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A B S T R A C T   

Nematodes are important components of soil food webs and have important ecosystem functions. However, the 
responses of soil nematode communities to nitrogen (N) deposition have not been well assessed over large spatial 
scales. Here, we conducted a global-scale meta-analysis of the effects of N-addition regimes (N form, N addition 
approach, and N addition rate) and environmental factors (ecosystem type, soil depth, climate, and soil property) 
on the responses of soil nematodes to N addition. The results showed that N addition significantly increased the 
relative abundance of bacterial-feeding nematodes (23.54%), but decreased the relative abundance of plant- 
feeding nematodes (−20.24%) and omnivorous-predatory nematodes (−22.28%). Nitrogen addition, however, 
did not significantly affect total nematode abundance or the relative abundance of fungal-feeding nematodes. 
Understory N addition usually had larger effects on nematode abundance than canopy N addition. The responses 
to N addition increased with N addition rate in the case of bacterial-feeding nematode abundance, but decreased 
with N addition rate in the case of plant-feeding nematode and fungal-feeding nematode abundances. Nematode 
abundance in grasslands were more responsive to N addition than in forests or croplands, and the responses were 
affected by soil depth. The response ratios of bacterial-feeding nematodes to N addition decreased with increases 
in mean annual temperature and mean annual precipitation, while the response ratios of plant-feeding nema
todes showed the opposite trend. Soil pH and organic carbon did not affect the response ratios of nematode 
parameters to N addition except plant parasite index. In summary, the responses of soil nematodes to N addition 
on a global scale were found to be affected by both N-addition regimes and environmental factors. We suggest 
that our understanding of how N deposition affects soil nematodes will be increased by additional studies of 
canopy N addition and of tropical ecosystems.   

1. Introduction 

Atmospheric reactive nitrogen (N) deposition, a global problem 
resulting mainly from fossil fuel combustion and agricultural fertilizer 
application, has substantially increased over the past century and is 
evaluated to be as high as 93.6 Tg N yr−1 in 2016 (Galloway et al., 2008; 
Ackerman et al., 2019). Extensive N inputs have dramatically changed 
terrestrial ecosystem processes including soil biota community 

dynamics and nutrient cycling (Treseder, 2008; Leff et al., 2015; Yu 
et al., 2019). It is therefore important to increase our understanding of 
how N enrichment affects soil ecosystem components and functions. 

Nematodes are key components of terrestrial ecosystem and occupy 
all trophic levels of soil food webs (van den Hoogen et al., 2019). Based 
on feeding characteristics, nematode families can be classified into five 
trophic groups, i.e., bacterial-feeding nematodes, fungal-feeding nema
todes, plant-feeding nematodes, and omnivorous-predatory nematodes 
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(Bongers and Bongers, 1998). Soil nematodes can regulate ecosystem 
processes by feeding on microorganisms (Crowther et al., 2011; Zhou 
et al., 2020), and their abundances and activities are closely correlated 
with biogeochemical cycles such as nutrient mineralization and carbon 
dynamics (Ferris, 2010; Neher et al., 2012; Wang et al., 2021). Because 
nematodes can move only in environments with continuous soil water 
films, their activities are greatly affected by soil texture, moisture, and 
other soil properties (Yeates and Bongers, 1999). In addition, nematodes 
are vulnerable to external disturbances and environmental changes, 
such as land-use change, soil pollution, and farm management (Wei 
et al., 2012; Treonis et al., 2018). As a result, nematodes are considered 
to be useful indicators of soil food webs and ecosystem health (Neher, 
2001; Zhao et al., 2013). 

