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Abstract

There are a wide array of methods for writing code genera-
tors. We advocate for a point in the design space, which we
call metaprogramming with combinators, where programmers
use (and write) combinator libraries that directly manipulate
object language terms. The key language feature that makes
this style of programming palatable is quasiquotation. Our
approach leverages quasiquotation and other host language
features to provide what is essentially a rich, well-typed
macro language. Unlike other approaches, metaprogram-
ming with combinators allows full control over generated
code, thereby also providing full control over performance
and resource usage. This control does not require sacrificing
the ability to write high-level abstractions. We demonstrate
metaprogramming with combinators through several code
generators written in Haskell that produce VHDL targeted
to Xilinx FPGAs.

CCS Concepts: « Software and its engineering — Do-
main specific languages; Source code generation; - Hard-
ware — Hardware description languages and compila-
tion.
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1 Introduction

A primary motivation for writing code generators is the
desire to avoid boilerplate—repetitive code that is straight-
forward but tedious to write. Boilerplate becomes necessary
when a language does not provide features that permit ab-
straction over the pattern of computation embodied by the
boilerplate. With any new abstraction there comes a tension
between expressivity and performance—an abstraction may
allow the programmer to avoid repetitive code, but at what
cost? This tension is particularly acute in the hardware do-
main, where the two primary languages, VHDL and Verilog,
do not even allow easy abstraction over types. Furthermore,
in hardware, local inefficiencies can have far ranging im-
plications by forcing a reduction in the (global!) clock rate.
Because it is a particularly challenging domain, we choose
hardware generation to demonstrate our approach to pro-
viding new abstraction facilities for a language without sac-
rificing performance, which we call metaprogramming with
combinators (MWC).

The essence of our approach is to directly embed the lan-
guage being generated—the object language—into the lan-
guage that is used for code generation—the metalanguage.
In this paper, the object language is VHDL and the metalan-
guage is Haskell. “Directly” embedding the object language
means that programmers literally write VHDL concrete syn-
tax mixed with Haskell. This is made possible by Haskell’s
support for quasiquotation [20]. Our primary points of com-
parison are Kansas Lava [12], which exemplifies the standard
technique for deeply embedding a language in Haskell, and
CAaSH [4], which offers a path for compiling a subset of
Haskell directly to hardware. Both Kansas Lava and CAaSH
can interpret terms as either Haskell programs or as hard-
ware generators, allowing programmers to test circuits using
standard Haskell tools, like QuickCheck [8]. A code genera-
tor with embedded VHDL terms cannot be interpreted as a
Haskell program—it can only be used to generate VHDL—but
we show how to recover Haskell interpretability for a subset
of programs (Sections 3 and 4). This allows many MWC pro-
grams to be executed either as Haskell programs or as code
generators.

Metaprogramming with combinators combines full con-
trol over generated code (when needed) with the full powers
of abstraction of a functional language (Haskell). Like deeply
embedded languages (Kansas Lava) or languages that of-
fer (partial) translation of a functional language to another
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domain (CAaSH), MWC can express powerful new program-
ming constructs using libraries instead of requiring language
(and compiler) modifications (Section 4). Unlike these other
approaches, the performance penalty is minimal (Section 2).
By carefully separating out the pure, functional portion of
hardware circuits, a subset of MWC programs can be inter-
preted as Haskell programs and tested with standard Haskell
tools like QuickCheck (Section 3). Without sacrificing the
simplicity and elegance of functional code, generated VHDL
can even be competitive with vendor-supplied IP (Section 6).
Concretely, this paper makes the following contributions:

e A Haskell quasiquoter for VHDL, which allows VHDL
concrete syntax to be embedded in Haskell programs.

e A library for expressing combinational (purely func-
tional) circuits such that they can be interpreted di-
rectly as Haskell programs or used to generate VHDL.

e A high-level combinator library for building hardware
pipelines and generating testbenches.

e Implementations of several low-level IP components
(convolutional encoder, divider, CORDIC), built using
these two libraries, with performance comparable to
Xilinx IP.

All source code and IP described in this paper are open
source.!

2 Background and Motivating Example

Hardware is a particularly challenging domain for code gen-
eration because of its sensitivity to local performance charac-
teristics and pervasive parallelism. In this paper, we assume
fully synchronous circuits where all operations are driven
by a single clock, which is typical for FPGAs. Circuits are
composed of combinational logic, which can be expressed as
a pure function of its inputs, and (stateful) registers, which
can be read and updated every clock cycle. Clock rate is lim-
ited by the time it takes the combinational logic in a circuit
to reach a stable output. The time needed to reach stability is
influenced by factors including the number of gates needed
to express combinational logic as well as the signal delay
between gates—longer paths and larger gate counts both
require more time for outputs to stabilize. Because there is
a single global clock, the clock rate is limited by the time it
takes the slowest combinational path to reach stability. This
means that adding a single slow step to a multi-step com-
putation can slow down every step in the computation by
imposing a lower clock rate. In hardware, poor local perfor-
mance has global implications that would not be present in
a typical software system.

Synchronous circuits are massively parallel—on each clock
cycle, every register in a circuit has the opportunity to be
read, updated, and written. To avoid global synchronization,
computations are often organized in pipelines where each
stage uses local flow control to respond to backpressure. In

Lhttps://github.com/mainland/vhdl-combinators-examples.
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this model, a multi-step computation can be organized as a
single pipeline stage, which must complete all computational
steps before accepting a new item to process. Alternatively,
the steps can be split across multiple pipeline stages, which
allows for multiple items to be processed in parallel. By con-
trolling the number of stages over which a computation
occurs, the circuit designer can trade resource usage (circuit
size) for data processing latency. Flow control protocols are
boilerplate that is easy to get subtly wrong, so they are an
ideal candidate for abstraction. We describe our implemen-
tation of a pipeline abstraction in Section 4.

