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A B S T R A C T   

Global climate change has increased the need for cooling indoor spaces, leading to a rise in adoption of air 
conditioning. This adoption, while decreasing health risks, can increase energy use and pose economic burdens in 
low income households. Here, we estimate the burden associated with cooling, as well as potential extreme heat 
exposure without it in the largest city in the US, New York using a coupled weather and building energy model, 
utility pay scales, and household income data from the US Census.Results show uneven distribution of AC 
economic burden, with lower income neighborhoods experiencing the largest relative costs. High-burden 
neighborhoods see the largest climate-driven increases in spite of lower enthalpy increases. These neighbor
hoods also have the most exposure to indoor extreme heat, which may triple by end of century. Energy burden 
may pose a barrier to AC operation, with estimated cost in the lowest income households reaching up to 6.1% of 
income for a 100 m2 dwelling, which could increase to 8% by end of century. We also explore adaptation 
strategies and quantify their impacts, finding that modifying traditional set points and reflective roofs can reduce 
energy burden significantly, by up to 20% in the highest burden neighborhoods.   

1. Introduction 

As temperatures continue to rise due to global climate change, so is 
the frequency and intensity of hazardous heat (Meehl and Tebaldi 
2004). This increase in summer heat places unique challenges in cities, 
where population and infrastructure density may lead to higher mor
tality (Limaye et al. 2018) and critical systems failure (Chester et al. 
2020). These increasing risks necessitate the use of adaptations to cool 
not only outdoor, but also indoor spaces. The most common indoor 
cooling in the US adaptation is air conditioning (AC). Although an 
effective tool to lower heat-related risks, AC adoption increases energy 
use while, with higher sensitivity in cities, where the majority of the 
global population resides (Waite et al. 2017), which may pose a signif
icant challenge to sustainability goals focused being implemented in 
cities. Costs associated with this increased energy use may burden 
households unevenly, with low-income homes potentially being unable 
to prevent hazardous indoor heat. 

1.1. Cooling cities in a changing climate 

With global air temperatures projected to rise significantly, AC 
adoption is also projected to increase. In the US, the number of house
holds with AC has increased from 66.1 million in 1993 to over 100 
million in 2015, representing an adoption rate change from 66.1% to 
87% (Energy Information Agency 2015). Meanwhile, the International 
Energy Agency (IEA) projects global AC ownership to soar to two thirds 
of all households by 2050 (International Energy Agency 2018). This 
increase in adoption, coupled with longer and warmer cooling seasons, 
has led to projected increases between 320% (low development sce
nario) to 2270% (high development scenario) in global residential 
cooling energy demand (Santamouris 2016). These upcoming changes 
present challenges at various scales, from regional and city scale power 
generation to accommodate the additional electric demand for space 
cooling, to utility costs at the household level. 

This growing need for space cooling may be exacerbated in cities, 
where ambient temperatures are often higher than in surrounding areas. 
This phenomenon, called the Urban Heat Island (UHI), forms due to 
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traditional built structures limiting cooling at the land surface (e.g., 
evaporative and radiative cooling), while both storing and generating 
more heat (e.g., AC use, traffic) (Oke 1982) than natural landscapes. 
Studies also show that UHIs may intensify periods of extreme heat 
locally due to the positive land-atmosphere feedbacks that lead to the 
UHI in the first place (Li and Bou-Zeid 2013; Founda and Santamouris 
2017; Ramamurthy et al., 2017; Ortiz et al. 2018b; Ao et al. 2019). 
Moreover, the United Nations projects that urban areas will absorb most 
population growth projected by 2050 (United Nations 2019), further 
increasing health risks and cooling costs associated with summer heat. 

When including both urban and climate signals, projections of 
cooling energy demand in New York City (NYC), the largest city in the 
US, show end of century increases of up to 80% in the business as usual 
RCP8.5 scenario (Ortiz et al. 2018a). Projected increases exhibited 
geospatial variation due to differences in built environment configura
tion and meteorological processes across the city such as sea breeze 
penetration. Geographic differences in near surface temperature in
creases mean that costs related to AC use will increase differently 
throughout the city, with varying consequences across groups with 
variable capacity to bear increased costs. Long-term summer climate 
projections in NYC have shown that although water vapor content of the 
atmosphere is expected to increase, relative humidity might slightly 
decrease (Ortiz et al. 2019), suggesting that increases in electric load 
might be driven by temperature increases rather than moisture content. 
In addition, building energy usage is affected by user behavior and 
equipment installation and repair. These factors cause disparities be
tween energy ratings and actual usage, often called a performance gap, 
and may also lead to hard-to-quantify cooling costs (Sunikka-Blank and 
Galvin 2012; Calì et al. 2016). The performance gap may also be asso
ciated with socioeconomic factors (Palma et al. 2019), which can lead to 
already vulnerable populations being unevenly impacted by either high 
heat exposure or high costs of cooling. 

1.2. Energy costs and burden 

Study of energy costs as they relate to household income and poverty 
has often focused on heating during the cold season (Bhattacharya et al. 
2003; Roberts 2008; Hills 2012; Teller-Elsberg et al. 2016; Robinson 
et al. 2018). However, year-round temperatures are expected to increase 
(Coumou et al. 2013; Lehner et al. 2018) for growing portions of the 
world (Coumou and Robinson 2013), likewise increasing the need and 
cost of AC operation while decreasing the need for heat (Wang and Chen 
2014). The 2019 New York City Panel on Climate Change (NPCC) re
ported that while since 1900 there are on average 1.85 fewer days below 
freezing per decade, summer heat waves are expected to become more 
frequent, longer, and more intense (González et al. 2019). In NYC, 
premature mortality associated with warming summers is projected to 
grow between 47% to 95% by mid-century (Knowlton et al. 2007). 
Studies have also shown that low-income and minority groups in citires 
are often more vulnerable to heat (Hamstead et al. 2018; Madrigano 
et al. 2015b) and bear a higher energy cost burden, attributed mostly to 
differences in building infrastructure and investment (Kontokosta et al. 
2019). 

This disparity in relative energy costs may play a role in adoption of 
AC units in NYC, as reported by Ito et al (2018), who also found that 
areas with lower AC adoption coincide with higher rates of heat-related 
mortality and hospitalizations. Heat-related mortality and other health 
impacts are known to affect lower income and vulnerable populations 
like the elderly (Rosenthal et al. 2014) at higher rates. Although state 
and local governments sometimes provide economic assistance for 
heating and cooling, such as with the Home Energy Assistance Program 
(HEAP), these initiatives often only offer assistance in upfront costs, 
leaving residents to bear the cost burden of AC operation. Recent work 
focusing on Paris, France has also shown that while existing heat 
adaptation strategies (e.g., urban parks and white roofs) may partially 
offset heat risk and cooling loads, they are insufficient to completely 

eliminate projected increases, making AC an important tool to maintain 
thermal comfort and reduce heat-related illnesses (Viguie et al. 2020). 

