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Abstract— Trajectory following of autonomous vehicle is a
challenging task because of the multiple constraints imposed
on the plant. Therefore, Model Predictive Control (MPC) is
becoming prevail in vehicle motion control as it can explicitly
handle system constraints. However, MPC, grounded in real-time
iterative optimization, entails a considerable computational bur-
den for current electronic control units. To mitigate the MPC
execution load, a popular strategy is to linearize the original
(nonlinear) system around the current working point and then
design a Linear Time-Varying MPC (LTVMPC). Nevertheless,
the successive linearization introduces extra modeling errors,
which may impair the control performance. Indeed, if the plant
model satisfies the ‘differential flatness’ condition, it can be
exactly linearized to the Brunovsky’s canonical form. In contrast
to the LTV model, this newly appeared linear form reserves
all the nonlinear features of the native plant model. Based
on this equivalent linear system, a Flatness Model Predictive
Controller (FMPC) can be formulated. FMPC on the one hand,
improves the control performance over an LTVMPC because
it avoids extra modeling errors from the local linearization.
On the other hand, it entails a much lighter computational load
versus a nonlinear MPC thanks to its linear nature. Real-time
simulations conducted on a hardware-in-the-loop system indicate
the advantages of the proposed FMPC in autonomous vehicle
trajectory following.

Index Terms— Autonomous vehicle, differential flatness, model
predictive control, trajectory following.

I. INTRODUCTION

AS A technique to systematically handle constraints,
Model Predictive Control (MPC) has been commonly

used for ground vehicle motion control [1], [2]. However,
the iterative online optimization of MPC imposes a heavy com-
putational burden on the vehicular embedded computing units.
To shorten the MPC execution time and avoid overrun, several
methods [3] have been proposed such as the high-efficiency
optimization solvers [4], [5], and the ‘moving block’ tech-
nique [6]. Further, an explicit MPC [7] was proposed to sepa-
rate the calculation-extensive optimization from the fast online
optimal result search. Among all the existing computation-
burden-alleviation strategies, Linear Time-Varying Model Pre-
dictive Controller (LTVMPC) arguably constitutes the most
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popular option [2], [8]. LTVMPC successively linearizes the
original (nonlinear) system around the current working point
and converts a nonlinear optimization problem into a Quadratic
Programming (QP) problem, which can be solved with QP
solvers [9], [10]. However, the local linearization of LTVMPC
brings additional approximation errors, which affect its control
performance.
In contrast to the local linearization, a differentially flat

system [11] can be exactly linearized by using the flat out-
put, and the native nonlinear system can be expressed as
an equivalent linear one in its Brunovsky’s canonical form.
However, it remains hard to include system constraints into
the flatness controller design. Existing non-optimization-based
methods focus on designing special reference trajectory of the
flat output for handling the input constraints [12]. Rather, com-
bining differential flatness with MPC may treat the plant con-
straints systematically. The resulting Flatness Model Predictive
Controller (FMPC) inherits the light computational burden of
LTVMPC and maintains the high control performance of non-
linear MPC (NMPC) as no local linearization error is involved.
There exist several control structures in the literature inte-

grating differential flatness with predictive control. A flat-
ness predictive controller was illustrated in [13], where the
predicted flat output was used to determine the feedforward
control, and a simple feedback controller was included for
disturbance and modeling error rejection. The differential
flatness property of an aerial vehicle was exploited in [14] to
generate the referential state trajectories from the desired flat
output. Then, an MPC was utilized for tracking the referential
state. In [15] and [16], system inputs and states were firstly
parameterized as functions of the flat output and the flat output
itself was further expressed as a linear combination of basic
functions. Accordingly, the original optimization problem was
transformed into a Nonlinear Programming (NLP). However,
as indicated in [15], it is indeed difficult to prove that NLP
leads to the global optima. Moreover, the computing period
of an NLP can be even longer than resolving a QP-based
MPC [16]. Similar to this paper, applying MPC on an equiv-
alent linear flat system can be found in [17] and [18]. The
nonlinear plant model was first converted into its Brunovsky’s
canonical form. Next, an MPC on the basis of this Linear
Time-Invariant (LTI) model was established to obtain the
optimal flat inputs and states, from which the control of the
primary system was decided.
This paper proposes an FMPC for autonomous vehicle

trajectory following. A new kinodynamic vehicle model
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Fig. 1. Kinodynamic trajectory following model schematic diagram.

is developed, and its differential flatness property is proved.
Subsequently, a high-level FMPC is designed for calculating
the vehicle’s global longitudinal force, lateral force, and yaw
moment. Afterward, a simple control allocation algorithm
is employed to allocate the high-level forces and moment
into four wheels’ steering and spinning torques. We assume
that the autonomous vehicle is both four-wheel-independent
driven (4WID) and four-wheel-independent steered (4WIS)
with in-wheel motors and steering-by-wheel systems. The
spinning torque of each wheel can be individually regulated,
which can be positive (driving torque) or negative (braking
torque). The advantages of the proposed FMPC over an
LTVMPC and an NMPC are shown through Hardware-in-
the-Loop (HIL) real-time simulations.
The rest of this paper is organized as follows. The vehicle

kinodynamic model for trajectory following is illustrated in
Section II. The differential flatness property of this new model
is then proved in Section III. Thereafter, the global forces and
moment generation from either an LTVMPC, an NMPC, or the
FMPC is illustrated in Section IV, where the control allocation
module is also mentioned. HIL simulation setup and results are
presented in Section V, and Section VI concludes this paper.

II. KINODYNAMIC TRAJECTORY FOLLOWING MODEL

Unifying the linear tracking-error kinematics and the vehicle
dynamics in [19], a nonlinear kinodynamic model diagram for
ground vehicle trajectory following is shown in Fig. 1.
This model contains five states as:

x = [
ẽ ψ̃ ṽ vy γ

]
. (1)

In (1), ẽ represents the minimum distance between the vehi-
cle’s Center of Gravity (CG) and the centerline of the reference
path. ψ̃ indicates the vehicle yaw error with respect to the
desired vehicle heading: ψr

p (s)+ψr
pv (s) , where ψr

p (s) stands
for the referent path direction and ψr

pv (s) accounts for the
turning vehicle sideslip amendment [20]. ṽ is the velocity
tracking error in regard to the desired tangential speed along
the referential path: vr (s) . Finally, vy specifies the vehicle
lateral speed at CG and γ indicates the vehicle yaw rate.
External signals ψr

p (s), ψr
pv (s), and vr (s), are functions of

the station s, which is the arc-length traveled by the car along
the referential path centerline. We assume that there exists a
planning module for generating both the desired trajectory and
the corresponding external signals.