Our initial motivating example is a circuit that is useful
only to demonstrate the challenges inherent in generating
VHDL: a multi-step incrementer. This circuit takes a number
as input and adds a constant n by repeatedly adding 1 in
each of n steps, where each step requires a full clock cycle to
complete. Two variants of the incrementer are useful in our
investigation: a serial variant and a fully parallel variant. The
serial variant executes all n steps in a single pipeline stage,
so it has a latency of n clock cycles and can only process
one item at a time, giving it a throughput of 1/n items per
clock cycle. The parallel variant splits all n steps across n
pipeline stages, so although it also has a latency of n clock
cycles, it can process n items at a time for a steady-state
throughput of 1 item per clock cycle. The parallel variant
offers increased throughput at the expense of extra resource
utilization since the hardware necessary to perform each
step must be duplicated n times.

The boilerplate necessary for implementing a pipeline
stage is something over which we want control so that we
can implement a specific protocol, and it is something we
don’t want to have to write ourselves since it is mechanical
but also error-prone. We can eliminate this boilerplate, but at
what cost in terms of speed (clock rate) and (FPGA) resource
utilization? Although the computation itself is simple, the
multi-step incrementer performs a minimal but non-zero
amount of work at each step, which allows us to investigate
the overhead each environment imposes on pipeline con-
struction in an attempt to answer this question. We compare
implementations of the serial and (fully) parallel incrementer
using three different code generation tools: Kansas Lava [12],
CAaSH [4], and our library for metaprogramming with com-
binators (MWC).

Listing 1 shows the definitions of both the serial and paral-
lel 16-step incrementers using our library. The type UQ 16 @
is the type of unsigned fixed-point numbers with a 16-bit
integral component and a 0-bit fractional component, i.e., un-
signed 16-bit integers. Our library provides general support
for computing with both unsigned (the UQ type) and signed
(the Q type) fixed-point types in Haskell, where the type is
indexed by type-level naturals specifying the number of in-
teger and fractional bits. The VExp type is a lightweight type
for representing VHDL expressions that is indexed by the
Haskell type of the VHDL term it represents (see Section 3).
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sinc :: Pipeline p
=>p (VExp (UQ 16 @)) (VExp (UQ 16 @))
sinc = siter id (\x _ => x + 1) id 16

pinc :: Pipeline p
=> p (VExp (UQ 16 @)) (VExp (UQ 16 9))
pinc = piter id (A\x _ => x + 1) id 16

Listing 1. 16-step serial and parallel incrementers that oper-
ate on unsigned, 16-bit integers written using the metapro-
gramming with combinators technique.

Table 1. Resource requirements (LUTs and flip-flops) and
maximum frequency of serial and parallel 16-step incre-
menter for 16 bit unsigned numbers.

Approach LUT FF fyax (MHz)

MWC
Serial 25 24 770.
Parallel 17 272 842
Kansas Lava
Serial 44 39 712
Parallel 99 319 605
Kansas Lava (RTL)
Serial 22 24 715
Parallel 55 278 485
ClaSH
Serial 42 23 516
Parallel 64 303 785

The type class Pipeline represents a pipeline, so a value
of type Pipeline p => p a bis a pipeline that consumes
values of type a and produces values of type b (see Section 4).
The siter and piter combinators iterate a function for a
statically known (at compile time) number of steps and allow
both a single pre- and post-processing step, both of which
are unused in this example. The iterated function receives
two arguments: the item to process and the index of the
current step. The full pipeline interface is shown in Listing 6
and further described in Section 4. Combinators equivalent
to siter and piter were also written in Kansas Lava and
CAaSH.

Table 1 shows the resource utilization and maximum es-
timated frequency of four implementations of the 16-stage,
unsigned 16-bit incrementer. Our methodology for measur-
ing these quantities is fully described in Section 6. We at-
tempted to implement combinators in each environment that
are equivalent to siter and piter as efficiently as possible
while still writing idiomatic code. For example, CAaSH al-
lows VHDL primitives to be defined by the programmer, but
we used the subset of Haskell that CAaSH can synthesize
to VHDL to design serial and parallel pipeline combinators.
We also wrote two Kansas Lava implementations. The first
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uses the high-level library functions provided by Kansas
Lava. The second implementation, labeled “RTL” (for regis-
ter transfer language) in Table 1, uses the low-level, stateful,
monadic DSL that is provided in an extra module in the
Kansas Lava library. This DSL corresponds closely to VHDL,
so the RTL implementations are not much different from
what one would write directly in VHDL.

The metaprogramming with combinators (MWC) library
has the lowest resource requirements and highest estimated
clock rate for both the serial and parallel versions of the
circuit. We make several observations about our implemen-
tation efforts.

Writing high-level serial and parallel combinators was
relatively painless in all environments. Most of our effort
across all four implementations was directed towards co-
ercing the environment to produce roughly the VHDL we
knew would result in a reasonably performing pipeline. This
was easy when using the MWC library because we could
literally write the VHDL that we wanted. While this may
seem to unfairly bias the example in favor of our library, a
circuit designer generally knows what VHDL is needed. The
challenge is not to figure out how to write low-level code ef-
ficiently, but to figure out how to avoid constantly re-writing
small variations on known patterns because the language
available (VHDL) doesn’t provide the necessary abstraction
mechanisms to eliminate boilerplate. High-level languages
“obviously” provide the facilities needed to avoid boilerplate,
and MWC “obviously” allows full control over generated
code because the programmer can directly write the desired
VHDL as part of the code generator. Thus, the real question
is whether MWC can simultaneously provide both low-level
control of generated code and high-level abstractions.

Kansas Lava provided more control over the generated
VHDL, but we had to drop down to the monadic RTL DSL
and essentially write VHDL anyway. Still, this approach
didn’t match the performance we attained using the MWC
approach. The correspondence between the Kansas Lava
source and generated VHDL was not always obvious, even
when using the RTL DSL. In contrast, the VHDL generated by
CAaSH was more concise, and its mapping from the Haskell
source was clearer since it corresponds closely to GHC’s
core language. However, it was more difficult to control
the generated VHDL in CAaSH—we could find no CAaSH
analogue to Kansas Lava’s RTL language. Because CAaSH
primitives are template strings, there is no good way to
generate them other that writing them directly by hand.
Since they are stored in separate JSON-like files and are
not part of the Haskell source of a program, they cannot be
computed—they must be written by hand.

