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Applying a novel systems approach to address
systemic environmental injustices: Constructing
soil for limiting the legacy of lead (Pb)
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Jan Mun5, and Howard Mielke6

The knowledge of unsustainable human and Earth system interactions is widespread, especially in light of
systemic environmental injustices. Systems science has enabled complex and rigorous understandings of
human and Earth system dynamics, particularly relating to pollution of Earth’s land, water, air, and
organisms. Given that many of these systems are not functioning sustainably or optimally, how might this
field enable both rigorous understanding of the issues and experiments aimed at alternative outcomes? Here,
we put forth a novel, multiscale systems science approach with three steps: (1) understanding the systemic
issues at hand, (2) identifying systemic interventions, and (3) applying experiments to study the efficacy of
such interventions. We illustrate this framework through the ubiquitous and yet frequently underrecognized
issue of soil lead (Pb). First, we describe the systemic interactions of humans and soil Pb at micro-, meso-, and
macroscales in time and space. We then discuss interventions for mitigating soil Pb exposure at each scale.
Finally, we provide examples of applied and participatory experiments to mitigate exposure at different scales
currently being conducted in New York City, NY, USA. We put forth this framework to be flexibly applied to
contamination issues in other regions and to other pressing environmental issues of our time.

Keywords: System science, Social-ecological systems (SES), Anthropocene, Lead contamination, Soil
remediation, Environmental justice

1. Introduction
Understanding, predicting, and responding to rapidly
changing processes on Earth’s surface is among “the most
pressing challenges of our time” (Harden et al., 2014). We
propose that there is a viable and valuable role for
research to play in efforts aimed at environmental reme-
diation and environmental justice (EJ) and that systems
science approaches are key to such endeavors. Here, we
put forth a novel, multiscale systems science approach
with three steps: (1) understanding the systemic issues

at hand, (2) identifying systemic interventions, and (3)
applying experiments to study the efficacy of such sys-
temic interventions. This systems approach is informed
by the work of numerous scholars and researchers who
have laid the foundation for understanding multiscalar,
nonlinear complexity in dynamic coupled systems (see
Von Bertalanffy, 1972; Meadows, 2008; Ostrom, 2009).
We will begin by situating this discussion in emerging
discourses of human and nonhuman system interactions
at micro-, meso-, and macroscales, but we will not directly
apply any of these previously articulated frameworks.
Instead, we seek to build on the work of others to illus-
trate three aspects of our novel approach using lead (Pb)
in urban soil as an example.

A systems approach is well-suited to address issues
revolving around Pb, a notorious chemical element, lead
has been mined for at least 8,000 years (Pompeani et al.,
2013), and its deleterious health effects have been re-
corded for at least the past 2,000 (Hernberg, 2000). Lead
use peaked in the 1970s with the use of tetraethyl lead
additives in gasoline and leaded paint and precipitously
declined as a result of federal regulations (Needleman,
2000). In many ways, the reductions of Pb exposure have
been one of the great environmental and public health
successes of our time (Settle and Patterson, 1980). And yet,
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a variety of processes including mining, smelting, and
refining as well as incineration, the peeling of paint, and
emissions of leaded gasoline have left a legacy of this
element in soils (Alloway, 2013).

This legacy of lead in soils is invisible. But over the
past four decades, researchers began to identify and map
soil Pb, first in Baltimore, MD (Mielke et al., 1983), then
Minneapolis, MN (Mielke et al., 1984), and New Orleans,
LA (Mielke et al., 2013), and now, hundreds of peer-
reviewed articles in regions throughout the world have
been published documenting this nearly ubiquitous
occurrence (i.e., Meuser, 2010; Datko-Williams et al.,
2014). Yet the links between soil Pb and blood Pb (i.e.,
human health impacts) have not yet been sufficiently
accepted by regulatory agencies. Many of the major Pb
exposure sources have been reduced for the general po-
pulation, with major blood lead level (BLL) declines
occurring between 1976 and 1991 after the removal of
99.8% of Pb from gasoline and removal from Pb in sol-
dered cans (Pirkle et al., 1994). Despite monumental BLL
declines and efforts pursued for primary prevention, far
too many children continue to be poisoned by Pb
throughout the world. In New York City (NYC) in 2018,
for example, 351,486 children were tested for blood Pb,
and 4,717 of them had levels greater than 5 mg/dL (NYC
Department of Health, 2020). Lanphear et al. (2018)
found elevated BLL to account for 412,000 deaths annu-
ally. Burdens of Pb exposure, as with many environmen-
tal hazards, have historically fallen on and continue to
disproportionately expose communities of color and low-
income populations in the United States and worldwide
(Sampson and Winter, 2016; O’Connor et al., 2020).

We call attention to this urgent issue of environmental
injustice and employ a systems approach to understand
the interactions between humans and soil Pb at multiple
scales, to identify the interventions that have been aimed
at limiting exposure, and to inform applied experiments
for continuing to protect public health. This approach has
already enabled a number of experiments on systemic
interventions to limit soil Pb exposure, and we suggest
that it can be flexibly adapted to address other pressing
social and ecological issues of our time.

2. Why systems?
A systems perspective enables rigorous, dynamic, mul-
tidisciplinary, and multiscalar approaches to be used to
address challenging problems (Odum, 1983). A system
is defined as “a set of elements or parts that is coher-
ently organized and interconnected in a pattern or
structure that produces a characteristic set of behaviors,
often classified as its ‘function’ or ‘purpose’” (Meadows,
2008, p. 187). A system is “more than the sum of its
parts” and contains stocks, which are the “memory of
the history of changing flows within the system.” Sys-
tems also contain feedback loops, which are chains of
“causal connections from a stock, through a set of de-
cisions or rules or physical laws or actions that are
dependent on the level of the stock, and back again
through a flow to change the stock” (Meadows, 2008,
p. 188).

2.1. Global scale systems theory: The inequitable

Anthropocene

Although general systems theories can be applied to vir-
tually any field of study (Von Bertalanffy, 1972), here we
focus on multiple scales of human system interactions
with nonhuman systems. On the macroscale, this work is
situated within Earth Systems Science, a field which has
begun to articulate ways in which humans act as a geologic
force (Thomas, 1956; Vitousek et al., 1997; Crutzen, 2002;
Ruddiman et al., 2015; Waters et al., 2016; Waters et al.,
2018). Although living creatures have frequently played
important roles in shaping Earth systems (i.e., photosyn-
thetic bacteria have been oxygenating the atmosphere for
at least 3.5 billion years, Blankenship, 1992), our species
clearly exerts a tremendous impact on the material and
energetic cycles around us. The concept of the Anthropo-
cene as a geologic epoch characterized by human action
supports an expansion of spatial and extrabiological per-
ception. Seeing our species as a geologic force enables us
to recognize that the ecological and environmental issues
we face are not just impacting charismatic megafauna and
local waterways (Syvitski and Kettner, 2011; Brown et al.,
2017). The matter and energy we move is occurring on and
can be quantified at global scales and calls for us to con-
sider our effects on nonliving Earth elements (Gaffney and
Steffen, 2017). The Anthropocene idea also supports
a dynamic tension between temporal scales. Earth systems
have been forming for 4.6 billion years, and in a mere
10,000 years or less, collective human impacts are having
tangible effects. Finally, the Anthropocene idea may help
humans to recognize that while all living creatures inter-
act with their environments, human consciousness allows
for highly informed and creative responses (Graham and
Roelvink, 2010; Gibson-Graham, 2011; Holm et al., 2013;
Palsson et al., 2013; Steffen et al., 2018).

This consciousness also fosters recognition that certain
groups of people, namely those with more access to struc-
tural power, have been primarily responsible for creating
the conditions of the Anthropocene and have accumu-
lated material wealth through the extraction and move-
ment of matter and energy throughout Earth systems
(Clark and Yusoff, 2017; Yusoff, 2018). People with less
access to structural power are less responsible as drivers
of change in the Anthropocene and have borne dispropor-
tionate burdens of displacement and marginalization, par-
ticularly in the form of environmental racism (Bullard,
1993; Cole and Foster, 2000; Pulido, 2000; Holifield,
2001). Systemic racism has been shown to drive ecological
and evolutionary outcomes, particularly in urbanized
landscapes (Schell et al., 2020). Attention to our species’
roles within Earth systems and the inequitable responsi-
bilities and burdens placed on differently identified peo-
ple are essential components of the systems framework
outlined here.

2.2. Social-ecological systems (SES) theory:

Nonlinear dynamics and thresholds

On a relatively smaller temporal and spatial scale, we look
to SES to inform this framework, defined as “complex
adaptive systems where social and biophysical agents are
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interacting at multiple temporal and spatial scales” (Jans-
sen and Ostrom, 2006). Research in this field examines
coupled human and natural systems and articulates com-
plex patterns and processes that would not be captured by
social or natural science separately. Liu et al. (2007) syn-
thesize case studies from around the world with couplings
that vary across temporal, spatial, and organizational
scales and highlight the importance of attending to
“nonlinear dynamics with thresholds, reciprocal feedback
loops, time lags, resilience, heterogeneity, and surprises”
within these areas of inquiry. Such frameworks have been
applied toward understanding ways in which humans act
as geologic agents on specific landscapes and how tempo-
ral lags impact landscape restoration efforts (Kondolf and
Podolak, 2014). The emerging science of human-landscape
systems recognizes the inextricable interactions between
hydrogeomorphological, ecological, and human processes
and functions (Harden et al., 2014). Work in this field calls
for a range of physical, biological, and social research to
contribute to such integrative science to both rigorously
understand human and nonhuman system interactions
while also attending to ways in which humans are shaped
by such interactions (Chin et al., 2014).