Remark 1: Longitudinal velocity vx , though not included in
the states x , is assumed a known variable for computing ṽ .

In addition, the system admits three inputs, as:
u = [

Fx Fy Mz
]
, (2)

where Fx and Fy represent the vehicle’s global longitudinal
and lateral force, and Mz indicates the global yaw moment
around CG.
According to Fig. 1, we can directly express the first-order

derivative of ẽ as:
˙̃e = vx sin

(
ψ̃ + ψr

pv (s)
)

+ vy cos
(
ψ̃ + ψr

pv (s)
)
. (3)

Also, vehicle yaw error can be calculated as:
ψ̃ = ψ −

(
ψr

p (s) + ψr
pv (s)

)
. (4)

By treating ψr
pv (s) as the steady-state sideslip angle [21],

we obtain:
ψr

pv (s) = −lrκr (s) + ml f vr (s)2 κr (s)

2Cy
(
l f + lr

) . (5)

In (5), l f and lr respectively represent the distance from
vehicle CG to the front and rear axle, m indicates the vehicle
mass, Cy symbolizes the cornering stiffness of a single tire,
and κr (s) is the curvature of the desired path. Eq. (5) is derived
on the basis of the linear tire model and the small sideslip
angle assumption, which holds true for general steady-state
turning.
From (4), we have naturally,

˙̃ψ = γ −
(

∂ψr
p (s)

∂s
+ ∂ψr

pv (s)

∂s

)
(ṽ + vr (s)), (6)

as we define:
ṽ = ṡ − vr (s). (7)

In practice, we can assume ẽ � 1/κr (s). Then, ṡ in (7) is
approximated as:

ṡ ≈ vx cos
(
ψ̃ + ψr

pv (s)
)

− vy sin
(
ψ̃ + ψr

pv (s)
)
. (8)

Based on (7) and (8), the first-order derivative of ṽcan be
computed as:
˙̃v = Fx

m
cos

(
ψ̃ + ψr

pv (s)
)

− Fy

m
sin

(
ψ̃ + ψr

pv (s)
)

+ ∂ψr
p (s)

∂s
(ṽ + vr (s)) ˙̃e − ∂vr (s)

∂s
(ṽ + vr (s)), (9)

where ˙̃e is expressed in (3).
Finally, the lateral dynamics of the vehicle can be

summarized as:
v̇y = Fy/m − vxγ, (10)

and

γ̇ = Mz/Iz, (11)

where Iz is vehicle yaw inertia.
Equations (3), (6), (9), (10), and (11) constitute the complete

kinodynamic model for trajectory following.

III. DIFFERENTIAL FLATNESS PROPERTY PROOF

In this section, we will show that the kinodynamic model
in Section II is differentially flat.
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A. Differentially Flat System

A dynamic system ẋ = g (x, u) with x ∈ R
n, u ∈ R

m is
differentially flat [11] if it satisfies the following conditions:
a) There is a set of differentially independent variables η =(

η1 η2 . . . ηm
)
, which can be expressed as smooth

functions: η = p
(
x, u, u, . . . , u(r)

)
, r ∈ N.

b) Both system states x and inputs u can be expressed
as smooth functions of η and its finite-order deriv-
atives. In other words, x = �

(
η, η̇, . . . , η( j )

)
,

u = �
(
η, η̇, . . . , η( j+1)), j ∈ N.

c) The following equations hold:
d�

(
η,η̇,...,η( j)

)
dt =

g
(
�

(
η, η̇, . . . , η( j )

)
, �

(
η, η̇, . . . , η( j+1)) )

.

The variable set η is called the ‘flat output’, which has the
same dimension as the system inputs u.

B. Differential Flatness Property of the Kinodynamic Model

According to the definition of differential flatness, we first
need to identify the flat output and then show that all the
system inputs and states can be expressed as functions of
the flat output and its finite-order derivatives. Here, we prove
that the kinodynamic system composed of equations (3), (6),
(9), (10), and (11) is differentially flat with the flat output as:
η = [

ẽ, ψ̃, ṽ
]
.

Proof: First of all, the three elements in η are differentially
independent, which means there does not exist a non-trivial
differential equation of the form �

(
η, η̇, . . .

) = 0. What is
more, η already includes three elements of x in (1). Therefore,
we only need to show that the rest two states vy , γ and the
three inputs Fx , Fy, Mz can be formulated as functions of η

and its finite-order derivatives.
Rearranging (6) gives the expression of γ as:

γ = ˙̃ψ +
(

∂ψr
p (s)

∂s
+ ∂ψr

pv (s)

∂s

)
(ṽ + vr (s)). (12)

By combining (3), (7), and (8), we are able to express the
vehicle lateral velocity as:
vy = ˙̃e cos

(
ψ̃ + ψr

pv (s)
)

− (ṽ + vr (s)) sin
(
ψ̃ + ψr

pv (s)
)
.

(13)

Subsequently, the second-order derivative of ẽ and ψ̃ can
be calculated as:
¨̃e = Fx

m
sin

(
ψ̃ + ψr

pv (s)
)

+ Fy

m
cos

(
ψ̃ + ψr

pv (s)
)

− ∂ψr
p (s)

∂s
(ṽ + vr (s))2, (14)

and

¨̃ψ = Mz

Iz
−

(
∂2ψr

p (s)

∂2s
+ ∂2ψr

pv (s)

∂2s

)
(ṽ + vr (s))2

−
(

∂ψr
p (s)

∂s
+ ∂ψr

pv (s)

∂s

) (
˙̃v + ∂vr (s)

∂s
(ṽ + vr (s))

)
,

(15)

where ˙̃v in (15) is defined in (9).
An in-depth examination of (9), (14), and (15) reveals that

the dynamic extension algorithm [22] is satisfied. As a result,

the kinodynamic model is indeed differentially flat. Literally,
the parameterization of the system inputs can be shown as:

Fx

m
= sin

(
ψ̃ + ψr

pv (s)
)(

¨̃e + ∂ψr
p (s)

