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Abstract—We consider network topology identification subject
to a signal smoothness prior on the nodal observations. A fast
dual-based proximal gradient algorithm is developed to efficiently
tackle a strongly convex, smoothness-regularized network inverse
problem known to yield high-quality graph solutions. Unlike
existing solvers, the novel iterations come with global convergence
rate guarantees and do not require additional step-size tuning.
Reproducible simulated tests demonstrate the effectiveness of
the proposed method in accurately recovering random and real-
world graphs, markedly faster than state-of-the-art alternatives
and without incurring an extra computational burden.

Index Terms—Graph learning, graph signal processing, fast
gradient methods, signal smoothness, topology identification.

I. INTRODUCTION

ETWORK-aware signal and information processing is

having a major impact in technology and the biobe-
havioral sciences; see e.g, [1, Ch. 1]. In this context, graph
signal processing (GSP) builds on a graph-theoretic substrate
to effectively model signals with complex relational struc-
tures [2]-[4]. However, the required connectivity informa-
tion is oftentimes not explicitly available. This motivates the
prerequisite step of using signals (e.g., brain activity traces,
distributed sensor measurements) to unveil latent network
structure, or, to construct discriminative graph representations
to facilitate downstream learning tasks. As graph data grow
in size and complexity, there is an increasing need to develop
customized, fast and computationally-efficient graph learning
algorithms.

Given nodal measurements (known as graph signals in the
GSP parlance), the network topology inference problem is
to search for a graph within a model class that is optimal
in some application-specific sense, e.g., [1, Ch. 7]. The
adopted criterion is naturally tied to the signal model relating
the observations to the sought network, which can include
constraints motivated by physical laws, statistical priors, or,
explainability goals. Workhorse probabilistic graphical models
include Gaussian Markov random fields, and topology iden-
tification arises with so-termed high-dimensional graphical
model selection [5]-[11]. Other recent approaches embrace a
signal representation perspective to reveal parsimonious data
signatures with respect to the underlying graph. These include
stationarity induced via linear network diffusion [12]-[14] and
smoothness (i.e., bandlimitedness) [15]-[23]. The interested
reader is referred to [24]-[26] for comprehensive tutorial
treatments of network topology inference advances.

In this short letter, we develop a fast and scalable algorithm
to estimate graphs subject to a smoothness prior (Section II
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outlines the required background and formally states the prob-
lem). Adopting the well-appreciated graph learning framework
of [15], [18], in Section III we bring to bear the fast proximal-
gradient (PG) iterations in [27] to solve the resulting strongly
convex, signal smoothness-regularized optimization problem
in the dual domain. There are noteworthy recent scalable
solvers for this problem that rely on the primal-dual (PD)
method [15], PG [28], or, the linearized alternating-direction
method of multipliers (ADMM) [29]. Unlike these algorithms,
the novel iterations come with global convergence rate guaran-
tees and do not require additional step-size tuning. Borrowing
results from [27], we show that a (possibly infeasible) pri-
mal sequence generated from the accelerated graph learning
algorithm converges to a globally optimal solution at a rate of
O(1/k). To the best of our knowledge, this is the first work
that establishes the convergence rate of topology inference
algorithms subject to smoothness priors. Computer simulations
in Section IV showcase the favorable convergence properties
of the proposed approach when recovering a wide variety
of graphs. In the interest of reproducible research, the code
used to generate all figures in this letter is publicly available.
Conclusions are in Section V. Due to page contraints, proofs
are deferred to the accompanying Supplementary Material.

II. GRAPH LEARNING FROM SMOOTH SIGNALS

Let G (V,E, W) be an undirected graph, where V) are the
nodes (or vertices) with |V| = N, £ CV x V are the edges,
and W € Rf *N is the symmetric adjacency matrix collecting
the edge weights. For (3, j) ¢ £ we have W;; = 0. We exclude
the possibility of self-loops, so W is hollow meaning W;; =
0, for all i € V. We acquire graph signal observations x =
[1,... ,xN]T € RV, where x; denotes the signal value at
vertex ¢ € V. More general graphs capturing directionality are
important [30], but beyond the scope of this letter.