CAaSH also imposes a somewhat rigid structure on all
generated VHDL code—each generated VHDL component
has clock, clock enable, and reset signals (with fixed names).
Although this structure is standard for VHDL code, it is not
always what one wants, and we found that we could slightly
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Table 2. Resource requirements and maximum frequency of
serial and parallel 16-step incrementer for unsigned numbers
with 8 integral bits and 8 fractional bits.

Approach LUT FF fyax (MHz)

MWC
Serial 27 24 635
Parallel 21 174 786
Kansas Lava
Serial 47 74 589
Parallel 354 314 430
Kansas Lava (RTL)
Serial 44 63 552
Parallel 323 544 386
CAaSH
Serial 37 24 543
Parallel 80 288 446

improve resource utilization by using our own, alternative
reset mechanism. Because this subversion of CAaSH’s built-
in reset mechanism is non-idiomatic and would prevent our
circuit from being composed with other CAaSH circuits, we
report the statistics from the idiomatic version of our CAaSH
implementation. Local changes to Haskell source that would
not normally change performance when compiled with GHC
did cause performance changes in generated VHDL. For ex-
ample, the step function to our iteration combinators takes
both the value to step and the current step index, but even
though the step index was not used in the incrementer ex-
ample, the existence of a second, unused argument caused
an increase in resource usage. The GHC optimizer did not
eliminate this overhead.

Table 2 shows the resource usage and estimated maxi-
mum frequency of the incrementer circuits instantiated at
a different type—the type of 16-bit unsigned numbers with
8 integral bits and 8 fractional bits. The disparity between
MW?C and other approaches is even greater in this case. We
did nothing special to tune our implementation, but only
used the standard VHDL libraries for fixed-point numbers
when mapping the Haskell Q and UQ types to VHDL.

The incrementer example is a very small circuit. How
does the overhead of CAaSH and Kansas Lava scale with
circuit size? We are concerned with two types of “overhead™:
area (circuit size) and clock frequency. It is unclear how
area overhead scales with circuit size in CAaSH because
VHDL is generated from GHC’s core language. Some Haskell
constructs may result in GHC Core that translates to small
VHDL circuits, and other Haskell constructs may not—part
of the problem is that the programmer cannot predict how
Haskell will map to VHDL. Kansas Lava programmers face
a similar problem. In both Kansas Lava and CAaSH, there
is some (approximately) fixed overhead per pipeline stage.
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append [vunit|
entity $id:entity is
port (clk : in std_logic;
rst : in std_logic;

in_ready : out std_logic;
in_valid : in std_logic;
$idecls:in_idecls;
out_ready : in std_logic;
out_valid : out std_logic;

$idecls:out_idecls);
end; | ]

Listing 2. A quasiquoted VHDL entity declaration. The syn-
tax [vunit]...|] denotes a quasiquoted VHDL unit. The
entity’s identifier and additional input and outputs signals
are antiquoted.

Since larger pipelined circuits consist of more pipeline stages
rather than larger stages, this fixed overhead would grow
with the size of a pipelined circuit.

Area overhead is important, but the real catch is clock
frequency. Since a circuit can only run as fast as its criti-
cal path (the slowest computation than must complete in
a single clock cycle), making the critical path slower has a
global effect on speed. The incrementer example shows that
even when the computation on the critical path is minimal
(a single addition!), there is a substantial clock frequency
penalty for Kansas Lava and CAaSH. That penalty is paid
by any circuit, making any circuit, small or large, run more
slowly. The incrementer example is arguably a best case for
Kansas Lava and CAaSH because it does so little.

Metaprogramming with combinators allows fine control
over the performance of generated code. This is not surpris-
ing since by design it allows direct control over generated
code. We were nonetheless surprised by the amount of over-
head Kansas Lava and CAaSH imposed on this simple circuit.
In the following two sections, we show that gaining the abil-
ity to tightly control generated code does not require giving
up many of the advantages of other approaches based on
functional languages.

3 Embedding VHDL Terms in Haskell

The metaprogramming with combinators approach is built
on quasiquotation [20], which allows concrete syntax for
the language in which code is generated to be mixed with
Haskell. This paper uses our implementation of a quasiquoter
for VHDL. Quasiquoters exist for many other languages, e.g.,
C and Javascript. The MWC library also includes a code gen-
eration monad that provides scoping constructs, the ability
to gensym names, and other operations typically needed
during code generation.

Listing 2 shows a fragment of the pipeline code generator
described in Section 4 that quasiquotes a VHDL entity decla-
ration. The append function is aggregating generated code in
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data VExp a where
VConst :: ToExp a => a -> VExp a
VExp :: VHDL.Exp -> VExp a

Listing 3. A simplified version of the mixed shallow/deep
VHDL term representation used by the metaprogramming
with combinators library.

the code generation monad. The syntax [vunit]...|] spec-
ifies that the vunit quasiquoter, which parses VHDL unit
declarations, should be used to parse the bracketed code that
occurs in place of the ellipses. Within the quasiquoted code,
expressions prefixed with the dollar symbol are antiquotes.
For example, $id:entity is an antiquoted identifier—the
value of the Haskell variable entity will be spliced into
the generated code and used as the name of the declared
VHDL entity. The antiquote $idecls:in_idecls will splice
in the list of interface declarations bound to the Haskell vari-
able in_idecls. In the quasiquoters provided by our VHDL
quasiquotation library, concrete VHDL syntax is parsed to
Haskell terms built from the data constructors of Haskell data
types that represent VHDL abstract syntax. Quasiquotation
is syntactic sugar—it allows programmers to use concrete
syntax instead of deeply nested data constructor applications
in both Haskell expressions and Haskell patterns. Quasiquo-
tation and antiquotation provide a flexible framework for
writing code templates using concrete syntax. We give a
more complete description of how quasiquotation is used to
write a pipeline combinator in Section 5 after first explaining
the pipeline abstraction itself in Section 4.

