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We develop new transfer learning algorithms to accelerate prediction of material properties from

ab initio simulations based on density functional theory. Transfer learning has been successfully

utilized for data-efficient modeling in applications other than materials science, and it allows trans-

ferable representations learned from large datasets to be repurposed for learning new tasks even with

small datasets. In the context of materials science, this opens the possibility to develop generalizable

neural network models that can be repurposed on other materials, without the need of generating a

large (computationally expensive) training set of materials properties. The proposed transfer learn-

ing algorithms are demonstrated on predicting the Gibbs free energy of light transition metal oxides.
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1. INTRODUCTION

Determining physical properties of materials using computer simulations is commonplace in
many areas of science, including chemistry, physics, and engineering. This usually relies on ab
initio calculations, which are based around solving the Schrödinger equation (Zinn-Justin, 2002)
for these materials. The Schrödinger equation governs the wave function of a many-body quan-
tum system, from which information such as its electronic structure can be found, and in turn
used to determine useful properties. Directly solving the Schrödinger equation for non-trivial
systems quickly becomes computationally infeasible as the number of atoms increases. This led
to the rise of methods such as density functional theory (DFT) (Parr and Weitao, 1994), which
bypasses the need for explicitly solving for the wave function to find the electronic structure,
thus opening the way to perform practical computations.

The state space of a quantum chemical system for even a narrow application of materials
can be very large, as both content of elements and atomic position may be taken into account.
To thoroughly explore this space can take significant computational time using DFT, so there
is a demand to further expedite property prediction beyond current state-of-the-art capabilities.
A leading method for this is machine learning. Given sufficient examples of materials, a neural
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network can be trained to represent the mapping between atomic structure and material proper-
ties such that it can generalize well to similar but unseen materials. The benefit of this approach
is that once trained, a neural network can make predictions in a matter of milliseconds rather than
the minutes or hours DFT can take for a single material. Several neural network architectures
have been developed specifically for modeling atomistic systems (Behler and Parrinello, 2007;
Schütt et al., 2017a,b), leading to increasingly accurate representations. A caveat of current neu-
ral network approaches is that it can take a large number of examples to learn a sufficiently
accurate mapping. Although there are large public databases available with material structures
and some of their properties (Curtarolo et al., 2012; Jain et al., 2013), they may not sufficiently
cover the target material space, leading to the need of generating more training data. In these
cases, it is desirable to minimize this extra cost associated with generating additional data, and
training accurate neural networks with smaller datasets.

This can be achieved by transfer learning, which is a popular method used for training neural
networks with small datasets (Pan and Yang, 2010). Transfer learning reuses representations
learned by neural networks trained on large datasets. Instead of randomly initializing weights for
training on a certain task, the weights of a neural network trained on a similar task are used as a
starting point to provide a more optimal initialization. Transfer learning has been very successful
in the field of computer vision, where large image datasets are publicly available, for which pre-
trained models are commonly made available (Razavian et al., 2014). These large datasets led
to robust machine learning and generalizable features that are also useful for other tasks (Pan
and Yang, 2010). Similarly, in material science, large databases of material properties have been
made publicly available (Razavian et al., 2014). These databases can be leveraged for transfer
learning, allowing pre-trained neural networks to be used for initialization without the creation
of new data. For instance, Yamada et al. (2019) show transfer learning has been successfully
adopted for increasing correlation in material property predictions given a very small number of
samples. Transfer learning also has been used for correcting DFT predictions on benchmarks for
reaction thermochemistry, isomerization, and drug-like molecular torsions (Smith et al., 2019).
Along the same line of research as Smith et al. (2019), in this paper we develop transfer learning
algorithms to accelerate prediction of material properties from ab initio simulations based on
DFT.