∂s
(ṽ + vr (s))2

)

+ cos
(
ψ̃ + ψr

pv (s)
)(

˙̃v − ∂ψr
p (s)

∂s
(ṽ + vr (s)) ˙̃e

+ ∂vr (s)

∂s
(ṽ + vr (s))

)
, (16)

Fy

m
= cos

(
ψ̃ + ψr

pv (s)
)(

¨̃e + ∂ψr
p (s)

∂s
(ṽ + vr (s))2

)

+ sin
(
ψ̃ + ψr

pv (s)
)(

−˙̃v + ∂ψr
p (s)

∂s
(ṽ + vr (s)) ˙̃e

− ∂vr (s)

∂s
(ṽ + vr (s))

)
, (17)

and finally,

Mz

Iz
= ¨̃ψ +

(
∂2ψr

p (s)

∂2s
+ ∂2ψr

pv (s)

∂2s

)
(ṽ + vr (s))2

+
(

∂ψr
p (s)

∂s
+ ∂ψr

pv (s)

∂s

) (
˙̃v + ∂vr (s)

∂s
(ṽ + vr (s))

)
.

(18)

As stated in (12), (13), (16), (17), and (18), both the remain-
ing two states: vy, γ and all the system inputs: Fx , Fy , Mz can
be parameterized with η and its derivatives up to the second
order.

Remark 2: We have proved that the nonlinear kinodynamic
model composed by (3), (6), (9), (10), and (11) with inputs
u = [

Fx Fy Mz
]
and states x = [

ẽ ψ̃ ṽ vy γ
]
is

differentially flat with the flat output: η = [
ẽ, ψ̃, ṽ

]
.

However, the complicated tire-road friction forces, which in
general are modeled as nonlinear functions of the tire sideslip
angles and tire slip ratios, are not considered in this high-level
kinodynamic model. Therefore, even though the external sig-
nal ψr

pv (s) in (5) was derived on the basis of the linear tire
model and the small-angle assumption, it does not affect the
conclusion that the kinodynamic model is differentially flat.
For instance, if we simply assign ψr

pv (s) = 0, the differential
flatness property proof still holds.

C. Flatness Property Verification

To validate the proof in Section III-B, we can substitute the
Brunovsky’s feedback items:⎧⎪⎪⎨

⎪⎪⎩
˙̃v = ˙̃vr + Kv0 (ṽ − ṽr ),

¨̃e = ¨̃er + Ke1

( ˙̃e − ˙̃er

)
+ Ke0 (ẽ − ẽr ),

¨̃ψ = ¨̃ψr + Kψ1

( ˙̃ψ − ˙̃ψr

)
+ Kψ0

(
ψ̃ − ψ̃r

)
,

(19)

where

˙̃vr = ṽr =0; ¨̃er = ˙̃er = ẽr =0; ¨̃ψr = ˙̃ψr = ψ̃r =0, (20)

back to the parameterized system inputs in (16), (17), and (18),
and observe whether the flat output: ẽ, ψ̃ , and ṽ can be
stabilized. The simulation result is given in Fig. 2. The
feedback gains were fixed as: Kv0 = −10, Ke1 = Kψ1 = −20,
Ke0 = Kψ0 = −100.
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Fig. 2. Flat output stabilization and referential trajectory following.

Clearly, the flat output η = [
ẽ, ψ̃, ṽ

]
, which includes

the position tracking error ẽ, the yaw angle tracking error ψ̃ ,
and the velocity tracking error ṽ , quickly converges to zero.

Remark 3: The Brunovsky’s feedback control law in (19)
does not consider any system constraints.

IV. CONTROLLER DESIGN

As indicated in Section I, the controller has a hierarchical
structure. The higher-level MPC is responsible for generating
the global forces and moment:

[
Fx Fy Mz

]
for stabilizing

the flat output: η = [
ẽ, ψ̃, ṽ

]
.Then, a lower-level module

is used to allocate the global forces and moment into four
wheels’ steering and spinning torques.
In addition to the FMPC, an LTVMPC and an NMPC are

also conceived for comparison purpose.

A. Linear Time Varying Model Predictive Controller

The differentially flat kinodynamic model in Section II can
be compactly written as:{

ẋ = f (x, u),

y = x,
(21)

where the states x are explained in (1) and the system inputs
u are defined in (2).
System constraints for the LTVMPC can be listed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1,t = At xk,t + Bt uk,t + dk,t , k = t . . . t + Hp,

yk,t = xk,t , k = t . . . t + Hp,

−max (
vyt

) − ξvy ≤ vyk,t ≤ max
(
vyt

) + ξvy ,

k = t + 1 . . . t + Hp,

−max (γt ) − ξγ ≤ γk,t ≤ max (γt ) + ξγ ,

k = t + 1 . . . t + Hp.

(22)

In (22), xt,t indicates the latest measured states whereas
xk,t , k = t + 1 . . . t + Hp are the predicted states within the
prediction horizon Hp. Besides, uk,t , k = t . . . t + Hp corre-
sponds to the control sequence. To decrease the dimension of
the optimized variables, we enforce ut+k,t = ut+Hc−1,t , k =
Hc . . . Hp, with Hc as the control horizon. In addition, At , Bt

indicate the discrete Jacobian matrices of the successively
linearized system (21). Finally, dk,t represent the linearization
residues. We assume that system states can be either measured
or estimated.
To ensure vehicle stability, the last two equations in (22)

restrict the vehicle lateral velocity vy and the yaw rate γ within

the prediction horizon. The threshold values: max
(
vyt

)
and

max (γt ) come from [23] and are calculated as:{
max

(
vyt

) = 0.02μgvxt,t ,

max (γt ) = 0.85μg/vxt,t .
(23)

In (23), μ stands for the tire-road friction coefficient, vxt,t is
the current vehicle longitudinal velocity, and g = 9.81m/s2.
To guarantee the iterative feasibility, the constraints on vy and
γ are set soft with slack variables ξvy , ξγ .
Then, the minimization problem of the LTVMPC can be

formulated as:

min
Fx ,Fy ,Mz ,ξvy ,ξγ

1

2

Hp∑
i=1

(
‖ẽ (k+i |k)‖2Qe

+
∥∥∥ψ̃ (k+i |k)

∥∥∥2
Qψ

+‖ṽ (k+i |k)‖2Qv

)