Ostrom’s (2009) framework for understanding the sus-
tainability of SES outlines constituent subsystem entities
as well as their interactive links. This framework has not
yet been applied to interactions around soil Pb, and while
this would be a productive area of inquiry, here we focus
on soil less as a resource from which value can be ex-
tracted and more as an actor embedded in a range of
enmeshed dynamics (see Latour, 2005). Ostrom’s frame-
work may also be used to identify potential SES vulnera-
bility and susceptibility to disturbance (Anderies et al.,
2004). Systemic disturbance is frequently viewed as prob-
lematic, but certain disturbances, as will be discussed here,
can be seen as interventions aimed at shifting systemic
outputs. In the case of soil Pb exposure, such a shift is
desirable. In other situations, where a system is not func-
tioning in alignment with sustainable outputs (i.e., exces-
sive deforestation, depletion of aquifers, climate change,
or any other form of pollution), the forthcoming frame-
work centralizing disturbances as desired interventions
may be of particular value.

2.3. Paradigm shifts: Urban systems science and

coproduction of knowledge

Social and human coupling with nonhuman systems can
be focused to consider a more specific urban systems sci-
ence (Groffman et al., 2017). These authors propose an
approach to interdisciplinary and transdisciplinary
research for advancing sustainability science in cities in
a number of ways, including an emphasis on human va-
lues and concerns that shape the structure and function of
urban ecosystems, coproduction of knowledge with stake-
holders that considers their values and perceptions (even
when they are at odds with scientific understandings), and
working with experts in a variety of disciplines to address
fundamental questions about broad issues of sustainabil-
ity (Cornell et al., 2013; Childers et al., 2014). This urban
system science would include the voices and perspectives

of low-income communities and communities of color as
essential for driving the production of new knowledge
(Torre et al., 2012). We draw from the field of Critical
Participatory Action Research (CPAR), which contends that
all people, and particularly those who have been histori-
cally marginalized, have a right to both understand and
produce new knowledge as research (Appadurai, 2006).
We find that biogeochemical-social/SES research can be
in alignment with CPAR methodologies that in the words
of Fine (2018) enable a “critical analytic gaze to the social
arrangements, institutions, distributions, ideologies, and
social relations that reproduce and legitimate everyday
injustice” (p. 7).

We situate this work within an ontological orientation
of various scales of human and nonhuman system inter-
actions, an epistemological focus on urban systems and
coproduction of knowledge with experts outside of acade-
mia, and a methodological emphasis on applied experi-
mentation. Although most biological, chemical, and
physical sciences demonstrate a strong preference for
basic science research (Cornell et al., 2013), we contend
that the rigorous concepts and methodologies of basic
science can be applied to experiments on systemic levels
in order to understand not just what processes are already
occurring but also to generate data on what outcomes
may arise from a range of interventions. Just as systems-
based understandings should lend themselves to adaptive
management and governance (Walker et al., 2004), we
argue that such adaptations should be empirically studied.
Governance is an essential component of SES dynamics
and change (Janssen and Ostrom, 2006) and opportunities
for research to support such sustainable outcomes are
widespread (DeFries et al., 2012), but implemented pro-
grams and policies are not generally viewed as experi-
ments (even though they may be experimental in
nature).When solutions do not produce desired outcomes,
they may be seen as failures. Were they conducted as
experiments, however, the failures could be identified as
useful data, enabling revisions for subsequent experi-
ments, and “serendipitous science” (Gallagher et al.,
2020). Thus, this framework looks to applied systemic
experimentation as a crucial component for consideration
of system governance.

In this vein, we agree with Grove et al. (2015) who
assert that the perceived dichotomy between basic and
applied sciences need not be at odds. These authors cite
Stokes (1997) in articulating a synthesis between these
fields as “use-inspired basic research,” which they describe
as a “science designed to enhance fundamental knowl-
edge while also addressing a practical concern.” We artic-
ulate an applied and participatory systems research
framework that utilizes the following three steps:

1. Conceptualize human and nonhuman system
interactions at multiple scales.

2. Identify interventions toward desired sys-
temic outputs.

3. Conduct applied and participatory experi-
ments to study effects of interventions.
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In the discussion to follow, each of these steps will be
applied to the issue of soil Pb contamination. First, a system
of human and soil Pb interactions will be conceptualized at
micro-, meso-, andmacroscales in time and space. Interven-
tions for mitigating soil Pb exposure at each scale will then
be discussed. Finally, we will provide examples of applied
and participatory experiments to mitigate soil Pb exposure
at different scales that are based on this systems framework
and are currently being conducted in NYC, NY, USA.

3. Conceptualizing a system of soil lead
Out of all the potentially toxic elements and compounds
humans have concentrated in urban soils, Pb is the most
common, having been identified in soils in virtually all
corners of the globe (Delbecque and Verdoodt, 2016; Marx
et al., 2016). It is not only one of the most common toxic
elements found; it is also listed as the number two priority
toxic substance by the Agency of Toxic Substances and
Disease Registry (Agency of Toxic Substances and Disease
Registry [ATSDR], 2020). There is a tremendous reservoir
of soil Pb, due to the legacies of industrial activities,
leaded paint dust, and leaded gasoline emissions (Mielke,
2016). Although much attention has been given to miti-
gating Pb exposure from indoor paint and water, soil Pb is
underrecognized as an important exposure pathway
(Mielke, 2015).

Exposure to the stock of Pb in soil, or any media, may
produce seriously adverse health impacts. Pb is a neurotoxin
with lifelong and potentially fatal effects (Bellinger, 2011),
and the EJ issues associated with exposure in various media
such as buildings, paint, occupations, and water are well
known (Dudka and Adriano, 1997; Stretesky, 2003; Clark et
al., 2006; Pokras and Kneeland, 2008). The presence of Pb
in soil as a major risk for exposure has been articulated by
researchers but has not been accepted by many regulatory
agencies (Mielke et al., 1983; Mielke, 2015; Laidlaw et al.,
2017). Similar to the geographic patterning of Pb in other
media, soil Pb exposure is an EJ issue, with concentrations
found to be higher in low-income communities and com-
munities of color (Filippelli and Laidlaw, 2010; McClintock,
2012; Mielke et al., 2013; Cheng et al., 2015; Filippelli et al.,
2015; Laidlaw et al., 2016).

It is important to acknowledge that humans are not the
only organisms whose health is adversely impacted by Pb.
Indeed, microbes, plants, and fish (Demayo et al., 1982;
Rabitto et al., 2005), birds (Friend, 2009; Mateo et al.,
2014), crocodiles (Twining et al., 1999), rats (Nakayama
et al., 2011), boars and deer (Rodrı́guez-Estival et al.,
2013), sheep (Pareja-Carrera et al., 2014), and many other
living creatures (Nriagu, 1990; Meador, 1996) have been
harmed by high Pb concentrations at Earth’s surface. Re-
searchers have traced the exposure pathways of Pb for
these organisms through water, the atmosphere, and also
in soil. The framework to be discussed here could be
applied to any of these organisms on Earth. In the vein
of anthropocentrism, we focus this discussion on the im-
pacts of Pb on humans.

Whether they were motivated by concerns for humans
or any number of other species, researchers, public health
advocates, lawyers, elected officials, and community

organizers have gone to great efforts and have waged
countless battles to limit Pb exposure (Markowitz and
Rosner, 2013). Pb has been banned from paint, gasoline,
solder, toys, makeup, jewelry, and a host of other products,
effectively promoting primary prevention. And yet, the
legacy of lead persists in soil. Limiting exposure is a diffi-
cult problem, one that requires analysis of systemic inter-
actions on multiple temporal and spatial scales. On the
microscale, we focus on soil processes and Pb exposure for
individual humans; on the mesoscale, we focus on sea-
sonal cycles of soil resuspension and BLLs; and on the
macroscale, we examine group differentiated patterns of
exposure and the global extent of this reservoir. In each
subsection, we will describe inputs, structures, functions,
outputs, and feedbacks of the system.

3.1. Microscale interactions: Lead behavior in soil

and impacts on human health

To conceptualize microscale soil lead interactions, we
describe the inputs of Pb into soil, the system structure
of local soil formation processes and functioning, and the
outputs as impacts on human health (Figure 1). Lead is
the 38th most abundant mineral in Earth’s crust and ex-
ists in crustal rocks with an average concentration of
approximately 20 parts per million or milligram per kilo-
gram (Taylor, 1964). Its high density, malleability, and low
melting point have enabled it to be used in virtually all
aspects of manufacturing and industry, including pipes,
the printing press, bullets, paint, gasoline, and numerous
“green” technologies such as hybrid batteries (Interna-
tional Lead Association, 2019). Pb extraction has thus
facilitated agriculture and urbanization through pipes for
water, academic knowledge through the printing press,
industrialization and transportation through fuel, paint
and batteries, and colonization and genocide through bul-
lets. The first Pb factory in the United States was built in
Virginia in 1621, 15 years after colonization began there.
Humans have extracted this element from the crustal geo-
sphere and have disseminated and deposited its reminer-
alized forms in soils and strata throughout the globe
(Vane et al., 2011; Dean et al., 2014; Waters et al., 2016).
Thus, human activities have created a systemic input or
stock of Pb into the pedosphere.