1.3. Modeling building energy demand at urban scales 

One way to quantify household energy expenditures and their 
sensitivity to climate is by use of building energy models. Building en
ergy models typically fall between two umbrellas: physics and statistical 
models. Physics-based models use energy and mass balance relation
ships information to quantify energy inputs and outputs to building 
envelopes. These models are often designed to resolve single buildings in 
high detail, as in the case of the US Department of Energy developed 
EnergyPlus (Crawley et al. 2001). The advent of detailed representations 
of city-scale building stock has allowed the extension single building 
models to simulate energy demand at district and even city scales (Hong 
et al. 2016; Olivo et al. 2017; Ahmed et al. 2017). Statistical methods 
range from linear regression at the simplest levels to machine learning 
algorithms like support vector machines (Jain et al. 2014) and neural 
networks (Beccali et al. 2004; Neto and Fiorelli 2008). These methods 
use historical output (i.e., energy demand or consumption) and input (e. 
g., outdoor temperature, occupancy rates) variables to train a predictive 
model. The rise in energy use data due to use of utility smart meters and 
government reporting requirements has opened the door to predict en
ergy demand at scales from single buildings (Jain et al. 2014; Yan and 
Liu 2020) to entire cities (Kontokosta and Tull 2017; Chen et al. 2020). 
An advantage of physics-based models is their reliance on detailed data 
on building materials, morphology, and technology, which allows study 
of a wide variety of energy efficiency technologies at the design stage 
across a variety of use cases and even outdoor climate conditions. 
Although statistical methods can include these data, they must be 
selected a priori or engineered through feature selection exercises. 

A limitation to both of the traditional approaches is their consider
ation of the building envelope as a standalone entity. In reality, build
ings and their surrounding environment are coupled via energy, mass, 
and momentum exchanges that no only control energy consumption, but 
often has a significant impact on outdoor climate. AC use is one of the 
mechanisms leading to the UHI as described above. In order to quantify 
building-atmosphere dynamics, a method that couples atmospheric and 
building energy modeling must be used. One way these interactions 
have been coupled with by embedding building consumption models 
with numerical weather models. Examples of this approach include the 
Building Energy Model (Salamanca et al. 2010) and Town Energy 
Budget (Masson 2000), which parameterize aggregate building energy 
interactions to a weather model’s simulation grid. This approach has 
been used to simulate energy demand at urban scales in climates as 
varied as temperate New York City (Ortiz et al. 2018a), arid Phoenix 
(Salamanca et al. 2013), and tropical San Juan, Puerto Rico (Pokhrel 
et al. 2018). 

Whereas previous work has estimated building energy use at the city 
scale and its impacts on urban and regional power demand, there has 
been little research quantifying the burden placed on households by this 
energy use. In this study we estimate household energy burdens asso
ciated with AC operation in cities, using NYC as a case study. We use a 
numerical weather prediction system coupled to a building energy 
model to estimate building energy demand at the household scale for an 
entire city. By employing the coupled weather-building energy model 
approach, we addresses potentially spatially uneven urban climate 
change in NYC and its relation to AC energy use, which itself forms a 
feedback with atmospheric processes due to energy and mass exchanges 
with buildings. In addition, by modeling the physical interactions be
tween buildings and the atmosphere our study is able to account for 
synergies between warmer end-of-century summers and urban-scale 
processes like heat storage and anthropogenic heat generation, which 
may be missed in statistical-only analyses. 
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Sustainable Cities and Society 76 (2022) 103465

3

2. Methods 

We use a high resolution configuration of the Weather Research and 
Forecasting model (WRF, Skamarock et al 2008) coupled with a modi
fied multi-layer urban canopy and building energy model parameteri
zation to study changes in building cooling demand under climate 
change conditions. We also characterize indoor heat exposure to high
light potential health risks associated with lack of AC use, as detailed in 
the following sections. Out modeling approach, with its inputs and 
outputs are summarize in Fig. 1. 

2.1. High resolution urban climate modeling 

In order to resolve the fine scale atmospheric processes in NYC, we 
use WRF to dynamically downscale data from reanalysis for present-day 
conditions and a GCM for end-of-century climate. The dynamical 
downscaling technique used here consists of using coarse gridded 
datasets as initial and boundary conditions to a limited-area numerical 
weather prediction model that solves the set of equations of atmospheric 
fluid, mass, and energy in non-hydrostatic form. 

Buildings modify the energy and momentum balance at the land 
surface, with urban morphology and AC use forming feedbacks with the 
surrounding atmosphere. In order to account for these energy and mo
mentum exchanges between buildings and the atmosphere, simulations 
use the Building Effect Parameterization (BEP) and Building Energy 
Model (BEM) physics options in WRF (Martilli et al. 2002; Salamanca 
et al. 2010). BEP accounts for physical interactions between buildings 
and the atmosphere such as radiation shadowing and blocking, drag and 
turbulence effects in the urban canopy, dynamically computing mo
mentum and energy fluxes at all overlapping atmospheric levels. BEM, 
on the other hand, dynamically computes the building envelope energy 
balance to estimate energy exchanges between the building and the 
atmosphere, accounting for conduction through all built surfaces, air 
mass exchanges, indoor heat generation from humans and equipment, 
and AC use. The dynamically calculated cooling (or heating) load is used 

to compute heat fluxes to the atmospheric layers that overlap with 
embedded BEM parameterization layers at each model time step. For 
each parameterized building envelope, an energy balance is performed 
to compute energy fluxes from radiation and advection to and from the 
urban canopy surfaces (i.e., roof and walls), while the AC subroutine 
works to remove indoor energy by adding work to the system. As 
BEP-BEM are a multi-layer urban parameterization, these heat fluxes are 
computed for as many layers in the atmospheric coordinate system 
overlap with the building vertical coordinate system. This urbanized 
version of WRF has been evaluated in cities across a variety of climates 
like Beijing (Xu et al. 2018), Phoenix (Salamanca et al. 2015), New York 
(Ortiz et al. 2018b), and the Yangtze River Delta (Liao et al. 2014) to 
name several examples. 

Simulations use three domains (one parent, two nested) with hori
zontal resolution of 9 km, 3 km, and 1 km (Fig. 2a) and 51 vertical levels, 
with 15 levels within the lowest 3 km of the atmosphere. The D03 
domain resolution of 1 km is set to optimize use of the urban canopy 
parameters from the NUDAPT1km dataset (Burian and Shepherd 2008) 
which include spatially explicit sky view factor (SVF), roughness 
lengths, and frontal area densities at various angles and are in line with 
similar studies in Chinese cities (Xu et al 2018, Liao et al 2020), the US 
Southwest (2015), and NYC (Gamarro et al 2020, Ortiz et al 2019, 
Gutierrez et al 2015). 

