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Abstract

Ecological communities are unique assemblages of species that coexist in consequence of
multi-causal processes that have proven hard to generalize. One possible exception are
processes that control the biomass packing of vegetation stands; the amount of above-
ground standing biomass expressed per unit volume. In this paper, | investigated the empiri-
cal and geometric underpinnings of biomass packing in terrestrial plant communities. |
support that biomass packing in nature peaks around 1 kg m™ across contrasted contexts,
ranging from grasslands to forest ecosystems. Using published experimental and long-term
survey data, | show that expressing biomass per unit volume cancels the effects of air tem-
perature, species richness and soil fertility on aboveground stocks, thus providing a general
comparative measure of storage efficiency in plant communities.

Introduction

Mass and stature are universal descriptors of living organisms that control fundamental pro-
cesses like metabolic and dispersion rates [1, 2]. At the level of plant communities, stem height
determines biological processes such as light interception, water evapotranspiration and seed
dispersion [3]. As early as in 1902, Eichhorn discovered that volume production in a forest is a
function of stand height only, irrespective of any difference in age [reviewed in 4]. A general
relationship between mass and height among plant communities would thus have broad impli-
cations [5], especially for the rapid assessment of aboveground carbon stocks through remote
sensing approaches. Furthermore, taking the ratio of mass, expressed per unit surface, over
height for any plant community would provide a measure of biomass packing; that is, the
amount of aboveground plant material that can be effectively stored per unit volume.

In the early 19™ century, the Belgian statistician Quetelet reported that the mass of a human
adult scales linearly to the square of its height, paving way to the body mass index (BMI; the
ratio of mass to height squared) as a contemporary measure of physical condition [6]. BMI is
used nowadays in routine exams to address mortality risk in large populations [7]. Similarly,
fisheries have a long tradition of using the ratio of mass to length raised to the cube as a general
measure of physical condition in fish populations [8]. More recently, Proulx and colleagues
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revisited data on hundredths of plant communities and showed that the ratio of mass over
height cluster around 1 kg m™ and almost never exceeds 5 kg m™ across ecosystems ranging
from biofuel crops to tropical forest stands [9]. The median and upper bounds reported by
Proulx and colleagues are in good agreement with the handful of studies that directly measured
the biomass packing of forest stands [10, 11], herbaceous communities [12], or submerged
vegetation beds [13]. However, it is unclear whether external drivers, such as the species pool,
climate, or soil conditions, affect the aboveground biomass packing of plant stands.

The objective of the present study was to evaluate the general relationship between dry
aboveground biomass (AB) and stand height (H) across plant communities in contrasted eco-
systems. More specifically, I tested if the biomass packing (the ratio of AB over H, expressed in
kg m™) is independent of biotic and abiotic drivers. For this purpose, I retrieved AB and H
from three long-term datasets on Western US prairies, Central Germany managed grasslands,
and Canadian forests (Table 1) [14-16].

Materials and methods

I retrieved the dry aboveground standing biomass and stand height of plant communities
from three published long-term datasets: Western US prairies, Central Germany managed
grasslands, and Canadian forests (Table 1). In each dataset, aboveground biomass was driven
by nitrogen addition (Cedar Creek Experiment [14]), mean annual temperature (Canada
National Forest Inventory [15]), or the richness of nitrogen-fixing legume species (Jena Exper-
iment [16]).

The biomass of forest stands was estimated using protocols and models developed by the
Canada’s National Forest Inventory (CNFI). Aboveground biomass comprised stemwood,
branch, bark and foliage modules for all saplings and trees in 813 forest stands across Canada.
Stand height was reported as Lorey’s height, which is the average height of all trees (> 9 cm
dbh) weighted by their respective basal areas. Lorey’s height was obtained by multiplying the
tree height by its basal area, and then dividing the sum of this calculation by the total stand
basal area. Another measure of stand height was also provided, which is the arithmetic average
height of all trees. The two measures were highly correlated (r = 0.97) and yielded the same
results. Forest stands with a biomass below 2 kg m™* were excluded because they were severely
uncrowded (< 250 stems ha™"), leaving 696 forest stands for the analyses. Mean annual tem-
perature and stem density were provided by CNFI along with aboveground biomass and
height data for each stand.

