiguously identified taxa reported over the course of the study 
(n = 9). Rarefied taxa richness (S′) was estimated using the rarefy function in the 
vegan R package58, and evenness was calculated using Pielou’s Evenness Index. To 
check the consistency of richness and evenness metrics, we calculated dominance 
as the proportional abundance of the most abundant taxon at a site in a given 
year (Extended Data Fig. 7). We calculated β diversity (differentiation in species 
composition) per LTER over time using three metrics: Jaccard59, β−2 (ref. 60) and 
Bray–Curtis distance61,62. Jaccard and β−2 use presence/absence data and differ in 
their sensitivity to species gain or loss: Jaccard considers only the proportion of 
species shared between communities, whereas β−2 incorporates information about 
the proportion of species that are unique to either community62. Bray–Curtis 
distance is a multivariate measure of β diversity, incorporating species abundance 
data. We calculated β diversity indices using the ‘betadiver’ and ‘vegdist’ functions 
in the vegan R package. Differences in β diversity results were slight (Extended 
Data Fig. 10), and results with the Jaccard index are presented (Fig. 3c). Changes 
in diversity over time were assessed using the same autoregressive model fitting 
approach as was used for species abundance.

To test whether changes in richness, evenness and β diversity were associated 
with increases in invasive species, we generated species rank abundance curves 
(sensu ref. 12) and identified species whose abundance increased (or decreased) 
over the course of each time series, specifically focusing on species whose relative 
abundance changed substantially in the last two years compared with the first two 
years of each study (only studies with >4 years were included in this analysis). We 
focused on taxa exhibiting substantial changes in the beginning and end of each 
study to examine whether invasive taxa were becoming dominant (potentially at 
the expense of native taxa) or whether generalists were replacing specialists. We did 
not see evidence of increasing dominance of invasive taxa, though generalists were 
among the most abundant taxa at some sites (for example, Fig. 4c).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study (curated arthropod abundances 
and estimated time trends) are available at the Dryad Data Repository (https://doi.
org/10.5061/dryad.cc2fqz645).

Code availability
The R code used to curate and analyse data are available at the Dryad Data 
Repository (https://doi.org/10.5061/dryad.cc2fqz645).
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Extended Data Fig. 1 | Time trends in abundance of arthropod feeding groups among LTERs. (a) herbivores, (b) carnivores, (c) omnivores, (d) 
detritivores, (e) parasites, and (f) parasitoids. Right panels depict average change in diversity metrics and 95% confidence intervals among LTERs. Blue 
shading and font indicate LTER sites reporting aquatic taxa.

Nature Ecology & EvolutIon | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaTURE EcologY & EvolUTion ArticlesNaTURE EcologY & EvolUTion

Extended Data Fig. 2 | Time trends in insectivorous bird (a) and fish (b) abundance among LTERs. Boxplots depict medians (thick line), 25th and 75th 
percentiles (box edges), 95th percentiles (whiskers), and outliers (circles).
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Extended Data Fig. 3 | Sensitivity analysis on stringency of time series quality filtering. Abundance trends of all taxa under (a) moderate vs. relaxed 
time series filtering criteria and (b) strict vs. moderate filtering criteria. (c) Boxplots of abundance trends under relaxed, moderate, and strict timer 
series filtering criteria. Relaxed criteria required at least four years of counts, one of which had to be non-zero (n = 5,328 out of 6,501 trends remained). 
Moderate criteria required at least eight years of counts, of which four had to be non-zero (n = 2,266 trends remained). Strict criteria required at least 15 
years of counts, of which 10 had to be non-zero, and that temporal autocorrelation be < 1 (n = 308 trends remained).
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Extended Data Fig. 4 | Explanatory variables overlaid on (sorted) time trends in arthropod abundance among LTERs. (a) Start year of LTER site 
sampling. (b) Human Footprint Index associated with LTER site. The average HFI value for locations within the US is 7; LTER sites ranged from 1 to 38. (c) 
Mean annual temperature at LTER sites. (d) Mean cumulative annual precipitation at LTER sites.
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Extended Data Fig. 5 | Importance of explanatory variables in predicting time trends of arthropod abundance. Contribution of each variable to the 
accuracy of the Random Forests classifier, defined as the percent increase in Mean Square Error (decrease in accuracy) when the variable was excluded 
from decision trees.
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Extended Data Fig. 6 | Time trends in arthropod abundance, average among studies with similar start years. Abundance trends are averaged among 
LTERs where sampling start years were earlier than 1990, spanned 1990–2000, spanned 2000–2010, or were after 2010. Results were the same when 
trends were grouped according to final sampling years (except that no final sampling years predated 1990).
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Extended Data Fig. 7 | Relationships among temporal trends in α diversity metrics. Dots represent the change over time of a diversity metric at an LTER 
site. Species evenness was calculated as Pielou’s Evenness Index, and dominance represents the proportional frequency of the most abundant taxon. 
Light gray lines divide each plot into quadrants to help visualize sites where the sign of change in diversity metrics was similar (top right, bottom left) or 
opposite (top left, bottom right). Black dashes denote the line of best fit. Slopes are significant at the α = 5% level, R2 = 0.36 for evenness vs. richness, and 
R2 = 0.68 for evenness vs. dominance.
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Extended Data Fig. 8 | Time trends in Midwest Farmland aphid abundance 2006–2019. Left panel depicts abundance trends separated by ecoregion level 
I. Right panel depicts abundance trends separated by ecoregion level II. Boxplots depict quantiles among LTER sites. Boxplots depict trends among insects 
as medians (thick line), 25th and 75th percentiles (box edges), 95th percentiles (whiskers), and outliers (circles).
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Extended Data Fig. 9 | Human Footprint Index values in the USA (left panel) and among LTER sites (right panel).

Nature Ecology & EvolutIon | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaTURE EcologY & EvolUTion ArticlesNaTURE EcologY & EvolUTion

Extended Data Fig. 10 | Relationships among temporal trends in β diversity metrics. Dots represent the change over time of a diversity metric at an LTER 
site. The grey dashed line denotes the 1:1 line.
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