Previous studies have widely reported the effects of N addition on the 
abundance, community diversity, and ecological indices of soil nema
todes (Lokupitiya et al., 2000; Liang et al., 2009; Zhao et al., 2014; Shaw 
et al., 2019), and the responses of soil nematode abundance and di
versity to N addition are directly affected by N form, N addition rate, and 
N addition method (Forge et al., 2005; Gruzdeva et al., 2007; Wei et al., 
2012; Pan et al., 2015). For example, nitrate but not ammonium, 
significantly increased nematode diversity and the relative abundance of 
bacterial-feeding nematodes, but decreased nematode dominance and 
the relative abundance of plant-feeding nematodes in a cropland (Pan 
et al., 2015). In addition, the abundances of all nematode trophic groups 
decreased with increasing N application rate (Wei et al., 2012). Re
searchers generally investigate the effects of N addition by adding N to 
the understory. Research in forests has shown, however, that a signifi
cant proportion of atmospheric N deposition is retained by the forest 
canopy, indicating that understory N addition in forests is likely to 
overestimate the effects of N on soil nematodes and other components of 
the soil food web (Liu et al., 2020). N-induced changes in soil nutrient 
status and belowground community structure can change nematode 
functional composition, nematode taxon richness, and the stability of 
soil food webs (Chen et al., 2015; Mao et al., 2017; Peng et al., 2017). 

The responses of nematodes to N addition are greatly affected by 
environmental factors, e.g., ecosystem types, soil properties, soil depth, 
temperature, and precipitation. According to previous studies, the re
sponses of soil nematodes to N addition are usually greater in grasslands 
than in forests (Zhao et al., 2014; Chen et al., 2015; Ma et al., 2018). 
Long-term N addition could change soil pH and edaphic conditions 
(Högberg et al., 2006), as well as suppress the decomposition of soil 
organic matter and enhance soil carbon accumulation (Tonitto et al., 
2014), which would in turn affect nematode abundance and community 
structure (Chen et al., 2015). Nematode trophic groups respond differ
ently to moisture and temperature variations in different soil layers 
(Zhang et al., 2020). Because moisture is often closely correlated with 
temperature in global-change scenarios (Lu et al., 2018), research on the 
effects of N addition on soil nematodes should therefore consider 
moisture and temperature. By altering interactions among trophic levels 
in soil food webs, anthropogenic N deposition can alter the diversity of 
soil nematode communities (Shao et al., 2017; Shaw et al., 2019). 
However, the belowground food web is complex, and the changes may 
result from multiple pathways that remain to be elucidated. Previous 
studies have focused on regional patterns, or conducted a global syn
thesis on nematode communities as affected by N addition, chemical 
fertilizer and organic fertilizer in cropland ecosystem (Liu et al., 2016a), 
but whether and how independent N addition affects soil nematodes and 
their functional feature across different ecosystem types, N forms, and N 
addition methods at a global scale remains unclear. 

In the current study, we conducted a meta-analysis of soil nematode 
responses to N addition in order to determine the effects of N-addition 
regimes (N form, N addition rate, and N addition method) and envi
ronmental factors (ecosystem type, soil depth, climate, and soil prop
erty) on responses of soil nematodes to N addition. We attempted to 
answer the following questions: (a) What are the global trends of N ef
fects on soil nematodes? (b) How do N-addition regimes and 

environmental factors affect soil nematode responses to N addition? and 
(c) What is the relative importance of N-addition regimes and environ
mental factors in determining the responses of soil nematodes to N 
addition at a global scale? 

2. Materials and methods 

2.1. Data sources 

Data were collected by searching published peer-reviewed articles 
and Chinese dissertations that reported nematode responses to N addi
tion in the Web of Science (http://apps.webofknowledge.com/) and the 
China National Knowledge Infrastructure Database (http://www.cnki. 
net/) up to 11 May 2020. The following keywords/phrases were used: 
“nitrogen addition” or “nitrogen fertilization” or “nitrogen deposition” 
or “fertilizer” or “fertilization”; and “soil nematode” or “nematode 
community” or “nematodes” or “soil fauna”. The gathered publications 
were further screened based on four criteria: (a) only field experiments 
were considered, and the experiments had to include at least three 
replicates; (b) when the same experiment was reported in two publica
tions, e.g., scientific article and dissertation from the same author, only 
one dataset was retained; (c) measurements at different sites or under 
different climatic conditions or different N treatments were regarded as 
independent experiments; and (d) when multiple time points were re
ported for one study, the final time point was selected. A total of 52 
studies containing 220 observations were finally selected (Fig. 1 shows 
the geographical distribution of the study sites). 

