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ARTICLE INFO ABSTRACT

Keywords: Global climate change has increased the need for cooling indoor spaces, leading to a rise in adoption of air
Urban climate conditioning. This adoption, while decreasing health risks, can increase energy use and pose economic burdens in
Heat risk

low income households. Here, we estimate the burden associated with cooling, as well as potential extreme heat
exposure without it in the largest city in the US, New York using a coupled weather and building energy model,
utility pay scales, and household income data from the US Census.Results show uneven distribution of AC
economic burden, with lower income neighborhoods experiencing the largest relative costs. High-burden
neighborhoods see the largest climate-driven increases in spite of lower enthalpy increases. These neighbor-
hoods also have the most exposure to indoor extreme heat, which may triple by end of century. Energy burden
may pose a barrier to AC operation, with estimated cost in the lowest income households reaching up to 6.1% of
income for a 100 m? dwelling, which could increase to 8% by end of century. We also explore adaptation
strategies and quantify their impacts, finding that modifying traditional set points and reflective roofs can reduce
energy burden significantly, by up to 20% in the highest burden neighborhoods.

Energy burden
Urban heat island

1. Introduction

As temperatures continue to rise due to global climate change, so is
the frequency and intensity of hazardous heat (Meehl and Tebaldi
2004). This increase in summer heat places unique challenges in cities,
where population and infrastructure density may lead to higher mor-
tality (Limaye et al. 2018) and critical systems failure (Chester et al.
2020). These increasing risks necessitate the use of adaptations to cool
not only outdoor, but also indoor spaces. The most common indoor
cooling in the US adaptation is air conditioning (AC). Although an
effective tool to lower heat-related risks, AC adoption increases energy
use while, with higher sensitivity in cities, where the majority of the
global population resides (Waite et al. 2017), which may pose a signif-
icant challenge to sustainability goals focused being implemented in
cities. Costs associated with this increased energy use may burden
households unevenly, with low-income homes potentially being unable
to prevent hazardous indoor heat.
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1.1. Cooling cities in a changing climate

With global air temperatures projected to rise significantly, AC
adoption is also projected to increase. In the US, the number of house-
holds with AC has increased from 66.1 million in 1993 to over 100
million in 2015, representing an adoption rate change from 66.1% to
87% (Energy Information Agency 2015). Meanwhile, the International
Energy Agency (IEA) projects global AC ownership to soar to two thirds
of all households by 2050 (International Energy Agency 2018). This
increase in adoption, coupled with longer and warmer cooling seasons,
has led to projected increases between 320% (low development sce-
nario) to 2270% (high development scenario) in global residential
cooling energy demand (Santamouris 2016). These upcoming changes
present challenges at various scales, from regional and city scale power
generation to accommodate the additional electric demand for space
cooling, to utility costs at the household level.

This growing need for space cooling may be exacerbated in cities,
where ambient temperatures are often higher than in surrounding areas.
This phenomenon, called the Urban Heat Island (UHI), forms due to
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traditional built structures limiting cooling at the land surface (e.g.,
evaporative and radiative cooling), while both storing and generating
more heat (e.g., AC use, traffic) (Oke 1982) than natural landscapes.
Studies also show that UHIs may intensify periods of extreme heat
locally due to the positive land-atmosphere feedbacks that lead to the
UHI in the first place (Li and Bou-Zeid 2013; Founda and Santamouris
2017; Ramamurthy et al., 2017; Ortiz et al. 2018b; Ao et al. 2019).
Moreover, the United Nations projects that urban areas will absorb most
population growth projected by 2050 (United Nations 2019), further
increasing health risks and cooling costs associated with summer heat.

When including both urban and climate signals, projections of
cooling energy demand in New York City (NYC), the largest city in the
US, show end of century increases of up to 80% in the business as usual
RCP8.5 scenario (Ortiz et al. 2018a). Projected increases exhibited
geospatial variation due to differences in built environment configura-
tion and meteorological processes across the city such as sea breeze
penetration. Geographic differences in near surface temperature in-
creases mean that costs related to AC use will increase differently
throughout the city, with varying consequences across groups with
variable capacity to bear increased costs. Long-term summer climate
projections in NYC have shown that although water vapor content of the
atmosphere is expected to increase, relative humidity might slightly
decrease (Ortiz et al. 2019), suggesting that increases in electric load
might be driven by temperature increases rather than moisture content.
In addition, building energy usage is affected by user behavior and
equipment installation and repair. These factors cause disparities be-
tween energy ratings and actual usage, often called a performance gap,
and may also lead to hard-to-quantify cooling costs (Sunikka-Blank and
Galvin 2012; Cali et al. 2016). The performance gap may also be asso-
ciated with socioeconomic factors (Palma et al. 2019), which can lead to
already vulnerable populations being unevenly impacted by either high
heat exposure or high costs of cooling.

1.2. Energy costs and burden

Study of energy costs as they relate to household income and poverty
has often focused on heating during the cold season (Bhattacharya et al.
2003; Roberts 2008; Hills 2012; Teller-Elsberg et al. 2016; Robinson
et al. 2018). However, year-round temperatures are expected to increase
(Coumou et al. 2013; Lehner et al. 2018) for growing portions of the
world (Coumou and Robinson 2013), likewise increasing the need and
cost of AC operation while decreasing the need for heat (Wang and Chen
2014). The 2019 New York City Panel on Climate Change (NPCC) re-
ported that while since 1900 there are on average 1.85 fewer days below
freezing per decade, summer heat waves are expected to become more
frequent, longer, and more intense (Gonzalez et al. 2019). In NYC,
premature mortality associated with warming summers is projected to
grow between 47% to 95% by mid-century (Knowlton et al. 2007).
Studies have also shown that low-income and minority groups in citires
are often more vulnerable to heat (Hamstead et al. 2018; Madrigano
et al. 2015b) and bear a higher energy cost burden, attributed mostly to
differences in building infrastructure and investment (Kontokosta et al.
2019).

This disparity in relative energy costs may play a role in adoption of
AC units in NYC, as reported by Ito et al (2018), who also found that
areas with lower AC adoption coincide with higher rates of heat-related
mortality and hospitalizations. Heat-related mortality and other health
impacts are known to affect lower income and vulnerable populations
like the elderly (Rosenthal et al. 2014) at higher rates. Although state
and local governments sometimes provide economic assistance for
heating and cooling, such as with the Home Energy Assistance Program
(HEAP), these initiatives often only offer assistance in upfront costs,
leaving residents to bear the cost burden of AC operation. Recent work
focusing on Paris, France has also shown that while existing heat
adaptation strategies (e.g., urban parks and white roofs) may partially
offset heat risk and cooling loads, they are insufficient to completely
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eliminate projected increases, making AC an important tool to maintain
thermal comfort and reduce heat-related illnesses (Viguie et al. 2020).