Table 1. Summary of the three datasets used to compare the biomass packing of different plant communities and their responses to external drivers. Aboveground
biomass (AB) is the amount of dry standing plant tissue per unit area, while stand height (H) is the average height of canopy plants within the stand. Average photosyn-
thetic height of canopy plants was used for herbaceous stands, whereas Lorey’s height was used for forest stands.

Dataset No. stands Sampling resolution Mean aboveground biomass (+ 1 SD) Mean stand height (+ 1SD)
Canada National Forest Inventory * 696 400m> 12.08 kg m? (+9.55) 15.41 m (+ 6.12)
(2000 to 2006)
Jena Experiment 640 0.4m? 0.27 kg m™ (+ 0.22) 0.40 m (& 0.23)
(2003 to 2008)
Cedar Creek Experiment 810 0.3m” 0.33 kg m? (£0.19) 0.42 m (£ 0.15)

(1982 to 1986)

? Forest stands with a biomass below 2 kg m > were excluded because they were significantly uncrowded (< 250 stems ha™).

P Stands sown with only one plant species were excluded because these were heavily weeded and many did not grow a crowded cover (R. Proulx pers. obs.).

https://doi.org/10.1371/journal.pone.0252080.t001
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The aboveground biomass of herbaceous (prairie and managed grassland) stands was esti-
mated through manual harvesting and drying of the vegetation. Stand height in these datasets
was calculated as the average photosynthetic height (i.e., excluding flower structures) of ran-
domly selected plants. In the Jena Experiment, stands sown with a single plant species were
excluded because these were heavily weeded and many did not grow a crowded cover (R.
Proulx pers. obs.). Nitrogen addition and plant species richness were design variables in the
Cedar Creek Experiment and Jena Experiment, respectively.

Slope and intercept coefficients for the relationship between dry aboveground biomass and
stand height were assessed through quantile regression on log-transformed data. Quantile
regression is especially useful to describe how relationships behave at the boundary of the data
envelope. Model coefficients and confidence intervals for 10™, 50™ and 90 quantiles were cal-
culated under the R environment using the rank method implemented in the quantreg pack-
age [17].

Determination coefficients (R?) were estimated for the 50 quantile (median) regression
models as 1-[Ves/Vqepl, Where Vs and Vi, are variance terms for the model residual and
dependent variable.

Results and discussion

Empirical underpinning

The biomass packing intercept (i.e., aboveground dry biomass at 1m height) of the relationship
between AB and H across the pooled ecosystems and vegetation stands was 0.33, 0.68 and 1.19
kg m™ for 10", 50 and 90™ quantiles respectively, and the slope coefficient did not deviate
from one (Fig 1). Overall, the height of vegetation stands explained 92% of the variation in AB.
Biomass packing (the ratio of AB over H = BP) distributions were strikingly similar across the
three ecosystems; with 95™ percentiles of 1.38, 1.41 and 1.40 kg m™ for forests, grasslands and
prairies, respectively (S1 Fig).

Nitrogen addition and the number of legume species per plot explained, respectively, 30%
and 17% of the variation in AB among experimental herbaceous communities. The mean
annual temperature explained 14% of the variation in AB among plots of the Canada National
Forest Inventory, which covers a broad range of climatic regions including deciduous, subal-
pine, boreal and coastal forests (both Pacific and Atlantic). When expressing biomass per unit
volume, the percentage of explained variation in BP due to nitrogen addition, legume species
richness, or annual temperature dropped to 6%, 2% and 7%, respectively (Fig 2).