Data for the abundance of nematode trophic groups, nematode di
versity, and nematode ecological indices were directly collected from 
texts and tables in the original studies or were extracted from figures 
using GetData (version 2.25). Nematode abundances were total nema
tode abundance and the relative abundance of nematode trophic groups, 
including bacterial-feeding nematodes, fungal-feeding nematodes, 
plant-feeding nematodes, and omnivorous-predatory nematodes. Di
versity indices were Shannon-Wiener diversity (H′) and Simpson 
dominance (λ). Nematode ecological indices were the maturity index 
(MI), plant parasite index (PPI), structure index (SI), and enrichment 
index (EI). We also collected treatment information (mainly N-addition 
regimes, i.e., N form, application method, addition rate, and study 
duration) and site-specific information including ecosystem type, soil 
depth, latitude, longitude, mean annual temperature, mean annual 
precipitation, and soil properties from the original studies. We expressed 
N-addition rate in terms of “kg ha−1 year−1” and N-application duration 
in terms of “year”. The data of mean annual temperature and mean 
annual precipitation were obtained from the online climatic database 
(https://www.worldclim.org/) if not provided in the articles. 

2.2. Data analysis 

We conducted a meta-analysis of the effects of N addition on soil 
nematodes. The effect sizes of N addition for soil nematode community 
parameters were estimated using the natural logarithm of the response 
ratio (lnRR): 

lnRR = ln

⎛

⎝Xt

Xc

⎞

⎠ = ln
(

Xt

)
− ln

(
Xc

)

where Xt and Xc are the means of the treatments and controls, respec
tively. 

Because standard deviations were not indicated in some of the 
studies, individual observations were weighted by the number of 
experimental replicates (Adams et al., 1997; Pittelkow et al., 2015), 
calculated as: 

w =
nt × nc

nt + nc 
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where nt and nc are the number of replicated observations in the treat
ment group and control group, respectively. 

The 95% confidence interval (CI) for the effect-size estimate was 
calculated by bootstrapping techniques, and was used to determine the 
significance of the response. If the 95% Bootstrap CI values did not 
overlap with zero, the responses of soil nematodes to N addition were 
considered to be significant (P < 0.05) and to represent a significant 
increase (>0, on the right of zero) or a significant decrease (<0, on the 
left of zero). Meta-analyses were conducted using MetaWin 2.1. To 
better explain the responses of soil nematodes to N addition as affected 
by N form, N approach, ecosystem type, and soil depth, we converted the 
weighted response ratio (lnRR++) into the percentage of change with the 
following equation: 

Change ​ (%) = [exp(lnRR++) − 1] × 100% 

Linear regression models were used to examine the relationships 
between response ratios and N addition rate and environmental factors, 
including mean annual temperature, mean annual precipitation, pH, 
and soil organic carbon (SOC). The relative importance of assessed 
factors (i.e., N form, application method, addition rate, study duration, 
ecosystem type, soil depth, latitude, longitude, pH, SOC, mean annual 
temperature, and mean annual precipitation) were included in a model 
selection analysis calculated with the R package ‘glmulti’; relative 
importance was indicated by the sum of Akaike weights for all models 
that contained the factor in question. The sum can be considered an 
indication of the overall ability of a single factor to explain the variation 
in a response ratio across all models. The most important variables were 
identified at a cutoff of 0.8 (Chen et al., 2018, 2020). R package ‘stats’ 
was used for linear regression analysis (Collyer et al., 2018), and model 
significance was set at P < 0.05. Sigmaplot 12.5 was used for graphing. 