1.3. Modeling building energy demand at urban scales

One way to quantify household energy expenditures and their
sensitivity to climate is by use of building energy models. Building en-
ergy models typically fall between two umbrellas: physics and statistical
models. Physics-based models use energy and mass balance relation-
ships information to quantify energy inputs and outputs to building
envelopes. These models are often designed to resolve single buildings in
high detail, as in the case of the US Department of Energy developed
EnergyPlus (Crawley et al. 2001). The advent of detailed representations
of city-scale building stock has allowed the extension single building
models to simulate energy demand at district and even city scales (Hong
et al. 2016; Olivo et al. 2017; Ahmed et al. 2017). Statistical methods
range from linear regression at the simplest levels to machine learning
algorithms like support vector machines (Jain et al. 2014) and neural
networks (Beccali et al. 2004; Neto and Fiorelli 2008). These methods
use historical output (i.e., energy demand or consumption) and input (e.
g., outdoor temperature, occupancy rates) variables to train a predictive
model. The rise in energy use data due to use of utility smart meters and
government reporting requirements has opened the door to predict en-
ergy demand at scales from single buildings (Jain et al. 2014; Yan and
Liu 2020) to entire cities (Kontokosta and Tull 2017; Chen et al. 2020).
An advantage of physics-based models is their reliance on detailed data
on building materials, morphology, and technology, which allows study
of a wide variety of energy efficiency technologies at the design stage
across a variety of use cases and even outdoor climate conditions.
Although statistical methods can include these data, they must be
selected a priori or engineered through feature selection exercises.

A limitation to both of the traditional approaches is their consider-
ation of the building envelope as a standalone entity. In reality, build-
ings and their surrounding environment are coupled via energy, mass,
and momentum exchanges that no only control energy consumption, but
often has a significant impact on outdoor climate. AC use is one of the
mechanisms leading to the UHI as described above. In order to quantify
building-atmosphere dynamics, a method that couples atmospheric and
building energy modeling must be used. One way these interactions
have been coupled with by embedding building consumption models
with numerical weather models. Examples of this approach include the
Building Energy Model (Salamanca et al. 2010) and Town Energy
Budget (Masson 2000), which parameterize aggregate building energy
interactions to a weather model’s simulation grid. This approach has
been used to simulate energy demand at urban scales in climates as
varied as temperate New York City (Ortiz et al. 2018a), arid Phoenix
(Salamanca et al. 2013), and tropical San Juan, Puerto Rico (Pokhrel
et al. 2018).

Whereas previous work has estimated building energy use at the city
scale and its impacts on urban and regional power demand, there has
been little research quantifying the burden placed on households by this
energy use. In this study we estimate household energy burdens asso-
ciated with AC operation in cities, using NYC as a case study. We use a
numerical weather prediction system coupled to a building energy
model to estimate building energy demand at the household scale for an
entire city. By employing the coupled weather-building energy model
approach, we addresses potentially spatially uneven urban climate
change in NYC and its relation to AC energy use, which itself forms a
feedback with atmospheric processes due to energy and mass exchanges
with buildings. In addition, by modeling the physical interactions be-
tween buildings and the atmosphere our study is able to account for
synergies between warmer end-of-century summers and urban-scale
processes like heat storage and anthropogenic heat generation, which
may be missed in statistical-only analyses.
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2. Methods

We use a high resolution configuration of the Weather Research and
Forecasting model (WRF, Skamarock et al 2008) coupled with a modi-
fied multi-layer urban canopy and building energy model parameteri-
zation to study changes in building cooling demand under climate
change conditions. We also characterize indoor heat exposure to high-
light potential health risks associated with lack of AC use, as detailed in
the following sections. Out modeling approach, with its inputs and
outputs are summarize in Fig. 1.

2.1. High resolution urban climate modeling

In order to resolve the fine scale atmospheric processes in NYC, we
use WRF to dynamically downscale data from reanalysis for present-day
conditions and a GCM for end-of-century climate. The dynamical
downscaling technique used here consists of using coarse gridded
datasets as initial and boundary conditions to a limited-area numerical
weather prediction model that solves the set of equations of atmospheric
fluid, mass, and energy in non-hydrostatic form.

Buildings modify the energy and momentum balance at the land
surface, with urban morphology and AC use forming feedbacks with the
surrounding atmosphere. In order to account for these energy and mo-
mentum exchanges between buildings and the atmosphere, simulations
use the Building Effect Parameterization (BEP) and Building Energy
Model (BEM) physics options in WRF (Martilli et al. 2002; Salamanca
et al. 2010). BEP accounts for physical interactions between buildings
and the atmosphere such as radiation shadowing and blocking, drag and
turbulence effects in the urban canopy, dynamically computing mo-
mentum and energy fluxes at all overlapping atmospheric levels. BEM,
on the other hand, dynamically computes the building envelope energy
balance to estimate energy exchanges between the building and the
atmosphere, accounting for conduction through all built surfaces, air
mass exchanges, indoor heat generation from humans and equipment,
and AC use. The dynamically calculated cooling (or heating) load is used

Atmospheric/Dynamic data (3D)
Temperature, U, V winds, atm. & soil
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to compute heat fluxes to the atmospheric layers that overlap with
embedded BEM parameterization layers at each model time step. For
each parameterized building envelope, an energy balance is performed
to compute energy fluxes from radiation and advection to and from the
urban canopy surfaces (i.e., roof and walls), while the AC subroutine
works to remove indoor energy by adding work to the system. As
BEP-BEM are a multi-layer urban parameterization, these heat fluxes are
computed for as many layers in the atmospheric coordinate system
overlap with the building vertical coordinate system. This urbanized
version of WRF has been evaluated in cities across a variety of climates
like Beijing (Xu et al. 2018), Phoenix (Salamanca et al. 2015), New York
(Ortiz et al. 2018b), and the Yangtze River Delta (Liao et al. 2014) to
name several examples.

Simulations use three domains (one parent, two nested) with hori-
zontal resolution of 9 km, 3 km, and 1 km (Fig. 2a) and 51 vertical levels,
with 15 levels within the lowest 3 km of the atmosphere. The D03
domain resolution of 1 km is set to optimize use of the urban canopy
parameters from the NUDAPT1km dataset (Burian and Shepherd 2008)
which include spatially explicit sky view factor (SVF), roughness
lengths, and frontal area densities at various angles and are in line with
similar studies in Chinese cities (Xu et al 2018, Liao et al 2020), the US
Southwest (2015), and NYC (Gamarro et al 2020, Ortiz et al 2019,
Gutierrez et al 2015).