+ 1

2

Hc−1∑
i=0

(∥∥Fx (k+i |k)−Fr
x (k+i |k)

∥∥2
RFx

)

+ 1

2

Hc−1∑
i=0

(∥∥∥Fy (k+i |k)−Fr
y (k+i |k)

∥∥∥2
RFy

)

+ 1

2

Hc−1∑
i=0

(∥∥Mz (k+i |k)−Mr
z (k+i |k)

∥∥2
RMz

)
+ ρvy ξvy +ργ ξγ . (24)

In (24), the first item accumulates the tracking errors within
the prediction horizon Hp. The second, third, and fourth items
represent the sum of the discrepancies between the actual
system input u and its desired value: ur = [

Fr
x Fr

y Mr
z
]

within the control horizon Hc. The last two terms correspond
to the soft constraint violation penalties associated with vy

and γ , where ρvy , ργ are the penalty coefficients.
To determine the desired system inputs ur , the differential

flatness property of the kinodynamic model is exploited again.
By substituting ẽ = ˙̃e = ¨̃e = 0, ψ̃ = ˙̃ψ = ¨̃ψ = 0, and
ṽ = ˙̃v = 0 back into (16), (17), and (18), we have:

Fr
x = m cos

(
ψr

pv (s)
)(

∂vr (s)

∂s
(vr (s))

)

+ m sin
(
ψr

pv (s)
)(

∂ψr
p (s)

∂s
(vr (s))2

)
, (25)

Fr
y = m cos

(
ψr

pv (s)
)(

∂ψr
p (s)

∂s
(vr (s))2

)

− m sin
(
ψr

pv (s)
)(

∂vr (s)

∂s
(vr (s))

)
, (26)

and

Mr
z = Iz

(
∂2ψr

p (s)

∂2s
+ ∂2ψr

pv (s)

∂2s

)
(vr (s))2

+ Iz

(
∂ψr

p (s)

∂s
+ ∂ψr

pv (s)

∂s

) (
∂vr (s)

∂s
(vr (s))

)
. (27)

Repeatedly solving the optimization problem (24) under the
constraints in (22) gives us the optimal higher-level control
signals: u∗ = [

F∗
x F∗

y M∗
z

]
.
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B. Nonlinear Model Predictive Controller

The sole difference between the LTVMPC and the NMPC
is to replace the successively linearized system dynamics
in (22) by: xk+1,t = xk,t + Ts f

(
xk,t , uk,t

)
, k = t . . . t + Hp,

where Ts stands for the sampling period and f (·) is the
nonlinear system dynamics in (21). Due to this nonlinear
constraint, the optimization problem of NMPC is not quadratic
anymore and QP solvers cannot be utilized. Optimization
solvers will be detailed in Section V.

C. Flatness Model Predictive Controller

Contrary to the LTVMPC, which locally linearizes the
kinodynamic model (21), FMPC exactly converts the nonlinear
model (21) into an equivalent LTI model, according to which
an MPC controller is designed.
Based on (9), (14), and (15), we can assign ˙̃v � νv, ¨̃e � νe,

and ¨̃ψ � νψ . Then, the states of the equivalent LTI system
can be grouped as:

x LT I =
[

ẽ ˙̃e ψ̃ ˙̃ψ ṽ

]
. (28)

Hence, the state-space expression can be formulated as:⎡
⎢⎢⎢⎢⎢⎣

˙̃e
¨̃e
˙̃ψ
¨̃ψ
˙̃v

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ẽ
˙̃e
ψ̃
˙̃ψ
ṽ

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣ νe

νψ

νv

⎤
⎦,

(29)

which can be abbreviately written like:
ẋ LT I = ALT I x LT I + B LT I νLT I . (30)

In (30), we call:
νLT I = [

νe νψ νv

]T
, (31)

the ‘flat input’ and x LT I the ‘flat state’.
Remark 4: As illustrated in Section III, all the states

in (1) and inputs in (2) of the original system (21) can be
parameterized with x LT I and vLT I .
Based on the LTI model (30), the system constraints of the

FMPC can be clustered together as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x LT I
k+1,t = ALT I

ds x LT I
k,t + B LT I

ds νLT I
k,t

, k = t . . . t + Hp,

yLT I
k,t

= x LT I
k,t , k = t . . . t + Hp,

−max (
vyt

) − ξvy ≤ vy

(
x LT I

k,t

)
≤ max (

vyt

) + ξvy ,

k = t + 1 . . . t + Hp,

−max (γt ) − ξγ ≤ γ
(

x LT I
k,t

)
≤ max (γt ) + ξγ ,

k = t + 1 . . . t + Hp.

(32)

In (32), ALT I
ds and B LT I

ds are the discretized matrices of
ALT I and B LT I in (30), which can be approximated as:{

ALT I
ds = I + Ts ALT I ,

B LT I
ds = Ts B LT I ,

(33)

where I is the identity matrix with the appropriate dimension.
Like (22), x LT I

t,t in (32) indicates the LTI system’s current
states and x LT I

k,t , k = t + 1 . . . t + Hp are the predicted
LTI system states within the prediction horizon Hp. Also,
νLT I

k,t , k = t . . . t + Hp are the control sequence where
νLT I

t+k,t = νLT I
t+Hc−1,t , k = Hc . . . Hp.

The constraints on the vehicle’s lateral velocity and yaw rate
remain as the same in (22). However, for the LTI system (30),
vy and γ are not system states anymore. Instead, they must
be parametrized with the new flat states x LT I in (28).
As illustrated in (12) and (13), the predicted vehicle lateral

velocity vy

(
x LT I

k,t

)
and yaw rate γ

(
x LT I

k,t

)
in (32) can be

separately expressed as:
vy

(
x LT I

k,t

)
= ˙̃ek,t cos

(
ψ̃k,t + ψr

pv

(
sk,t

))
− (

ṽk,t + vr
(
sk,t

))
sin

(
ψ̃k,t + ψr

pv

(
sk,t

))
,

(34)

and

γ
(

x LT I
k,t

)
= ˙̃ψk,t +

(
∂ψr

p

(
sk,t

)
∂s

+ ∂ψr
pv

(
sk,t

)
∂s

)

× (
ṽk,t + vr

(
sk,t

))
. (35)