A. Graph signal smoothness

For undirected graphs one typically adopts the Laplacian
L := diag(d) — W as descriptor of graph structure, where
d = W1 collects the vertex degrees. As the central object
in spectral graph theory, L is instrumental in formalizing
the notion of smooth (i.e., low-pass bandlimited) signals on
graphs [2], [31]. Specifically, the total variation (TV) of the
graph signal x with respect to G is given by the quadratic form

TV(x) := x'Lx = % ZWij (x; — xj)2 . (D

i#]
We interpret TV(x) as a smoothness measure for graph
signals, which gauges the extent to which x varies across
G. Accordingly, we say a signal is smooth if it has a small
total variation. For reference, 0 < TV(x) < Apax, where



Amax 18 the spectral radius of L. The lower bound is attained
by constant signals. The ubiquity of smooth network data
has been well-documented, with examples spanning sensor
measurements [32], protein function annotations [1], and prod-
uct ratings [33]. These empirical findings motivate adopting
smoothness as the criterion to search for graphs on which
measurements exhibit desirable parsimony or regularity.

B. Problem statement

We study the following graph learning problem.

Problem 1 Given a set X := {xp}zl;l of graph signal obser-
vations, the goal is to learn an undirected graph G(V,E, W)
such that the observations in X are smooth on G.

We now briefly review the method proposed in [15], [18]
to tackle Problem 1, from which we henceforth build on to
develop a fast graph learning algorithm.

Consider the matrix X = [x1,...,xp] € RV*F whose
columns x,, are the observations in X'. The rows, denoted by
%] € RY™FP collect all P measurements at vertex i. Define
then the nodal Euclidean-distance matrix E € Rf xN , Where
E;; == ||x; — %;||3, i, € V. Using these notions, the signal
smoothness measure over X can be equivalently written as

P
1
ZTV(XP) = trace(XTLX) = §HW o El1, 2
p=1

where o denotes element-wise product [15]. Smoothness min-
imization as criterion in Problem 1 has the following intuitive
interpretation: when pairwise nodal distances in E are sampled
from a smooth manifold, the learnt topology W tends to be
sparse, preferentially choosing edges (i, j) whose correspond-
ing F;; are smaller [cf. the weighted ¢;-norm in (2)].

Leveraging this neat link between signal smoothness and
edge sparsity, a fairly general graph-learning framework was
put forth in [15]. The idea therein is to solve the following
convex inverse problem

i {IW Bl - a1 T log (W) + Wi} @)

S. to dlag(W) =0, Wij = Wji >0,i#7j

where «, 3 > 0 are tunable regularization parameters. Dif-
ferent from [16], the logarithmic barrier on the vertex degrees
d = W1 excludes the possibility of having (often undesirable)
isolated vertices in the estimated graph. Through /S, the
Frobenius-norm penalty offers a handle on the graphs’ edge
sparsity level. Among the parameterized familiy of solutions
to (3), the sparsest graph is obtained when S = 0.

Arguably, the most important upshot of identity (2) is
computational. It facilitates formulating (3) as a search over
adjacency matrices, and the resulting constraints (null di-
agonal, symmetry and non-negativity) are separable across
the variables W;;. This does not hold for the Laplacian L.
Exploting this favorable structure of (3), efficient solvers were
developed based on PD iterations [15], the PG method [28],
or the ADMM [29]. However, none of these graph learning
methods come with convergence rate guarantees because the

objective function of (3) lacks a Lipschitz continuous gradient.
To close this gap, next we develop a markedly faster first-order
algorithm using an accelerated dual-based PG method [27].