In order to take advantage of the urban physics parameterizations,
additional detailed urban canopy parameters (UCPs) must be used.
Here, we derived UCPs from a combination of public NYC tax-lot data,
existing gridded datasets, and standards-based look-up tables. Urban
land cover and geometry was adapted from the NYC Department of
Planning MapPLUTO dataset (New York City Department of City Plan-
ning 2020), which provides heights and footprint areas of buildings at
the tax-lot scale (Fig. 2b-c). The tax-lot data was aggregated to the D03
domain’s 1 km grid, with mean values of building height, surface-to-
plant are ratio, and building area fraction. Urban land use was aggre-
gated into three categories: low density residential, high density resi-
dential, and commercial/industrial based on the land use field in

Static/geographic data (2D)
Landuse class, terrain height, land

moisture/temperature mask,

Building geometry
height, footprint-to-surface area ratio,
building area fraction

Building properties
Window ratio, surface albedo, urban land
use class

*—>

Human factors
Estimated occupancy, Cooled fraction (AC),
COP

Regional climate
model (WRF) <
w/ BEP-BEM

WRF-outpouts

Indoor temperature,

indoor humidity, AC
consumption

AC consumption

Model/process

. Output

Indoor temperature,
relative humidity

2018 ACS (5-year)
Median household income

Energy
ConEdison residential burden

rate
Summer 2018, non
time of use

Indoor heat
index

Fig. 1. Experimental workflow detailing key inputs and outputs used to produce energy burden and indoor heat index.
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Building height (m)
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& density density
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Fig. 2. (a) WRF parent domain (map extent, 9 km resolution) configuration with nested domains D02 (3 km resolution) and D03 (1 km resolution). Urban parameters
added to simulations include (b) grid building area fraction, (c) grid average building height, (d) grid AC adoption rate, and (e) urban land use classes.

MapPLUTO (Fig. 2e), following the encoding detailed in Gonzalez et al
(2017). Urban land use aggregation used the most common land use
found in each 1 km grid cell.

Panel Fig. 2d shows the spatial distribution of the fraction of homes
with AC units from Ito et al (2018), used in analysis of vulnerability to
indoor extreme heat and AC energy cost burdens, detailed in in section
2.. Other parameters like roughness lengths were extracted from the
default NUDAPT 1 km database for NYC (Burian and Shepherd 2008). In
addition, building AC use has been updated in BEM to partition heat
fluxes into both latent and sensible components by including evapora-
tive cooling processes (Gutiérrez et al. 2015a). This approach accounts
for evaporative cooling used in modern AC systems and applied to the
entire domain. BEP was also modified to include a variable drag coef-
ficient as a function of building area fraction based on a set of fluid
dynamics experiments (Santiago et al. 2008; Gutiérrez et al. 2015b).

Other parameters directly used by BEM (Table 1) follow previous
work (Gutiérrez et al. 2015a; Ortiz et al. 2018a), which modify the urban
parameter lookup table with values better aligned with recommenda-
tions by the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE). The use of constant lookup table
values are a simplifying assumption that building parameters are rela-
tively uniform across urban landuse classes. These constant parameters
ignore some of the variations in building construction and AC technol-
ogies (e.g., COP differences between window and central AC) across the
city and present an opportunity to further refine future simulations.

Table 1
Urban canopy and building energy parameters from the WRF lookup table.
Urban Parameter Value
Temperature set point (°C) 22.22
Humidity set point (kgvapor 0.01
/Kgair)
Coefficient of performance 2.8
Window area fraction 0.33
Roof albedo 0.2
Roof emissivity 0.9

16.0/20.0/26.0

0.025/0.025/0.050

(Low density res./High density res./
Commercial)

Peak equipment load (W/m?)
Peak occupancy (person/m?)

These parameters include broad descriptions of building surface prop-
erties like roof emissivity and window area coverage, as well as char-
acterizations of the building envelope. The latter include peak
occupancy and electronic equipment loads, as well as the AC coefficient
of performance, which is defined as the the ratio of the heat removed
from the building to the atmosphere (i.e., from the hot reservoir to the
cold reservoir) to the amount of work required to remove it. Other pa-
rameters include AC configurations for temperature and humidity which
are often configurable by end users of building engineering staff on a day
to day basis but remain static in the simulations performed here.

Other physics options were selected following previous work over
the NYC region and are detailed in Table 2 (Ortiz et al. 2019). Simula-
tions were carried out at a high performance computing facility, with
each model run using 128 processors and using approximately 7 days of
compute time. The high performance computing system uses Intel Sandy
Bridge architecture processors, organized in 16-core nodes.

Table 2
Model physics parameterizations used in WRF simulations.

Model Physics Parameterization

Land surface model NOAH LSM (Tewari et al. 2004)

Cumulus Kain-Fritsch (Kain 2004), off in D03

Microphysics Thompson (Thompson et al. 2008)

Urban canopy Building Effect Parameterization (BEP) (Martilli et al.
2002)

Building Energy Model (BEM) (Salamanca et al. 2010)
AC Evaporative Cooling Parameterization (Gutiérrez et al.
2015a)

Variable Urban Drag Coefficient (Gutiérrez et al. 2015b)

Shortwave radiation RRTMG (lacono et al. 2008)

Longwave radiation RRTM (Mlawer et al. 1997)

Planetary boundary
layer

Mellor-Yamada-Janjic (Janji¢ 1994)
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2.2. Simulation design

To study the impacts of warming climate conditions on demand-side
AC costs, we use a typical, relatively recent summer, referred to here as
PRESENT, then find its future analog based the distribution of daily
minimum, mean, and maximum temperatures. To select a typical sum-
mer, we used historical daily maximum temperature records from the
Central Park weather station between the years 2089-2019 and calcu-
lated the yearly minimum, mean, and maximum daily peak tempera-
tures. Summer 2018 exhibited the closest to typical (i.e., 50" percentile)
values of these metrics of any of the previous 10 years (Table 3).