In (34) and (35), ψr
pv

(
sk,t

)
, vr

(
sk,t

)
,

∂ψr
p(sk,t)
∂s ,

∂ψr
pv (sk,t )
∂s

are the predicted external signals along the desired trajectory.
In contrast to (22), the simple box constraints on vy and

γ have been converted into the state-dependent inequalities
in (32). Moreover, the parameterized vy

(
x LT I

k,t

)
becomes a

nonlinear function of the predicted flat state x LT I
k,t . Following

the idea of LTVMPC, this newly-appearing nonlinear con-
straint went through a similar online successive linearization
process, as in [24]. Through the first-order Taylor expansion,
vy

(
x LT I

k,t

)
in (34) can be expressed as:

vy

(
x LT I

k,t

)
= g

( ˙̃ek,t , ψ̃k,t , ṽk,t , ψ
r
pv

(
sk,t

)
, vr

(
sk,t

))
≈ g

( ˙̃e∗
k,t−1, ψ̃∗

k,t−1, ṽ∗
k,t−1, ψr

pv

(
sk,t

)
, vr

(
sk,t

))
+ ∂g

∂ ˙̃e
∣∣∣∣ ˙̃e∗

k,t−1
ψ̃∗

k,t−1
ṽ∗

k,t−1

[ ˙̃ek,t − ˙̃e∗
k,t−1

]

+ ∂g

∂ψ̃

∣∣∣∣ ˙̃e∗
k,t−1

ψ̃∗
k,t−1

ṽ∗
k,t−1

[
ψ̃k,t − ψ̃∗

k,t−1
]

+ ∂g

∂ṽ

∣∣∣∣ ˙̃e∗
k,t−1

ψ̃∗
k,t−1

ṽ∗
k,t−1

[
ṽk,t − ṽ∗

k,t−1
]
, (36)

where the expressions of partial derivatives are:
∂g

∂ ˙̃e
∣∣∣∣ ˙̃e∗

k,t−1
ψ̃∗

k,t−1
ṽ∗

k,t−1

= cos
(
ψ̃∗

k,t−1 + ψr
pv

(
sk,t

))
,
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∂g

∂ṽ

∣∣∣∣ ˙̃e∗
k,t−1

ψ̃∗
k,t−1

ṽ∗
k,t−1

= − sin
(
ψ̃∗

k,t−1 + ψr
pv

(
sk,t

))
,

∂g

∂ψ̃

∣∣∣∣ ˙̃e∗
k,t−1

ψ̃∗
k,t−1

ṽ∗
k,t−1

= −˙̃e∗
k,t−1 sin

(
ψ̃∗

k,t−1 + ψr
pv

(
sk,t

))

− (
ṽ∗

k,t−1+vr
(
sk,t

))
cos

(
ψ̃∗

k,t−1+ψr
pv

(
sk,t

))
.

(37)

In (36) and (37), ˙̃e∗
k,t−1, ψ̃∗

k,t−1, and ṽ∗
k,t−1 correspond to

the optimal predicted flat states obtained at the last step t − 1.
Note that we did not explicitly impose constraints on the

model inputs u = [
Fx Fy Mz

]
. Two reasons account for this

decision. Firstly, it is hard to determine the upper bounds on
the available global forces and moment in real-time [25] and
inappropriate thresholds will fundamentally affect the tracking
performance. Secondly, the low-level control allocation mod-
ule will handle excessive high-level signals.
As for the physical constraints: F2x (t) + F2y (t) ≤ (μmg)2,

we can linearize it again in both the formulations of LTVMPC
and FMPC. For the sake of simplicity, we ignore this constraint
in our paper. In fact, another approach recently proposed
in [12] can potentially treat input constraints: By compar-
ing (16), (17), (18) with (25), (26), (27), we can make the
conclusion that the magnitudes of

[
Fx Fy Mz

]
shall be

close to their desired value: ur = [
Fr

x Fr
y Mr

z
]
, because

the tracking errors and their derivatives: ψ̃, ¨̃ψ, ¨̃e, ṽ, ˙̃v should
be anyhow limited in the neighborhood of zero under the
efforts of our controller. In this way, by carefully designing
the referential values, the peak magnitude of Fx (t), Fy (t),
Mz (t) could be well handled. This approach does not require
computationally expensive online optimization, and we will
study it in the future.
Akin to (24), the minimization problem of the FMPC can

be expressed as:

min
νe,νψ ,νv ,ξvy ,ξγ

1

2

Hp∑
i=1

(
‖ẽ (k + i |k)‖2Qe

+
∥∥∥ψ̃ (k + i |k)

∥∥∥2
Qψ

+ ‖ṽ (k + i |k)‖2Qv

)

+ 1

2

Hc−1∑
i=0

(
‖νe (k + i |k)‖2Rνe

+ ∥∥νψ (k + i |k)
∥∥2

Rνψ
+ ‖νv (k + i |k)‖2Rνv

)
+ ρvyξvy + ργ ξγ . (38)

In (38), the discrepancies accumulated within the control
horizon Hc are formulated with respect to the flat input νLT I

in (31) and its desired value: νLT I
r = [

0 0 0
]T
.

The optimization problem (38) under the constraints in (32)
is repeatedly solved online and its solution corresponds to
the optimal flat input: νLT I∗ = [

ν∗
e ν∗

ψ ν∗
v

]T
. After sub-

stituting ¨̃e = ν∗
e ,

¨̃ψ = ν∗
ψ , and

˙̃v = ν∗
v back into the

equations (16), (17), and (18), the optimal control signals:
u∗ = [

F∗
x F∗

y M∗
z

]
in (2) can be determined.

Remark 5: When MPC is implemented online, the terminal
cost for improving system stability is commonly omitted [26].
The stability issue is out of the scope of this paper and inter-
ested reader is referred to [27], which discusses the stability
conditions of the finite-horizon MPC without a terminal cost.