This paper is organized as follows. In Section 2 we provide a brief review of ab initio calcu-
lation of material properties using DFT. In Section 3 we discuss continuous-filter convolutional
neural network representations of atomistic systems (SchNet) (Schütt et al., 2017b) and their
training using the ADAM algorithm (Kingma and Ba, 2017). In Section 4 we develop transfer
learning schemes that employ SchNet to improve training of neural network models with small
datasets. The accuracy of these methods is investigated in Section 5 in application problems
involving transition metal oxides. The main findings are summarized in Section 6.

2. BRIEF REVIEW OF DENSITY FUNCTIONAL THEORY

Ab initio calculations for electronic structure rely on solving the time-independent Schrödinger
equation. The full state of the system is computed by solving an eigenvalue problem of the form

HΨ = EΨ, (1)

whereH is the Hamiltonian operator of the system, consisting of the sum of kinetic (T ) and po-
tential energies (V ), while E represents the energy of a specific state (eigenvalue) described by
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the wave functionΨ. In atomic structure calculations, nuclei can be treated as a static external po-
tential Vext, and only the electrons are considered in the wave equation (Born and Oppenheimer,
1927). Hence, the wave function Ψ in Eq. (1) for N electrons in a three-dimensional Euclidean
space has 3N degrees of freedom

Ψ = Ψ(r1, r2, . . . , rN ). (2)

Additionally, each electron has an interaction with each other. As the number of electrons in-
creases, not only does the number of dimensions of the wave function increase, but the number
of electron-electron interaction terms in the Hamiltonian increases exponentially (Martin, 2004).
In general, the many-body Hamiltonian can be written as†

H = T + Vext + Ve-e (3)

=
N
∑

i=1





−~
2

2me
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ri

+ Vext(ri) +
N
∑

j>i
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|ri − rj |



. (4)

Despite recent advances in high-dimensional approximation theory (Cho et al., 2017; Dektor and
Venturi, 2020; Han et al., 2020; Khoromskaia and Khoromskij, 2018), solving the eigenvalue
problem [Eq. (1)] for a non-trivial system involving many atoms quickly becomes computation-
ally infeasible.

DFT (Parr and Weitao, 1994) was originally proposed to mitigate such dimensionality prob-
lems. The key idea relies on expressing material properties (ground state) as a functional of
the charge density n(r) rather than relying on the wave function Ψ. The charge density is only
three-dimensional regardless of the number of electrons, leading to calculations that scale with
N more efficiently. The fact that ground state material properties can be expressed as a func-
tional of the charge density was proved in two celebrated theorems by Hohenberg and Kohn
(1964). For instance, total ground state energy of an atomistic system can be written as

E[n] = F [n] +

∫

R3
Vext(r)n(r)dr, (5)

where F [n] is some functional of n (Venturi, 2018; Venturi and Dektor, 2020), and the second
term on the right-hand side represents the interaction of electrons with the external potential
created from the nuclei. The Hohenberg–Kohn theorems showed that the functional F [n] exists.
However they give no guidance on how to find it.

The Kohn–Sham equations were later introduced, which put the Hohenberg–Kohn findings
to use and gave a practical approach to finding this functional. The Kohn–Sham theory relies
on the assumption that a non-interacting system of electrons will have the same electron density
as an interacting system of the same structure. Based on this, a Schrödinger-like equation can
be solved for each individual electron, and all resulting wave functions, called the Kohn–Sham
orbitals, can be used to calculate the electron density. In this setting, the eigenvalue problem
[Eq. (1)] is replaced by a simpler eigenvalue problem of the form

Heffψi = ǫiψi, (6)

where Heff is an effective Hamiltonian for this fictitious system. The effective Hamiltonian can
be written as

Heff = T [n] + VHartree[n] + VXC[n] +

∫

R3
Vext(r)n(r)dr. (7)

†In Eq. (3) Ve-e denotes the electron-electron interaction potential.
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This first term at the right-hand side represents the kinetic energy of this system. The second
term, VHartree[n], is the Hartree potential, which accounts for the repulsion between the elec-
trons:

VHartree[n] =
1
2

∫

n(r′)

|r − r′|dr
′. (8)

The third term in Eq. (7), VXC[n], is known as exchange-correlation potential, and it approx-
imates more complicated interactions between the electrons. The exchange-correlation func-
tional’s exact form is unknown, but it is also the smallest contribution to the total energy. Be-
cause of this, it can be approximated and can still lead to an accurate solution. The simplest
approximation used for exchange-correlation is the local-density approximation (LDA) (Parr
and Weitao, 1994). As stated by Kohn and Sham, solids can be considered close to the limit of
the uniform electron gas (Hohenberg and Kohn, 1964). The local exchange-correlation energy
for the uniform electron gas is known, written as ǫxc. The LDA exchange-correlation function
can be written as

EXC[n] =

∫

n(r)ǫxc(n(r))dr. (9)

A more accurate class of functionals that build off of LDA is the generalized-gradient approx-
imation (GGA). These are exchange-correlation functionals that include a term FXC that is in
terms of the gradient of the density; that is,

EXC[n] =

∫

n(r)ǫxc(n(r))FXC(∇n(r))dr. (10)

The significant improvement in accuracy given by GGA functionals led to the wider adoption of
DFT across chemistry and material science (Martin, 2004). The exchange-correlation potential
VXC in Eq. (7) is the first-order functional derivative (Venturi and Dektor, 2020) of EXC[n]:

VXC[n] =
δEXC[n]

δn
. (11)

To solve the eigenvalue problem [Eq. (6)] the Kohn–Sham orbitals ψi are usually represented
relative to a finite-dimensional basis {φ1, . . . ,φq} as

ψi =

q
∑

j=1

cijφj . (12)

A substitution of Eq. (12) into Eq. (6) and subsequent projection onto the basis {φk} yields a
generalized eigenvalue problem for cij , which is typically solved with an iterative method (Blaha
et al., 2010).

Once the Kohn–Sham orbital ψi is computed for each electron in the system, the electron
density can be obtained as

n(r) =
N
∑

i=1

|ψi(r)|2. (13)

This density can then be used to obtain ground state properties; for instance, the total energy
function

E[n] = T [n] +EHartree[n] +EXC[n] +

∫

R3
Vext(r)n(r)dr. (14)
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The effective Hamiltionian [Eq. (7)] requires a charge density to construct it initially, meaning
an iterative approach needs to be taken to finding n(r). If the n used to construct the effective
Hamiltonian is consistent with the n that results from solving the Kohn–Sham equations, that
charge density is consistent for the system. A self-consistent loop, seen in Fig. 1, is followed
until consistency is reached. In Fig. 2 we plot the results of a three-dimensional DFT calculation
for the electron density of a silicon compound.

Computational cost can be a limiting factor in high-throughput calculations with DFT. To
give a sense of this, 1300 calculations using the algorithm described above were done for tran-
sition metal oxides in this work. These materials had an average of 30 atoms each. Calculations
were done on a compute node with two Intel 2.1 GHz Xeon E5-2620v4 processors (64 GB
RAM) using 16 cores. As shown in Fig. 3, the mean calculation time for one run was around 27
minutes, with the quickest taking 5 seconds and the longest taking 20 hours.

3. NEURAL NETWORK REPRESENTATION OF ATOMISTIC SYSTEMS

Neural networks are a natural choice for surrogate modeling of DFT. Their ability to learn the
nonlinear mapping from an atomic structure to a property has the benefit of not relying on the
bias hand-picked features for input, instead solely deriving relationships from the unprocessed
data, as visualized in Fig. 4. However, there are some constraints that must be imposed upon
the neural network architecture to help enforce the underlying physics. For instance, different

FIG. 1: Self-consistent loop for solving the Kohn–Sham equations. First, a guess for the electron density
n(r) is created based on atomic structure. Using this n(r), the Kohn–Sham equations are solved and the
resulting n(r) is compared to the initial guess. If these are not within a tolerance (δ) of each other, n is
updated as a linear combination of the initial and final and another iteration is performed.
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FIG. 2: Top: From top left moving clockwise: plot of Veff , Vext, VXC, and VHartree in a two-dimensional
slice of a Si2 crystal, along the same plane as the two atoms in the unit cell. Spatial units are in Bohrs (5.29
×10−11 m) and potential is in Rydberg units (13.6 eV). Bottom: The resulting electron density (in electrons
per cubic Bohr) for the above potential.