3. Results 

3.1. Nematode responses to N addition as affected by N-addition regimes 

Overall and at a global scale, N addition increased the abundance of 
bacterial-feeding nematodes (by 23.54% [95% CI: 14.63%–33.15%], N 
= 191), decreased the abundances of plant-feeding nematodes (by 
20.24% [95% CI: 13.97%–26.07%], N = 186) and omnivorous- 
predatory nematodes (by 22.28% [95% CI: 16.15%–27.98%], N =

180), but did not change the abundances of total nematodes or fungal- 
feeding nematodes (Fig. 2A). In terms of N sources, NH4NO3 usually 
had larger effects than urea [CO(NH2)2] and other N sources. Addition of 
NH4NO3 had significant positive effects on total nematode abundance 
(by 10.04% [95% CI: 1.27%–19.58%], N = 130) and the abundance of 
bacterial-feeding nematodes (by 35.53% [95% CI: 22.90%–49.45%], N 
= 119), but had negative effects on the abundances of plant-feeding 
nematodes (by 26.99% [95% CI: 20.49%–32.96%], N = 115) and 
omnivorous-predatory nematodes (by 24.23% [95% CI: 17.56%– 
30.37%], N = 118). Addition of urea only reduced the abundance of 
omnivorous-predatory nematodes (by 24.32% [95% CI: 3.59%– 
40.59%], N = 35). As noted earlier, any N form did not affect the 
abundance of fungal-feeding nematodes, nematode diversity indices, 
and ecological indices. 

Understory N addition did not significantly affect total nematode 
abundance but significantly affected the abundances of all nematode 
trophic groups (Fig. 2B). Understory N addition increased the abun
dance of bacterial-feeding nematodes (by 24.71% [95% CI: 15.50%– 
34.65%], N = 175), but reduced the abundances of fungal-feeding 
nematodes (by 11.71% [95% CI: 0.85%–21.38%], N = 175), plant- 
feeding nematodes (by 20.98% [95% CI: 14.61%–26.88%], N = 170), 
and omnivorous-predatory nematodes (by 22.24% [95% CI: 15.94%– 
28.07%], N = 164). Canopy N addition did not affect nematode abun
dance. Any N addition approach did not affect nematode diversity and 
ecological indices. 

There were positive relationships between N addition rate and the 
response ratios of bacterial-feeding nematodes abundance (R2 = 0.081, 
P < 0.001, and N = 191; Fig. 3b), and negative relationships between N 
addition rate and the response ratios of abundances of fungal-feeding 
nematodes (R2 = 0.034, P = 0.011, and N = 191; Fig. 3c) and plant- 
feeding nematodes (R2 = 0.046, P = 0.003, and N = 186; Fig. 3d). 
However, N addition rate did not affect the response ratios of total 
nematode abundance and the abundance of omnivorous-predatory 
nematodes (P > 0.05; Fig. 3a and e). 

3.2. Nematode responses to N addition as affected by environmental 
factors 

Most studies sampled the 0–20 cm soil layer, and only a few studies 
sampled the 0–5 cm soil layer (Fig. 2C). In the 0–5 cm soil layer, N 
addition had significant positive effects on the abundances of total 

Fig. 1. Locations of the data points collected in this meta-analysis. The sizes of data points stand for the numbers of independent experiments.  
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nematodes (by 30.51% [95% CI: 14.21%–49.12%], N = 8) and fungal- 
feeding nematodes (by 125.33% [95% CI: 92.23%–164.11%], N = 5). 
In the 0–20 cm soil layer, N addition significantly increased the abun
dance of bacterial-feeding nematodes (by 135.61% [95% CI: 99.29%– 
178.54%], N = 88), but decreased the abundances of total nematodes 
(by 16.20% [95% CI: 0.29%–29.57%], N = 83), fungal-feeding nema
todes (by 16.72% [95% CI: 1.55%–29.56%], N = 88), and plant-feeding 
nematodes (by 34.49% [95% CI: 22.45%–44.65%], N = 87). Nematode 
abundance did not change in response to N addition in the 0–30 cm soil 
layer. N addition did not affect nematode diversity and ecological 
indices in all the soil depths. 