When Pb emissions from point sources (i.e., factory
sites or peeling paint) and nonpoint sources (i.e., car and
airplane emissions) land in soil, the resulting behavior is
complex and mediated by various processes including
metal speciation, pH, soil organic matter, soil geochemis-
try, and climate (Sauvé et al., 1998; Kabata-Pendias, 2004;
Reeder et al., 2006; Schroth et al., 2008; Mushak, 2011).
Pb is largely immobile in soils except under highly acidic
conditions, which makes it difficult to remove, unlike ele-
ments such as nickel, zinc, or cadmium (Cheng et al.,
2011; Ent et al., 2013). Although concentrations of Pb in
crustal rocks and naturally occurring soils are generally
low and associated with nonbioavailable mineral forms,
anthropogenic Pb is often speciated with more bioavail-
able carbonate, iron, and manganese hydroxide soil frac-
tions (Chlopecka et al., 1996; Kabata-Pendias, 2011). As
a result, residual dusts from soils containing
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anthropogenic Pb may be more toxic than naturally occur-
ring Pb dust. Lead is associated with the smallest particles
in soil, namely the clay and colloidal grain size fractions
(Fitzstevens et al., 2017). As such, fine soil particles can be
transported as Pb dust which may present higher risks
than bulk soils (Laidlaw et al., 2005). The mobility of dust
and contaminated fine soil particles is thus a major factor
establishing the stock of soil Pb.

When people come in contact with contaminated soils
and dusts, the main exposure pathways are incidental
ingestion, inhalation, or dermal contact (Spliethoff et al.,
2016). Although ingestion has been considered the dom-
inant exposure pathway, associations between air and
BLLs suggest that inhalation is also an important pathway,
particularly for exposure to microscopic dust particles
(Laidlaw et al., 2017). Although exposure to contaminated
soils and dusts can occur in a range of outdoor settings,
these microscopic particles are frequently tracked into
homes (Hunt and Johnson, 2012). The U.S. Environmental
Protection Agency (EPA) set the soil screening level (SSL)
for children playing in bare soil to 400 mg Pb/kg or ug/g
based on exposure and uptake models (U.S. EPA, 1994).
Thresholds for indoor surfaces, however, are set as 108 ug/
m2 or 10 ug/ft2. Converting the outdoor soil standard of
400 ug/g to these units yields a Pb loading of 16,200 ug/
m2 or 1,500 ug/ft2, which are many times higher than the
indoor threshold (Mielke et al., 2007; U.S. EPA, 2020). This

means that even soils with concentrations below the EPA
SSL contain an extremely high surface reservoir of Pb.
These fine soil fractions can become resuspended as dust
and present a significant exposure risk, particularly when
soils are dry (Clark et al., 2008; Zahran et al., 2013).

After exposure, the degree to which Pb will be ab-
sorbed by human systems depends on age (U.S. EPA
National Center for Environmental Assessment, 2009).
Small children not only ingest more soil relative to body
mass but also absorb more Pb through their intestinal
tracts (Roberts et al., 2001). The biological processing of
inorganic Pb after entry into the human body has been
well studied. Inorganic Pb is directly absorbed, distributed,
and excreted but is not metabolized. Upon entry to the
blood stream, Pb is distributed between blood, soft tissues
(such as kidneys, bone marrow, liver, and the brain), and
mineralizing tissues (such as bones and teeth). Such min-
eralizing tissues may contain up to 94% and 75% of the
total amount of Pb in adults and children, respectively
(ATSDR, 2020). The half-life of Pb in blood is approxi-
mately 25 days, 40 days in soft tissue, and more than
25 years in the nonlabile parts of bone. This inert pool
of Pb is a particular concern as it may become released
into mobile stores over time (Xintaras, 1992).

Once Pb enters the body, it can affect nearly all bodily
systems and is particularly noted as a neurotoxin (Needle-
man et al., 1979; Lanphear et al., 2003). The deleterious

Figure 1. Microscale interactions: Pb behavior in soil and impacts on human health. The system input (upper left) is
legacy lead in soil. Once Pb lands in soil, a number of processes occur at a microscale (center box). Soil Pb is largely
immobile, but humans, particularly children, are at risk of exposure. The output (upper right) is adverse health effects
for exposed humans. There is a positive feedback (bottom) that perpetuates the input, identified here as the lack of
acknowledgment of Pb in soil. DOI: https://doi.org/10.1525/elementa.2020.00174.f1

Egendorf et al: Applying a novel systems approach to the legacy of lead in soil Art. 9(1) page 5 of 30

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/9/1/00174/470360/elem
enta.2020.00174.pdf by guest on 03 N

ovem
ber 2021



health impacts of Pb are numerous and often irreversible,
particularly for children, and include behavioral or learn-
ing issues, decreased IQ, hyperactivity, delayed growth,
hearing problems, anemia, kidney disease, cancer, and in
rare cases can lead to seizures, coma, or death (Bellinger
and Bellinger, 2006; Lanphear, 2007; Bellinger, 2011). The
Center for Disease Control and Prevention (CDC, 2019) has
stated that there is no BLL without harmful effects for
children. The CDC lowered the reference value for elevated
BLL from 10 ug/dL to 5ug/dL in 2012. This reference
value is based on the 97.5th percentile for the U.S. popu-
lation and is likely to continue declining in the future as
BLL declines.

The toxicity of the dose is also dependent on the inten-
sity, frequency, and duration of exposure, and numerous
studies show that increases in BLL as a function of soil Pb
are not linear. At higher concentrations of soil Pb, BLL
increases fall off. The nonlinearity of this dose-response
curve is not unique to soil Pb exposures and is also seen
with exposure to Pb in air or drinking water (Xintaras,
1992; Laidlaw et al., 2017). Nonetheless, even low levels
of exposure can produce an important impact on an in-
dividual’s lifelong health. The fact that Pb in soil is perva-
sive but is not considered a primary exposure pathway by
many City and State Departments of Health (NYCC, 2018)
serves as a positive feedback mechanism, in that efforts to
mitigate exposure from soil are not widely undertaken.
Leaving soil Pb in place at Earth’s surface enables the
material to continue to present risks to urban residents,
particularly children.

3.2. Mesoscale interactions: Seasonal cycles of soil

lead resuspension and BLL fluxes

After tracing interactions at the microscale of soil particles
interacting with human bodies, we can broaden the scale
of analysis to slightly larger fluxes in time and space. On
a mesoscale, we can trace human interactions with soil
lead on seasonal time scales and at the spatial scale of
a city. A growing body of research examines seasonal cy-
cles of citywide leaded soil and dust resuspension and
deposition. Particularly because Pb binds so tightly to soil
particles, resuspended soils and dusts carry Pb with them,
contributing to wide ranging issues of recontamination
(Clark et al., 2008; Laidlaw and Filippelli, 2008; Del Rio-
Salas et al., 2012; Laidlaw et al., 2012; Zahran et al., 2013;
Engel-Di Mauro, 2020). On the mesoscale of a garden,
neighborhood, or city, soils may continually be contami-
nated by the deposition of suspended dust. Evidence for
resuspension has been documented in numerous studies,
which show both elevated atmospheric soil and elevated
atmospheric Pb in seasonal patterns (Laidlaw and Filippel-
li, 2008; Laidlaw et al., 2012; Zahran et al., 2013).

Children in urban areas tend to exhibit significant in-
creases in BLLs in summer months (Rothenberg et al.,
1996; Mielke and Reagan, 1998; Yiin et al., 2000). In Syr-
acuse, NY, children’s BLL increases were observed to be
linked with interactions between soil and climate (John-
son and Bretsch, 2002). Research examining the interac-
tions between climate and soil factors affecting Pb dust
flux and BLLs was also shown to be significant in

Indianapolis, IN, and New Orleans, LA (Laidlaw et al.,
2005), Detroit, MI (Zahran et al., 2013), and Milwaukee,
WI (Havlena et al., 2009). As aligned with the dry summer
peaks in atmospheric Pb, BLL responses also show eleva-
tions in summer and declines in winter in a number of
studies (Laidlaw et al., 2005; Laidlaw et al., 2012).

This temporal and spatial scale of analysis shows cycli-
cal variation in exposure to and interactions with soil Pb.
Children may be exposed to seasonally elevated Pb load-
ing through ingestion or inhalation of suspended soils.
This may occur by increased time spent outdoors in sum-
mer months or through increased dust entering homes via
open windows and doors (Hunt and Johnson, 2012). Par-
ticles may penetrate homes from point or diffuse sources,
and research conducted in NYC suggests that young peo-
ple are exposed to particle-associated elements through
ambient or outdoor sources, even inside homes (Kinney et
al., 2002). Furthermore, dusts and fine fractions of soil
have been shown to contain higher concentrations of
bioaccessible Pb than bulk soil, which increases the poten-
tial risks associated with such exposure (Sharp and Bra-
bander, 2017).

Research conducted in NYC shows that a slightly open
window can accumulate Pb dust exceeding the Housing
and Urban Development (HUD)/EPA indoor Pb in dust
standard of 10 ug/ft2 (108 mg/m2) in just 1.5 weeks. (Car-
avanos et al., 2006). The same group of researchers found
indoor dust loadings throughout the five boroughs of NYC
exceeding these standards in 86% of samples taken (Car-
avanos et al., 2006). HUD has shown that soil Pb hazards
outside of homes are associated with higher levels of Pb in
interior dust. A 2011 report indicates that 20.6% of homes
with soil Pb hazards have interior dust hazards, while only
4% of homes without soil hazards also have dust hazards.
Results for windowsills are similar—36.8% of homes with
soil Pb hazards have windowsill dust hazards compared to
only 8.9% of homes without soil lead hazards (U.S. Depart-
ment of Housing and Urban Development, 2011). As air-
borne Pb levels have declined due to the phaseout of
leaded gasoline, soil resuspension and track-in have been
shown to be the primary sources of Pb in house dust in
California (Layton and Beamer, 2009). According to Pingi-
tore et al. (2009), soil Pb is the principal source for air-
borne Pb in urban settings and may set the effective lower
limit for future decreases in atmospheric Pb
concentrations.