FIG. 3: Histogram of DFT calculation times for 1300 transition metal oxides. DFT simulations were per-
formed on a compute node with two Intel 2.1 GHz Xeon E5-2620v4 processors (64 GB RAM) using 16
cores.

atomistic systems can vary in the number of atoms, while a neural network typically works with
a fixed input size. Also, the result should be invariant to the order atoms are included in the
input, as well as the orientation of the entire molecule. These characteristics are are not naturally
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FIG. 4: Atomistic neural network approach to predicting material properties. The structure of a material
can be represented by a matrix consisting of each atom’s atomic number (Z) and its Cartesian coordinates
(R) with respect to a reference point. This representation will be used as the input to the neural network,
which maps it to a target property, such as the exchange-correlation potential of the total energy of the
compound.

accounted for in typical feed-forward neural networks. A significant research effort indeed has
been recently focused in addressing these issues, with specific reference to atomistic systems.

In particular, Schütt et al. (2017b) proposed a continuous-filter convolutional neural network
called SchNet for modeling quantum interactions. In our paper we utilize such framework for
both its nearly state-of-the-art performance on benchmark datasets and the SchNetPack toolbox
released with it, which provides a simple framework for working with atomistic systems. SchNet
scales well with variably-sized inputs by using the same weights for each atom in an atomic sys-
tem, resulting in per-atom contributions. Additionally, SchNet employs continuous-filter con-
volutional layers. Convolutional layers are the state-of-the-art tools for machine learning with
spatial data, but typically these are discretized, such as pixels of an image. Molecular structure
does not lie on a grid such as these signals. Although it can be discretized, it requires choosing a
proper interpolation scheme and typically a large number of grid points for proper representation
that can capture subtle positional changes of atoms. Continuous-filter convolutional layers are
implemented in SchNet, getting around this problem by applying a convolution element-wise.
Given feature representations of n objects Xl = (xl

1, . . . ,x
l
n) at locations Rl = (rl

1, . . . , r
l
n),

the output of the continuous convolutional layer l at position ri is

xl+1
i = (Xl ∗W l)i =

n
∑

j=1

xl
j ⊙W l(ri − rj), (15)

where ∗ denotes the convolution operator, and ⊙ is the element-wise (Hadamard) product. The
filter W l weights the distance between the atoms in the system. In the continuous-filter con-
volutional layer, the distances dij = |ri − rj | are expanded relative to radial basis functions
as

ek(dij) = exp(−γ|dij − µk|2), (16)

located at centers 0 °A ≤ µk ≤ 30 °A with γ = 10 °A. Introducing this additional nonlinearity
causes the filter to be less correlated, since the network after initialization is close to linear.
This speeds up the beginning of the training process, which may plateau otherwise (Schütt et
al., 2017b). In addition to the radial basis functions, each atom is represented by an embedding
unique to its atomic number. This embedding is a vector of a predefined length F that is refined
through each layer l of the network. The feature representations for an n-atom system for a layer
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are X l = (xl
1, . . . ,x

l
n), with xl

i ∈ R
F . Each feature vector is initialized randomly for each Zi

such that
x0
i = aZi

, (17)
and it is refined during training.