D. Control Allocation

The MPC controller gives us the optimal higher-level
control signals: F∗

x , F∗
y , M∗

z . Subsequently, they need to be
allocated to the four wheels’ spinning torques and steering.
A pseudo-inverse allocation architecture from the authors’
previous work [28] is used here.
The kinematics relation between the global forces/moment

and four wheels’ longitudinal and lateral tire forces can be
expressed as: [

Fx Fy Mz
]T = BsysuFx,y , (39)

where uFx,y = [
Fx f l, Fxrl , Fx f r , Fxrr , Fy f l , Fyrl , Fy f r , Fyrr

]T

and the expression of the 3∗8 system matrix Bsys can be found
in [28].
To uniquely determine uFx,y , another optimization problem

is proposed as:

min
u∗

Fx,y

J = u∗
Fx,y

T Wu∗
Fx,y

+
(

Bsysu∗
Fx,y

−[
Fx , Fy, Mz

]T
)T

Qsys

×
(

Bsysu∗
Fx,y

− [
Fx , Fy, Mz

]T
)
. (40)

In (40), u∗
Fx,y

indicates the optimally allocated longitudinal
and lateral tire forces of each wheel. The first term in (40)
is used to restrain excessively demanded tire forces whereas
the second term aims at restricting allocation errors.
As an 8∗8 diagonal matrix, the eight diagonal elements:

w
(
Fx f l

)
, w

(
Fx f r

)
, w (Fxrl), w (Fxrr ), w

(
Fy f l

)
, w

(
Fy f r

)
,

w
(
Fyrl

)
, and w

(
Fyrr

)
in W are chosen as:⎧⎪⎪⎨

⎪⎪⎩
w

(
Fxi j

) = tan

(
π
2

(
1− ∂ F̂xi j

∂si j

/
Cx

))
,

w
(
Fyi j

) = tan

(
π
2

(
1− ∂ F̂yi j

∂αi j

/
Cy

))
.

(41)

In (41), F̂xi j , F̂yi j represent the estimated longitudinal and
lateral tire forces of each wheel, which were calculated by
using the brush tire model in [23]. Besides, si j indicates tire
slip ratio and αi j is tire sideslip angle. Finally, Cx and Cy are
the tire longitudinal and cornering stiffness.
Normally, w

(
Fxi j

)
, w

(
Fyi j

)
in (41) are in the order 1e-2 or

1e-3. Therefore, Qsys is chosen as the 3∗3 identity matrix for
simplicity. However, when an estimated tire force enters into
the nonlinear region, the corresponding weighting factor w can
sharply increase toward infinity. Hence, the cost function (40)
balances the allocation accuracy and the friction force usage.
The optimization problem (40) follows a canonical quadratic

form, so its global minimum can be analytically calculated as:

u∗
Fx,y

=
(

BT
sys Qsys Bsys + W

)−1
BT

sys Qsys
(
u∗)T

, (42)
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where u∗ = [
F∗

x , F∗
y , M∗

z
]
is the optimal command from

the high-level MPC controller.
By neglecting the wheel slip dynamics and adopting the

small-angle assumption, each wheel’s spinning torque T ∗
i j and

steering δ∗
i j can be finally determined by the following naive

control laws:{
T ∗

i j = Rew F∗
xi j ,

δ∗
i j = K1

∫ (
F∗

yi j − F̄yi j

)
dt + K2

∫ ∫ (
F∗

yi j − F̄yi j

)
dtdt,

(43)

where Rew is the effective tire radius, K1,2 are positive gains,
and F̄yi j indicates the actual lateral tire force feedback, which
can be either measured via special tire force sensors [29], [30]
or estimated from tire force estimation algorithms [31], [32].

Remark 6: As this paper emphasizes on the higher-level
FMPC, the lower-level allocation algorithm remains indeed
plain. Although the dynamic weighting matrix W intends to
restrain excessively generated tire forces, we did not rigorously
prove its stability when all the four wheels operate near
their physical limits. In fact, these emergency situations are
not common for a ‘trajectory following’ controller, as the
reference path from a high-level planner should indeed be
smooth and easy-to-track. Additionally, we did not explicitly
include the friction circle constraints in (40). There exist many
other allocation methods in the literature, such as [19], [33],
and [34], which can treat tire force saturation and coupling
issues. Nonetheless, these methods, similar to MPC, involves
numerical optimization. Even some of them can be converted
into a QP problem, they still entail a much higher compu-
tational burden in contrast to the arithmetic pseudo-inverse
approach.

V. HARDWARE-IN-THE-LOOP SIMULATIONS

In this Section, both the control performance and the
entailed computational load of the FMPC will be com-
pared with the counterparts of LTVMPC and NMPC through
real-time HIL simulations.

A. Hardware-in-the-Loop Experiment Setup

In the HIL setup, a high-fidelity vehicle model, dSPACE
Automotive Simulation Model (ASM) ran in a Scalexio
real-time system. ASM is an industry-proven vehicle simu-
lation software, which includes dynamics models for suspen-
sion, steering, brake, tire force, vehicular embedded electric
components, propulsion systems, etc.
In the meantime, the higher-level MPC controller was built

into a MicroAutoBox. The MPC controller was programmed
in Simulink and it received six raw states of the vehicle from
ASM, including the longitudinal position X , the lateral posi-
tion Y , the vehicle yaw angle ψ , the longitudinal velocity vx ,
the lateral velocity vy , and the yaw rate γ .
Combining these six raw states with the desired path and

the referential external references: ψr
p (s), ψr

pv (s) and vr (s),
we can then obtain the kinodynamic system states: ẽ, ψ̃ , and
ṽ in (1) as well as the LTI system states: ˙̃e, ˙̃ψ in (28).

Fig. 3. HIL setup architecture.

The higher-level MPCs periodically computed the opti-
mal global forces and moment: u∗ = [

F∗
x , F∗

y , M∗
z

]
.

Then, these higher-level commands were transferred back
to the Scalexio system, where the control allocation algo-
rithm in Section IV-D was executed. Finally, four wheels’
spinning torques T ∗

i j and steering δ∗
i j in (43) were fed

back to the ASM vehicle model to close the loop. As the
computationally-effective pseudo-inverse allocation method
in (42) and the actuator-control algorithms in (43) had a very
limited influence on the overall computational load (less than
0.1%) during our HIL simulations, we decided to separate
the control allocation and actuator-control algorithms from
the MicroAutoBox to accurately measure the computational
burden associated with the higher-level MPCs.
The bidirectional communications between Scalexio and