For grasslands, N addition increased the abundance of bacterial- 
feeding nematodes (by 29.91% [95% CI: 18.63%–42.29%], N = 97), 
but decreased the abundance of plant-feeding nematodes (by 29.55% 
[95% CI: 22.74%–35.76%], N = 93) and the abundance of omnivorous- 
predatory nematodes (by 23.73% [95% CI: 16.46%–30.37%], N = 96). 
For forests, N addition decreased the abundance of omnivorous- 
predatory nematodes (by 20.94% [95% CI: 4.32%–34.68%], N = 37). 
However, the abundances of all the trophic groups did not change in 
response to N addition in croplands. N addition did not affect nematode 
diversity and ecological indices in grasslands, forests, and croplands 
(Fig. 2D). 

The response ratios of total nematode abundance (R2 = 0.054, P =

0.001, and N = 204; Fig. 4a) and the abundance of plant-feeding nem
atodes (R2 = 0.102, P < 0.001, and N = 185; Fig. 4d) to N addition 
increased as mean annual temperature increased, while the response 
ratios of the abundance of bacterial-feeding nematodes to N addition 
decreased as mean annual temperature increased (R2 = 0.182, P <

0.001, and N = 189; Fig. 4b). Mean annual temperature did not affect 
the response ratios of the abundances of fungal-feeding and omnivorous- 
predatory nematodes to N addition (P > 0.05; Fig. 4c and e). 

The response ratios of the abundance of bacterial-feeding nematodes 
to N addition decreased (R2 = 0.038, P = 0.007, and N = 191; Fig. 4g), 
but the response ratios of the abundance of plant-feeding nematodes to 
N addition increased (R2 = 0.038, P = 0.007, and N = 186; Fig. 4i) as 
mean annual precipitation increased. Mean annual precipitation did not 
affect the response ratios of total nematode abundance, and the abun
dances of fungal-feeding and omnivorous-predatory nematodes (P >

0.05; Fig. 4f, h and j). 
The response ratios of plant parasite index to N addition decreased as 

pH increased (R2 = 0.27, P = 0.004, and N = 29; Table 1). Except the 
plant parasite index, the response ratios of other nematode ecological 
indices, the diversity indices, and nematode abundance did not response 
to pH. Soil organic carbon did not affect the response ratios of nematode 
abundance, nematode diversity indices, and ecological indices. 

Fig. 2. Effects of different nitrogen forms (A), addition approach (B), soil depths (C), and ecosystem types (D) on soil nematode community parameters. Under 
nitrogen form, others include slow-release urea, calcium nitrate, calcium cyanamide, calcium ammonium nitrate, and those not indicated in original case studies. 
Error bars represent 95% confidence intervals (CI) of the weighted percentage change. The black and red circles represent significant positive and negative effects, 
respectively (95% CI not overlapping with zero), and the grey circles represent non-significant effects. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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3.3. Importance of variables in the responses of nematode trophic groups 
to N addition 

The Akaike-weights models showed that both environmental factors 
and N-addition regimes affected the responses of nematode abundance 
to N addition (Fig. 5). The effects of N addition were best explained by 
soil depth and experimental duration for total nematode abundance 
(Fig. 5a); by N addition rate, soil depth, ecosystem type, and mean 
annual temperature for the abundance of bacterial-feeding nematodes 
(Fig. 5b); by soil depth, N addition rate, and mean annual precipitation 
for the abundance of fungal-feeding nematodes (Fig. 5c); and by 
ecosystem type and mean annual temperature for the abundances of 
plant-feeding and omnivorous-predatory nematodes, respectively 
(Fig. 5d, and e). 