Tracing the seasonal shifts in the exposures to Pb in soil
or dust enables us to not only describe systemic interac-
tions at different scales but also enables us to identify an
important feedback mechanism. Historical inputs have
created elevated stocks of Pb in soil. When soils are bare
or dry in summer months, immediate exposure and resus-
pension into the atmosphere are increased. This resuspen-
sion increases the potential for exposure by inhalation and
contaminates soils in adjacent regions, increasing the risk
of exposure there. Particularly given the association with
higher total and bioaccessible Pb on fine particles, resus-
pension of contaminated soils is thus another positive
feedback increasing the systemic input of Pb in soil (Fig-
ure 2).
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3.3. Macroscale interactions: The global extent of

soil lead and group differentiated patterns of

exposure

Conceptualizing a system of soil Pb interactions on
a microscale enables us to see the basic structure and
function of Pb behavior in soils and human bodies, the
flow of potential exposure pathways, and a positive feed-
back that enables the input to persist through lack of
acknowledgment of risks. Analysis on the mesoscale en-
ables us to see temporal and spatial patterns of exposure,
as well as the important positive feedback mechanism of
resuspension that may maintain or potentially redistrib-
ute risks for exposure. On the macroscale, we can concep-
tualize larger spatial and temporal patterns of soil Pb
deposition that affect the entire globe, as well as the
uneven distributions of exposure experienced by differ-
ently identified groups of people.

Significant soil Pb contamination has now been char-
acterized in cities throughout the United States and coun-
tries throughout the world (Carey et al., 1980; Kovarik,
2005; Yesilonis et al., 2008; Meuser, 2010; Wuana and
Okieimen, 2011; Alloway, 2013). In a review of 84 studies
of soil Pb in 62 U.S. cities from 1970 to 2012, Datko-
Williams et al. (2014) found the well-reported trend that
Pb concentrations were higher in urban centers and
declined toward suburban and outlying areas. This

“bulls-eye” pattern has been documented in numerous
cities (Laidlaw and Filippelli, 2008; Filippelli et al.,
2015). Although soil Pb has been found to decline over
time within certain cities, Datko-Williams et al. (2014)
found no statistical correlation between soil Pb and year
of sampling, further reinforcing the data suggesting that
Pb persists in soil over time. Recent research conducted in
New Orleans, however, has shown that soil Pb can
decrease over time. Although this is encouraging for the
potential to limit exposure, far too many regions of New
Orleans and other cities contain elevated soil Pb currently
presenting risks (Mielke et al., 2019).

The quantity of Pb residing in the reservoir of soil can
be estimated from 5 to 6 million metric tons of Pb used to
manufacture both of the dominant sources—paint and
gasoline (Mielke and Reagan, 1998). Although lead-
based paint was phased out in 1978 as a result of the
Lead Paint Poisoning Prevention Act (Farquhar, 1994),
deterioration of this paint, particularly by power sanding
and scraping, continues to release Pb to soil (Mielke et al.,
2001). From the 1920s to 1986, tetramethyl and tetra-
ethyl Pb were added to gasoline. When leaded gasoline
was banned in the United States in 1986, 5–6 million
metric tons of Pb had been used as an additive, and
approximately 75% of this Pb was emitted into the atmo-
sphere (Mielke and Reagan, 1998). Thus, an estimated 4–5

Figure 2. Mesoscale interactions: Seasonal cycles of soil Pb resuspension and blood lead level (BLL) fluxes. The system
input (upper left) is legacy lead in soil. Once Pb lands in soil, a number of processes occur at a mesoscale (center box).
Contaminated soils can become dry and dusty in summer months, becoming suspended in the atmosphere. Dusts can
enter homes and expose people on seasonal cycles. The output (upper right) is adverse health effects for exposed
humans, with BLL cycles occurring with seasonal cycles. There is a positive feedback (bottom) that perpetuates the
input, identified here as the deposition of Pb dusts. DOI: https://doi.org/10.1525/elementa.2020.00174.f2
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million tons of Pb has been released into the U.S. environ-
ment as a result of gasoline emissions (Mielke, 1994). Soil
Pb has also been shown to be proportional to highway
traffic flow (Mielke et al., 1997).

The transport of Pb to cities and subsequent forms of
emissions have generated temporal and spatial patterns that
expose residents andworkers in proximity. Social formations
of class, race, ethnicity, and gender are invoked as we con-
sider the serious environmental injustices that result from
the concentration and dissemination of Pb in urban soils.
Although exposure to Pb is harmful to all individuals, the
disproportionate rates of exposure to soil Pb for people of
color and people from low-income backgrounds have been
documented in numerous studies (Filippelli and Laidlaw,
2010; Aelion et al., 2013; Leech et al., 2016). McClintock
(2015) explores the effects of human and soil Pb interactions
for their inextricably linked consequences. Drawing from
a Critical Physical Geography perspective, he examines ways
in which patterns in soil Pb are related to historical and
ongoing processes of capitalist modes of production, and
in so doing, critiques the racist ideologies and structures of
power that created these patterns.This analysis includes four
geospatialmapsofOakland,CA, depictingpercentagesof the
White population, percentages of the population living in
poverty, soil Pb in mg/kg, and BLL in ug/dL which show
a clear spatial correspondence between soil Pb, BLL, non-
White population, and poverty (McClintock, 2015).

These environmentally unjust patterns continue to
present what Masri et al. (2020) describe as a “meaningful
socioeconomic gradient in vulnerability to exposure to
soil Pb” in Santa Ana, CA (Masri et al., 2020). Residential
segregation has been well-established as contributing to
high rates of Black poverty and inequitable health out-
comes (Massey, 2004), and systemic racism has been
shown to drive numerous biotic outcomes of urbanized
landscapes (Schell et al., 2020). Even while citywide soil Pb
levels have been found to be declining in New Orleans, LA,
Black residents continue to have higher risks of soil Pb
exposure than White residents (Egendorf et al., 2021).
Understanding soil Pb-interactions at macroscales of time
and space requires reckoning with these racist structures.

Given the ubiquity of Pb in soil, if we continue to
expand our macroscale analysis, we may begin to consider
the layers of Pb in soil throughout the globe, which may
evoke a conceptual marker of the Anthropocene.
Although neither Pb nor soil are appropriate stratigraphic
markers for the onset of a new geologic epoch (Lewis and
Maslin, 2015), there are exceptionally high concentrations
of Pb in soils adjacent to human development all over the
surface or near-surface layers of this planet (Marx et al.,
2016) with detailed chronologies recorded in polar ice
(McConnell et al., 2018). Layers of soil Pb therefore pro-
vide records of the ongoing ways in which human extrac-
tion moves vast quantities of this element from primordial
rocks and continues to concentrate and deposit it at
Earth’s surface, adjacent to vulnerable populations.

Conceptualizing the SES of soil Pb interactions shows
microscale mechanisms of exposure, mesoscale cyclical
seasonal fluxes in exposure, historically contingent pat-
terns of inequitable distributions in exposed populations

by race, and class on macroscales of time and space, and on
the largest scale, we see Pb deposits in soil throughout the
globe. As tracing the micro- and mesoscale cycles enables
articulation of positive feedbacks, so does this macroscale
interaction. People with more structural power have been
less affected by soil Pb and therefore have less impetus to
make changes that could shift burdens of exposure. People
from low-income backgrounds and people of color have
been more impacted by this issue and have historically had
less access to structural power. Less access to structural
power limits such communities’ abilities to change patterns
of exposure, either through changing individual circum-
stances (i.e., moving to less-contaminated areas) or through
leveraging structural resources (i.e., shifts in policy or reme-
dial actions). As such, unequal access to resources enables
the cycle of uneven exposure to continue as a positive feed-
back perpetuating the initial inputs of legacy lead in the
system (Figure 3).

4. Identifying interventions for mitigating soil
lead exposure
Having outlined the component elements, structure, func-
tions, and feedbacks of the soil Pb system at a variety of
scales, we have a clear picture of the interconnected and
dynamic shapes of this system over time and space. The
goal of articulating this system is to be able to understand
and, ultimately, experiment with the opportunities and
limits for interacting with and changing it to support
desired systemic outcomes. Before we embark on discus-
sion of such experiments, we must explore what has been
attempted before. What interventions for mitigating soil
Pb exposure have been attempted at various scales? What
works, what doesn’t, and why?