The analog is found by use of the Central Park weather station. Then,
we find the yearly minimum, mean, and maximum of daily maximum
temperature, as well as its percentile rank in the 30-year period ending
in 2018. For the future analog, we find the same yearly statistics in
global model data for the 2070-2099 period, then find the year that lies
closest to the percentile rank of summer 2018. The closest year is found
by finding the year with the minimum Euclidean distance to the chosen
recent summer, as follows:

Sustainable Cities and Society 76 (2022) 103465

Table 4
WREF simulation model inputs and urban canopy parameter source data.
Present Future
Initial and boundary North American Regional CCsM4 (1°
conditions Reanalysis resolution)

(32 km resolution)

Urban Canopy Parameters MapPLUTO (tax-lot

(geometric) resolution)
Urban Canopy Parameters NUDAPT1km (1 km
(non-geometric) resolution)

to and from buildings related through indoor generation, radiative
transfer and advection.

A third simulation, set in the PRESENT time period, uses the data
from Ito et al (2018) as a measure of current AC adoption in NYC, shown
in Fig. 2d. AC adoption rates are included in the model by modifying the
indoor energy balance in each urban-category grid cell by the fraction of
homes with AC in BEM based on work exploring environmental and
infrastructure impacts of AC adoption in NYC (Gamarro et al. 2020):

2 2

FUTURE = MIN(\/(Tmin,ZWO—‘JQ - Tmin.[) + (Tmean,2070—99 - Tmmn,[)

Here, Tiin,2070-2099 Tmean,2070-2099, Tmax,2070-2099 Tepresent the yearly
daily maximum temperature minima, mean, and maxima, respectively,
while the subscript i denotes a particular year. The year with the closest
matching temperatures was 2097, referred to from here onward as the
FUTURE period, as shown in Table 3. PRESENT simulations use the
North American Regional Reanalysis (NARR, Mesinger et al 2006) as
initial and boundary conditions, while FUTURE simulations use a bias
corrected Community Climate System Model version 4 (CCSM4) busi-
ness as usual RCP 8.5 as initial and boundary conditions (Monaghan
et al. 2014). NARR is a high resolution reanalysis product covering the
North America and the Caribbean with a 32 km grid resolution and 29
vertical levels. CCSM4 is a general circulation model that couples an
atmospheric, ocean, and ice sub-models to project future climate sce-
narios. The particular CCSM4 simulations used here are part of the fifth
Coupled Model Inter-comparison Project (CMIP5) and use 26 vertical
levels at 1° x 1° horizontal resolution. Both of these these initial and
boundary conditions provide a coarse information on the region’s
winds, sea surface temperatures, and atmospheric and soil temperature
and moisture content. As a result, our simulations account for changes in
climatic conditions as a result of the global climate signal for all vari-
ables as modeled by the CCSM4 output. Table 4 summarizes the geo-
spatial data inputs used as parameters as well as initial and boundary
conditions used in all simulations. In order to model indoor heat expo-
sure, a second set of PRESENT and FUTURE simulations were performed
with 0% AC adoption. For these simulations, all AC-related heat fluxes
are set to 0, while still allowing for the computation of other heat fluxes

Table 3

Minimum, mean, and maximum of daily maximum temperatures of Summer
2018, and their percentile rank between 1989-2018 based on the Central Park
weather station. FUTURE summer 2097 is selected from CESM1 data between
2070-2099 at the same percentile ranks.

PRESENT Percentile FUTURE
TmaXpin 21.2°C 73 27.1°C
TmaXmean 28.6°C 537 35.2°C
TmaXmax 34.6°C 431 42.5°C

2
+ (Tnax200-99 — Tonaxi) )

H?

out

= Hou*xa

Er = H,,x«a

out

Ee = =op (Hou+ EL)

Here, H,y, and E,,; represent the building sensible and latent heat
fluxes, E, is the cooling electric demand, « is the AC fraction, and su-
perscript p denotes variables that account for fractional AC use. One
limitation of this approach is the use of the same cooled fraction for all
urban land uses, including commercial. However, due to the 1 km res-
olution of the model configuration combined with the city’s household
income spatial distribution, majority commercial land use grids coincide
with the highest AC adoption rates at nearly 100%, which may be in line
with commercial cooling practices. Results from this simulation are used
to evaluate model performance against weather station data.

2.3. Energy burden and heat exposure indicators

To estimate energy burden, we use the AC demand output from BEM
in our WRF simulations, census block group income data, and pay scales
from the local utility, Consolidated Edison. AC demand is dynamically
calculated in BEM and used by the model to estimate anthropogenic heat
fluxes. We estimate the energy burden associated with AC use as:
COSIAC,I!()MS(‘}I(J[d

Burden e,y =
& Incomeypuseioa

where Costac household iS the electricity cost related to cooling 100 m?> per
grid point and Incomepoysenoid i the median income of a household
derived from the American Community Survey (ACS) 2017 5-year esti-
mate. We obtained the energy cost by multiplying hourly AC demand
from BEM and Consolidated Edison schedule 2 rates with no time-of-day
pricing. The summer (i.e., schedule 2) rate for the 2018 May-September
period was 0.2493 US $ / kWh, which includes charges for generation,
transmission, and local taxes, The energy consumption was obtained on
a per-grid cell basis from BEM, which computes cooling loads in units of
W/m2. We scaled the load to a 100 m? dwelling in order to provide
burden values for a typical home size. Since ACS data is released at the
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The Bronx

Manhattan

Staten Island

Median household income (USD)

0 5000 10000

Fig. 3. 5-year median household income estimate from the 2017 ACS, inter-
polated to WRF simulation grid. Green boundary represents the South Bronx
region, while the orange boundary encloses East and Central Brooklyn. Black
circles show locations of NYS Mesonet stations used in model evaluation.

irregular census block group scale, it is interpolated to the regular 1 km
resolution grid used in WRF simulations (Fig. 3).

Table 6

This study estimates potential exposure to hazardous heat conditions
using the indoor heat index. This potential exposure is calculated using a
WRF simulation in which AC is turned off to explore the geospatial
distribution of heat exposure when no cooling is available. The heat
index (Steadman 1979) is a measure of “felt” or “apparent” temperature
as experienced by humans that combines temperature and relative hu-
midity. Originally developed as a table relating wet and dry bulb tem-
peratures to heat index, it has since been adopted by the U.S. National
Weather Service (NWS), usually using relative humidity and air tem-
perature. Here, heat index is estimated via the method used by the NWS
based on the regression from Rothfuz (1990). The regression equation
takes the following form

Sustainable Cities and Society 76 (2022) 103465

assigned as a bulk per-grid point value. In addition, if RH is less than
13% and T lies between 80-112°F (26.67-44.44°C), an adjustment is
subtracted from HI as follows:

ADJ = (13 — RH)/4\/17— 17~ 95/17

If, however, RH is greater than 85" and T lies between 80-87°F
(26.67-30°C), the adjustment term below is added to HI:

ADJ = (RH — 85)/10 % (87—T)/5

Finally, if the above process yields a HI value below 80°F (26.67°C),
the following equation is used instead, without additional adjustments:

HI = 05[T + 61 + (T —68)x1.2 + RHx0.094]

Although the original formulation of the heat index was parame-
terized to include the impacts of clothing layers and skin heat transfer
processes (e.g., convection, evaporation, and radiation), NWS adoption
uses a series of assumptions such as light breeze (5 knots, or ~x223C 2.5
m/s), light clothing (short-sleeved shirt) and shaded conditions to
facilitate development of warning systems, which are somewhat similar
to indoor environments. The wind speed assumption used here is
consistent with wind speeds commonly associated with ceiling fans in
residences (Schmidt and Patterson 2001; Aynsley 2006). This formula-
tion of the heat index computed with indoor values has been linked to
higher incidence of cardiovascular and respiratory illness (Uejio et al.
2016), particularly among vulnerable populations in NYC (e.g., the
elderly), and has been used to study indoor heat exposure during
extreme heat events (Quinn et al. 2014). Although work by van
Loenhout et al. (2016) found that heat index provided no additional
predictive value when assessing heat-related impacts in elderly pop-
ulations, they pose that this may be due to the relatively temperate
conditions in their study and be of more use in warmer, more humid
climates.

To estimate exposure of populations to hazardous heat conditions,
we partition heat index values using the classification bands used by the
NWS, then compute the number of hours when the heat index is in the
Very Hot or higher (heat index > 40.6°C). These categories are of
particular significance, as they are used by NWS and the NYC Depart-
ment of Health to issue public warnings. Although authorities issue these
warnings based on outdoor measurements, studies have shown that in
the absence of air conditioning, temperatures decrease at a slower pace
indoors compared to outdoors due to heat storage in building materials
and lack of ventilation (Vant-Hull et al. 2018), increasing heat exposure
relative to the outdoors.

HI = C, + C,T + GiRH + Ci,T*RH + CsT* + CeRH* + C;RH +T?> + CsT * RH*> 4+ CoT* x RH*

where C; are the regression coefficients:

C, = —42.379
C, = 2.04901523

C; = 10.14333127
Cy, = —.22475541

Cs = —6.83783x1073
Cy = —5.481717x1072
C; = 1.22873x107°
Cs = 8.5282x107*

Cy = —1.99x107°

and the variables T and RH are indoor temperature in degrees Fahren-
heit and relative humidity in percentage units from the BEM parame-
terization, respectively. Indoor temperature and relative humidity were
averaged for all urban vertical levels, and the estimated heat index was

Table 5

Albedo and target temperature values used in adpatation strategy sensitivity
simulations. Items in bold font mark the high end adaptation used in the full
summer simulations.

Roof Target temperature / spec.
albedo humidity
Baseline 0.2 22.2°C (0.001 Kgyapor /kgai)
Albedo sensitivity 0.4 22.2°C (0.001 kgyapor /Kgai)
0.6 22.2°C (0.001 Kgyapor /Kgai)
0.89 22.2°C (0.001 Kgyapor /kgai)
Target temperature 0.2 23.3°C (0.001 kgvapor /Kgai)
sensitivity
0.2 24.4°C (0.001 Kgyapor /kgai)
0.2 25.0°C (0.002 kgyapor /Kgai)
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Table 6
Location and error statistics for WRF simulations using Partial and full AC
adoption.

Name Latitude Longitude Partial AC RMSE Full AC RMSE
©) ©) (] (9]

Brooklyn 40.631762 -73.953678 3.10 3.18

Bronx 40.872481 -73.893522 2.83 2.90

Manhattan 40.767544 -73.964482 2.88 291

Queens 40.734335 -73.815856 3.09 3.20

Staten 40.604014 -74.148499 2.98 2.96

Island

2.4. Adaptation strategies

One way to offset energy usage increase from full AC adoption is
widespread implementation of technologies like reflective roofs or
higher AC set point values. The former can reduce energy demand by
reducing radiative energy fluxes into the building envelope through the
roof, while the latter reduces the cooling load by narrowing the indoor-
outdoor temperature difference. We estimate potential reductions to
energy burden via a second set of simulations implementing these two
approaches.

We also use a set of 1 month simulations to study the sensitivity of
the energy burden indicator to increases in roof albedo and target
temperature and humidity. The simulations use the same input data and
physics parameterizations as the base simulations, but run for only for
July rather of the full summer to accommodate a larger. Table 5 details
the roof albedo and AC target temperature combinations used in the
sensitivity simulations. Finally, a second set of adaptation simulations
using properties from high end reflective roof coatings and warmer in-
door conditions are run for the entire 2018 summer perior. These two
simulations use a building roof albedo (i.e., reflectivity) to 0.89 repre-
sent the high end of commercially available technology (as per a review
of commercial reflective roof coatings). In the second set of simulations,
we change the temperature and humidity set points of the model AC to
the upper of ASHRAR standards (ASHRAE 2017) for thermal comfort
(25°C and 0.2 kgvapor / Kgair)-
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3. Results
3.1. Model evaluation

To evaluate model performance, we compare simulation results with
temperature observations from the New York State Mesonet network,
and estimated AC peak load demand from the New York Independent
System Operator (NYISO). NYISO is a nonprofit, quasi-governmental
entity tasked with managing the state of New York’s electric supply
market. As part of the services it provides, it reports electric loads for
each of the New York State load zones, of which NYC is one. To evaluate
model performance in reproducing temperatures, a weather station was
selected from each of the city’s five boroughs (Brooklyn, The Bronx,
Manhattan, Queens, and Staten Island), collecting data at 2 m height
above ground. Then, the closest model grid point is selected and
compared against each stations’ recorded hourly temperatures.

Comparisons against the weather stations reveal that root mean
square errors (RMSE) in simulations with present-day AC adoption rates
ranging from 2.83-3.10°C. Errors are largest during nighttime, particu-
larly when temperatures remained warm overnight (above 22°C), and
simulated temperatures dropped to below 17°C. When considering full
AC adoption, which in some neighborhoods represent an increase of
around 25% AC adoption, RMSE is slightly higher in all boroughs except
Staten Island. Although model improvement is modest when considering
partial AC fractions, results are consistent with previous work by Xu et al
(2018), which adopted a per urban class fractional cooled fraction for
the city of Beijing.

NYISO records total electric load for NYC at 5 minute intervals,
which we resample to hourly mean values. Since NYISO reports supply-
side electric loads, its values include signals related to transmission and
distribution losses, lighting, transportation, and other non-AC energy
use. We refer here to the loads not related to transmission losses as the
base load. To disaggregate the total load for a closer comparison to the
simulated AC electric load, we first account for transmission and dis-
tribution losses as well as the baseline (i.e., non cooling) loads.