MicroAutoBox went through the CAN Bus, which is the most
widely-used industrial standard for communications between
different electronic parts in a vehicle. HIL system architecture
is depicted in Fig. 3.
An MPC controller must find the (sub)-optimal solution

of a constrained optimization problem before the next sam-
pling moment. Thus, the numerical solver plays a crucial
role in delivering high-performance commands in real-time.
Both the LTVMPC and the FMPC in Section IV satisfied a
quadratic programing framework, therefore the state-of-the-art
QP solver: CVXGEN [35] was used. CVXGEN employs
an interior-point method, which is robust to ill-conditioned
problem and leads to a relatively low algorithm complexity
if the dimension of the optimization problem is not too
large [35]. In contrast, a projected gradient-based NMPC
solver: GRAMPC [26] was employed for solving the NMPC.
GRAMPC can outperform the long-tested NMPC solvers, such
as ACADO [36] in terms of both the control performance and
the execution speed [26].
Since CVXGEN and GRAMPC exploit different internal

optimization mechanisms, an absolutely fair comparison seems
unfeasible. However, a bunch of parameters and options in
GRAMPC can be adjusted to make these two solvers share
as many similarities as possible. Precisely speaking, the state
constraints handling method in GRAMPC was changed from
the default augmented Lagrangian approach to the outer
penalty function. In such a manner, the NMPC constraints
on vy and γ became soft. In addition, the convergence thresh-
old for inequality constraints in GRAMPC was set as 1e-4,
which was commensurate to the default settings in CVXGEN.
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Finally, the penalty coefficients for the inequality constraints
in both GRAMPC and CVXGEN were equally set as 1e6.

B. Tuning of Model Predictive Controllers

MPC tuning also has a pivotal influence on the control
performance and the computational load. Parameters of MPCs
in Section IV can be divided into two groups:
a) Fundamental parameters: Control horizon Hc, prediction
horizon Hp, and sampling period Ts .

b) Weighting factors in the cost function: Qe, Qψ , Qv ,
RFx , RFy , RMz in (24) of LTVMPC and NMPC and
Qe, Qψ , Qv , Rνe , Rνψ , Rνv in (38) of FMPC.

As GRAMPC enforces u (τ ) ≡ u0 (τ ) , τ ∈[
t, t + HpTs

]
, we fixed Hc = 1. Then, due to the

limited flash memory of the MicroAutobox (1st Generation),
the prediction horizon was tuned as: Hp = 3 to make sure that
the local memory can entirely contain the compiled .ppc file.
Since the prediction horizon was small, the sampling period
Ts was tuned as 180ms to guarantee that the preview time
HpTs was long enough than the system settling time [23].
The tuned Hp, Hc, and Ts were uniform for LTVMPC,
NMPC, and FMPC.
Furthermore, the range-based tuning rule in [23] was

employed to decide the weighting factors in the cost func-
tions (24) and (38): Before the authentic HIL simula-
tions, an offline pre-simulation was conducted. During this
offline simulation, the desired high-level control signals:
u∗ = [

F∗
x , F∗

y , M∗
z

]
were firstly generated by use of the

Brunovsky’s feedback in Section III-C, where the initial errors:
ẽ, ψ̃ , and ṽ were set as zero. After that, the high-level control
signals were allocated to four wheels’ spinning torques and
steering via (42) and (43).
From the offline simulation data, the weighting factors can

be determined by:
Qρ = 1

/
max (|ρ|) , Rσ = 1

/
max (|σ |), (44)

where ρ represents e, ψ , and v in both (24) and (38) while
σ indicates either Fx , Fy , Mz for the LTVMPC and NMPC
in (24) or νe, νψ , νv for the FMPC in (38). Unfortunately,
we found that neither the LTVMPC nor the NMPC produced
satisfactory tracking results by strictly following (44). Conse-
quently, the tracking error weights Qe, Qψ , and Qv of both the
LTVMPC and the NMPC were determined by trials and errors
(from order of magnitude 1e1 to 1e5) with the aim to make
the Root Mean Square (RMS) of the tracking errors of the
three MPCs (LTVMPC, NMPC, and FMPC) commensurate
with each other. The ultimately tuned weighting factors for
LTVMPC and NMPC are: Qe = 10225, Qψ = 28846, Qv =
12220, RFx = 3.41e − 4, RFy = 2.13e − 4, RMz = 4.50e − 3
and for FMPC are: Qe = 34.08, Qψ = 96.15, Qv = 40.73,
Rνe = 1.46, Rνψ = 9.13, Rνv = 4.07. Indeed, it is debatable
that the LTVMPC and NMPC tunings had parameters that
were 8 orders of magnitude different. By penalizing the control
efforts (RFx , RFy , RMz ) in K N/K Nm and setting the weights
in a comparable range, the control performance of LTVMPC
and NMPC could presumably be improved.

Fig. 4. Minimum distance between CG and the centerline of the reference
path.

Fig. 5. Velocity tracking error.

Remark 7: The weighting factors of LTVMPC and NMPC
by trials and errors were not optimal. Parameter fine-tuning
will be studied in the future.

C. Simulation Result and Analysis

A trajectory-following scenario was created to compare the
control performance and computational burden of the three
MPCs. The reference path was composed of a straight line
and an arc with a radius equaling 250m. The desired speed
vr (s) was set as a time-varying sinusoidal function.
To begin with, the minimum distances between the vehicle’s

CG and the path centerline (ẽ) are compared in Fig. 4.
Clearly, FMPC gave us the best tracking whereas LTVMPC

resulted in a high ẽ with peak value over 4 meters. Such a huge
tracking error from LTVMPC is unusual. The non-optimally
tuned weighting factors in LTVMPC partially explained the
result. Besides, the short prediction horizon and low control
loop frequency are also to blame. In fact, an exactly same
LTVMPC [37] with a longer prediction step and a faster update
rate can reduce the LTVMPC tracking error to around 1m.
Afterwards, the velocity tracking results and the tracking

errors ṽ are depicted in Fig. 5.
All three MPCs can largely track the desired speed vr (s).

Furthermore, LTVMPC and FMPC generated a similar track-
ing error pattern, but FMPC led to a much smaller ṽ especially
after 5s. NMPC produced an oscillating speed tracking error.
The unsatisfactory results from NMPC in Fig. 4 and

Fig. 5 were principally boiled down to the short prediction
horizon, slow update frequency, and the non-optimally tuned
parameters. Virtually, when the GRAMPC were tested offline
with Hp = 10 and Ts = 50ms, the tracking performance of
the NMPC was much improved. In addition, the huge tracking
error weights led to the oscillating behavior of the NMPC.
Vehicle yaw tracking results are given in Fig. 6.
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Fig. 6. Vehicle yaw tracking results.