If we represent circuits as VHDL terms, how can we hope
to interpret and run them as Haskell programs? We can re-
cover the ability to interpret a subset of circuits as Haskell
programs by using a mixed shallow/deep term represen-
tation. Our library uses a VExp data type, indexed by the
(Haskell) type of the VHDL term it represents, whose simpli-
fied definition is shown in Listing 3. The values of a type that
is a member of the ToExp type class can be represented as
VHDL terms. The VConst data constructor of the VExp type
represents a shallowly-embedded term—a Haskell value that
can be converted to a VHDL representation at code genera-
tion time. In contrast, the VExp data constructor represents
an arbitrary, deeply-embedded VHDL term. Allowing both
deeply- and shallowly-embedded representations in VHDL
terms gives us the ability to partially evaluate expressions
involving only compile-time constants “for free” In essence,
we are using a small amount of abstract interpretation to
move computation from generated code to the code genera-
tor. Kiselyov and Taha [17] use a similar representation to
generate efficient FFT implementations.

If we maintain the invariant that functions whose argu-

ments are all shallowly-embedded values evaluate to shallowly-

embedded values, we can guarantee that computations in-
volving only statically known values will be fully evaluated
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class LiftEq f where
(.==.) :: Ega=>f a->f a->1f Bool
(./=.) :: Eqa=fa->fa->f Bool

Listing 4. Lifted version of the Eq type class.

at code generation time. This invariant provides an addi-
tional benefit: it allows functions that operate on values of
type VExp a to be interpreted as Haskell functions, not just
as code generators, by injecting shallowly embedded values
into the VExp data type before calling a function and project-
ing the result out of the VExp data type. If we always used a
deep embedding, we would lose both of these advantages.

Separating shallow and deep operations is key to both par-
tial evaluation and interpreting circuits as Haskell programs.
We extend the classic technique for embedding a language in
Haskell and providing instances of standard type classes, like
Num, for embedded terms [10] by separating shallow and deep
operations in different type classes. We also use the standard
technique of providing lifted versions of many operations as
separate type classes. For example, Listing 4 shows the lifted
version of the Eq type class, which is needed because the type
of equalityis (==) :: Eq a => a -> a -> Bool,butinan
embedded language the return type must be f Bool, where
f is the type constructor for terms in the embedded language.
The metaprogramming with combinators library provides
lifted versions of many standard Haskell type classes, in-
dexed by the type constructor of terms in the embedded lan-
guage, as well as instances for the VExp data type. The VExp
instances of the lifted classes handle partial evaluation when
possible, and otherwise they delegate computation to sepa-
rate classes representing the corresponding operations on
deeply embedded values. These type classes are indexed not
by the type constructor of terms in the embedded language,
but by the type index of these terms. For example, there is
a LiftBits VExp instance representing bit operations on
VHDL terms of type VExp a, but there is a DeepBits Int
instance representing bit operations on deeply embedded
VHDL terms of type VExp Int. Stratifying operations in this
way allows type-specific operations on deeply-embedded
terms to be specified orthogonally from operations on values
that contain constants.

Listing 5 shows the specification of a convolutional en-
coder pipeline using the metaprogramming with combina-
tors library. The following points are notable:

e Sized types are used throughout. For example, the first
argument to encodeP (line 2) is a vector of r unsigned
k + 1-bit numbers—the generator polynomials for the
convolution code. The type statically states that this is
a rate 1/r code with constraint length k + 1. The type
SLV n is a vector of n bits, which corresponds to the
VHDL std_logic_vector.

e The generator polynomials are statically known at
code generation time. However, the current encoder
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encodeP :: forall r k p. (KnownNat r, KnownNat k, Pipeline p)
=> Vec r (Unsigned (k+1)) -- * Generator polynomials
-> p (VExp Bit) (VExp (SLV r))
encodeP gs = moore step out (lift (zeroBits ::
where
step :: VExp (SLV (k+1)) -> VExp Bit -> VExp (SLV (k+1))
step s i = V.tail s “V.snoc™ i

SLV (k+1)))

out :: VExp (SLV (k+1)) -> VExp (SLV r)
out s = V.1liftVec $ Vec.map (\g -> parity g s) gs

-- | Compute parity of bits using generator polynomial @g@.
parity :: forall k . KnownNat k
=> Unsigned (k+1) -- * Generator polynomial
-> VExp (SLV (k+1)) -- * Current state
-> VExp Bit
parity g state =
xorreduce $ msum [extract i | i <= [n-1,n-2..0]]
where
n :: Int
n = finiteBitSize (undefined :: Unsigned (k+1))
-- Reduce list of bits using xor
xorreduce :: [VExp Bit] -> VExp Bit
xorreduce = foldrl xor'

-- Extract bit i of state if corresponding bit
-- is set in g
extract :: MonadPlus m => Int -> m (VExp Bit)
extract i = if testBit g i
then pure (V.index state (lift i))
else mzero

Listing 5. Specification of a rate 1/r convolutional encoder
pipeline with constraint length k + 1 from r generator poly-
nomials of k + 1 bits each using the metaprogramming with
combinators approach.

state is a staged value—it can potentially be repre-
sented using a deeply-embedded VHDL expression—
because it has the type VExp (SLV (k+1)).

e The programmer does need to track which values are
potentially deeply embedded. For example, the xor
reduction in line 25 must use the lifted version of the
standard Haskell operation xor, which is a member of
the Haskell type class Bits. The lifted version is named
xor' and is part of the LiftBits class defined in the
metaprogramming with combinators library. Haskell
values must be explicitly lifted into the VExp data type,
as in lines 4 and 31.

o The staged implementation of the encoder otherwise
looks much like an unstaged version would. Staging
the computation so that values that must have VHDL
runtime representations have type VExp a gives us
the ability to use this specification to generate VHDL
code.

e We explain the Pipeline type class and moore func-
tion for building stateful pipelines in the following
section.
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Staging the encoder does not prevent us from running it
as a pure Haskell function, as explained in the following
section. Instead of directly writing VHDL, staged operations
are abstracted using the VExp data type and lifted versions
of standard Haskell type classes for expressing common
operations. These abstractions maintain the invariant that
computations with lifted Haskell constants produce lifted
Haskell constants. This allows functions written using these
abstractions to be run as pure Haskell functions in addition
to being used as VHDL code generators. Writing the combi-
national portions of circuits in this style—without explicitly
writing VHDL—is a great fit because combinational logic is
expressible in the language of pure functions. For stateful
circuits, we need a different approach.