Primary prevention of environmental Pb exposure has
occurred through efforts such as limiting Pb in solder,
paint, and gasoline. Although these have been tremen-
dous successes, the presence of Pb in soil persists, and
standard medical interventions for mitigating Pb exposure
continue to focus on education and household dust
cleanup. The Cochrane Collaboration conducts evaluations
of various medical interventions, and numerous Cochrane
reports have evaluated such education and household in-
terventions for preventing Pb exposure. The most recent
report clearly states the following:

Based on current knowledge, household educational
interventions are ineffective in reducing blood lead
levels in children as a population health measure.
Dust control interventions may lead to little or no
difference in blood lead levels . . . .There is currently
insufficient evidence to draw conclusions about the
effectiveness of soil abatement or combination
interventions . . . . Further trials are required to
establish the most effective intervention for
preventing lead exposure. Key elements of these
trials should include strategies to reduce multiple
sources of lead exposure simultaneously using
empirical dust clearance levels. (Nussbaumer-Streit
et al., 2016)
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The fact that the standard interventions (focused on
household dust and education) are deemed ineffective for
reducing Pb exposure is another positive feedback mech-
anism that perpetuates further lead exposure, an issue
with enormous medical and societal consequences (Bellin-
ger, 2011). What is additionally problematic is that these
standard interventions are only being made after children
show elevated BLLs, thus using children for identifying the
presence of environmental contaminants. Such an
approach violates national and international standards for
treatment of human subjects. As Mielke (2015) writes,

According to World Medical Association (2013)
criteria, if a method is shown to be ineffective, then
the medical community must revise the intervention
to prevent harm. The U.S. treatment protocols are
thus doubly culpable because not only do they
employ children’s blood lead as an indicator of lead
contamination, but they also use an ineffective
intervention method to prevent children from further
harm.

Although the Cochrane Collaboration states that there is
“insufficient evidence to draw conclusions about the effec-
tiveness of soil abatement or combination interventions,”

here we discuss what is available in the literature with
regard to various scales of soil Pb exposure interventions.

4.1. Microscale interventions: Changing soil lead

bioavailability

On the microscale, we focus attention on interventions
that are made within soils, specifically focused on chang-
ing the bioavailability or speciation of Pb. As mentioned
previously, the degree to which a contaminant will nega-
tively impact human health is not only determined by
a person’s age, health, and duration and frequency of
exposure but also by the bioavailability of the contami-
nant or the fraction of the chemical dose that may be
absorbed in human systems. Quantifying the degree to
which Pb will pass through the human intestinal lining
is problematic to assess in living organisms (in vivo), so in
vitro lab assays such as physiologically based extraction
tests were designed to simulate biological systems of
interest. The term “bioaccessibility” is therefore used to
describe the outcomes of such in vitro tests and to approx-
imate bioavailability, depending on relevant in vivo mod-
els (Ruby, 2004). There are numerous methods to
determine these values, and the accuracy of various assays
have been in question by researchers for some time
(Henry et al., 2015).

Figure 3. Macroscale interactions: The global extent of soil Pb and group differentiated patterns of exposure. The
system input (upper left) is legacy lead in soil. Once Pb lands in soil, a number of processes occur on the macroscale
(center box). Soil Pb has accumulated around the world but has been concentrated in cities, disproportionately
exposing people of color and people from low-income backgrounds. The output (upper right) is adverse health
effects on already vulnerable populations and markers of human activity around the world. There is a positive
feedback (bottom) that perpetuates the input, identified here as affected communities lacking access to structural
power needed to change the system. DOI: https://doi.org/10.1525/elementa.2020.00174.f3
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One of the primary methods to potentially change the
form of Pb in soil and subsequently change its bioavail-
ability is to add amendments (Hettiarachchi and Pierzyns-
ki, 2004). Organic amendments, such as compost, manure,
biosolids, and municipal solid wastes, are frequently
added to soils as sources of nutrients and to enhance
physical properties and fertility. Amendments that are low
in metal(loid)s may reduce the bioavailability of soil Pb by
adsorption, complexation, or reduction (Bolan et al.,
2014). Pb-phosphate minerals in the form of pyromor-
phite have been shown to be highly insoluble and less
bioavailable than other mineral forms. As such, numerous
methods for adding phosphorus to soil to assist in forma-
tion of such minerals have been investigated. A number of
studies suggest that biosolids are effective in rendering
soil Pb less bioaccessible, particularly as a result of Pb
absorption on Fe oxides (Brown et al., 2003; Brown et
al., 2012). Composted biosolids and composted food and
yard-waste may also be effective for such purposes (Atta-
nayake et al., 2014; Defoe et al., 2014; Attanayake et al.,
2015). Biochar has also been shown to reduce Pb bioac-
cessibility (Park et al., 2011; Méndez et al., 2012).

Determining the degree to which amendments change
Pb bioaccessibility depends on the methods used (Obrycki
et al., 2016). Many such changes are dependent on soil pH,

which can also change over time (Scheckel et al., 2013). As
organic matter decomposes, the changes to the form of Pb
in soil may also be reversed. Adding amendments in the
form of phosphorus or compost is generally a good way to
promote soil biological and physical health, and dilute
contaminant concentrations, but other issues resulting
from runoff or increased nutrient loading to aquatic sys-
tems can contribute to environmental issues such as
eutrophication (Conley et al., 2009; Paltseva et al.,
2018b). Phosphorus additions may also increase arsenic
(As) availability. Using amendments requires careful atten-
tion to detailed procedures that may not be easy for gar-
deners to carry out (Paltseva et al., 2018a, 2018b). Thus,
while adding amendments may potentially change overall
Pb bioavailability, it will not completely mitigate potential
risks for exposure (Figure 4).

4.2. Mesoscale interventions: Phytoextraction to

remove lead and phytostabilization to sequester

lead

Examining interventions on a mesoscale can take us
beyond the elemental and molecular changes of Pb in soil
and consider interventions that include the broader soil
system, larger plots of land, and a particular focus on
plants growing in situ. The use of plants to remediate soil

Figure 4. Microscale interventions: Changing soil Pb bioavailability. The system input (upper left) is legacy lead in soil.
To address this issue, people have attempted a number of interventions on the microscale (center box). Amendments
such as phosphorus, compost, biochar, and others have been added to change soil Pb bioavailability, but these
changes may be temporary and are hard to compare across approaches and lab assays. The output (upper right) is
limited efficacy to change Pb form. Although amendments may dilute the overall Pb concentrations and improve soil
health, there is a positive feedback (bottom) that perpetuates the input, identified here as legacy Pb remaining in
surface soils. DOI: https://doi.org/10.1525/elementa.2020.00174.f4
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has been investigated in numerous lab settings, on agri-
cultural fields, and on former mining sites and is part of
an emerging field of phytotechnology. Phytotechnologies
in general, and phytoremediation in particular, refers to
a range of plant mechanisms for breaking down, seques-
tering, uptaking, or volatilizing contaminants in soil, sed-
iment, and water. Numerous plant species have been
shown to be effective for breaking down organic contami-
nants (Kabata-Pendias, 2004), and a number have also
been shown to effectively uptake metals like arsenic, cad-
mium, and zinc (Ali et al., 2013).

The use of plants to remediate Pb, however, is a con-
tested issue, rife with misconceptions (Blaustein, 2017;
Egendorf et al., 2020). Because Pb is highly immobile in
soils (Sposito, 2008), and because plants have many me-
chanisms to limit Pb uptake through roots (Kumar and
Prasad, 2018), most plants exhibit limited Pb uptake, if
any at all. However, particularly through the use of che-
lating agents that make Pb more mobile in soils, some
studies suggest that plants such as sunflowers (Helianthus
anuus) and mustards (Brassica juncea) have the potential
to phytoextract (and essentially remove) Pb from soil (Tan-
gahu et al., 2011; Paliwal et al., 2015). The use of chelating
agents in these cases, however, has been shown to present
greater risks of mobilizing Pb to groundwater and is there-
fore not viable from a remedial perspective (Chaney et al.,
2002). Numerous researchers agree that plants capable of
phytoextraction must be able to uptake high quantities of
the element of concern without the use of chelating
agents (van der Ent et al., 2013).

Without the use of chelating agents or artificial condi-
tions, some very select species may be able to uptake some
Pb through their roots. However, the time it would take to
uptake enough Pb to sufficiently remediate any soils with
high concentrations would be significant (Butcher, 2009).
Estimates suggest that time frames for remediation of
soils with high Pb contamination may take 200 years (Ar-
shad et al., 2008). Additionally, when above ground shoots
and leaves of various plants have shown elevated Pb con-
centrations, the degree to which plant-Pb concentrations
are a result of surface contamination versus uptake
through roots is unclear, which calls into question such
plants’ phytoextraction potential (van der Ent et al., 2013).
No hyperaccumulator, that is, a plant that can meet a num-
ber of criteria (including concentrations of 1,000 mg Pb/
kg in dry weight aboveground tissue, greater ratios of
shoot Pb to root Pb, and greater ratios of shoot Pb to soil
Pb), has been found (Egendorf et al., 2020). As such, phy-
toextraction is not a viable option for effectively reducing
soil Pb exposure.

On the other hand, phytostabilization, where plants are
used to maintain contaminants in place, is an effective
way to cover contaminated soil, as long as the plant com-
munities are maintained (Butcher, 2009). When consider-
ing the mesoscale interactions of resuspended dusts
around a city, planting a wide range of perennial species
(particularly inedible ones to limit risks of Pb entering the
food chain), can be a highly effective intervention to limit
dust. Numerous researchers have investigated the poten-
tial of Pb phytostabilization and have demonstrated that

this approach can promote human and greater environ-
mental protection in a variety of settings (Dickinson,
2000; Robinson et al., 2006; Meeinkuirt et al., 2012; Rad-
ziemska, 2018; Figure 5).

4.3. Macroscale interventions: Emplacing clean soil

For primary prevention of Pb poisoning, all potential
sources of environmental Pb exposure must be isolated
or remediated before children enter the environment
(Laidlaw et al., 2012). The U.S. Federal Government has
created legislation protecting clean air (U.S. EPA Office
of Air and Radiation, 1970) and clean water (USEPA Fed-
eral Water Pollution Control Amendments of 1972), but
there is no universal clean soil act.Without such measures
in place, which interventions address soil Pb on the large
scale?