We account for transmission and distribution losses by dividing
hourly values by a loss factor of 6.67%. This load factor was obtained
from the report on grid losses by the New York State Energy Research
and Development Authority, using the state average as an approxima-
tion (Short and Swayne 2012). Then, we follow the methods detailed by
Salamanca et al (2013) to separate electric loads into two components:
one driven by meteorology (i.e., AC loads) and the other by human

b
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Fig. 4. (a) Hourly daily base load for and its two components and (b) Hourly daily AC electric loads for summer 2018 estimated from WRF simulations and NYISO

supply-side load.
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behavior (i.e., base loads). To estimate this human behavior component
of the electric load, we extract the data from the day with the lowest load
(C1) and the day with the lowest diurnal range (C2), defined as the
difference between the daily maximum and minimum load in a given
day. The base load is then computed from the average between these
(Fig. 4a):

Cl+C2

Baseload =
aseloa 2

Simulated AC demand from the Partial AC adoption simulation is
clipped to the NYC boundary, then all grids are added to obtain hourly
ACload. Comparing the disaggregated NYISO AC electric load with WRF
simulated loads (Fig. 4b) for average per-hour values, we find generally
good agreement, with a root mean squared error of 209 MW, or about
15.8% of the mean daily load. Differences between WRF and NYISO are
largest in the afternoon peak and lowest in the early morning. This lower
sensitivity of the WRF AC load to outdoor conditions might be due en-
ergy fluxes into buildings being too low as a result of some of the lack of
detail in some of the lookup table parameters (e.g., roof and wall con-
ductivity, emissivity) or underestimating temperature set points (e..g,
commercial and office spaces might be overly cooled). The daily cycle
also follows a similar hourly progression, albeit with a 1-2 hour lag at
the beginning of the work day, with a small peak in the morning (10AM)
and a larger peak in the late afternoon (3-4PM).

We note that the use of a bulk supply-side dataset to evaluate NYC-
wide cooling loads presents challenges. We have mitigated this issue
with two considerations here. As simulations only run for the NYC
summer season (June-July-August) they are unlikely to encounter days
where heating is active (indeed, mandatory heating season in NYC ends
in May). Second, the method used to compute the baseline load uses the
average of the days with smallest load, which arguably should have the
least cooling or heating as well as the day with the smallest daily diurnal
range to approximate its non-weather dependent. These two days were
May 14, 2018 and June 10, 2018 which had peak temperatures of 21°C
and 22°C, which are very close to standard temperature set points, and
when we can assume cooling and heating loads to be negligible. In
addition, there were no massive disruptions in public transportation or
power outages during these days, ruling out extreme or anomalous
baseline loads. In addition, differences in infrastructure use and actual
AC usage may add uncertainty. Another point of uncertainty in simu-
lated AC is that all urban grid cells are cooled unless the AC fraction
parameter is zero. Additional data on building materials and AC per-
formance may make these results more in line with observations and
sensitive to the day to day weather variation.

3.2. Indoor heat exposure

Fig. 5 shows indoor heat exposure, presented as the percent of
summer (June-July-August) hours that reach or exceed 40.6°C. In the
PRESENT simulation (Fig. 5a), heat index meets or exceeds the Very Hot
treshold between 10 and 70 percent of days. Locations near midtown

Indoor exposure (% total hours)

[
10 20 30 40 50 60 70 80 90 100

Fig. 5. Percent of summer (JJA) hours when indoor heat index reaches or
exceeds Very Hot threshold in the (a) PRESENT and (b) FUTURE simulations.
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and downtown Manhattan, where commercial landuse uses half as much
occupancy than in residential areas (Fig. 2b-c), experiences the fewest
hours of exposure. Locations with highest hours of exposure are char-
acterized by residential units where occupancy is double that of com-
mercial land use, as shown in Fig. 2e and Table 1. As occupancy acts as a
source of sensible and latent heat in BEM, this leads to significant dif-
ferences in the indoor moist air enthalpy across the city (SI Fig. 4). A less
intense spatial gradient of hot temperatures is also consistent with
previous characterizations of the NYC UHIL, with an afternoon breeze
cooling southern areas of NYC and moving the core of the UHI to the
northwest Bronx and upper Manhattan (Gedzelman et al. 2003). These
results, however, only capture days between June 1 — August 31, which
caps the number of hours to 2208 (92 days, 24 hours each).

3.3. Energy Burden

Results show that AC Burden varies across NYC, with values in the
PRESENT simulation ranging from near zero to over 2% of total income
per 100 m?, with 99t percentile value of 2.4% per 100 m2 In the
PRESENT simulation (Fig. 6a), highest burden areas are located in the
South Bronx and Easter/Central Brooklyn (boundaries shown in Fig. 3).
Relatively low incomes drive these high burden areas, with the lowest
income households earning under 2500 USD per month, which is lower
than the NYC published poverty threshold of 32402 USD annual income
(New York City Office of the Mayor 2017). Grids within the south Bronx
are particularly notable, as they both experience the highest share of
summer hours above 40.6°C, and the center of afternoon outdoor UHI as
shown by Gedzelman et al (2003). Meanwhile, high incomes in most of
Manhattan (> 10000 USD per month) lead to relatively low energy
burden of less than 0.1% income per 100 m?. These burdens could be,
however, significantly lower for high income households, as ACS income
brackets stop at 250000 USD annual income, skewing collected survey
data.

In the FUTURE simulation (Fig. 6b), AC burden increases in all grids
as a function of warming summer temperatures. Although mean energy
burden for the entire city is 0.9% income per 100 m?, the lowest income
neighborhoods experience up to 8% income per 100 m?. Meanwhile, the
top 1% of grids have a burden of 3.2% income per 100 m? Since energy
burden calculations do not consider income changes, grids with highest
burden values remain in the present-day low income neighborhoods.
Changes between FUTURE and PRESENT (Fig. 6¢) show that AC burden
increases are larger in already vulnerable areas. These areas also coin-
cide with the neighborhoods with lowest AC adoption rates (Fig. 2d) and
household income (Fig. 3). There is an inverse relationship between the
change in AC burden and monthly income, with higher income areas
experiencing less than 4 times the increase in burden (Fig. 9). Although
relative costs of AC increase at higher rates in these regions, they also
experience the longest projected hours exposed to Very Hot conditions
when no AC is used. AC burden change varies with building
characteristics.