4 Pipeline Combinators

For combinational logic, we regained the ability to interpret
code-generating functions as pure Haskell functions by ab-
stracting VHDL terms using the VExp data type and lifted
type classes for common operations. We can do the same
for stateful hardware circuits by introducing new abstrac-
tions. The stateful abstraction we introduce in this section
is embodied by the Pipeline type class, whose definition is
given in Listing 6. Although it has a narrow interface, the
Pipeline type class provides enough functionality to write
many useful stateful circuits. Moore and Mealy machines are
very general forms of circuits, and both can be built using
the Pipeline interface.

Although the metaprogramming with combinators library
includes the definition of the Pipeline type class and two
instances, one that generates VHDL and one that yields pure
Haskell functions, this is the kind of abstraction that we
expect programmers who use the metaprogramming with
combinators approach to be able to build themselves. The
VHDL-generating instance of the Pipeline type class is less
than 1000 lines of code, which includes additional functional-
ity we don’t describe here. Building this type of abstraction
provides the following advantages:

e The same source code expression of a stateful compu-
tation can be used to either generate code or as a pure
Haskell function, which can be tested with tools like
QuickCheck.

e The programmer still has full control over generated
VHDL. The VHDL-generating instance of the Pipeline
type class uses quasiquotation to produce exactly the
VHDL code the programmer wants.

o Different Pipeline instances can be used to produce
implementations that use different handshaking proto-
cols without requiring any source code changes to the
circuit. Our implementation uses a standard valid/ready
protocol, but adding implementations of other proto-
cols, like AXI4-Lite, would be straightforward.
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class Category p => Pipeline p where
-- | Sequencing pipelines
seq :: pab->pbc->pac

-= | "Arrow" pipeline
arr :: (Pack a, Pack b) => (a ->b) -=>p ab

-- | Serial iteration pipeline
siter :: (Pack a, Pack b, Pack c)

=> (a -> b) * Pre-process

-> (b -> VExp Int -> b) -- * Function to iterate
=> (b -> ¢) -- * Post-process

-> Int -= * Number of iterations
->pac

-- | Parallel iteration pipeline
piter :: (Pack a, Pack b, Pack c)

=> (a -> b) -- " Pre-process

-> (b -> VExp Int -> b) -- * Function to iterate
-> (b -> ¢) -- * Post-process

-> Int -- * Number of iterations
->pac

-- | Moore machine pipeline

moore :: (Pack s, Pack i, Pack o)
=> (s => i -> s) -- * State transfer function
-> (s => 0) -- * Qutput function
=> s -- * Initial state
-=>pio

-- | Mealy machine pipeline
mealy :: (Pack s, Pack i, Pack o)

=> (s => 1 -> (s, 0)) -- * State transfer function
-> s -- * Initial state
-=>pio

Listing 6. The pipeline interface.

e The programmer using the pipeline abstraction can
focus on just the combinational logic needed to express
a computation and does not have to worry about the
details of the handshaking protocol being used.

The Pipeline interface shown in Listing 6 uses two fea-
tures specific to staged code generation. The first is the Pack
type class, which provides an interface for representing val-
ues of a given type using one or more VHDL expressions. A
similar type class is used by Kansas Lava. The second feature
specific to staged code generation is the use of the VExp Int
type for the second argument to the iteration function in
siter and piter. Use of this type ensures that the step index
can be a staged value, i.e., the step function must be able to
use a staged (symbolic) VHDL expression as the step index.

Pipelines can be represented as pure Haskell functions. A
Pipeline instance using this representation is shown in List-
ing 7. The function reifyP in the listing allows a pipeline
that operates on staged values to be converted to a pure
Haskell function on unstaged values. Lifting a value of type
a to a value of type VExp a is always possible, but projecting
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newtype HaskPipeline a b = P { runP :: [a] -> [b] }

instance Category HaskPipeline where
id = P id
f.g=P (runP f . runP g)

instance Pipeline HaskPipeline where
f “seq” g =P (runP g . runP f)

arr f =P $ map f

siter f ghn=P $map (h . goo . f)

where
goilix | 1i==n = X
| otherwise = go (i+1) (g x (lift i))
reifyP :: ToExp a
=> HaskPipeline (VExp a) (VExp b)
-> [a] > [b]

Listing 7. An instance of the Pipeline type class where
pipelines are represented as pure Haskell functions.

a value of type a from a value of type VExp a is only possi-
ble for shallow terms, so this function is necessarily partial.
However, if the combinational code used to build the pipeline
obeys the key invariant stated in Section 3—operations that
involve only shallowly-embedded (constant) values produce
shallowly-embedded values—then reifyP will return a total
function. The MWC library maintains this invariant for all
operations on values of type VEXp a, so combinational code
and code written to use the abstract Pipeline interface can
always be interpreted as either a code generator or as a pure
Haskell function, as in Kansas Lava and CAaSH.

A similar interface could (almost) be implemented in either
Kansas Lava or CAaSH. However, neither of those environ-
ments provides the kind of fine control over generated VHDL
needed to minimize overhead, as we demonstrated in Sec-
tion 2. We were unable to implement this exact interface
in Kansas Lava because Kansas Lava does not provide an
explicit representation for embedded terms, like our VExp
type. This prevented us from enforcing the requirement that
the second argument to the step function passed to siter
and piter must be able to take a staged value rather than a
constant value as the step index. When generating VHDL for
the serial version of the iteration combinator, the step index
is a VHDL loop variable, so we must be able to represent it
using a deep embedding.