Given that remediation or extraction of Pb from soil is
unfeasible on human time scales, the most effective way
to reduce soil Pb exposure is to remove the contaminated
soil. Excavation and replacement can happen on a very
short time scale but requires tremendous cost, labor, and
logistical coordination. Removing contaminated soil also
places the burden elsewhere, most commonly into land-
fills. Excavation and soil disturbance can also present risks
for dust and contaminant redeposition. However, numer-
ous studies have investigated the efficacy of covering con-
taminated soil in situ, with promising results. Such
research demonstrates a significant reduction in soil con-
tamination when new soil is brought in to replace the
previously contaminated material (Laidlaw et al., 2017).
The costs of simply covering contaminated soil with a per-
meable geotextile like landscape fabric are far lower than
excavating and frequently lower than amending soil. As
long as the cover is maintained, this method is effective
for mitigating exposure (Mielke, 2016). Covering or repla-
cing contaminated soil has also been shown to reduce
levels of exterior Pb dust, as well as reduce Pb dust loading
inside home entryways, floors, and windowsills (Clark et
al., 2004). Yard covering interventions with a range of
nonsoil materials have also been shown to be effective for
such purposes (Binns et al., 2004; Dixon et al., 2006). This
intervention is therefore a negative feedback in the
human–soil Pb system, essentially reducing the initial
input of legacy lead in soils (Figure 6).

Not only does emplacing new soil reduce surface Pb
contamination, but it can also have an effect on reducing
children’s BLLs. Numerous studies have documented sig-
nificant reductions in BLLs when clean soil replaces con-
taminated material (Laidlaw et al., 2017). In one example,
Lanphear et al. (2003) demonstrated that soil abatement
was associated with a statistically significant decline in
children’s BLLs as well as a reduction in concentrations
of indoor Pb dust, particularly when compared with
homes where external soils were not replaced. Both
empirical dose response studies and EPA integrated expo-
sure uptake biokinetic models demonstrate that children’s
BLLs can be maintained below 5 ug/dL if soil Pb concen-
trations are maintained at 40 mgPb/kg (Zahran et al.,
2011; Mielke et al., 2016). The question then becomes:
Where can new soil be obtained? A few centimeters of
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topsoil can take hundreds of years to form naturally and
removing soil from exurban settings depletes the ecosys-
tem from which it is taken. Constructing soil from inor-
ganic and organic materials is a promising way to address
the urgent need for clean urban soil, as will be discussed
in the following sections (Sere et al., 2008; Sloan et al.,
2012; Rokia et al., 2014; Deeb et al., 2016; Egendorf et al.,
2018; Deeb et al., 2020).

5. Conducting applied and participatory
experiments for mitigating soil Pb exposure in
NYC
Capping and covering sites with clean soil may well be the
most feasible and cost-effective approach to mitigating Pb
soil exposure risks. Since the limiting factor for this
approach is availability of clean soil, pilot studies in NYC
are examining the potential for constructed soils to meet
this need. The NYC Clean Soil Bank and PURE Soil NYC
programs were initiated by the NYC Mayor’s Office of
Environmental Remediation (OER), using thoroughly
tested glacial sediments excavated from development sites
for various forms of beneficial reuse (Walsh et al., 2018). In
2014, OER began collaborating with researchers from the
City University of New York Brooklyn College to study the

extent to which these sediments could serve as viable
growing media (Egendorf et al., 2018). This pilot study
investigated sediments mixed with various ratios of com-
post and demonstrated that the constructed Technosols
were safe and effective for growing produce and limiting
Pb exposure. The most important obstacle for establishing
this study was obtaining compost with low Pb concentra-
tions. Ensuring compost is thoroughly tested and is pro-
duced in ways that prevent Pb incorporation could
potentially be a limiting factor in future work and is a topic
of concern in the broader field of constructed Technosols,
which investigates the use and development of newly cre-
ated soils. This field is emerging within global soil science
and is becoming more urgent in the midst of worldwide
soil depletion, degradation, and contaminant concerns
(Séré et al., 2008; Macı́a et al., 2014; Morel et al., 2015;
Jordán et al., 2017; Deeb et al., 2020).

Follow-up studies for this applied research are being
conducted and are currently emphasizing participatory
methods at various scales (Figure 7c). Each intervention
is being created in collaboration with multiple stake-
holders and is focused on collecting data that is meaning-
ful to affected communities. Results will be strategically
disseminated, and together, academics and researchers

Figure 5. Mesoscale interventions: Phytoextraction to remove Pb and phytostabilization to sequester Pb. The system
input (upper left) is legacy lead in soil. To address this issue, people have attempted a number of interventions on the
mesoscale (center box). Many different plants have been grown to potentially accumulate and extract Pb
(phytoextraction). However, no confirmed hyperaccumulator has been found to efficiently remove Pb from soil. On
the other hand, many plant roots can effectively stabilize Pb in soil (phytostabilization). The output (upper right) is
limited efficacy to remove Pb from soil. Although plants may stabilize Pb and prevent dusts, there is a positive
feedback (bottom) that perpetuates the input, identified here as legacy Pb remaining in surface soils, not being
removed from potential exposure. DOI: https://doi.org/10.1525/elementa.2020.00174.f5
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with expertise outside of academia will be evaluating the
degree to which interventions achieve goals at each scale.
Such evaluations will then enable revision to the experi-
ments as necessary, in order to more effectively engage in
ongoing systems research and change. The overarching
question and aims driving these efforts are as follows:

– How can the Clean Soil Bank effectively limit
exposure to legacy lead in soil?

� Microscale: Conduct participatory research on
new soil mixtures with affected communities to
create research relevant to users (Carbon Sponge
and JUST SOIL).

� Mesoscale: Evaluate soil and infrastructure
development over time to enable strategic cre-
ation of clean soil distribution systems (Legacy
Lead, East New York Healthy Soils Initiative).

� Macroscale: Quantify contaminant cover and
support policy, infrastructure, and funding for
soil distribution in NYC and beyond (Clean Soil
Bank Stockpile, widespread Anthrosol
construction).

Each of these collaborative research endeavors will be
briefly discussed in the sections below. Formalized
research objectives, hypotheses, methods, results, and dis-
cussions will be made available in forthcoming articles.

5.1. Microscale applied and participatory

experiments: Carbon Sponge and JUST SOIL

Before the Clean Soil Bank sediment and compost mix-
tures can be used on a large scale, more information is
needed in order to understand how these new soils form
and function with a range of parent materials, in a variety
of settings, and for different plant types and community
uses. The first pilot study begun in 2014 (Egendorf et al.,
2018) evaluated one type of compost and one type of
sediment used in three community gardens in Brooklyn,

Figure 6. Macroscale interventions: Emplacing clean soil. The system input (upper left) is legacy lead in soil. To address
this issue, people have attempted a number of interventions on the macroscale (center box). Contaminated soil can be
removed and replaced with clean soil. Although this is an effective way to limit exposure, removal can be extremely
expensive and logistically challenging. Covering contaminated soil and separating new layers with barriers like
geotextiles can also mitigate exposure. However, future land users must be made aware of underlying
contaminated layers. The output (upper right) is limited exposure to Pb in soil, as long as a cover is maintained.
Unlike the other investigated interventions (see Figures 4 and 5), emplacing clean soil creates a negative feedback on
the system (bottom), reducing the initial input. Clean soil layers reduce the stock of Pb at Earth’s surface, mitigating
exposure. When soils are constructed with affected communities, this intervention can also address environmental
injustices. DOI: https://doi.org/10.1525/elementa.2020.00174.f6
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Figure 7. Systems framework overview. The goal of this framework is to offer a structure for understanding and
experimenting with complex social-ecological systems (SES) toward just and sustainable outcomes. There are three
steps, illustrated here with the example of addressing legacy lead (Pb) in soils, situated in New York City, NY, USA.
DOI: https://doi.org/10.1525/elementa.2020.00174.f7

Figure 7a shows the first step of the framework: to map the system at multiple scales. This involves identifying the
system’s inputs, outputs, feedbacks, and the degree to which the feedbacks increase or decrease the initial inputs
(positive or negative feedbacks). Understanding the processes that occur to link the inputs to the outputs is also
essential to identify for each scale (see Figures 1–3 for more details and descriptions of processes). In this summary
figure, we see the initial inputs of Pb in soil and a summary of the behavior at each scale: Pb binding to soil particles
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NY. Two participatory follow-up studies are currently
underway. One study uses a sandy glacial sediment type
mixed with 33% compost produced by the NYC Depart-
ment of Sanitation (DSNY) and eight different plant cov-
ers: bare soil, sunflowers, edible crops, cover crops,
sunflowers and edible crops, sunflowers and cover crops,
edible crops and cover crops, and sunflowers, edible
crops, and cover crops. Three replicates of each bed type
were made to create 24 beds in total. The purpose of this
study is to evaluate the impact of plant type and plant
interactions on constructed Technosol biology, chemistry,
and physics, with particular attention to nitrogen cycling
and carbon sequestration potential (www.carbonsponge.
org). This study is being conducted with artists, horticul-
turalists, educators, and scientists and exists as an inter-
active exhibit at the NY Hall of Science in Queens, NY

(https://nysci.org/home/programs/designers-in-
residence/).