In order to take advantage of the urban physics parameterizations, 
additional detailed urban canopy parameters (UCPs) must be used. 
Here, we derived UCPs from a combination of public NYC tax-lot data, 
existing gridded datasets, and standards-based look-up tables. Urban 
land cover and geometry was adapted from the NYC Department of 
Planning MapPLUTO dataset (New York City Department of City Plan
ning 2020), which provides heights and footprint areas of buildings at 
the tax-lot scale (Fig. 2b-c). The tax-lot data was aggregated to the D03 
domain’s 1 km grid, with mean values of building height, surface-to- 
plant are ratio, and building area fraction. Urban land use was aggre
gated into three categories: low density residential, high density resi
dential, and commercial/industrial based on the land use field in 

Fig. 1. Experimental workflow detailing key inputs and outputs used to produce energy burden and indoor heat index.  

L. Ortiz et al.                                                                                                                                                                                                                                    
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MapPLUTO (Fig. 2e), following the encoding detailed in Gonzalez et al 
(2017). Urban land use aggregation used the most common land use 
found in each 1 km grid cell. 

Panel Fig. 2d shows the spatial distribution of the fraction of homes 
with AC units from Ito et al (2018), used in analysis of vulnerability to 
indoor extreme heat and AC energy cost burdens, detailed in in section 
2.. Other parameters like roughness lengths were extracted from the 
default NUDAPT 1 km database for NYC (Burian and Shepherd 2008). In 
addition, building AC use has been updated in BEM to partition heat 
fluxes into both latent and sensible components by including evapora
tive cooling processes (Gutiérrez et al. 2015a). This approach accounts 
for evaporative cooling used in modern AC systems and applied to the 
entire domain. BEP was also modified to include a variable drag coef
ficient as a function of building area fraction based on a set of fluid 
dynamics experiments (Santiago et al. 2008; Gutiérrez et al. 2015b). 

Other parameters directly used by BEM (Table 1) follow previous 
work (Gutiérrez et al. 2015a; Ortiz et al. 2018a), which modify the urban 
parameter lookup table with values better aligned with recommenda
tions by the American Society of Heating, Refrigerating and 
Air-Conditioning Engineers (ASHRAE). The use of constant lookup table 
values are a simplifying assumption that building parameters are rela
tively uniform across urban landuse classes. These constant parameters 
ignore some of the variations in building construction and AC technol
ogies (e.g., COP differences between window and central AC) across the 
city and present an opportunity to further refine future simulations. 

These parameters include broad descriptions of building surface prop
erties like roof emissivity and window area coverage, as well as char
acterizations of the building envelope. The latter include peak 
occupancy and electronic equipment loads, as well as the AC coefficient 
of performance, which is defined as the the ratio of the heat removed 
from the building to the atmosphere (i.e., from the hot reservoir to the 
cold reservoir) to the amount of work required to remove it. Other pa
rameters include AC configurations for temperature and humidity which 
are often configurable by end users of building engineering staff on a day 
to day basis but remain static in the simulations performed here. 

Other physics options were selected following previous work over 
the NYC region and are detailed in Table 2 (Ortiz et al. 2019). Simula
tions were carried out at a high performance computing facility, with 
each model run using 128 processors and using approximately 7 days of 
compute time. The high performance computing system uses Intel Sandy 
Bridge architecture processors, organized in 16-core nodes. 

Fig. 2. (a) WRF parent domain (map extent, 9 km resolution) configuration with nested domains D02 (3 km resolution) and D03 (1 km resolution). Urban parameters 
added to simulations include (b) grid building area fraction, (c) grid average building height, (d) grid AC adoption rate, and (e) urban land use classes. 

Table 1 
Urban canopy and building energy parameters from the WRF lookup table.  

Urban Parameter Value 

Temperature set point (◦C) 22.22 
Humidity set point (kgvapor 

/kgair) 
0.01 

Coefficient of performance 2.8 
Window area fraction 0.33 
Roof albedo 0.2 
Roof emissivity 0.9 
Peak equipment load (W/m2) 16.0/20.0/26.0 
Peak occupancy (person/m2) 0.025/0.025/0.050 

(Low density res./High density res./ 
Commercial)  

Table 2 
Model physics parameterizations used in WRF simulations.  

Model Physics Parameterization 

Land surface model NOAH LSM (Tewari et al. 2004)  

Cumulus Kain-Fritsch (Kain 2004), off in D03  

Microphysics Thompson (Thompson et al. 2008)  

Urban canopy Building Effect Parameterization (BEP) (Martilli et al. 
2002) 
Building Energy Model (BEM) (Salamanca et al. 2010) 
AC Evaporative Cooling Parameterization (Gutiérrez et al. 
2015a) 
Variable Urban Drag Coefficient (Gutiérrez et al. 2015b)  

Shortwave radiation RRTMG (Iacono et al. 2008)  

Longwave radiation RRTM (Mlawer et al. 1997)  

Planetary boundary 
layer 

Mellor-Yamada-Janjic (Janjić 1994)  

L. Ortiz et al.                                                                                                                                                                                                                                    
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2.2. Simulation design 

To study the impacts of warming climate conditions on demand-side 
AC costs, we use a typical, relatively recent summer, referred to here as 
PRESENT, then find its future analog based the distribution of daily 
minimum, mean, and maximum temperatures. To select a typical sum
mer, we used historical daily maximum temperature records from the 
Central Park weather station between the years 2089-2019 and calcu
lated the yearly minimum, mean, and maximum daily peak tempera
tures. Summer 2018 exhibited the closest to typical (i.e., 50th percentile) 
values of these metrics of any of the previous 10 years (Table 3). 