Geometric underpinning

Simple geometric principles tell us that the total aboveground biomass (TAB; kg) of a vegeta-
tion stand over a given area scales as follows:

TAB = N: <CA> - <BP> - <H>, (1)

where < > are placeholders for the geometric mean of plant crown area (CA; m?), biomass
packing (BP; kg m™) and height (H; m) across the N individuals within the stand. If one con-
siders a crowded stand in which each individual plant occupies a vital space proportional to its
CA, so that N is inversely proportional to <CA>, then aboveground biomass (AB) is
expressed per unit area as follows: AB = TAB:-N"-<CA>"". Substituting AB in Eq 1 and log-
transforming on both sides one gets: log AB = log <BP> + log<H>. In support of this equa-
tion, reanalysis of the relationship between AB and <H>> for the large dataset compiled here
revealed a common-group slope of ~1 and median BP intercept (at 1m height) of ~0.68 kg m’
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Fig 1. Relationship between dry standing aboveground biomass (AB) and stand height (H) across 2,146 plant communities in
three ecosystems: Canadian forests, Western US prairies and Central Germany managed grasslands (see Table 1). Lines
represent the fit of a power function of the form AB = <BP>-<H>", where b and <BP>> are the scaling exponent and the biomass
packing intercept at 1m height, respectively. Model coefficients for different quantile regressions are as follows (95% confidence
intervals in parentheses): Quantile 90™: b =1.001 (0.990; 1.021) and BP intercept = 1.191 kg m™ (1.167; 1.226). Quantile 50
b=0.997 (0.987; 1.013) and BP intercept = 0.679 kg m (0.665; 0.696). Quantile 10™: b = 0.999 (0.983; 1.027) and BP

intercept = 0.334 (0.317; 0.346).

https://doi.org/10.1371/journal.pone.0252080.g001

3 (Fig 1). The relationship in Eq (1) holds even if plant development is represented through
elastic similarity rather than geometric similarity [18].

The above equation can be rescaled such that the individual aboveground biomass of an
average stem (IAB = TAB-N; kg) is proportional to its vital volume (VV = CA-H; m®). Insert-
ing IAB and VV in Eq 1 and taking the logarithm on both sides one gets: log IAB = log BP
+log VV. In close agreement, reanalysis of existing data on 2,395 individual trees across the
plant kingdom [19] revealed a log-log linear relationship between IAB and VV of slope ~1
and median biomass packing intercept (at Im? vital volume) of ~0.42 kg m™ (S2 Fig).

Discussion

This study highlights that the aboveground standing biomass of crowded vegetation stands is,
for a large part, determined by plant height, which is in turn constrained by environmental
drivers like soil nutrient and climate. A similarly general, strong and linear relationship
between aboveground biomass and plant height was observed on an independent dataset of 75
vegetation stands [5]. I herein showed that communities sown with many nitrogen-fixing spe-
cies, or fertilized in nitrogen, did not pack more biomass per unit volume, they mostly grew
taller. Expressing biomass per unit volume thus cancels the effect of these drivers on above-
ground biomass and provides a general surrogate measure of packing efficiency. Three inde-
pendent datasets supported a high degree of overlap in the biomass packing distribution of
plant communities across ecosystems; with 95" and 99™ percentile packing values consistently
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Fig 2. Effect of legume species richness (top panels), nitrogen addition (middle panels), and annual mean temperature (bottom
panels) on the dry aboveground biomass (left panels) and the biomass packing (right panels) of Central Germany managed
grasslands, Western US prairies and Canadian forests. Lines in left panels represent the 90" and 10™ quantile regressions.
Nitrogen addition, legume species richness, or annual temperature explained less than 7% of the variation in biomass packing
through 50" quantile (median) regression. The horizontal dashed line indicates the 1 kg m™ reference value reported elsewhere [9].

https://doi.org/10.1371/journal.pone.0252080.9002
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falling close to 1.5 kg m™ and 3 kg m™, respectively. To put these results in a broader perspec-
tive, only photo-bioreactors designed for batch microalgae production typically approach a
biomass-packing limit of ca. 5 kg m™ when there is plenty of available light and nutrient [20].

Plant geometry is the outcome of physical and physiological constraints imposed on stems
and leaves. Using water displacement measures, I previously evaluated that the actual volume
occupied by aerial tissues in wetland communities is typically close to 1% of the vital volume
(= 0.0l m*m™) [9].In comparison, stand height and aboveground stocks measured for 1,875
forest stands in Germany point to a more dramatic figure, with a meagre 0.1% of the volume
occupied by vascular plant tissues (= 0.001 m*> m™) [21]. Flipping these numbers around, one
figures out that >99% of a plants’ vital volume is air. The above observations suggest that the
higher stem-over-leaf mass ratio of forests compared to herbaceous stands is balanced by a
narrower vital volume used for the growth of aboveground modules; i.e., approximately 0.1%
for trees and 1% for herbs [22]. Thus, although trees have denser stem tissues than herbs, the
volume these tissues occupy is less dense by the same order of magnitude. As a result, the
aboveground biomass of an individual plant stem scales isometrically with its vital volume (S2
Fig).