III. FAST DUAL PROXIMAL GRADIENT ALGORITHM

Because W is hollow and symmetric, the optimization
variables in (3) are effectively the, say, upper-triangular el-
ements [W];;, 7 > 4. Thus, it suffices to retain only those
entries in the vector w := vec[triu[W]] € Rf(Nfl)/ ?, were
we have adopted convenient Matlab notation. To impose that
edge weights are non-negative, we penalize the cost with
the indicator function I{w >0} = 0 if w > O, else
I{w > 0} = oo [15]. This way, we equivalently reformulate
(3) as the unconstrained, non-differentiable problem

min { I{w > 0} + 2w e+ B||w|2 — a1 log (Sw) } )
= f(w)

where e := vec|triu[E]] and S € {0, 1}V*NWV=1)/2 maps
edge weights to nodal degrees, i.e., d = Sw. The non-smooth
function f(w) := I{w = 0} + 2w e + B||w||? is strongly
convex with strong convexity parameter 23 (details are in
the Supplementary Material), while g(w) := —al' log (w)
is a (strictly) convex function for all w > 0. Under the
aforementioned properties of f and g, the composite problem
(4) has a unique optimal solution w*; see e.g., [27] and [29].
A fast dual-based PG algorithm was developed in [27] to
solve the non-smooth, strictly convex optimization problem
miny, { f(W) 4+ g(Sw)} of which (4) is a particular instance.
In the remainder of this section we will bring to bear this
optimization framework to develop a novel graph learning
algorithm with global rate of convergence guarantees.

i=—g(8w)

A. The dual problem

The structure of (4) lends itself naturally to variable-splitting
via the equivalent linearly-constrained form

Hli(Iil {f(w)+g(d)}, s.tod=Sw. 5)
Attaching Lagrange multipliers A € RY to the equality con-
straints and minimizing the Lagrangian function £(w,d, A) =
f(w)+g(d)— (X, Sw—d) w.r.t. the primal variables {w,d},
one arrives at the (minimization form) dual problem [27]

min {F(X) + G}, (©)
where
F(X) == max {(STA,w) — f(w)}, (7
G(N) = max{(-X,d) - g(d)}. ®)

Interestingly, the strong convexity of f induces useful smooth-
ness properties for F' (namely, the composition of Sw with the
Fenchel conjugate of f), that we summarize next. The result
is adapted from [27, Lemma 3.1] and the additional proof
arguments can be found in the Supplementary Material.

Lemma 1 Function F(X) in (7) is smooth, and the gradient

V F(X) is Lipschitz continuous with constant L := %



This additional structure of (6) makes it feasible to apply
accelerated PG algorithms [34] (such as FISTA [35]), to solve
the dual problem.

B. Accelerated dual proximal gradient algorithm

The FISTA algorithm applied to the dual problem (6) yields
the following iterations (initialized as w; = Ag € RY and
t1 = 1, henceforth £ = 1,2, ... denotes the iteration index)

1
Ak = Prox; g (wk — LVF(wk)> ) 9
1+ /1 +4t3
1= ——5—> (10)
tp —1
Wi+1 = Ag + — Ak — Ap—1], 1n

where the proximal operator of a proper, lower semi-
continuous convex function h is (see e.g., [36])

prox, (x) = argmin {h(u) + %Hu - x|§} . (12)

An adaptation of the result in [27, Lemma 3.2] — stated as
Proposition 1 below — yields the novel graph learning iterations
tabulated under Algorithm 1. Again, due to page constraints
the proof details are deferred to the Supplementary Material.

Proposition 1 The dual variable update iteration in (9) can
be equivalently rewritten as A\ = wy, — L™ (Swy, —uy,), with

Tw, —2
Wi, = max (0, S“’;ﬂe) , (13)
&, — Loy 7r — Lan)? + dall
Uk:ka wi + 1/ (SWg — Lwy,)? + 4a (14)

2 )
where max(-,-) in (13) as well as both (-)? and +/(-) in (14)

are element-wise operations on their vector arguments.

The updates in Proposition 1 are fully expressible in terms of
parameters from the original graph learning problem, namely
N, «, B, S and the data in e. This is to be contrasted with
(9), which necessitates the conjugate functions F' and G.