4. Discussion 

4.1. Nematode responses to N-addition regimes 

In the present meta-analysis of the effects of N addition on soil 
nematodes, we considered three properties of N-addition regimes: N 
form, N application method, and N addition rate. We found that NH4NO3 
and urea were the most widely used N sources, and NH4NO3 had larger 
effects on soil nematodes than urea. Nitrate fertilizer inputs to soil can 
generally be absorbed by plant roots, and assimilated and denitrified by 
soil microorganisms (Pan et al., 2008). An increase in available N can 
increase microbial activity and numbers, which can in turn promote 
bacterial-feeding nematodes (which tend to be r-strategists and to be 
better colonizers than persisters, i.e., to have low “colo
nizer-persistence” values, commonly termed c-p values), but inhibit 

plant-feeding nematodes and omnivorous-predatory nematodes (which 
tend to be K-strategists with high c-p values, i.e., poor colonizers but 
good persisters) (Bongers et al., 1997; Liang et al., 2009). Accordingly, 
our meta-analysis revealed a significant positive effect of N addition on 
the abundance of bacterial-feeding nematodes (most of which have low 
c-p values), but a significant negative effect on the abundance of 
omnivorous-predatory nematodes (most of which have high c-p values). 
Besides, our meta-analysis indicated that the application of NH4NO3 
reduced the abundance of plant-feeding nematodes. One explanation is 
that the addition of ammoniacal N and nitrate N can improve plant 
health and defenses and thereby increase plant resistance (Zhang et al., 
2009; Pan et al., 2015), which as a result increases the difficulty of 
plant-feeding nematodes to obtain food. Another possible reason is that 
high levels of N to soil could suppress plant richness and thereby provide 
less food for plant-feeding nematodes and consequently decrease their 
abundance (Aber et al., 1998; Wu et al., 2013). Accordingly, the 
response ratios of the abundance of plant-feeding nematodes to N 
addition significantly decreased as the N addition rate increased. Simi
larly, the response ratios of the abundance of fungal-feeding nematodes 
to N addition significantly decreased with increasing N addition rate, 
which is reasonable because fungal biomass was reported to decline in 
response to N addition (Treseder, 2008). 

Both abiotic factors and food resources can strongly effect 
omnivorous-predatory nematodes, and abiotic factors usually play more 
critical roles than food resources (Chen et al., 2013; Liu et al., 2016b). 
Therefore, N addition decreased the abundance of 
omnivorous-predatory nematodes in our study. Furthermore, the 
long-lived trophic groups with higher c-p values, e.g., 
omnivorous-predatory nematodes, are generally sensitive to environ
mental disturbance (Ferris et al., 2001; Liu et al., 2016b). For instance, 

Fig. 3. Regression models of the response ratios of nematode abundance with N addition rate. BF: bacterial-feeding nematodes; FF: fungal-feeding nematodes; PF: 
plant-feeding nematodes; OP: omnivorous-predatory nematodes; 205 (48): observation (study number). 
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both N sources of NH4NO3 and urea reduced the abundance of 
omnivorous-predatory nematodes (Hu and Qi, 2010; Wei et al., 2012; 
Pan et al., 2015), which is consistent with our perspective. Although N 
application had a slightly positive effect on total nematode abundance, 
some opposite responses to N addition among omnivorous-predatory 
nematodes, bacterial-feeding nematodes, and plant-feeding nematodes 
were detected; this balancing or trade-off would contribute to the weak 
response of total nematode abundance to N addition. 

Unlike understory N addition, canopy N addition did not apparently 
affect nematode abundance, diversity and ecological indices in forests. 
The lack of effects of canopy N addition may be due to the interception 
of N by the forest canopy (Liu et al., 2020). On the other hand, fewer 
studies involved canopy N addition (N = 15) than understory N addition 

(at least 164). The small sample size can at partially explain the smaller 
response ratios to canopy addition of N than to understory addition of N. 
Additional experiments are needed to clarify the effects of canopy 
addition of N on soil nematodes. 

4.2. Responses of nematodes to N addition as affected by environmental 
factors 

It is notable that N addition had greater effects on more nematode 
trophic groups in grasslands than in forests or croplands. One possible 
explanation involves the global distribution and functional composition 
of soil nematodes. Soil nematodes are more abundant in boreal and 
temperate forests than in grasslands, presumably because of the greater 

Fig. 4. Regression models of the response ratio of nematode abundance to mean annual temperature and mean annual precipitation. Total: total nematode 
abundance; BF: bacterial-feeding nematodes; FF: fungal-feeding nematodes; PF: plant-feeding nematodes; OP: omnivorous-predatory nematodes; 204 (43): obser
vation (study number). 