The analog is found by use of the Central Park weather station. Then, 
we find the yearly minimum, mean, and maximum of daily maximum 
temperature, as well as its percentile rank in the 30-year period ending 
in 2018. For the future analog, we find the same yearly statistics in 
global model data for the 2070-2099 period, then find the year that lies 
closest to the percentile rank of summer 2018. The closest year is found 
by finding the year with the minimum Euclidean distance to the chosen 
recent summer, as follows:   

Here, Tmin,2070-2099, Tmean,2070-2099, Tmax,2070-2099 represent the yearly 
daily maximum temperature minima, mean, and maxima, respectively, 
while the subscript i denotes a particular year. The year with the closest 
matching temperatures was 2097, referred to from here onward as the 
FUTURE period, as shown in Table 3. PRESENT simulations use the 
North American Regional Reanalysis (NARR, Mesinger et al 2006) as 
initial and boundary conditions, while FUTURE simulations use a bias 
corrected Community Climate System Model version 4 (CCSM4) busi
ness as usual RCP 8.5 as initial and boundary conditions (Monaghan 
et al. 2014). NARR is a high resolution reanalysis product covering the 
North America and the Caribbean with a 32 km grid resolution and 29 
vertical levels. CCSM4 is a general circulation model that couples an 
atmospheric, ocean, and ice sub-models to project future climate sce
narios. The particular CCSM4 simulations used here are part of the fifth 
Coupled Model Inter-comparison Project (CMIP5) and use 26 vertical 
levels at 1◦ x 1◦ horizontal resolution. Both of these these initial and 
boundary conditions provide a coarse information on the region’s 
winds, sea surface temperatures, and atmospheric and soil temperature 
and moisture content. As a result, our simulations account for changes in 
climatic conditions as a result of the global climate signal for all vari
ables as modeled by the CCSM4 output. Table 4 summarizes the geo
spatial data inputs used as parameters as well as initial and boundary 
conditions used in all simulations. In order to model indoor heat expo
sure, a second set of PRESENT and FUTURE simulations were performed 
with 0% AC adoption. For these simulations, all AC-related heat fluxes 
are set to 0, while still allowing for the computation of other heat fluxes 

to and from buildings related through indoor generation, radiative 
transfer and advection. 

A third simulation, set in the PRESENT time period, uses the data 
from Ito et al (2018) as a measure of current AC adoption in NYC, shown 
in Fig. 2d. AC adoption rates are included in the model by modifying the 
indoor energy balance in each urban-category grid cell by the fraction of 
homes with AC in BEM based on work exploring environmental and 
infrastructure impacts of AC adoption in NYC (Gamarro et al. 2020): 

Hp
out = Hout ∗ α

Ep
out = Hout ∗ α

Ec =
1

COP
(
Hp

out + Ep
out

)

Here, Hout and Eout represent the building sensible and latent heat 
fluxes, Ec is the cooling electric demand, α is the AC fraction, and su
perscript p denotes variables that account for fractional AC use. One 
limitation of this approach is the use of the same cooled fraction for all 
urban land uses, including commercial. However, due to the 1 km res
olution of the model configuration combined with the city’s household 
income spatial distribution, majority commercial land use grids coincide 
with the highest AC adoption rates at nearly 100%, which may be in line 
with commercial cooling practices. Results from this simulation are used 
to evaluate model performance against weather station data. 

2.3. Energy burden and heat exposure indicators 

To estimate energy burden, we use the AC demand output from BEM 
in our WRF simulations, census block group income data, and pay scales 
from the local utility, Consolidated Edison. AC demand is dynamically 
calculated in BEM and used by the model to estimate anthropogenic heat 
fluxes. We estimate the energy burden associated with AC use as: 

Burdenenergy =
CostAC,household

Incomehousehold  

where CostAC,household is the electricity cost related to cooling 100 m2 per 
grid point and Incomehousehold is the median income of a household 
derived from the American Community Survey (ACS) 2017 5-year esti
mate. We obtained the energy cost by multiplying hourly AC demand 
from BEM and Consolidated Edison schedule 2 rates with no time-of-day 
pricing. The summer (i.e., schedule 2) rate for the 2018 May-September 
period was 0.2493 US $ / kWh, which includes charges for generation, 
transmission, and local taxes, The energy consumption was obtained on 
a per-grid cell basis from BEM, which computes cooling loads in units of 
W/m2. We scaled the load to a 100 m2 dwelling in order to provide 
burden values for a typical home size. Since ACS data is released at the 

Table 3 
Minimum, mean, and maximum of daily maximum temperatures of Summer 
2018, and their percentile rank between 1989-2018 based on the Central Park 
weather station. FUTURE summer 2097 is selected from CESM1 data between 
2070-2099 at the same percentile ranks.   

PRESENT Percentile FUTURE 

Tmaxmin 21.2◦C 73rd 27.1◦C 
Tmaxmean 28.6◦C 53rd 35.2◦C 
Tmaxmax 34.6◦C 43rd 42.5◦C  

Table 4 
WRF simulation model inputs and urban canopy parameter source data.   

Present Future 

Initial and boundary 
conditions 

North American Regional 
Reanalysis 
(32 km resolution) 

CCSM4 (1◦

resolution) 

Urban Canopy Parameters 
(geometric) 

MapPLUTO (tax-lot 
resolution)  

Urban Canopy Parameters 
(non-geometric) 

NUDAPT1km (1 km 
resolution)   

FUTURE = MIN
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
Tmin,2070−99 − Tmin,i

)2
+

(
Tmean,2070−99 − Tmean,i

)2
+

(
Tmax,2070−99 − Tmax,i

)2
√ )
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irregular census block group scale, it is interpolated to the regular 1 km 
resolution grid used in WRF simulations (Fig. 3). 

Table 6 
This study estimates potential exposure to hazardous heat conditions 

using the indoor heat index. This potential exposure is calculated using a 
WRF simulation in which AC is turned off to explore the geospatial 
distribution of heat exposure when no cooling is available. The heat 
index (Steadman 1979) is a measure of “felt” or “apparent” temperature 
as experienced by humans that combines temperature and relative hu
midity. Originally developed as a table relating wet and dry bulb tem
peratures to heat index, it has since been adopted by the U.S. National 
Weather Service (NWS), usually using relative humidity and air tem
perature. Here, heat index is estimated via the method used by the NWS 
based on the regression from Rothfuz (1990). The regression equation 
takes the following form  

where Ci are the regression coefficients: 

C1 = −42.379
C2 = 2.04901523
C3 = 10.14333127
C4 = −.22475541
C5 = −6.83783x10−3

C6 = −5.481717x10−2

C7 = 1.22873x10−3

C8 = 8.5282x10−4

C9 = −1.99x10−6  

and the variables T and RH are indoor temperature in degrees Fahren
heit and relative humidity in percentage units from the BEM parame
terization, respectively. Indoor temperature and relative humidity were 
averaged for all urban vertical levels, and the estimated heat index was 

assigned as a bulk per-grid point value. In addition, if RH is less than 
13% and T lies between 80-112◦F (26.67-44.44◦C), an adjustment is 
subtracted from HI as follows: 

ADJ = (13 − RH)
/

4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
17 − |T− 95|/17

√

If, however, RH is greater than 85^ and T lies between 80-87◦F 
(26.67-30◦C), the adjustment term below is added to HI: 