Algorithm 1’s overall computational complexity is dom-
inated by the update (13), which incurs a per iteration
cost of O(N?). The remaining updates are also given in
closed form, through simple operations of vectors living in
the dual NN-dimensional domain of nodal degrees [cf. the
N(N — 1)/2-dimensional primal variables wy]. The overall
complexity of O(N?) is in par with state-of-the-art PD and
linearized ADMM algorithms [29], which have been shown
to scale well to large networks with N in the order of
thousands. The computational cost can be further reduced by
constraining a priori the space of possible edges; see [18]
for examples where this approach is warranted. For a given
problem instance, there are no step-size parameters to tune
here (on top of a and () since we can explicitly compute
the Lipschitz constant L in Lemma 1. On the other hand, the
linearized ADMM algorithm in [29] necessitates tuning two
step-sizes and the penalty parameter defining the augmented
Lagrangian.

Algorithm 1: Topology inference via fast dual PG (FDPG)

Input parameters «, 3, data e, set L = %

Initialize ¢t; = 1 and w; = Ay at random.
for k=1,2,..., do
.
V_Vk; = max (07 8“57%_26)
_ SWk—ka—‘r\/(SWk—ka)z—‘rﬁl()&Ll

Uy 2
AL = W — L_l(SV_Vk — uk)

1y /14+482

lgy1 =
_ : tp—1 _
Wrt1 = Ak + P\k )\kfl]

te4+1

end

Output graph estimate wj, = max (0, ST%’EJ%)

The distinctive feature of the proposed accelerated dual
PG algorithm is that it comes with global convergence rate
guarantees. These results are outlined in the ensuing section.

C. Convergence rate analysis

Moving on to convergence properties, when k& — oo the
iterates Ay generated by Algorithm 1 provably approach a dual
optimal solution A* that minimizes () := F(A) + G(A) in
(6); see e.g., [35]. The celebrated FISTA rate of convergence
for the dual cost function is stated next.

Theorem 1 [35, Theorem 4.4] For all k > 1, dual iterates
Ay stemming from Algorithm 1 are such that

2(N — 1)[[Ao — A3
pk?

This well-documented O(1/k?) global convergence rate of
accelerated PG algorithms implies an O(1/+/¢€) iteration com-
plexity to return an e-optimal dual solution measured in terms
of © values; see also [37], [38] for potential transient speedups.

We now consider a primal sequence generated from the
iterates of Algorithm 1, and borrow the results from [27] to
show the sequence is globally convergent to w* at a rate
of O(1/k). To this end, suppose that for all & > 1 we
are given dual updates Ay generated from the accelerated
dual PG algorithm. We can construct a primal sequence as
wy = argmin, £(w,d, Ag), namely [cf. (7)]

W :argglax {(ST Ak, w) — f(w)}

( ST)\k - 2e>
=max | 0, ——— | .
20
As noted in [29], this primal sequence may be infeasible in
the sense that resulting nodal degrees dj := Swy are not
guaranteed to lie in the domain of g. The promised O(1/k)

rate of converge result for Wy, is stated next.

Theorem 2 [27, Theorem 4.1] For all k > 1, the primal
sequence (16) defined in terms of dual iterates A\ generated
by Algorithm 1 satisfies

W*HQ < \/2(‘]\[_1)”)‘0_>‘*”2
> Bk .

P(Ar) — p(A%) < (15)

(16)

a7
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Convergence performance in terms of primal variable error ||Wj — w*||2 when recovering different synthetic and real graphs. (a) ER graphs with

N = 200 (top-left) and N = 400 nodes (top-right); SBM graphs with N = 200 (bottom-left), and N = 400 nodes (bottom-right). (b) Four representative
structural brain graphs with N = 66 ROIs; Subject 1 (top-left), Subject 2 (top-right), Subject 4 (bottom-left), and Subject 6 (bottom-right). (c) Minnesota
road network with N = 2642 intersections. In all cases, the proposed FDPG method converges faster to w* than state-of-the-art graph learning algorithms.