Urban form and building properties also have an impact on thermal
loading and outdoor conditions, as has been which in turn may impact
indoor climates. In general, more densely built areas (Fig. 7a) with less
less tall (Fig. 7b) buildings experience the largest increases in AC
burden. The tallest, most slender buildings (i.e., with high ratio of total
surface area to footprint area, Fig. 7c), like those found in the large
commercial districts in the city experience almost no increases in AC
burden over time. However, without accounting for those buildings, AC
burden increases with increasing surface to plan area ratios. A similar
pattern is observed built area fraction, where the very highest burdens
lie in regions with relatively low built-up area. These patterns may be
due to differences in neighborhoods populated with large single-family
homes versus other areas with densely packed multi-family housing that
is common in less lower income areas like the south Bronx and upper
Manbhattan.

We also quantify changes in indoor thermal heat using moist
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Fig. 6. AC utility cost burden for the (a) PRESENT and (b) FUTURE simulations, as well as (c) the difference between the two.

50 A‘
) 2.0 -
L ] [_J
40 - 2
2 s
S o £ m 15
8 30 fn E
& e © &
00 4 -
£ 20 - J » g 10
= ° T ©
a e ®° 2 g
10 - 5 057
[ ] [ ] wn
° [ ] (] Y d
0 - a 0+ o b 0.0 c
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

AC Burden Change (%income per 100 m?)

Fig. 7. Scatter plots of AC burden change against grid (a) building area fraction, (b) building height, and (c) building surface to plan area.
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Fig. 8. Mean indoor moist enthalpy for (a) PRESENT, (b) FUTURE, and (%) the percent change between them.

enthalpy. We estimate moist enthalpy using the ASHRAE approximation
(American Society of Heating 2017):

h = 1.006T + (2501 + 1.805  T)

Here, h is the indoor moist enthalpy, T is the indoor temperature, and
q is the indoor specific humidity. Simulation results (Fig. 8a-b) show that
the geospatial pattern is mostly influenced by the urban land class
(Fig. 2e), with distance to the coast playing a smaller role. Although
buildings in commercial landuse have lower moist enthalpy than those
of the two residential urban land classes, they experience a slightly
higher percent change between PRESENT and FUTURE simulation, close
to 2% higher (Fig. 8c). Areas with low relative change coincide with low
income neighborhoods where the energy burden and its projected in-
crease is also highest, so we conclude that household income is the main
driver of the energy burden in NYC.

These results highlight some of the impacts important to discussions
of heat adaptation measures. Although low income neighborhoods
experience the longest exposure time to indoor extreme heat, they also
see the highest relative costs of AC operation. Warmer end of century
summers exacerbate the differences between high and low income
groups both in terms of indoor heat exposure and utility costs. Previous
work has shown that periods of increased spending on heating during
cold weather negatively impacts spending on food in low income fam-
ilies (Bhattacharya et al. 2003). Barring any economic assistance to
offset increasing cooling costs, increasingly hot summers may have a
similar impact on household budgets, lowering health outcomes either
by reduced food or reduced cooling spending.
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Fig. 9. Grid-point change in AC burden between the PRESENT and FUTURE
simulations as a function of 2017 ACS income.
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3.4. Energy burden reduction strategies

Results from the sensitivity analysis is summarized in Fig. 10.
Overall, results show decreasing burden as adaptation magnitude in-
creases, with increases in set point resulting in the largest decreases in
burden. Median energy burden for the albedo simulations (Fig. 10a)
range from 0.80 %income,/100 m? in the baseline simulation to 0.62 %
income,/100 m? in the maximum adaptation scenario. However, impacts
are significantly larger in high burden locations, with burdens going
from 8.7%income/100 m? in the baseline simulation to 6.7 %income/
100 m? in the maximum albedo simulation. Energy burden is more
sensitive to changes in set point (Fig. 10b), with median values going
from 0.80 %income,/100 m? in the baseline case to 0.53 %income,/100
m? in the maximum. In the highest burden locations, the energy burden
range from 8.7 %income/100 m? to under 5.5 %income/100 m?
Running a linear regression with the results of the sensitivity study, we
find that on average energy burden decreases by 0.002 %income/100
m? per unit increase in albedo, and 0.06 per unit increase in set point,
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with both trends being statistically significant (p < 0.001).

Results from our two adaptation strategy simulations show that
adaptation strategies can have significant impacts on the cooling energy
burden at the household level (Fig. 11). Increasing the AC temperature
and humidity set points have the largest impacts throughout the domain,
with the burden in the South Bronx region decreasing by 0.33 % income
per 100 m? on average, a reduction of nearly 21%. We find the burden in
East Brooklyn area decreased, on average, by 0.24 % income per 100 m?,
or 20% of their future burden. In some grid cells, percent reduction in
burden reaches close to 0.50 % income per 100 m? or up to 22% of the
total future burden within both boundaries.

Results from the reflective roof simulations show relatively modest
reductions in energy burden compared to raising AC set points. For
instance, reductions in cooling energy burden averaged in the South
Bronx 0.13 and reaches up to 0.21 % income per 100 m?> representing
decreases of 8% and 10%, respectively. Meanwhile in the East Brooklyn
area, reductions averaged 0.8 % income per 100 m? and up to 0.15 %
income per 100 m?, representing decreases of 6% to 13% of their total.

These results are consistent with recent work in by Mughal et al
(2020), which found larger reductions in cooling energy demand from
increasing set points from 21°C to 25°C than from reflective roof coat-
ings. They found, however, that cool roof coatings decrease outdoor
temperatures in low-rise areas more than set-point increases do, which
might provide benefits beyond the building envelope.

4. Conclusion

Through a series of coupled building energy-weather simulations
combined with census and utility data, we present an estimation of the
burden of indoor cooling relative to household incomes in NYC. To the
authors’ knowledge, this is one of the first studies that contextualizes
dynamically modeled energy use with spatially explicit household in-
come data at the city scale. By modeling the physical processes between
buildings and the atmosphere, our work accounts for the feedbacks
inherent to the urban climate system that impact the thermal loading of
buildings, which in turn has an important role in cooling costs.