ADJ = (RH − 85)/10 ∗ (87 − T)/5 

Finally, if the above process yields a HI value below 80◦F (26.67◦C), 
the following equation is used instead, without additional adjustments: 

HI = 0.5[T + 61 + (T − 68) ∗ 1.2 + RH ∗ 0.094]

Although the original formulation of the heat index was parame
terized to include the impacts of clothing layers and skin heat transfer 
processes (e.g., convection, evaporation, and radiation), NWS adoption 
uses a series of assumptions such as light breeze (5 knots, or ~x223C 2.5 
m/s), light clothing (short-sleeved shirt) and shaded conditions to 
facilitate development of warning systems, which are somewhat similar 
to indoor environments. The wind speed assumption used here is 
consistent with wind speeds commonly associated with ceiling fans in 
residences (Schmidt and Patterson 2001; Aynsley 2006). This formula
tion of the heat index computed with indoor values has been linked to 
higher incidence of cardiovascular and respiratory illness (Uejio et al. 
2016), particularly among vulnerable populations in NYC (e.g., the 
elderly), and has been used to study indoor heat exposure during 
extreme heat events (Quinn et al. 2014). Although work by van 
Loenhout et al. (2016) found that heat index provided no additional 
predictive value when assessing heat-related impacts in elderly pop
ulations, they pose that this may be due to the relatively temperate 
conditions in their study and be of more use in warmer, more humid 
climates. 

To estimate exposure of populations to hazardous heat conditions, 
we partition heat index values using the classification bands used by the 
NWS, then compute the number of hours when the heat index is in the 
Very Hot or higher (heat index > 40.6◦C). These categories are of 
particular significance, as they are used by NWS and the NYC Depart
ment of Health to issue public warnings. Although authorities issue these 
warnings based on outdoor measurements, studies have shown that in 
the absence of air conditioning, temperatures decrease at a slower pace 
indoors compared to outdoors due to heat storage in building materials 
and lack of ventilation (Vant-Hull et al. 2018), increasing heat exposure 
relative to the outdoors. 

Fig. 3. 5-year median household income estimate from the 2017 ACS, inter
polated to WRF simulation grid. Green boundary represents the South Bronx 
region, while the orange boundary encloses East and Central Brooklyn. Black 
circles show locations of NYS Mesonet stations used in model evaluation. 

Table 5 
Albedo and target temperature values used in adpatation strategy sensitivity 
simulations. Items in bold font mark the high end adaptation used in the full 
summer simulations.   

Roof 
albedo 

Target temperature / spec. 
humidity 

Baseline 0.2 22.2◦C (0.001 kgvapor /kgai) 
Albedo sensitivity 0.4 22.2◦C (0.001 kgvapor /kgai)  

0.6 22.2◦C (0.001 kgvapor /kgai)  
0.89 22.2◦C (0.001 kgvapor /kgai) 

Target temperature 
sensitivity 

0.2 23.3◦C (0.001 kgvapor /kgai)  

0.2 24.4◦C (0.001 kgvapor /kgai)  
0.2 25.0◦C (0.002 kgvapor /kgai)  

HI = C1 + C2T + C3RH + C4T ∗ RH + C5T2 + C6RH2 + C7RH ∗ T2 + C8T ∗ RH2 + C9T2 ∗ RH2   
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2.4. Adaptation strategies 

One way to offset energy usage increase from full AC adoption is 
widespread implementation of technologies like reflective roofs or 
higher AC set point values. The former can reduce energy demand by 
reducing radiative energy fluxes into the building envelope through the 
roof, while the latter reduces the cooling load by narrowing the indoor- 
outdoor temperature difference. We estimate potential reductions to 
energy burden via a second set of simulations implementing these two 
approaches. 

We also use a set of 1 month simulations to study the sensitivity of 
the energy burden indicator to increases in roof albedo and target 
temperature and humidity. The simulations use the same input data and 
physics parameterizations as the base simulations, but run for only for 
July rather of the full summer to accommodate a larger. Table 5 details 
the roof albedo and AC target temperature combinations used in the 
sensitivity simulations. Finally, a second set of adaptation simulations 
using properties from high end reflective roof coatings and warmer in
door conditions are run for the entire 2018 summer perior. These two 
simulations use a building roof albedo (i.e., reflectivity) to 0.89 repre
sent the high end of commercially available technology (as per a review 
of commercial reflective roof coatings). In the second set of simulations, 
we change the temperature and humidity set points of the model AC to 
the upper of ASHRAR standards (ASHRAE 2017) for thermal comfort 
(25◦C and 0.2 kgvapor / kgair). 

3. Results 

3.1. Model evaluation 

To evaluate model performance, we compare simulation results with 
temperature observations from the New York State Mesonet network, 
and estimated AC peak load demand from the New York Independent 
System Operator (NYISO). NYISO is a nonprofit, quasi-governmental 
entity tasked with managing the state of New York’s electric supply 
market. As part of the services it provides, it reports electric loads for 
each of the New York State load zones, of which NYC is one. To evaluate 
model performance in reproducing temperatures, a weather station was 
selected from each of the city’s five boroughs (Brooklyn, The Bronx, 
Manhattan, Queens, and Staten Island), collecting data at 2 m height 
above ground. Then, the closest model grid point is selected and 
compared against each stations’ recorded hourly temperatures. 

Comparisons against the weather stations reveal that root mean 
square errors (RMSE) in simulations with present-day AC adoption rates 
ranging from 2.83-3.10◦C. Errors are largest during nighttime, particu
larly when temperatures remained warm overnight (above 22◦C), and 
simulated temperatures dropped to below 17◦C. When considering full 
AC adoption, which in some neighborhoods represent an increase of 
around 25% AC adoption, RMSE is slightly higher in all boroughs except 
Staten Island. Although model improvement is modest when considering 
partial AC fractions, results are consistent with previous work by Xu et al 
(2018), which adopted a per urban class fractional cooled fraction for 
the city of Beijing. 

NYISO records total electric load for NYC at 5 minute intervals, 
which we resample to hourly mean values. Since NYISO reports supply- 
side electric loads, its values include signals related to transmission and 
distribution losses, lighting, transportation, and other non-AC energy 
use. We refer here to the loads not related to transmission losses as the 
base load. To disaggregate the total load for a closer comparison to the 
simulated AC electric load, we first account for transmission and dis
tribution losses as well as the baseline (i.e., non cooling) loads. 

We account for transmission and distribution losses by dividing 
hourly values by a loss factor of 6.67%. This load factor was obtained 
from the report on grid losses by the New York State Energy Research 
and Development Authority, using the state average as an approxima
tion (Short and Swayne 2012). Then, we follow the methods detailed by 
Salamanca et al (2013) to separate electric loads into two components: 
one driven by meteorology (i.e., AC loads) and the other by human 

Table 6 
Location and error statistics for WRF simulations using Partial and full AC 
adoption.  