Although there is no guarantee that the Haskell interpreta-
tion of a pipeline and the code generating interpretation have
the same semantics in our approach, neither Kansas Lava nor
CAaSH make this guarantee either. Our pipeline supports
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

51
52
53
54
55
56
57

65
66
67
68
69
70
Al
72
73
74
75

90
91
92

piter :: forall a b ¢ m . (Pack a, Pack b, Pack c, MonadCg m)
=> Id -- * Name of VHDL entity
-> (a > b) -- * Pre-processing function
-> (b -> VExp Int -> m b) -- * Function to iterate
=> (b -> ¢) -- * Post-processing function
-> [String] -- * (Optional) input names
-> [String] -- * (Optional) state names
-> [String] -- * (Optional) output names
-> Int -= * Number of iterations

-> m (Pipeline a c)
piter entity f g h in_names snames out_names n = do

(_ :: a, in_vars) <- genPack in_names

(_ :: b, state_vars) <- genPack snames

(_ :: c, out_vars) <- genPack out_names

let in_idecls = [[videcl|$id:(in_ v) : in $ty:taull

| (v, tau) <- in_vars]
[[videcl|$id: (out_ v) : out $ty:taul]
| (v, tau) <- out_vars]

out_idecls =

append [vunit|
entity $id:entity is

port (clk : in std_logic;
rst : in std_logic;
in_ready : out std_logic;
in_valid : in std_logic;
$idecls:in_idecls;
out_ready : in std_logic;
out_valid : out std_logic;

$idecls:out_idecls);
end; |]

withArchitecture "behavioral" (toName entity noLoc) $ do

withProcess ["clk"] $ do
onRisingEdge $ do
if [vexp|rst =
then do
append [vstm|valid <= (others => '0');|]
append [vstm|ready <= (others => '1');|]
else do

Nk

forS "i" [vrange|1 to $(n-1)]1 $ \i -> do
when [vexp|arrname ready($i)|] $ do
x <= renamePack
(\v => [vexp|arrname $id:v($i-1)|1)
state_vars
g x (VExp i) >>=
sigassignPack
(\v => [vname|arrname $id:v($i)|])
state_vars
append [vstm|valid($i) <=
arrname valid($i-1);|]

append [vcstm|out_valid <= valid(valid'high);|]

return Pipeline { ... }

Listing 8. Implementation of the piter combinator for the
instance of the Pipeline class that generates VHDL.
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testbench generation, which allows the same pipeline to be
tested either as a pure Haskell function using QuickCheck,
or as a compiled VHDL implementation. In both cases, ran-
dom inputs can be generated using QuickCheck Arbitrary
instances, but when testing the VHDL implementation, these
values are serialized so that they can be read by the gener-
ated VHDL testbench. Pipelines can be developed purely in
Haskell, and the same source program can then be used to
generate VHDL that is automatically tested. We used this
approach—develop in Haskell and test generated VHDL only
when Haskell development is complete—to write implemen-
tations of several IP blocks in Section 6.

5 Implementing a Pipeline Combinator

Listing 8 shows the implementation of the piter combinator
for the VHDL-generating instance of the Pipeline abstrac-
tion, which is written using our VHDL quasiquoter. We have
removed code that does not illustrate features beyond those
already shown in the included code. The entire implementa-
tion is fewer than 100 lines, including the lines that we have
removed for this presentation.

The first thing to note is that the code is not just a gi-
ant VHDL code template—it looks like standard, structured
Haskell with some quasiquotations thrown in. Our VHDL
code generation library includes a large set of code-generating
combinators that allow the programmer to write Haskell
syntax instead of quoted VHDL. The mapping between the
Haskell combinators and the VHDL they generate is direct
and easy for the programmer to reason about; the combina-
tors are syntactic sugar. These combinators rely on a code
generation monad whose operations are embodied by the
MonadCg type class. This monad provides features like name
generation (gensym) and the collection of generated code.
We will walk through the implementation of piter, pointing
out interesting features and combinators as we go.

Lines 12-22 generate VHDL bindings for the input, output,
and internal state of the component. The Pack type class al-
lows easy conversion between a (possibly nested) structured
value and a flattened sequence of VHDL terms. The former
is useful when writing Haskell, and the latter is useful when
generating VHDL. For example, generating VHDL to assign
a tuple to a variable is simple when the value and binder can
both be unpacked into their constituent parts.

Pipelines can consume and produce structured values, but
the VHDL generated from the pipeline always flattens these
structured values. Lines 23-38 declare the VHDL entity for
the pipeline and its input and output signals. This entity
declaration is the same shown in Listing 2. The append com-
binator in line 28 appends the generated entity declaration to
the rest of the code collected by the code generation monad.

The next few lines show the use of scoped code generation
combinators. The withArchitecture and withProcess com-
binators generate a declaration for a VHDL architecture and
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process, respectively. The final argument to these two combi-
nators is a monadic action, which itself generates code. This
code is collected by the combinator and becomes the body
of the architecture/process. This style of scoped, monadic
combinator enables modularity, and we find it vastly easier
to use than direct quasiquotation.

We make use of GHC’s rebindable syntax to overload
if expressions in lines 53-75. This allows the programmer
to use standard Haskell if syntax to generate code for a
VHDL if statement. Instead of a value of type Bool, the
conditional is a VHDL expression—vexp is a quasiquoter for
VHDL expressions. The branches of the if expression are
both monadic actions that generate code. The overloaded if
uses the conditional and the code generated by the branches
to construct the corresponding VHDL statement. Similarly,
in line 66, the standard when combinator is substituted with
an overloaded version that can take a VHDL conditional.

Quasiquotations are not hygienic. However, hygiene can
be recovered by using combinators. Line 65 builds a for state-
ment using the forS combinator, which generates a fresh
binder to use as the loop variable. The first argument to forS
is a suggested name meant to improve the readability of the
generated code. The implementation of forS uses the code
generation monad’s gensym functionality to create a fresh
name. Nothing prevents the programmer from introducing a
name clash with the monad’s gensym, but doing so requires
intent. In practice, hygiene can be maintained through con-
sistent use of gensym and combinators like forS.

Code-generation combinators provide a thin veneer on
top of quasiquotation that reduces the impedance mismatch
between the quasiquoted language and Haskell. Because
they are such a shallow abstraction, the programmer knows
exactly what code will be produced. There is no downside:
combinators make code generators easier to write without
introducing layers of abstraction that make it difficult to rea-
son about what code will be generated. When an appropriate
combinator cannot be written, the programmer can always
drop down to raw quasiquotation, which provides absolute
control over generated code.