TABLE I

RMS OF TRACKING ERRORS

None of the three MPCs could promptly react to the sudden
target yaw change (from a straight line to a curve). Actually,
the derivative of the target yaw: ∂ψr

p (s)/∂s underwent an
abrupt change from 0 (1/∞) to 0.04 (1/250). So, the second-
order derivative: ∂2ψr

p (s)/∂2s in (18) and (27) becomes
infinity at the transition point. However, due to the relatively
long sampling period Ts and the small prediction horizon Hp,
it is clear that the information of this critical point was
not included in the three MPCs. On the one hand, this
avoided the drastic change of M∗

z at the transition point [37].
On the other hand, it indeed affected the target yaw tracking
performance. By the use of a clothoid with a linearly-varying
curvature, the transition from the straight line to the curve
will be smoothed and the unsatisfactory yaw tracking shall
be substantially improved. This strategy will be studied in the
future.
The RMS of tracking errors are summarized in Table I.
Hence, the tracking performances of the FMPC are much

improved in contrast to the LTVMPC. Because, firstly,
the exact linearized LTI model in (29) conserved all the
nonlinear feature of the kinodynamic model (21). Secondly,
the parameterized system inputs (16), (17), and (18) indeed
contained the open-loop control terms, which substantially
alleviated the online feedback control efforts. This second
reason became especially important as the prediction horizon
was short. A similar tracking performance enhancements of
FMPC over an LTVMPC were also witnessed in [37] when
both the FMPC and the LTVMPC enjoyed a sufficiently
long prediction horizon and a fast enough sampling rate.
In contrast, we do not assert that the FMPC can over-perform
the NMPC in terms of the tracking performance, because
the NMPC also conserved all the nonlinear features of the
kinodynamic model (21). Indeed, there did not exist obvious
tracking performance discrepancies between the FMPC and
the (detuned) NMPC in Table I. Instead, as will be revealed
in Fig. 10, the fundamental advantage of FMPC over NMPC
is in principle the reduced computational load.

Fig. 7. Lateral velocity and yaw rate constraints.

Fig. 8. Allocated four wheel’s steering.

Fig. 9. Allocated four wheel’s torque.

Next, the lateral velocity and yaw rate are depicted in Fig. 7.
Obviously, both the LTVMPC and the FMPC obeyed the

constraints on vy and γ . On the contrary, the NMPC vio-
lated the constraint on vy around 4s, 8s, and 10s. This
was principally because the state constraints handling method
in GRAMPC was changed from the default augmented
Lagrangian approach to the outer penalty function, which
disabled the online update of the Lagrangian multiplier as well
as the penalty coefficients.
Afterwards, we will compare the allocated four wheels’

steering and spinning torques. The steering angles of each
wheel are demonstrated in Fig. 8 while the torques are depicted
in Fig. 9.
In Fig. 8, we can recognize that the pattern of four wheels’

steering from each MPC was very similar to its corresponding
lateral velocity in Fig. 7. Particularly, NMPC produced a
counter-steering behavior from 6s to 8s. This was because,
during that period, NMPC simultaneously entailed a large
positive position tracking error ẽ (Fig. 4) and yaw error ψ̃
(Fig. 6). To counteract these errors, GRAMPC resulted in a
significantly negative vy , as demonstrated in Fig. 7. To be
compatible with such a negative vy , all four wheels’ steering
counter-steered.
In Fig. 9, the FMPC and the LTVMPC produced similar

four-wheel spinning torques. However, the allocated torques
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Fig. 10. Computational burden comparisons.

from NMPC suffered from strong oscillations, which directly
affected the velocity tracking result in Fig. 5. As mentioned
before, this was presumably because of the excessive tracking
error weights, the short prediction horizon, and the detuned
settings (for the fair comparison between the two solvers) of
GRAMPC.
Finally, we define the computational load as [23]:

λC PU = T AT /Ts, (45)

where T AT represents the controller turnaround time inside
the MicroAutoBox, and Ts = 180ms indicates the uniformed
sampling period. Intuitively, real-time execution necessitates
λC PU ≤ 1 to avoid overrun. Computational loads are plotted
in the semi-logarithmic graph in Fig. 10.
Two conclusions can be drawn from Fig. 10. Firstly, FMPC

required the least computational resource, as the peak value of
computational load from FMPC was merely 4.8‰, which was
less than LTVMPC (6.3‰) and far less than NMPC (75%).
As the current embedded vehicular computing unit has a quite
limited computational capacity, this slight execution burden of
FMPC can definitely facilitate its online implementation. Sec-
ondly, both the computational burdens of FMPC and LTVMPC
remained stable without obvious fluctuations. Instead, NMPC
incurred a severely changing computational load, especially
when the soft constraint on the lateral velocity was violated
around 4s, 8s, and 10s. At these moments, the NMPC solver
would execute more iterative calculations within one sampling
step trying to find a suboptimal solution. These extra-executed
iterations caused the sharply increased computational load of
NMPC.
In fact, the computational advantage of FMPC was also

demonstrated in [38], where system parameterization via dif-
ferential flatness effectively reduced the dimension of the
optimization problem. However, this was not our case. Instead,
the reasons why the FMPC incurred less computational load
than the LTVMPC can be summarized into two points. Firstly,
the LTI model did not require online successive linearization
and matrix elements update. Secondly, in contrast to the dense
Jacobian matrices At , Bt in (22), the LTI system matrices
ALT I

ds , B LT I
ds in (32) were sparse. This sparse data structure

was fully exploited by CVXGEN to speed up execution.

VI. CONCLUSION

This paper proposed a flatness model predictive controller
for autonomous vehicle trajectory following. Grounded in a
newly developed differentially flat kinodynamic model (21),
the original nonlinear plant was exactly linearized and an
equivalent LTI system (29) appeared. This LTI system main-
tained however all the nonlinear features of the original

kinodynamic model. Then, an MPC was applied to this newly
appeared LTI system for determining the optimal flat input.
System parameterization subsequently converted the optimized
flat input into the high-level control forces and moment, which
were ultimately allocated to the four wheels’ spinning torques
and steering. HIL simulation demonstrated the advantages
of the proposed FMPC over an LTVMPC in terms of the
tracking performance, and an NMPC in terms of the online
computational burden.
Future work will concentrate on FMPC optimal parameter

tuning and stability analysis under disturbances.
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