Name Latitude 
(◦) 

Longitude 
(◦) 

Partial AC RMSE 
(◦C) 

Full AC RMSE 
(◦C) 

Brooklyn 40.631762 -73.953678 3.10 3.18 
Bronx 40.872481 -73.893522 2.83 2.90 
Manhattan 40.767544 -73.964482 2.88 2.91 
Queens 40.734335 -73.815856 3.09 3.20 
Staten 

Island 
40.604014 -74.148499 2.98 2.96  

Fig. 4. (a) Hourly daily base load for and its two components and (b) Hourly daily AC electric loads for summer 2018 estimated from WRF simulations and NYISO 
supply-side load. 
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behavior (i.e., base loads). To estimate this human behavior component 
of the electric load, we extract the data from the day with the lowest load 
(C1) and the day with the lowest diurnal range (C2), defined as the 
difference between the daily maximum and minimum load in a given 
day. The base load is then computed from the average between these 
(Fig. 4a): 

Baseload =
C1 + C2

2 

Simulated AC demand from the Partial AC adoption simulation is 
clipped to the NYC boundary, then all grids are added to obtain hourly 
AC load. Comparing the disaggregated NYISO AC electric load with WRF 
simulated loads (Fig. 4b) for average per-hour values, we find generally 
good agreement, with a root mean squared error of 209 MW, or about 
15.8% of the mean daily load. Differences between WRF and NYISO are 
largest in the afternoon peak and lowest in the early morning. This lower 
sensitivity of the WRF AC load to outdoor conditions might be due en
ergy fluxes into buildings being too low as a result of some of the lack of 
detail in some of the lookup table parameters (e.g., roof and wall con
ductivity, emissivity) or underestimating temperature set points (e..g, 
commercial and office spaces might be overly cooled). The daily cycle 
also follows a similar hourly progression, albeit with a 1-2 hour lag at 
the beginning of the work day, with a small peak in the morning (10AM) 
and a larger peak in the late afternoon (3-4PM). 

We note that the use of a bulk supply-side dataset to evaluate NYC- 
wide cooling loads presents challenges. We have mitigated this issue 
with two considerations here. As simulations only run for the NYC 
summer season (June-July-August) they are unlikely to encounter days 
where heating is active (indeed, mandatory heating season in NYC ends 
in May). Second, the method used to compute the baseline load uses the 
average of the days with smallest load, which arguably should have the 
least cooling or heating as well as the day with the smallest daily diurnal 
range to approximate its non-weather dependent. These two days were 
May 14, 2018 and June 10, 2018 which had peak temperatures of 21◦C 
and 22◦C, which are very close to standard temperature set points, and 
when we can assume cooling and heating loads to be negligible. In 
addition, there were no massive disruptions in public transportation or 
power outages during these days, ruling out extreme or anomalous 
baseline loads. In addition, differences in infrastructure use and actual 
AC usage may add uncertainty. Another point of uncertainty in simu
lated AC is that all urban grid cells are cooled unless the AC fraction 
parameter is zero. Additional data on building materials and AC per
formance may make these results more in line with observations and 
sensitive to the day to day weather variation. 

3.2. Indoor heat exposure 

Fig. 5 shows indoor heat exposure, presented as the percent of 
summer (June-July-August) hours that reach or exceed 40.6◦C. In the 
PRESENT simulation (Fig. 5a), heat index meets or exceeds the Very Hot 
treshold between 10 and 70 percent of days. Locations near midtown 

and downtown Manhattan, where commercial landuse uses half as much 
occupancy than in residential areas (Fig. 2b-c), experiences the fewest 
hours of exposure. Locations with highest hours of exposure are char
acterized by residential units where occupancy is double that of com
mercial land use, as shown in Fig. 2e and Table 1. As occupancy acts as a 
source of sensible and latent heat in BEM, this leads to significant dif
ferences in the indoor moist air enthalpy across the city (SI Fig. 4). A less 
intense spatial gradient of hot temperatures is also consistent with 
previous characterizations of the NYC UHI, with an afternoon breeze 
cooling southern areas of NYC and moving the core of the UHI to the 
northwest Bronx and upper Manhattan (Gedzelman et al. 2003). These 
results, however, only capture days between June 1 – August 31, which 
caps the number of hours to 2208 (92 days, 24 hours each). 

3.3. Energy Burden 

Results show that AC Burden varies across NYC, with values in the 
PRESENT simulation ranging from near zero to over 2% of total income 
per 100 m2, with 99th percentile value of 2.4% per 100 m2. In the 
PRESENT simulation (Fig. 6a), highest burden areas are located in the 
South Bronx and Easter/Central Brooklyn (boundaries shown in Fig. 3). 
Relatively low incomes drive these high burden areas, with the lowest 
income households earning under 2500 USD per month, which is lower 
than the NYC published poverty threshold of 32402 USD annual income 
(New York City Office of the Mayor 2017). Grids within the south Bronx 
are particularly notable, as they both experience the highest share of 
summer hours above 40.6◦C, and the center of afternoon outdoor UHI as 
shown by Gedzelman et al (2003). Meanwhile, high incomes in most of 
Manhattan (> 10000 USD per month) lead to relatively low energy 
burden of less than 0.1% income per 100 m2. These burdens could be, 
however, significantly lower for high income households, as ACS income 
brackets stop at 250000 USD annual income, skewing collected survey 
data. 

In the FUTURE simulation (Fig. 6b), AC burden increases in all grids 
as a function of warming summer temperatures. Although mean energy 
burden for the entire city is 0.9% income per 100 m2, the lowest income 
neighborhoods experience up to 8% income per 100 m2. Meanwhile, the 
top 1% of grids have a burden of 3.2% income per 100 m2. Since energy 
burden calculations do not consider income changes, grids with highest 
burden values remain in the present-day low income neighborhoods. 
Changes between FUTURE and PRESENT (Fig. 6c) show that AC burden 
increases are larger in already vulnerable areas. These areas also coin
cide with the neighborhoods with lowest AC adoption rates (Fig. 2d) and 
household income (Fig. 3). There is an inverse relationship between the 
change in AC burden and monthly income, with higher income areas 
experiencing less than 4 times the increase in burden (Fig. 9). Although 
relative costs of AC increase at higher rates in these regions, they also 
experience the longest projected hours exposed to Very Hot conditions 
when no AC is used. AC burden change varies with building 
characteristics. 