6 Evaluation

We are concerned with evaluating both the code generated
by programs using the metaprogramming with combinators
approach and the ease with which this approach can be ap-
plied. We first evaluate the resource usage and maximum
clock speed of three commonly used IP blocks written us-
ing our approach: a convolutional encoder, a divider, and
CORDIC. Equivalent IP blocks were generated using the
Xilinx IP Core tools. We describe each of the three in turn
after outlining our measurement methodology. We then pro-
vide a short evaluation of the programmer effort required to
implement the pipeline abstraction used in the incrementer
example (Section 2) using CAaSH, Kansas Lava, and the MWC
approach.
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6.1 Performance of Generated Code

Methodology. All results reported in this paper were col-
lected using Vivado 2018.3. Circuits were synthesized out-
of-context targeting the Virtex-7 FPGA used on the Xilinx
VC707 evaluation board, and the Explore directive was used
to optimize placement and routing. Measurements were per-
formed in batch mode to facilitate reproducibility, and the
repository holding our implementations includes tools for re-
producing the metrics we report. Maximum frequency (fyax)
was calculated based on worst negative slack estimates us-
ing the standard formula fyiax = 1/(t — twns), where t is
the circuit clock rate and twys is Vivado’s estimate of the
circuit’s worst negative slack. In addition to fyiax, we report
the number of lookup tables (LUT) and flip-flops (FF), i.e.,
registers, needed to implement each circuit.

Convolutional encoder. The full convolutional encoder
is shown in Listing 5. It operates on a window of k + 1 bits,
where k > 0. The parameter k + 1, which must be positive, is
the convolutional code’s constraint length. The convolutional
code is also parametrized by r generator polynomials, each
of k + 1 bits. For each input bit, the generator polynomials
are convolved with the most recent k + 1 bits, and the results
of the r convolutions are output. Convolution is performed
in F,, i.e., using xor. This produces a rate 1/r code, since each
input bit requires r bits to be transmitted. Our IP generator
supports an arbitrary constraint length and arbitrary gener-
ator polynomials, but it does not support some features that
the Xilinx IP core generator supports, like puncturing. These
features would be easy to add. The Xilinx generator, on the
other hand, only supports rates up to 1/7. The convolutional
encoder we use for comparison has constraint size k + 1 =7
and rate 1/2, with generator polynomials (121, 91).

Divider. Division is the most complex and costly basic
arithmetic operation in hardware circuits. For comparison,
we generated a fully parallel pipeline that performs non-
restoring division on 16-bit unsigned numbers using both
our library and the Xilinx IP core tools. Our implementation
uses the piter combinator from the Pipeline type class,
and we could have generated a serial implementation, which
would have lower throughput but use fewer resources, by
changing only the combinator used from piter to siter.

CORDIC. We implemented a generalized version of the
CORDIC algorithm [1, 16, 18, 19, 24, 25] that can compute
trigonometric functions, hyperbolic functions, exponentia-
tion, and logarithms of an arbitrary base. This circuit also
uses the Pipeline iteration combinators. As with the di-
vider, throughput and resource usage can be traded off by
switching between the siter and piter combinators. We
show metrics for an instance of CORDIC that simultaneously
calculates the sine and cosine of a 32 bit quantity.
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Table 3. Performance results of IP cores generated using the
metaprogramming with combinators approach and equiva-
lent Xilinx IP.

IP Core LUT FF  fuax (MHz)
Convolution Encoder

Xilinx IP 31 26 683

MWC 11 14 892
Divider

Xilinx IP 377 943 666

MWC 353 312 675
CORDIC

Xilinx IP 3663 3681 516

MWC 2601 3108 609

Table 3 shows the resources required and maximum speed
of the three IP blocks we use for comparison. The perfor-
mance of the circuits we generated is comparable to, and
usually superior to, the performance of the equivalent Xilinx
blocks. Because the Xilinx tools generate (encrypted) RTL
instead of VHDL, we can only speculate as to why our imple-
mentations perform better. One factor in our favor is that we
can precisely tailor the representations used. For example,
the Xilinx convolutional encoder always takes input bits as
an 8-bit signal and produces output bits packed into an 8
bit quantity. The extra wasted wires require more hardware,
whereas we produce signals that are only as wide as needed.
If we wanted to use our generated convolutional encoder as
a drop-in replacement for a Xilinx encoder, we could write
pipeline stages that act as adapters to widen the inputs and
outputs of our encoder.

Another possible source of inefficiency in the Xilinx blocks
is their general support for the AXI4-Lite protocol. Although
we configured the Xilinx generators to only produce the sig-
nals required for the valid/ready-style subset of AXI4-Lite,
we expect that eliminating some AXI4-Lite signals in the IP
core specification does not completely eliminate the associ-
ated circuitry in the generated IP block. We could generate
AXI4-Lite versions of our circuits by writing an appropriate
Pipeline type class instance—no changes to our IP imple-
mentations would be necessary. This is another advantage
of using the pipeline abstraction to organize our implemen-
tations.

6.2 Programmer Effort

Table 4 shows the lines of code needed to implement the
pipeline abstraction used in the incrementer example from
Section 2. We tailored the CAaSH and Kansas Lava pipeline
combinators to the incrementer problem, whereas the MWC
combinators were taken from the general pipeline implemen-
tation described in Section 4. These results show that the
MWTC approach requires about twice as much code as either
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Table 4. Lines of code required to implement and use
the pipeline abstraction for the incrementer example using
CAaSH, Kansas Lava, and MWC. The Kansas Lava implemen-
tation uses the RTL DSL.

Approach Implementation Effort (LOC)
CAaSH 63

Kansas Lava 73

MWC 141

CAaSH or Kansas Lava. Anecdotally, this is consistent with
our general experience. It is also expected, since the MWC ap-
proach generates VHDL directly, whereas both CAaSH and
Kansas Lava provide additional layers of abstraction that
insulate the programmer from dealing directly with VHDL.
VHDL tends to be verbose, which inflates the number of lines
of code needed for a quasiquotation-based code generator.
Using code generation combinators helps to mitigate this
cost—our pipeline implementation would have been much
larger (and rather unwieldy) if we had not used code gen-
eration combinators as shown in Section 5. One goal of the
metaprogramming with combinators approach is to isolate
code generation complexity through reusable code genera-
tion combinators and abstractions like Pipeline, moving it
to reusable libraries where its cost can be amortized across
what is hopefully many uses of the library.