Table 1 
Results of regression models of the response ratio of soil nematode community parameters to N addition against pH and soil organic carbon (SOC).  

Independent 
variable (x) 

Dependent 
variable (y) 

Observation Study 
number 

R2 P Independent 
variable (x) 

Dependent 
variable (y) 

Observation Study 
number 

R2 P 

pH Total 77 26 0.02 0.22 SOC Total 53 17 0.03 0.84 
BF 61 25 0.01 0.54 BF 37 15 0.01 0.62 
FF 61 25 0.001 0.85 FF 37 15 0.03 0.29 
PF 61 25 0.05 0.08 PF 37 15 0.003 0.76 
OP 57 24 0.02 0.34 OP 33 14 0.005 0.70 
H′ 34 12 0.002 0.80 H′ 16 7 0.19 0.09 
λ 12 6 0.31 0.06 λ 10 4 0.001 0.93 
MI 49 19 0.02 0.37 MI 29 12 0.003 0.78 
PPI 29 12 0.27 0.004 PPI 16 8 0.05 0.39 
SI 28 11 0.03 0.36 SI 15 6 0.03 0.56 
EI 30 12 0.10 0.09 EI 15 6 0.16 0.15 

Notes: Total: total nematode abundance; BF: bacterial-feeding nematodes; FF: fungal-feeding nematodes; PF: plant-feeding nematodes; OP: omnivorous-predatory 
nematodes; H’: Shannon diversity index; λ: Simpson dominance index; MI: maturity index; PPI: plant parasite index: SI: structure index; EI: enrichment index. 
Declaration of interests. 

Q. Zhou et al.                                                                                                                                                                                                                                    



Soil Biology and Biochemistry 163 (2021) 108433

7

aboveground productivity and high SOC stocks (van den Hoogen et al., 
2019). Terrestrial biomes with higher biomass and biodiversity are 
generally more stable and resistant to environmental change and other 
disturbances than those with lower biomass and biodiversity (Bullock 
et al., 2011; Tilman et al., 2014; Isbell et al., 2015). A second possible 
explanation is that N is considered the nutrient most likely to limit 
productivity in grasslands (Xia et al., 2009). As a consequence, 
bacterial-feeding nematodes may be more responsive to N addition in 
grasslands than in forests (Bai et al., 2010; Azpilicueta et al., 2014; Shaw 
et al., 2019). Another notable result is that nematodes in croplands are 
more resistant to N addition than those in forests and grasslands. The 
result could be explained by the nature of croplands, which are artificial 
ecosystems with long-term tillage, fertilizer application, and cropping; 
as a consequence, nematodes in croplands may be relatively tolerant of 
N addition and other external disturbances. 

Previous studies have reported that the addition of N could promote 
plant growth and soil carbon accumulation and change soil chemical 
parameters (Högberg et al., 2006; Tonitto et al., 2014), which would 
subsequently exert direct or indirect effects on nematode communities 
via bottom-up control or environmental stress (Liang et al., 2009; Wei 
et al., 2012; Chen et al., 2015). In our study, the response ratio of plant 
parasite index to N addition decreased as soil pH increased demonstrates 
that the low pH caused by N addition was conducive to plant parasite 
index. The possible explanation is that N addition increases the above
ground and belowground biomass of plants and provides more food 
sources for plant parasitic nematodes even in an acidic condition (Chen 
et al., 2015), resulting in the increase of the plant parasite index. 
However, SOC did not affect the responses of soil nematodes to N 

addition in our study. A meta-analysis suggested that N addition could 
increase aboveground litter production and the carbon content of soil 
organic layer, but had only marginal effects on the mineral soil layers 
below the organic layer (Liu and Greaver, 2010). It follows that soil 
depth might play critical roles in the effects of SOC on soil nematodes 
under N-enriched conditions. Accordingly, it was reported that the 
long-term N addition increased the maturity index and relative abun
dance of omnivorous-predatory nematodes at 0–10 cm soil depth but not 
at 10–20 cm soil depth in an agricultural ecosystem (Li et al., 2010). 
Although soil properties like soil pH and SOC may play key roles in the 
assemblage of nematode communities regionally, those roles were not 
profound in the responses of nematode communities to N addition at a 
global scale. 