The mass index (i.e., biomass/length” ratio) is still one of the most widely used surrogate
measures of physical condition in animal populations. Obviously, plants differ fundamentally
from animals in many ways, including in that a fraction of their biomass is stored below-
ground, or in “nonliving” heartwood structures. The biomass packing index presented here
does not distinguish between aboveground modules (e.g., leaf vs. heartwood) and does not
account for the belowground modules, and yet the metric remains generally applicable across
broad geographic contexts. Why is that so? Related to the later, it is generally agreed that root
and aboveground biomasses scale linearly across several orders of magnitude [22, 23]. In
terms of nonliving heartwood, even though these structures do not metabolise per se, they con-
tribute to energy storage and dissipation by supporting leaves and enhancing wood durability
[24]. Root and heartwood modules coordinate towards an efficient storage of aboveground
standing biomass in plant communities.

Differential mortality and growth are other sources of variation in the biomass packing of
plant communities. Plants in vegetation stands may lose biomass when subjected to environ-
mental stress or disturbances. For example, most deciduous forests leaf out each year as light
and air temperatures decline, while prairies burn up or are grazed at recurring intervals. In the
latter case, biomass packing may not change, or may even increase post-disturbances, because
grazing or burning affect both stand height and aboveground biomass. In the former case, bio-
mass packing should slightly decrease in winter because stand height does not vary much sea-
sonally and most of the biomass is stored in wood. It should be noted however that the leaf
mass fraction of short statured woody stands may reach up to 50% of the total biomass [22].

Whether residual spatial or temporal variation in biomass packing within an ecosystem
results from stochastic events, local biotic interactions, or stress factors such as light or water
deficit remains largely unexplored. The remaining variation in biomass packing observed
among plant communities could relate to species-specific adaptations in resource use or stor-
age. Thus, the upper limits of the distribution are probably more revealing of the constraints
imposed on biomass packing than the lower limits, which may approach zero for severely
uncrowded vegetation stand. Difference in protocols used to measure aboveground biomass
and stand height across studies is another important source of variation for biomass packing.
To attenuate this effect, the present study identified comprehensive data sources where stand
height and aboveground biomass were i) measured using standard protocols and ii) influenced
by experimentally manipulating biotic and abiotic environmental conditions.
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Fig 3. Photographs of herbaceous and forest stands taken from underneath to illustrate their similarities in leaf
cover (Photo credit R. Proulx and C. Martin.).

https://doi.org/10.1371/journal.pone.0252080.g003
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Conclusions

This study focusses on properties of plant communities that make them comparable rather
than different (Fig 3). Species-area relationships and body size allometries are hallmarks of
macro-ecology because they represent general, repeatable, patterns across scales. Biomass
packing and mass-height relationships are stand-level patterns with similar potential for gener-
alization. Although an individual tree could not be mistaken for an herb scaled up in size, the
amount of standing biomass that can be packed per unit volume largely overlaps from small
herbaceous to tall forest stands. Further understanding of this pattern could lay the foundation
of a generally applicable mass index for plant communities.

Supporting information

S1 Fig. Biomass packing distribution of vegetation stands in three ecosystems: Canadian
forests (National Forest Inventory), Central Germany managed grasslands (Jena Experi-
ment) and Western US prairies (Cedar Creek Experiment). Box hinges represent first and
third quartiles (25th and 75th quantiles). 95th quantiles are 1.38, 1.41, 1.40 kg m™ for grass-
lands, prairies and forests, respectively.
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S2 Fig. Relationship between individual aboveground dry biomass (IAB) and vital volume
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and the biomass packing intercept at 1m? vital volume. Model coefficients for the 50" quantile
(median) regression are as follows (95% confidences intervals in parentheses): R%?=0.86,

b =1.013 (0.988; 1.037) and BP intercept = 0.426 (0.389; 0.471) kg m>.
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