The second follow-up study uses another sandy glacial
sediment type mixed with six ratios of compost produced
by the NYC Compost Project Hosted by Big Reuse: 0, 10,
20, 30, 40, and 50%. Three replicates of each compost
ratio bed were created to produce a total of 18 beds. Each
mixture was planted with the same number and variety of
edible crops: collards, peppers, tomatoes, basil, and
onions. The purpose of this study is to evaluate the same
soil biological, chemical, and physical parameters of these
constructed Technosols as are being evaluated in the Car-
bon Sponge plots, but this study focuses on the impacts of
compost quantity instead of plant community on soil for-
mation and function. Perhaps the most important aspect
of this project is that it is being co-created with young

(microscale), soil Pb becoming suspended as dusts (mesoscale), and worldwide dissemination of Pb in soils
concentrated in cities (macroscale). These inputs and processes produce the outcomes of adverse health impacts,
seasonal cycles of adverse health impacts seen by blood Pb level (BLL) fluctuations, as well as environmental
injustices—disproportionate impacts borne by low-income populations and communities of color. There are
a number of positive feedbacks that perpetuate this system, here identified as a lack of awareness, the
redeposition of suspended dusts, and the fact that the most impacted communities lack access to the structural
power necessary to change the system.

Figure 7b shows the second step of the framework: to identify past/ongoing interventions (attempts that individuals or
groups have made to change the system). Invariably, if an SES is not functioning toward just and sustainable
outcomes, such attempts have been made, and it is important to identify what effectively changes the system,
what does not, and why. Here, we identify interventions at three scales: changing bioavailability (microscale),
phytoremediation (mesoscale), and emplacing clean soil (macroscale; see Figures 4–6 for more detailed
explanations of each). Changing the bioavailability of Pb may make its form less harmful to humans, but methods
to do so vary and effectiveness is not guaranteed. As such, this intervention perpetuates the output of adverse health
effects and soil Pb continuing to expose populations (positive feedback). Phytoextraction or removing Pb with plants
is not safe or effective on human time scales, so this too perpetuates the presence of Pb in soil and resuspension and
deposition of dusts (positive feedback). Phytostabilization, the process by which plants stabilize or sequester Pb in
situ, may prevent dusts as long as plant cover is maintained (and is a potential negative feedback, not depicted here
[but is represented in Figure 5]). Emplacing clean soil, however, can effectively reduce exposure to legacy Pb in soil as
long as the new soil cover is maintained (not dug up or removed). This can thus reduce exposure on a microscale,
reduce suspension of Pb dusts on the mesoscale, and reduce environmental injustice on a macroscale, particularly
when affected communities are involved in the process. As such, we identify the process of emplacing clean soil as
a negative feedback on the input or stock of legacy Pb in soil.

Figure 7c shows the third step of the framwork: once the system and attempted interventions are understood (Steps 1 and
2), Step 3 involves experimenting with interventions that can produce just and sustainable outputs. Because emplacing
clean soil was the only intervention we identified that is capable of reducing the harmful input of legacy Pb in soils (the
only negative feedback), this becomes the new experimental input wework with at a variety of scales. On themicroscale,
we have begun co-constructing and emplacing new soils with impacted communities, and the JUST SOIL project is one
such example where we work with youth and NYC Housing Authority residents on this applied research. On the
mesoscale, we have been piloting clean soil distribution with East NY Farms, to make clean soil available to residents
and community gardeners throughout an impacted neighborhood in Brooklyn, NY. On themacroscale, the NYCMayor’s
Office of Environmental Remediation (OER) has created aClean Soil Bank stockpile, a sitewith 12,000 cubic yard capacity
for the first municipal clean soil reuse and distribution system in the United States. This program provides the inorganic
substrate for themeso- andmicroscale projects and is enabling policy and infrastructure for clean soil distribution on the
macroscale. Each of these experiments is poised to produce healthy, sustainable, and just outputs since they not only
reduce the surface stock of legacy Pb in soil but also promote waste reduction, additional urban green space, and
ecosystem services and are being created in collaboration with impacted communities with the goals of food justice and
food sovereignty. Although each of these experiments is relatively new and ongoing, we expect them to create positive
feedbacks of more awareness of Pb in soil, reduced Pb in the atmosphere, and enhanced structural power for impacted
communities, which will perpetuate and increase the just and sustainable inputs. We believe that this framework can
help address issues of Pb in soil in other locations andwe hope it will be effectively applied to experiment with changing
other SES toward just and sustainable outcomes.
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people and gardeners from a NYC Housing Authority com-
munity. This JUST SOIL team emphasizes engaging
affected communities on the EJ aspects of this work
(https://twitter.com/justsoilnyc). Youth and gardeners are
collaborating in each stage of the research: The group of
individuals with expertise outside of academia helped
frame research questions, are co-conducting both field
and laboratory analyses, and will evaluate results and pres-
ent data as they become available. This project seeks to be
in alignment with CPAR (see Stoecker, 1999; McKenzie,
2009; Torre et al., 2012; Fine, 2018).

5.2. Mesoscale applied and participatory

experiments: Legacy lead and clean soil distribution

In January, 2016, 20þ organizations began convening in
NYC as the Legacy Lead Coalition to collaboratively
address soil Pb contamination and create a clean soil

distribution network. Legacy Lead is a coalition of con-
cerned residents, city employees, scientists, advocates, and
greening organizations collaborating to assist fellow New
Yorkers in reducing potential harm from Pb in soil. Parti-
cipants have gathered regularly to share informational
and material resources for systematically mitigating soil
Pb exposure. One of the primary strengths of this group is
in being a coalition and not a formal organization or
entity. The flexible structure not only allows the group
to easily evolve but also enables members of various in-
stitutions and agencies to come to meetings without
potentially conflicting with employer time or interests.
The group exists as a network where individuals can share
information and resources from their organizations and
bring such information and resources back.

Research questions being addressed by this network
include: How can a coalition build and support soil Pb

(c) Experiment with intervention that decreases harmful stock to

create a more just and sustainable SES

Co-construct new soils

(JUST SOIL)

Environmental Justice

 Sustainable CityDistribute clean soil

(East NY Farms)
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Figure 7. (Continued)
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education? How can such a diverse and diffuse entity
further soil research? And perhaps most importantly, how
can a coalition experiment with the creation of a clean soil
distribution network? In response to each of these over-
arching questions, the coalition has created accessible
educational materials (an illustrated story of the bio-geo-
socio-chemical Pb cycle), revamped best management
practices (BMP) signage and handouts, and is connecting
with numerous garden education networks. Although
household educational interventions have not been
shown to be effective for preventing Pb exposure, the
educational endeavors of the Legacy Lead coalition per-
tain directly to engaged gardening, horticultural, and agri-
cultural communities with a vested interest in
understanding their soils. Although behavior changes
such as washing produce and leaving dust outside of
homes are encouraged, the focus of the coalition has been
on constructing new soil and creating possibilities for pri-
mary prevention. Members of the coalition are also the
individuals and groups who made it possible to connect
with the follow-up pilot studies mentioned in the previous
section. Without the continued collaboration and regular
contact between organizations, it would not have been
possible to connect the sites with the material and infor-
mational resources required for these studies.

One goal of Legacy Lead is to support vulnerable po-
pulations in not only receiving clean soil but also in cre-
ating and disseminating such valuable material (soil) and
associated informational (background info, BMPs) re-
sources. Residents of public housing are ideal candidates
for such collaboration, but it was important that collabo-
ration occur as a request from such a community, and not
as an initiative from scientists, in order to attend to power
structures within the research process and uphold the
tenets of PAR. Relationships built within the Legacy Lead
network enabled this request and connection to be made
and sustained over time.

The need for clean soil to mitigate Pb exposure and
promote urban green space is clear. The microscale experi-
ments of constructing and understanding new soil for this
purpose can enable the mesoscale experiments on creating
a distribution network, just as the mesoscale network of
Legacy Lead fostered the connections that enabled the
microscale field experiments. In the vein of use-inspired
basic research, these opportunities can be conceptualized
as applied systemic experiments. Understanding the cur-
rent systems of material resources such as excavated sedi-
ments andmunicipal compost is enabling opportunities for
experimentation with thematerials and between city agen-
cies and organizations. Members from the 20þ organiza-
tions within Legacy Lead are essentially components of the
human system that are experimenting toward creating
a system for soil construction and distribution. Observing
and analyzing results of moving materials around the city
will continue to enable the system to be revised and
adjusted before it is emplaced in a more fixed manner.

The first clean soil distribution pilot in NYC began in
the spring of 2019. East New York Farms! (ENYF) organizes
youth and adults to address food justice in their commu-
nity by promoting local sustainable agriculture and

community-led economic development and has been
working with youth, gardeners, farmers, and entrepre-
neurs to build a more just and sustainable community
since 1998. This organization provided space for one of
the initial three sites for the first pilot study of the Clean
Soil Bank (Egendorf et al., 2018), and after growing crops
in the soils for several years, they applied for funding from
the NY State Department of Environmental Conservation
to experiment with constructing and distributing these
soils. The Mayor’s OER supported ENYF in receiving access
to a vacant lot, where they received large volumes of sedi-
ments from OER’s Clean Soil Bank program, received large
volumes of compost from DSNY, and have since distrib-
uted these soils by trucks to 15 local gardens, and numer-
ous free clean soil pickup and soil testing events. Working
in partnership with researchers and impacted community
members, data gathered on both the microscale soil prop-
erties, and the meso- and macroscale data on efficacy of
distribution will inform subsequent efforts.