The SchNet architecture consists of the previously described features in blocks called the
interaction blocks. Each interaction block refines the feature representations, which are then
passed to a final set of atom-wise layers and are pooled to reach the output value. Figure 5
shows the full form of this output. Rather than each interaction block being a composition of
the previous, as typically done with neural network layers, each uses a residual connection. The
features are updated in each layer as

xl+1
i = xl

i + vl
i. (18)

This connection helps to prevent overfitting, as it is easier for vl
i to become zero in the training

process if the next layer is unnecessary by minimizing the residual betweenxl+1
i andxl

i. Without
a residual connection, the next layer would be updated as

xl+1
i = f l(xl

i), (19)

requiring f l to learn the identity function, which is a non-trivial task. The activation function
used is the shifted softplus, which is defined as

ssp(x) = ln(0.5ex + 0.5). (20)

This function is a smooth approximation of the ReLu. The atom-wise layer in the SchNet archi-
tecture shown in Fig. 5 applies an affine transformation to the features of each atom separately.
This layer shares the same weights throughout every atom, giving the output

xl+1
n = W lxl

i + bl, (21)

FIG. 5: SchNet architecture using a feature size of 64 and three interaction blocks. The interaction block
is shown in the middle, and the continuous-filter convolutional layer on the right.
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for the atom i. The sharing of weights across all atoms allows for the network to scale with the
size of the system properly.

3.1 Training the SchNet Architecture

To train SchNet in a supervised learning setting we minimize the mean square error between
the predicted property and its observed value using the adaptive moment (ADAM) algorithm.
ADAM is a variation of the stochastic gradient descent. In classical stochastic gradient descent
the weights of the neural network β are updated based on the gradient of the cost function E as

βk+1 = βk − α∇E, (22)

for step k and learning rate α. It is possible to improve the convergence rate of stochastic gradient
descent by multiplying the learning rate by a factor of the previous iteration’s step. In this setting,
for each iteration, β is updated as

βk+1 = βk + v, (23)

where

v = ηv − αg, g = ∇E. (24)

In Eq. (24) η ∈ [0, 1) is a predetermined parameter (Goodfellow et al., 2016), and v must be ini-
tialized. The algorithm of Eqs. (23) and (24) is also known as gradient descent with momentum,
in a physical analogy for the velocity of a ball rolling down a hill. In fact, as the ball rolls down
the hill, much like the optimization descends toward a minimum, the ball will gain speed. The
larger η is, the more the previous iteration will affect the next one. This momentum also helps to
escape local minima, as seen in Fig. 6.

The ADAM algorithm updates individual learning rates based on previous learning rates in
an exponential moving average (Kingma and Ba, 2017). Each parameter is updated similarly to
Eqs. (23) and (24). Specifically, in ADAM we have that Eq. (24) is replaced by

v = ηv − α√
r
⊙ g, (25)

where r (accumulation of the gradient), is updated as

r = ρr + (1− ρ)g ⊙ g. (26)

FIG. 6: One-dimensional function minimization using gradient descent with and without momentum. Gra-
dient descent with momentum gradually increases the step size during the descent, allowing it to escape the
local minimum at x = 5, to which gradient descent converges.
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Although ADAM exhibits faster convergence to a minimum, it has been shown to not reach an
optimal solution as well as regular stochastic gradient descent, which is more likely to reach a
value close to the global minimum (Reddi et al., 2019; Wilson et al., 2017). Similarly to the
training scheme used with SchNetPack’s released models, an initial learning rate α of 10−4 is
used in this paper. For each training plateau, where the training loss does not decrease for 25
iterations, the learning rate is reduced by a factor of 0.8 until a minimum learning rate of 10−6

is reached.

4. TRANSFER LEARNING WITH SCHNET

In this section we develop a transfer learning scheme in conjunction with SchNet to improve the
ability of models to generalize when trained with small training sets. Transfer learning reuses
representations learned in training with a source task as a starting point for training on a different
but similar target task. In this case, a SchNet model is trained with a large source dataset, and
the optimized weights are reused for initializing training with the target dataset.