Our study indicates that temperature greatly affects the response of 
nematodes to N addition. The responses of total nematode abundance 
and the abundance of plant-feeding nematodes to N addition were 
positively related to mean annual temperature. Increases in temperature 
may increase the abundance of certain nematode trophic groups by 
increasing resource availability and nematode activity (Thakur et al., 
2017; Ma et al., 2018). Partially consistent with our findings, previous 
grassland studies have found that increased temperature can enhance 
the abundance of bacterial-feeding nematodes (Mueller et al., 2016). 
Moisture also affects the responses of nematodes to N addition. A recent 
study found, for example, that water addition substantially reduced the 
abundance of bacterial-feeding nematodes in grasslands (Zhang et al., 
2020), which seems inconsistent with the view that water addition 
usually increases plant productivity and therefore the abundances of soil 
organisms. Plant primary production is closely connected with nutrient 

Fig. 5. Relative importance of the variables for the responses of nematode groups to N addition. Based on the sum of Akaike weights, the importance values are 
calculated by a model selection with corrected Akaike’s information criteria. The variables include N-addition regimes (i.e., N form, application method, addition 
rate, and study duration) and environmental factors (i.e., latitude, longitude, biome type, soil depth, MAT, and MAP). Cutoff is set at 0.8 to estimate important and 
nonessential variables. MAT: mean annual temperature; MAP: mean annual precipitation. 
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and water availability in arid and semiarid grassland ecosystems (Bai 
et al., 2004, 2008), and our meta-analysis indicated that the response of 
plant-feeding nematodes to N addition was enhanced with increasing 
mean annual precipitation. Water availability was also found to greatly 
affect nematode abundance in studies of global change (Kardol et al., 
2010; Thakur et al., 2017). 

Because mean annual temperature and precipitation are usually 
positively related at a global scale, the response ratios of soil nematodes 
are similar for the two factors. The abundances for all of the trophic 
groups of soil nematodes are considered to be higher at lower elevations 
with warm conditions than at higher elevations with cool conditions 
(Veen et al., 2017). The latter finding suggests that the response ratios of 
the abundance of bacterial-feeding nematodes to N addition should be 
positively related to mean annual temperature and precipitation, but our 
meta-analysis showed the opposite trend. The reason could be that 
bacterial-feeding nematodes, as r-strategists, are more likely to domi
nate soil nematode community in colder and drier areas as climates are 
getting warmer (Mueller et al., 2016). Perhaps bacterial-feeding nema
todes become less responsive to N addition as mean annual temperature 
or precipitation increases. 

5. Conclusions and future research 

We conducted a meta-analysis of the effects of N addition on soil 
nematodes at a global scale. We found that N addition strongly affected 
soil nematodes and that the responses of nematode abundance to N 
addition are affected by both the N-addition regimes and environmental 
factors. We also found that offsetting effects contribute to the marginal 
responses of total nematode abundance, i.e., the responses of bacterial- 
feeding nematodes to N addition are usually positive, while the re
sponses of other trophic groups to N addition are usually negative. We 
also suggest that for forest ecosystems, more studies are needed of 
canopy N addition so that the numbers of studies of understory N 
addition and canopy N addition are more balanced. Finally, we suggest 
that more studies on the effects of N addition on soil nematodes are 
needed in tropical ecosystems in order to obtain a more complete un
derstanding of how N deposition affects soil nematodes at a global scale. 
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