Urban form and building properties also have an impact on thermal 
loading and outdoor conditions, as has been which in turn may impact 
indoor climates. In general, more densely built areas (Fig. 7a) with less 
less tall (Fig. 7b) buildings experience the largest increases in AC 
burden. The tallest, most slender buildings (i.e., with high ratio of total 
surface area to footprint area, Fig. 7c), like those found in the large 
commercial districts in the city experience almost no increases in AC 
burden over time. However, without accounting for those buildings, AC 
burden increases with increasing surface to plan area ratios. A similar 
pattern is observed built area fraction, where the very highest burdens 
lie in regions with relatively low built-up area. These patterns may be 
due to differences in neighborhoods populated with large single-family 
homes versus other areas with densely packed multi-family housing that 
is common in less lower income areas like the south Bronx and upper 
Manhattan. 

We also quantify changes in indoor thermal heat using moist 
Fig. 5. Percent of summer (JJA) hours when indoor heat index reaches or 
exceeds Very Hot threshold in the (a) PRESENT and (b) FUTURE simulations. 
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enthalpy. We estimate moist enthalpy using the ASHRAE approximation 
(American Society of Heating 2017): 

h = 1.006T + q(2501 + 1.805 ∗ T)

Here, h is the indoor moist enthalpy, T is the indoor temperature, and 
q is the indoor specific humidity. Simulation results (Fig. 8a-b) show that 
the geospatial pattern is mostly influenced by the urban land class 
(Fig. 2e), with distance to the coast playing a smaller role. Although 
buildings in commercial landuse have lower moist enthalpy than those 
of the two residential urban land classes, they experience a slightly 
higher percent change between PRESENT and FUTURE simulation, close 
to 2% higher (Fig. 8c). Areas with low relative change coincide with low 
income neighborhoods where the energy burden and its projected in
crease is also highest, so we conclude that household income is the main 
driver of the energy burden in NYC. 

These results highlight some of the impacts important to discussions 
of heat adaptation measures. Although low income neighborhoods 
experience the longest exposure time to indoor extreme heat, they also 
see the highest relative costs of AC operation. Warmer end of century 
summers exacerbate the differences between high and low income 
groups both in terms of indoor heat exposure and utility costs. Previous 
work has shown that periods of increased spending on heating during 
cold weather negatively impacts spending on food in low income fam
ilies (Bhattacharya et al. 2003). Barring any economic assistance to 
offset increasing cooling costs, increasingly hot summers may have a 
similar impact on household budgets, lowering health outcomes either 
by reduced food or reduced cooling spending. 

Fig. 6. AC utility cost burden for the (a) PRESENT and (b) FUTURE simulations, as well as (c) the difference between the two.  

Fig. 7. Scatter plots of AC burden change against grid (a) building area fraction, (b) building height, and (c) building surface to plan area.  

Fig. 8. Mean indoor moist enthalpy for (a) PRESENT, (b) FUTURE, and (%) the percent change between them.  
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3.4. Energy burden reduction strategies 

Results from the sensitivity analysis is summarized in Fig. 10. 
Overall, results show decreasing burden as adaptation magnitude in
creases, with increases in set point resulting in the largest decreases in 
burden. Median energy burden for the albedo simulations (Fig. 10a) 
range from 0.80 %income/100 m2 in the baseline simulation to 0.62 % 
income/100 m2 in the maximum adaptation scenario. However, impacts 
are significantly larger in high burden locations, with burdens going 
from 8.7%income/100 m2 in the baseline simulation to 6.7 %income/ 
100 m2 in the maximum albedo simulation. Energy burden is more 
sensitive to changes in set point (Fig. 10b), with median values going 
from 0.80 %income/100 m2 in the baseline case to 0.53 %income/100 
m2 in the maximum. In the highest burden locations, the energy burden 
range from 8.7 %income/100 m2 to under 5.5 %income/100 m2. 
Running a linear regression with the results of the sensitivity study, we 
find that on average energy burden decreases by 0.002 %income/100 
m2 per unit increase in albedo, and 0.06 per unit increase in set point, 

with both trends being statistically significant (p < 0.001). 
Results from our two adaptation strategy simulations show that 

adaptation strategies can have significant impacts on the cooling energy 
burden at the household level (Fig. 11). Increasing the AC temperature 
and humidity set points have the largest impacts throughout the domain, 
with the burden in the South Bronx region decreasing by 0.33 % income 
per 100 m2 on average, a reduction of nearly 21%. We find the burden in 
East Brooklyn area decreased, on average, by 0.24 % income per 100 m2, 
or 20% of their future burden. In some grid cells, percent reduction in 
burden reaches close to 0.50 % income per 100 m2 or up to 22% of the 
total future burden within both boundaries. 

Results from the reflective roof simulations show relatively modest 
reductions in energy burden compared to raising AC set points. For 
instance, reductions in cooling energy burden averaged in the South 
Bronx 0.13 and reaches up to 0.21 % income per 100 m2, representing 
decreases of 8% and 10%, respectively. Meanwhile in the East Brooklyn 
area, reductions averaged 0.8 % income per 100 m2 and up to 0.15 % 
income per 100 m2, representing decreases of 6% to 13% of their total. 

These results are consistent with recent work in by Mughal et al 
(2020), which found larger reductions in cooling energy demand from 
increasing set points from 21◦C to 25◦C than from reflective roof coat
ings. They found, however, that cool roof coatings decrease outdoor 
temperatures in low-rise areas more than set-point increases do, which 
might provide benefits beyond the building envelope. 

4. Conclusion 

Through a series of coupled building energy-weather simulations 
combined with census and utility data, we present an estimation of the 
burden of indoor cooling relative to household incomes in NYC. To the 
authors’ knowledge, this is one of the first studies that contextualizes 
dynamically modeled energy use with spatially explicit household in
come data at the city scale. By modeling the physical processes between 
buildings and the atmosphere, our work accounts for the feedbacks 
inherent to the urban climate system that impact the thermal loading of 
buildings, which in turn has an important role in cooling costs. 

We compare these costs by using hours exposed to hazardous heat as 
an indicator of heat-related health risks. In addition, we present po
tential climate-driven impacts of warming summers to this cost. Our 
results show that locations with lower income households have the 
highest estimated energy burden from AC use. In locations with the 
highest burden, under present climate conditions, a 100 m2 household 
would spend 6.1% of their total income on cooling during a fairly typical 

Fig. 9. Grid-point change in AC burden between the PRESENT and FUTURE 
simulations as a function of 2017 ACS income. 