4.1 Transition Metal Oxide Database

In this paper, transition metal oxides are considered for property prediction. Transition metal
oxides are used in practical applications for solar energy conversion. However, poor conductivity
and electron-hole separation limits their carrier conductivity. It has been shown that appropriate
doping (adding of impurity) of these materials may improve their utility. An important property
to be found in these doped transition metal oxides is a low defect formation energy. The defect
formation energy is the difference between the total free energy of the pure transition metal
oxide and that of the impure, doped transition metal oxide. Although there are other properties
of importance, this work focuses on the learning of the mapping between transition metal oxides
and their free energy.

The target dataset we first considered is composed of 517 transition metal oxides of iron,
titanium, and vanadium, along with the corresponding free energies of the compounds. These
materials each have between 2 and 110 atoms, with a mean of 12. An extension of this dataset
was then created for further testing of the transfer learning methods, introducing an additional
146 transition metal oxides consisting of chromium and manganese. The source dataset is a sub-
set of the Materials Project database (Jain et al., 2013). This subset consisted of materials made
up of 87 elements, including those of the target dataset, Ti, Fe, V, and O. Materials of the same
unit cell formula as the transition metal oxide dataset were excluded for the sake of preventing
overlap between the two datasets. This means that materials with the same composition as one
in the transition metal oxide set, even if they had a unique geometry, were not included in this
dataset. This dataset includes 50,000 materials used for training, and 10,000 for validation. A
smaller subset of this dataset was created, also excluding Mn and Cr for the purpose of transfer
learning with the extended transition metal oxide dataset.

4.2 Transfer Learning Schemes

We investigated three transfer learning schemes. These either chose to freeze weights, not updat-
ing them in the new training, or to fine-tune them by training with the new dataset. The schemes
used are as follows (see Fig. 7):

1. All weights are fine-tuned (TL1).
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FIG. 7: Visualization of the three transfer learning schemes we implemented. The embedding layer, the
interaction blocks, and the output layers are either frozen or fine-tuned.

2. The embedding layer is frozen and the rest of the weights are fine-tuned (TL2).

3. Only the output layers are fine-tuned and all other weights are frozen (TL3).

To obtain a performance benchmark for the target dataset, SchNet is trained with a random ini-
tialization on a training set of 400 transition metal oxides. Two different model architectures
and regularization schemes were used. Both model architectures used for training on a baseline
dataset are based on SchNetPack (Schütt et al., 2019), with and without L2 regularization on
all weights. The first one consists of six interaction blocks, 128 length embedding vectors, and
128 filter convolutional layers. Since the transition metal oxide dataset is considerably smaller
than the baseline, which consisted of 130,000 materials, a smaller architecture was also trained
with and without regularization in an attempt to prevent potential overfitting. This architecture
had four interaction blocks, with embeddings of length 30 and convolutional layers with 30 fil-
ters. The results of the validation set evaluated by these models are reported in Table 1. The
model with the best mean absolute error was the original architecture with an L2 regularization
coefficient of 10−3. Out of the validation set, only 47 of the 117 predictions were within chem-
ical accuracy. This best-performing architecture and regularization is used in comparison with
transfer learning models.

5. PREDICTION WITH SCHNET TRANSFER LEARNING

Transfer learning methods are compared to direct training methods on the same dataset for vary-
ing training set sizes. The target data were split into a training set of 400 and a validation set of

TABLE 1: Validation set mean absolute error in electronvolts of SchNet
models trained on the full transition metal oxide training set. Arch 1 is the
larger SchNetPack architecture, which consists of six interaction blocks, 128
length embedding vectors, and 128 filter convolutional layers. Arch 2 is the
smaller architecture, with four interaction blocks, with embeddings of length
30, and convolutional layers with 30 filters. L2 signifies the inclusion of L2
regularization with a coefficient of 10−3 in the loss function during training

N arch 1 arch 1 + L2 arch 2 arch 2 + L2
400 0.563 0.551 1.175 1.005
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117 that remains the same for all evaluations. Training data sizes of 400, 200, and 100 are used.
For the 200-length dataset training, the 400 are split into two sets, and a separate neural net-
work is trained with each. The same is done with the 100-length training set, where four neural
networks are trained. The mean absolute error on the validation set of each of the same-length
dataset networks is then averaged to get the given results. This is done to ensure consistent re-
sults, since the dataset is small and all portions may not be entirely representative of each other.