7 Related Work

The connection between functional languages and hardware
has a long history that can be traced back to pFP [22], a
functional language used to describe both the behavior and
the layout of circuits. Control over circuit layout was in-
spired by Henderson’s elegant formulation of functional
geometry [14, 15]. A more recent example of a language for
controlling circuit layout is Wired [2].

Embedded domain-specific languages. The prototyp-
ical Haskell embedded domain-specific language for hard-
ware is Lava [6]. Kansas Lava [12] is a more recent incarna-
tion that leverages modern language features, like type-level
naturals. The distinction between shallow and deep embed-
dings was originally clarified by Boulton et al. [7] in the con-
text of a hardware EDSL embedded in HOL. Svenningsson
and Axelsson [23] note the advantages of a mixed deep and
shallow embedding, but their approach is relatively heavy-
weight and is trying to solve a more general problem—we
only want to ensure that we can partially evaluate as many
terms as possible. Our approach to mixing deep and shallow
embeddings is similar to that of Kiselyov and Taha [17].

Chisel [5] is an EDSL embedded in Scala that is used to
design RISC-V processor cores. Circuits are specified as di-
rected graphs where each node is an operator that receives
zero or more inputs and produces one output. Expressions
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are converted to a circuit tree in which the wires are named
at the leaves and operators are named at internal nodes. The
root of the tree represents the value of the expression.

Lightweight Modular Staging (LMS) [21] adds staging sup-
port to Scala programs, allowing programmers to explicitly
mark which portions of a program are staged through type
annotations. The staged and unstaged portions of a program
are both written in Scala, which is one of the many advan-
tages of LMS. LMS is a system for homogeneous metapro-
gramming, where the code generator and the staged lan-
guage are the same. In contrast, MWC explicitly supports
heterogeneous metaprogramming, where the code generator
and the staged language are different. If the target language
is similar to Scala, LMS is a great fit. However, if there is
not a close correspondence between the target language and
Scala, the programmer may have difficulty reasoning about
(and controlling) how the staged code they write maps to
generated code. For fine control over generated VHDL, MWC
seems to be a better fit. The LMS approach has been used
to generate hardware [11], but in that case the DSL in ques-
tion expresses programs using familiar functional operations
like zips, maps, and folds, which are an excellent fit for a
language like Scala.

High-level synthesis. CAaSH [3, 4] translates a subset
of Haskell to hardware. It is not able to translate recursive
functions and has no support for side effects. There is no
clear separation between compile-time and runtime execu-
tion. CAaSH, like Vivado’s HLS, which compiles C (with
many annotations) to hardware, forces the programmer to
reason about how source code is translated to hardware.
This mapping is not always apparent—or possible—and if the
translation is not what the programmer wants or expects,
there is not always a way to “fix” the translation without
resorting to writing VHDL or Verilog. CAaSH allows the user
to specify new VHDL, Verilog, or System Verilog primitives,
but use of such primitives prevents CAaSH programs from
being interpreted as pure Haskell functions. Primitives are
described by special source files using a JSON-like format.

Handshaking. Gill and Neuenschwander [13] build a set
of types and combinators to make the construction of hard-
ware easier. The handshaking protocol between components
is represented using a Patch type. The laws applicable to
patches are defined so that large and complex dataflows can
be managed and connected to the interfaces of the design.
The Enabled protocol is responsible for valid control signal
of the data stream. To complete the handshaking between
two components, an Ack (acknowledgement signal) is also
introduced, and this scheme works with the Wishbone hand-
shaking protocol. A Patch is a circuit or stream processor
between a pair of protocols. Patches can be bridges between
protocols, or they can be computational. These patches can
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be chained together in the system. Combinators are devel-
oped for lifting functions into the patch domain and execut-
ing and composing patches. However, only combinational
(pure) functions can be lifted to the Patch type.

Compositional pipelines. Edwards et al. [9] discuss
the composition of data-dependent actors for constructing
dataflow networks and their implementation in hardware.
They demonstrate an implementation of nondeterministic
merge and show how to break long combinational paths and
loops with the help of data network buffers and backpressure.
Our Pipeline abstraction offers similar functionality.

8 Conclusions

Our work began with the observation that if we want full
control over the performance of generated code, we need
full control of the generated code itself. GHC’s support for
quasiquotation seemed to provide a reasonable path to writ-
ing abstractions that weren’t a horror show of (untyped)
string templates or (typed) massively nested abstract syntax
data constructors. We did not expect that this approach to
metaprogramming could allow functions to be interpreted
either directly as Haskell or as code generators, a wonderful
feature of classic Haskell domain-specific language embed-
dings like Kansas Lava.

The power of the metaprogramming with combinators
approach is built on two fundamental insights. First, provide
an embedded language for the purely functional subset
of the language that does not require the programmer
to directly write code in the language being generated.
In the hardware domain, this subset is combinational logic,
which is a very good match for a purely functional language.
We represent combinational logic using the VExp type, and
the correspondence between combinational logic written
using VExp and the generated VHDL is very close, so a pro-
grammer almost always knows what VHDL will be produced.
Our experience is that it is easier to write combinational logic
in Haskell because it is less verbose and more readily admits
common functional patterns of computation.

Second, design abstractions that separate stateful and
purely functional computation by offering combina-
tors for patterns of stateful computation that are pa-
rametrized by pure functions. This is exactly what the
Pipeline abstraction in Section 4 does. Separating compu-
tation in this way allows stateful computations to be in-
terpreted either as pure Haskell functions or as hardware
generators. Rather than providing a canned set of such ab-
stractions as a library, our expectation is that programmers
will define new such abstractions themselves. Quasiquota-
tion makes this prospect palatable, although this requires a
quasiquoter for the language one wants to generate.

The metaprogramming with combinators approach pro-
vides fine control over generated code without sacrificing
the ability to build sophisticated new abstractions or the
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ability to run a code generator as a pure Haskell function.
Although we have demonstrated our approach in the hard-
ware domain, we expect that these same lessons can be used
to build code generators for many other domains.
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