5.3. Macroscale applied and participatory

experiments: Connecting with other cities,

legislative efforts, and the NYC Clean Soil Bank

stockpile

The fact that soil Pb is not considered a primary exposure
pathway is a positive feedback that leads to outcomes in
which contaminated surface soils are left in situ, such that
they remain potential sources of exposure (Figure 1). The
fact that the populations most affected by contaminated
soils may also lack access to structural power is another
positive feedback (Figure 3). Although data on soil Pb and
BLLs have been correlated in other cities, such research
has not been conducted in NYC. What data are needed in
order to understand potential risks? What data are needed
in order to justify primary exposure prevention, particu-
larly through capping and covering contaminated soils?
How can affected communities be co-creators of the ex-
periments to change this system?

Addressing these questions requires macroscale collab-
oration between researchers in multiple cities, as well as
researchers and practitioners in a variety of fields, including
law, toxicology, and EJ. Scaling up these inquiries within
NYC and beyond is enabling compilation of data and for-
mulation of research questions andmethods that can begin
to articulate what is needed for effective intervention in
multiple locations over longer periods of time. In addition
to experimenting with the material and informational re-
sources necessary for clean soil distribution, the emerging
networks inNYC are engagingwith local and regional policy
efforts. Pb poisoning has received heightened attention,
particularly since issues with Flint, MI water sources arose,
and political leaders in NYC have been creating new legis-
lation to take action on preventing Pb exposure.

The NYC City Council has proposed legislation to test
and remediate contaminated soil, and the network of re-
searchers and community advocates in Legacy Lead have
provided feedback during this process. Although Pb in soil
has not been considered a primary exposure pathway for
many state and city health departments, Mayor de Blasio’s
LeadFreeNYC plan emphasizes the importance of
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constructing and distributing clean soils to mitigate expo-
sure, largely in response to the local scientific research
conducted on soil Pb (i.e., Cheng et al., 2015; https://
www1.nyc.gov/assets/leadfree/). To assist in these policy
efforts, researchers and advocates in NYC are sharing ex-
isting data from other cities and gathering new data in
NYC to understand the risks of soil Pb exposure that have
not been well characterized. What is being done in NYC is
only one small example that builds on the research con-
ducted throughout the United States and throughout the
world, while aiming to contribute to what is urgently
needed in various scales of time and space. The framework
for applied and participatory experiments being devel-
oped in NYC is being strengthened within the 20þ orga-
nizations within Legacy Lead and is continuing to expand
to support the efforts of urban growers throughout the
city and local region. As such, the interventions at each
scale are essential for supporting and building the others.

Even with budget cuts and shutdown associated with
the global coronavirus pandemic, OER was able to open
their first nonprofit stockpile to store and distribute clean
excavated sediments and soils for citywide use in 2020
(https://www1.nyc.gov/site/oer/safe-land/forbell-street-
stockpile.page). The stockpile has the capacity to store
12,000 cubic yards of materials, where they have been
mixing sediments and composts to create constructed
Technosols for community gardens, farms, and municipal
uses. All soils are made available free of charge. In order to
limit exposure to the legacy of lead in soil, new layers
must be emplaced, creating Anthrosols or Anthropose-
quences (Effland and Pouyat, 1997). The stockpile is
enabling new soil layer emplacement at high volumes and
rates that were not previously feasible. In addition to lim-
iting Pb exposure, many of these experiments revolving
around new soil construction generate multiple co-
benefits associated with urban gardening and agriculture,
including increased food access and fresh produce intake
(Alaimo et al., 2008; Metcalf and Widener, 2011; Saha and
Eckelman, 2017), food justice and food sovereignty (Alkon,
2014; Jarosz, 2014; Horst et al., 2017), a range of health
benefits (McCormack et al., 2010; Van Den Berg and Cus-
ters, 2011; Clatworthy et al., 2013; Subica et al., 2015), and
enhanced community well-being (Hung, 2004; Saldivar-
Tanaka and Krasny, 2004; Kingsley and Townsend, 2006;
Okvat and Zautra, 2011). Ecological benefits include
reduced waste (Walsh et al., 2018), reduced stormwater
runoff (Gittleman et al., 2017), increased biodiversity and
habitat (Goddard et al., 2010; Yadav et al., 2012; McPhear-
son et al., 2014; Carlet et al., 2017), and greenhouse gas
sequestration (Pouyat et al., 2002; Beesley, 2012; Brown et
al., 2012; Vasenev et al., 2014).

Here, we have conceptualized multiple scales of multi-
disciplinary interactions with Pb in soil (Figure 7a) and
interventions aimed at mitigating soil Pb exposure (Fig-
ure 7b). Here, we also focus on ways that interventions
can be created with participation of affected communities
to effectively mitigate Pb exposure (Figure 7c). The
applied and participatory experiments underway in NYC
hypothesize that constructing soil with affected commu-
nities, with strong institutional and interorganizational

connections, and cooperative development of a soil distri-
bution network will generate data to further assist in sys-
temic experiments that effectively limit exposure to the
legacy of Pb in soil. When these efforts are aligned with
policy makers and researchers in other regions, the sys-
temic changes may amplify, and feedbacks that effectively
limit exposure may proliferate. Enhanced synergism and
transferability of systemic changes are the ultimate goals
of this framework.

6. Summary and conclusion
Given the magnitude and increasing rate of anthropo-
genic changes occurring within Earth systems, is urban
soil Pb truly a pressing concern? Here, we reviewed dec-
ades of research indicating the pervasive presence of Pb in
soil, the life-altering and life-shortening health impacts of
any form of Pb exposure, the data from a variety of con-
texts indicating inextricable connections between soil Pb
and BLLs, the environmental injustices and disproportion-
ate burdens of exposure placed on vulnerable popula-
tions, as well as the physical, social, and policy-based
feedback mechanisms perpetuating the unjust system at
a variety of scales (Figure 7a).

We developed and applied a systems framework that
traces human and nonhuman system interactions at a vari-
ety of scales, identifying inputs as historical and ongoing
Pb emissions from industry, paint, and gasoline, the
behavior of Pb in soil and human bodies, and resulting
outcomes of exposure on the microscale. Lack of acknowl-
edgment by policy makers and health departments of the
particular issue with soil Pb is a positive feedback enabling
this cycle of exposure to persist (Figure 1).We then traced
mesoscale temporal and spatial changes, specifically locat-
ing seasonal variations of atmospheric Pb and BLLs, indi-
cating contaminated soil and dust resuspension and
deposition as another positive feedback mechanism per-
petuating risks of exposure (Figure 2). On the macroscale,
we identified spatial patterns of high urban soil Pb con-
centrations with a decreasing gradient toward the exurban
areas, as well as high Pb concentrations corresponding to
areas with high poverty and concentrations of people of
color, aligned with a significant body of EJ research. This
uneven exposure also serves as a positive feedback mech-
anism in that people with the greatest exposure have less
access to the structural power needed to address the issue
(Figure 3).

On the macroscale, we also suggest that this broad
systems-based understanding enables us to perceive Pb
in soil as a noncontiguous layer of Earth’s surface that
holds the memory of human industrial and capitalist
activity. Although neither Pb in strata nor soil in and of
itself are appropriate indicators for shifts in geologic time
periods, we contend that this understanding may be of
use and value toward a basic science understanding of our
species-wide interactions with Earth systems, as well as
our particular imbalances of resources and toxins for dif-
ferently identified groups of people. This understanding
may not only inform rigorous and accurate depictions of
material and energetic fluxes over time but can also
inform experimentation with system-wide interventions.
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As we traced microscale interventions aimed at chang-
ing the bioavailability or bioaccessiblity of soil Pb (Figure
4) and mesoscale interventions that attempt to extract Pb
from soil with plants (phytoremediation; Figure 5), we see
the limitations of these types of approaches. Indeed, the
only way to effectively mitigate exposure to soil Pb on
human time scales is to remove the entire soil substrate
or cover it with a new material (Figures 6 and 7b). With
either approach, a new soil medium is required in order to
maintain the ecological productivity of the area. As such,
we have broadly articulated the outlines of a number of
applied and participatory experiments in soil construction
and distribution in NYC that attend to multidisciplinary
and transdisciplinary tenets of social-ecological urban sys-
tems and participatory research. With attention to the
identified feedback mechanisms of soil resuspension and
impacts on marginalized populations, we are co-
constructing each phase of research on constructed Tech-
nosols with affected communities and building strong
local networks to interact with other researchers and prac-
titioners on national and international stages (Figure 7c).

The framework outlined here enables us to understand
the systems of human and soil Pb interactions, identify the
interventions that have been evaluated, and experiment
with applied solutions. These applied experiments (Car-
bon Sponge, JUST SOIL, Legacy Lead, ENYFs’ soil distribu-
tion pilot, and the NYC Mayor’s OER’s Clean Soil Bank
stockpile) and legislative endeavors are furthering efforts
to address this urgent and challenging issue of environ-
mental contamination and injustice. The systems
approach for addressing Pb in soil that we describe can
be applied in other locations, and collaborations will con-
tinue with researchers and practitioners in other U.S. and
international cities. Perhaps most importantly, we hope
this systems approach will be extended to address other
environmental challenges. Consideration of multiple
scales of interaction between biogeochemical, ecological,
social, and political factors, and using understanding of
these factors and interactions to develop participatory ex-
periments with diverse populations, should produce more
effective solutions for environmental issues ranging from
water quality, to deforestation, to climate change. Many
more research-based efforts are needed to address these
pressing issues, and the multiscalar systems approach is
one that can lend itself to the creation and proliferation of
sustainable systems for all of Earth’s living and nonliving
components.
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