Here, transfer learning methods TL1 and TL2 proved to be the most effective, achieving
lower mean absolute error on the validation set than the best direct training model for the 400
and 200 size training sets, and similar error for the 100 size training sets. The third transfer
learning scheme performed worse than the direct training. The mean absolute errors are reported
in Table 2. A significant difference was seen between the number of validation predictions within
chemical accuracy of the DFT value for the successful transfer learning methods compared to
direct training, with over 20% more for each training dataset size. These results are visualized in
Fig. 8.

Next, the first two transfer learning methods (TL1 and TL2) are compared to direct train-
ing on an extended version of the transition metal oxide dataset, which includes two additional
transition metal elements, manganese and chromium, and 146 additional data points. On the ex-
tended set, training is done similarly except with training set sizes of 500, 250, and 125 and a

TABLE 2:Validation set mean absolute error in electronvolts
of each of the transfer learning schemes along with the best-
performing direct training method across the different-sized
splits of the dataset. The bold numbers are the best result for
the row

N No TL TL1 TL2 TL3
100 0.939 0.929 0.943 1.191
200 0.762 0.691 0.703 0.847
400 0.551 0.477 0.482 0.686

FIG. 8: Results of the three best transfer learning methods compared to best direct training method without
transfer learning with the original dataset. Left: Mean absolute error (MAE) of the validation set evaluation
for the models trained on each of the training set sizes. Right: Percent of evaluations within chemical
accuracy of the value computed with DFT.
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validation set of 163 samples. Like the smaller dataset, the transfer learning methods both get
significantly more predictions from the validation set within chemical accuracy of their DFT-
calculated value than the directly trained model. These results are reported in Table 3 and Fig. 9.
In these two experiments, transfer learning methods TL1 and TL2 perform as good as or better
than direct training in mean absolute error. However, even in the two cases with similar mean
absolute error, a much larger fraction of the transfer learning predictions are within chemical
accuracy than the direct model predictions. The reason for this was explored further, and it was
found that in addition to the lower error, the transfer learning predictions also shared a higher
proportion of the higher errors than the directly trained model, leading to similar mean error.
This is shown for the TL1 model in both the 100 length training sets for the original dataset and
the 500 length training set for the extended dataset in Fig. 10. The cumulative error distributions
of the TL1 model for the larger and smaller training set size of both the original and extended
training data are explored in Fig. 11.

5.1 Computational Cost

As we mentioned in Section 2, DFT calculations can be computationally expensive, with the
average calculation from a set of 1300 transition metal oxides taking over 27 minutes per run

TABLE 3: Validation set mean absolute error
in electronvolts of the best performing direct
training and transfer learning methods applied
to the extended metal oxides dataset

N No TL TL1 TL2
125 1.355 1.083 1.067
250 0.827 0.753 0.751
500 0.730 0.744 0.730

FIG. 9: Results of the two best transfer learning methods (TL1 and TL2) compared to best direct training
method without transfer learning with the extended metal oxides dataset. Left: Mean absolute error (MAE)
of the validation set evaluation for the models trained on each of the training set sizes. Right: Percent of
model evaluations within chemical accuracy (1 kcal/mol) of the benchmark value computed with DFT. It
is seen that transfer learning improves significantly the number of neural net predictions within chemical
accuracy, while minimizing MAE.
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FIG. 10: Error distribution in cases where TL1 and direct training had similar MAE with a significant gap
in predictions within chemical accuracy. In each case, TL1 errors make up a larger portion of both the ends
of the distribution, with the larger values making a significant impact to the MAE. Left: Predictions from
models trained on 100 length training sets of original dataset. Right: Predictions from models trained on
500 length training set of extended dataset.