Fig. 10. Sensitivity of AC energy burden for (a) increases in rooftop albedo and (b) increases in AC set point temperature. Black bars represent a bootstrapped 95% 
confidence interval using 1000 bootstrap iterations. 
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summer. Meanwhile, during an equivalent end of century summer in a 
high emissions scenario, this cost could increase to 8% of total income. 
These locations coincide with neighborhoods recorded to currently have 
the lowest AC adoption rates and highest heat mortality rates (Ito et al. 
2018). Work by Madrigano et al (2015a) also found that these neigh
borhoods have high rates of vulnerable populations (elderly, low in
come) (Madrigano et al. 2015a). Their work found that mortality rates 
increases during a heat wave were higher for low income, non-white, 
and elderly populations in NYC compared to other groups. This un
even exposure across vulnerable populations was compounded by less 
accessible green space and higher neighborhood surface temperatures, a 
trend that has recently been found across many US cities as recently 
found by Hsu et al. (2021). 

Meanwhile, energy burden in higher income neighborhoods range 
from nearly negligible (< 0.01% of total income per 100 m2) to 0.5% of 
total income 100 m2, with current AC adoption rates close to 100%. We 
also show that changes in the energy burden are higher in low-income 
areas in spite of lower relative increase of internal heat load compared 
to higher income neighborhoods. 

Simulated exposure to indoor heat and AC energy burdens are driven 
by indoor parameters like occupancy, building infrastructure and 
meteorological processes. NYC summer temperatures are often charac
terized by an afternoon sea breeze from the south east which signifi
cantly cools areas in proximity to the coastline while essentially moving 
the core of the daytime UHI northwest and into parts of New Jersey, 
which contributes to the indoor temperature gradient reproduced by our 
simulations. Previous studies also show vertical variation in indoor 
temperatures, with top floors, even in tall buildings, can have signifi
cantly higher temperatures than ground floor dwellings, which is not 
considered in our analysis (Quinn et al. 2017). 

High costs of air conditioning operation may also serve as a driver of 
passive, less energy intensive forms of building envelope cooling. 
Studies have shown that cool roofs (e.g., white roofs and green roofs) 
and even photovoltaic panels can decrease cooling loads significantly 
(Jaffal et al. 2012; Skelhorn et al. 2016; Salamanca et al. 2016) during 
the warm season. Rooftop technologies might be particularly useful in 
the high-burden neighborhoods with the largest indoor heat exposure as 
their shorter, less slender can deflect a more significant portion of 
incoming solar radiation via roofs (Ortiz et al. 2016), with estimated 
reductions of 10-16%. Our work presented here, however, highlights 
how these technologies may benefit low-income communities, with 
potential reductions of up to 20% in an idealized adoption scenario. In 
addition, urban planning and use of urban gardens and other vegetation 
have been shown to reduce not only outdoor temperatures (Dimoudi 

et al. 2014; Farhadi et al. 2019) but also reduce energy poverty (Tsilini 
et al. 2015). 

4.1. Limitations and uncertainty 

One of the largest sources of uncertainty in our work is the consid
eration of static social indicators (e.g., population, median income). 
Although results show increase in indoor heat exposure hours under no 
AC use, we do not account for changes in populations, income, or 
building infrastructure throughout the 21st century. Therefore, results 
should be interpreted as potential impacts on current NYC conditions. 
These uncertainties are partly constrained by the recently reported 
slowdown of population increase in NYC (U. S. Census Bureau 2019). In 
addition, as income and population data from the American Community 
Survey 5-year estimate are derived from somewhat limited samples, as 
opposed to the comprehensive decennial census, they carry margins of 
error. In our analysis, each grid point is assigned the median value to 
estimate economic burden, whereas income might vary drastically be
tween households within a single neighborhood or even city block. 
Occupant behavior, which is not accounted for in this study, can also 
significantly impact both energy use and hazardous heat exposure, as 
people may move to outdoor activities as a function of outdoor weather 
conditions or typical day-to-day activity. In addition, model evaluation 
as performed here is limited by a lack of spatially explicit building 
electric load data and the method used to compute the non-weather 
sensitive of NYISO bulk supply-side data. 

Another limitation of the study relates to the use of electric rates 
from a single summer. Utility rates vary year-to-year due for various 
reasons, including taxes on generation and transmission, repair and 
maintenance of infrastructure, and projected electric demand. Based on 
Consolidated Edison approved rate increases, NYC residents will be 
seeing cost per kWh to grow by nearly 4% per year until 2022 
(Consolidated Edison 2021a). Nevertheless, rate hikes may change at 
different dates due to changes in energy supply and new investments in 
energy infrastructure. Further, there has been increased focus from 
utilities to offer “Time of use” (TOU) pricing, where energy use is more 
expensive during peak demand times. These TOU pricing schemes usu
ally charge less than current averages during off-peak hours, but may 
charge significantly more during peak or so called “super-peak” hours 
(Consolidated Edison 2021b). These increased rates during peak hours 
may further burden residents during extreme heat events, when indoor 
cooling may be most needed. 

Finally, we note that our study considers a single year (2018) 
compared to an analog taken from a single year from a GCM end of 

Fig. 11. AC Burden reduction resulting from (a) full adoption of reflective roof coatings, and (b) higher set points.  
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century 30-year output. Although our analysis shows geospatial dis
parities in the cooling energy burden, actual values will vary depending 
on how cool or warm a particular summer might be. For example, as the 
energy burden is a function of household income, significantly warmer 
summers would increase low-income households’ burden at higher rates 
than their higher income counterparts. In addition, limitations related to 
model resolution could be addressed with increased computing power 
and finer scale AC adoption rates data, which might improve the rep
resentation of spatial characteristics of energy burden. 

Nevertheless, our study highlights the disparities spatial distribution 
of the impacts of current heat exposure across current socioeconomic 
groups. Our results show that, all things remaining equal, future con
ditions have the potential to disproportionately affect groups that have 
fewer means to adapt to these changes. These neighborhoods also stand 
to experience the highest increases in indoor heat exposure due to a 
combination of indoor thermal conditions (e.g., occupancy) and outdoor 
conditions, and our results show increasing risk of heat-related illness 
and mortality when no adaptations are used. Moreover, by quantifying 
potential future impacts of future climate on current populations, cur
rent policy can focus on strategies to mitigate or avoid them altogether. 
We also show that, although there are state and local programs to 
mitigate some of the cost of AC technology (e.g., HEAP), operational 
costs may pose a significant barrier for their and operation, which might 
exacerbate negative impacts related to heat exposure under changing 
climate conditions. Similar studies on the role of socioeconomic factors 
on exposure and vulnerability to extreme heat (either outdoor or indoor) 
have been reported across the US in cities like Portland (Voelkel et al. 
2018), Chicago (Klinenberg 1999; Wilson and Chakraborty 2019), and 
San Juan (Méndez-Lázaro et al. 2018), and studies like this might prove 
useful to reveal what disparities, if any, exist in cooling energy burdens. 
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