We compare these costs by using hours exposed to hazardous heat as
an indicator of heat-related health risks. In addition, we present po-
tential climate-driven impacts of warming summers to this cost. Our
results show that locations with lower income households have the
highest estimated energy burden from AC use. In locations with the
highest burden, under present climate conditions, a 100 m? household
would spend 6.1% of their total income on cooling during a fairly typical
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Fig. 10. Sensitivity of AC energy burden for (a) increases in rooftop albedo and (b) increases in AC set point temperature. Black bars represent a bootstrapped 95%

confidence interval using 1000 bootstrap iterations.
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Fig. 11. AC Burden reduction resulting from (a) full adoption of reflective roof coatings, and (b) higher set points.

summer. Meanwhile, during an equivalent end of century summer in a
high emissions scenario, this cost could increase to 8% of total income.
These locations coincide with neighborhoods recorded to currently have
the lowest AC adoption rates and highest heat mortality rates (Ito et al.
2018). Work by Madrigano et al (2015a) also found that these neigh-
borhoods have high rates of vulnerable populations (elderly, low in-
come) (Madrigano et al. 2015a). Their work found that mortality rates
increases during a heat wave were higher for low income, non-white,
and elderly populations in NYC compared to other groups. This un-
even exposure across vulnerable populations was compounded by less
accessible green space and higher neighborhood surface temperatures, a
trend that has recently been found across many US cities as recently
found by Hsu et al. (2021).

Meanwhile, energy burden in higher income neighborhoods range
from nearly negligible (< 0.01% of total income per 100 m?) to 0.5% of
total income 100 m2, with current AC adoption rates close to 100%. We
also show that changes in the energy burden are higher in low-income
areas in spite of lower relative increase of internal heat load compared
to higher income neighborhoods.

Simulated exposure to indoor heat and AC energy burdens are driven
by indoor parameters like occupancy, building infrastructure and
meteorological processes. NYC summer temperatures are often charac-
terized by an afternoon sea breeze from the south east which signifi-
cantly cools areas in proximity to the coastline while essentially moving
the core of the daytime UHI northwest and into parts of New Jersey,
which contributes to the indoor temperature gradient reproduced by our
simulations. Previous studies also show vertical variation in indoor
temperatures, with top floors, even in tall buildings, can have signifi-
cantly higher temperatures than ground floor dwellings, which is not
considered in our analysis (Quinn et al. 2017).

High costs of air conditioning operation may also serve as a driver of
passive, less energy intensive forms of building envelope cooling.
Studies have shown that cool roofs (e.g., white roofs and green roofs)
and even photovoltaic panels can decrease cooling loads significantly
(Jaffal et al. 2012; Skelhorn et al. 2016; Salamanca et al. 2016) during
the warm season. Rooftop technologies might be particularly useful in
the high-burden neighborhoods with the largest indoor heat exposure as
their shorter, less slender can deflect a more significant portion of
incoming solar radiation via roofs (Ortiz et al. 2016), with estimated
reductions of 10-16%. Our work presented here, however, highlights
how these technologies may benefit low-income communities, with
potential reductions of up to 20% in an idealized adoption scenario. In
addition, urban planning and use of urban gardens and other vegetation
have been shown to reduce not only outdoor temperatures (Dimoudi
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et al. 2014; Farhadi et al. 2019) but also reduce energy poverty (Tsilini
et al. 2015).

4.1. Limitations and uncertainty

One of the largest sources of uncertainty in our work is the consid-
eration of static social indicators (e.g., population, median income).
Although results show increase in indoor heat exposure hours under no
AC use, we do not account for changes in populations, income, or
building infrastructure throughout the 21% century. Therefore, results
should be interpreted as potential impacts on current NYC conditions.
These uncertainties are partly constrained by the recently reported
slowdown of population increase in NYC (U. S. Census Bureau 2019). In
addition, as income and population data from the American Community
Survey 5-year estimate are derived from somewhat limited samples, as
opposed to the comprehensive decennial census, they carry margins of
error. In our analysis, each grid point is assigned the median value to
estimate economic burden, whereas income might vary drastically be-
tween households within a single neighborhood or even city block.
Occupant behavior, which is not accounted for in this study, can also
significantly impact both energy use and hazardous heat exposure, as
people may move to outdoor activities as a function of outdoor weather
conditions or typical day-to-day activity. In addition, model evaluation
as performed here is limited by a lack of spatially explicit building
electric load data and the method used to compute the non-weather
sensitive of NYISO bulk supply-side data.

Another limitation of the study relates to the use of electric rates
from a single summer. Utility rates vary year-to-year due for various
reasons, including taxes on generation and transmission, repair and
maintenance of infrastructure, and projected electric demand. Based on
Consolidated Edison approved rate increases, NYC residents will be
seeing cost per kWh to grow by nearly 4% per year until 2022
(Consolidated Edison 2021a). Nevertheless, rate hikes may change at
different dates due to changes in energy supply and new investments in
energy infrastructure. Further, there has been increased focus from
utilities to offer “Time of use” (TOU) pricing, where energy use is more
expensive during peak demand times. These TOU pricing schemes usu-
ally charge less than current averages during off-peak hours, but may
charge significantly more during peak or so called “super-peak” hours
(Consolidated Edison 2021b). These increased rates during peak hours
may further burden residents during extreme heat events, when indoor
cooling may be most needed.

Finally, we note that our study considers a single year (2018)
compared to an analog taken from a single year from a GCM end of
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century 30-year output. Although our analysis shows geospatial dis-
parities in the cooling energy burden, actual values will vary depending
on how cool or warm a particular summer might be. For example, as the
energy burden is a function of household income, significantly warmer
summers would increase low-income households’ burden at higher rates
than their higher income counterparts. In addition, limitations related to
model resolution could be addressed with increased computing power
and finer scale AC adoption rates data, which might improve the rep-
resentation of spatial characteristics of energy burden.

Nevertheless, our study highlights the disparities spatial distribution
of the impacts of current heat exposure across current socioeconomic
groups. Our results show that, all things remaining equal, future con-
ditions have the potential to disproportionately affect groups that have
fewer means to adapt to these changes. These neighborhoods also stand
to experience the highest increases in indoor heat exposure due to a
combination of indoor thermal conditions (e.g., occupancy) and outdoor
conditions, and our results show increasing risk of heat-related illness
and mortality when no adaptations are used. Moreover, by quantifying
potential future impacts of future climate on current populations, cur-
rent policy can focus on strategies to mitigate or avoid them altogether.
We also show that, although there are state and local programs to
mitigate some of the cost of AC technology (e.g., HEAP), operational
costs may pose a significant barrier for their and operation, which might
exacerbate negative impacts related to heat exposure under changing
climate conditions. Similar studies on the role of socioeconomic factors
on exposure and vulnerability to extreme heat (either outdoor or indoor)
have been reported across the US in cities like Portland (Voelkel et al.
2018), Chicago (Klinenberg 1999; Wilson and Chakraborty 2019), and
San Juan (Méndez-Lazaro et al. 2018), and studies like this might prove
useful to reveal what disparities, if any, exist in cooling energy burdens.
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