FIG. 11: Top: Cumulative distribution of validation set error for direct training and TL1 methods trained
with the 100 and 400 length training sets. In each case, over 20% more of the predictions from transfer
learning are within chemical accuracy (1 kcal/mol). Bottom: Cumulative distribution of validation set error
for direct training and TL2 methods trained with the 125 and 500 length training sets of the extended data.

(see Fig. 3). Using a neural network in lieu of DFT allows for accelerated predictions after the
overhead cost of training and generation of data. With a trained SchNet model, predicting the
free energy of a new transition metal oxide is in the order of milliseconds, while running DFT
calculations takes similar time as the previous calculations. The overhead cost of training the
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neural network can be insignificant for larger scale screening of materials. Table 4 summarizes
the training times for direct and transfer learning models. SchNet was implemented using the
PyTorch machine learning framework in python (Paszke et al., 2019). Training was done with an
NVIDIA Titan RTX GPU. While both direct and transfer training times were similar, we must
also consider the training of the source model used to initialize the transfer learning models,
which leads to the large discrepancy between the two. For the largest training set, the total
training time was 2.2 times that of the mean DFT calculation time for direct training, and 128.2
times for transfer learning. If hundreds or thousands of materials are to be screened, neural
networks allow a large savings in computational time, as visualized in Fig. 12.

To give an example of this speedup, DFT was done on a simple, two-atom TiO molecule
using the Quantum Espresso DFT code on a 2014MacMini with 1.4 GHz Intel Core i5 processor
and 4 GB of RAM. This took 87 seconds. Evaluating the same material with the neural network
took 4.6 milliseconds on the same computer. While being a big speedup, this does not capture
the more significant speedup seen with materials with more atoms. While DFT calculations for
larger transition metal oxides took as long as 20 hours in the benchmark, the longest SchNet
evaluation time was 350 milliseconds.

6. CONCLUSIONS

Neural networks have become popular for high-throughput screening of material properties, as
they provide significantly faster predictions than ab initio simulations based on DFT. However,

TABLE 4: Total computational time in seconds to
train direct and transfer learning models per size
of training set. Transfer learning models also take
into account the training time of their source model,
accounting for the large difference between methods

N No TL TL1
125 7182 214495
250 5008 210736
500 3626 209751

FIG. 12: Projected computational time for screening properties with only DFT and neural networks. Using
500 samples for training, using either direct training or transfer learning, would save 135 or 78 hours,
respectively, in computational time over DFT in predicting properties of just 300 more materials.
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in order to obtain accurate predictions neural networks require large amounts of DFT training
data, which can be computationally expensive to obtain. To overcome this problem, in this paper
we developed new transfer learning algorithms based on SchNet (Schütt et al., 2017b, 2019)
to repurpose trained neural network models on other materials using only a small amount of
additional training data. We demonstrated that the proposed transfer learning algorithms can
improve the mean absolute error of the Gibbs free energy predictions by up to 30% compared to
direct training. Furthermore, even in cases where the difference in the mean absolute errors are
not significant, transfer learning increased the number of predictions within chemical accuracy
by 25% to 30%.
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A. Beygelzimer, F. Alché-Buc, E. Fox, and R. Garnett, Eds., Red Hook, NY: Curran Associates Inc., pp.
8024–8035, 2019.

Razavian, A.S., Azizpour, H., Sullivan, J., and Carlsson, S., CNN Features Off-the-Shelf: An Astounding
Baseline for Recognition, in The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
Workshops, Columbus, Ohio, 2014.

Reddi, S.J., Kale, S., and Kumar, S., On the Convergence of Adam and Beyond, in Proc. of the 6th Inter-
national Conference on Learning Representations (ICLR), Vancouver, Canada, 2019.
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