IV. NUMERICAL RESULTS

Here we test the proposed fast dual PG (FDPG) algorithm
for learning random and real-world graphs from simulated sig-
nals. The merits of the formulation (3) in terms of recovering
high-quality graphs have been well documented; see e.g., [15],
[18], [24], [25] and references therein. For this reason, the
numerical experiments that follow will exclusively focus on
algorithmic performance, with no examination of the quality
of the optimal solution w* that defines the learnt graph. In
all ensuing test cases, we search for the best regularization
parameters «, in terms of graph recovery performance,
adopting the edge-detection F-measure as criterion. We com-
pare Algorithm 1 to other state-of-the-art methods such as
PD [15], PG [28], and linecarized ADMM [29]. We also
consider the non-accelerated dual PG (DPG) method that is
obtained from Algorithm 1 when ¢, = 1 for all £ > 1. For
FDPG we implemented customary fixed-interval restarts of the
momentum term in Algorithm 1; see also [39] for adaptive
restart rules. Moreover, the ADMM parameters and PD step-
size are tuned to yield the best possible convergence rate.
Implementation details can be found in the publicly available
code!, which can be used to generate all plots in Fig. 1.

A. Random graphs

We generate ground-truth graphs as draws from the
Erdds-Rényi (ER) model (edge formation probability p = 0.1)
with N = 200 and 400 nodes, as well as from the 2-block
Stochastic Block Model (SBM) with the same number of
nodes, and connection probability p; = 0.3 for nodes in
the same community and p, = 0.05 for nodes in different
blocks. We simulate P = 1000 ii.d. graph signals x, ~
N (0, Lt + O’EIN), where o, = 0.1 represents the noise level
and L is the Laplacian of the ground-truth random graph. For
a graph-based factor analysis model justifying this approach
to smooth signal generation, see e.g., [16]. We compare
the convergence performance of the aforementioned methods
through the evolution of the primal variable error ||Wj —w*||2.
To obtain w* for the chosen a and (3, we ran the PD
method for 50000 iterations. The results of these comparisons

lhttp: //www.ece.rochester.edu/~gmateosb/code/FDPG.zip.

are illustrated in Fig. 1 (a). Apparently, the proposed FDPG
algorithm markedly outperforms all other methods in terms of
convergence rate, uniformly across graph model classes and
number of nodes. Here, convergence to the largest graphs takes
less iterations than for N = 200.

B. Brain and road networks

We first focus on recovering the topology of 6 unweighted
structural brain graphs [40], all with N = 66 regions of
interest (ROIs) and whose edges connect ROIs with non-trivial
density of axonal bundles; see also [41] for additional details.
For a larger-scale experiment, we adopt the Minnesota road
network which is an unweighted and undirected graph with
N = 2642 intersections [42]. In both cases, we generated
synthetic smooth signals over the real topologies using the
generative model in Section IV-A. The high value of N
renders the ADMM’s 3-D parameter search a significantly time
consuming operation. Hence, for the Minnesota road network
experiment, we only focus on the proposed (F)DPG methods
and the PD algorithm in [15].

Fig. 1 (b) depicts the convergence results for the structural
brain networks of 4 representative subjects. Once more, in
all cases the FDPG method is faster, but for these smaller
graphs the performance gap appears to narrow. The gains can
also be quantified in terms of wall-clock time. For instance,
for Subject 6 the time in seconds for the algorithms to reach
a suboptimality of 10~ are: 0.021s for FDPG, 0.092s for
PD, 0.071s for ADMM and 0.081s for DPG. Results for the
Minnesota road network are depicted in Fig. 1 (c), where the
superiority of the proposed method is also apparent.

V. CONCLUSION

We developed a fast and scalable algorithm to learn the
graph structure of signals subject to a smoothness prior.
Leveraging this cardinal property of network data is central to
various statistical learning tasks, such as graph smoothing and
semi-supervised node classification. We brought to bear a fast
dual-based PG method to derive lightweight graph-learning
iterations that come with global convergence rate guarantees.
The merits of the proposed algorithm are showcased via
experiments using several random and real-world graphs.
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