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Abstract—Brain-inspired hyperdimensional (HD) computing emulates cognition by computing with long-size vectors. HD computing
consists of two main modules: encoder and associative search. The encoder module maps inputs into high dimensional vectors, called
hypervectors. The associative search finds the closest match between the trained model (set of hypervectors) and a query hypervector
by calculating a similarity metric. To perform the reasoning task for practical classification problems, HD needs to store a non-binary
model and uses costly similarity metrics as cosine. In this article we propose an FPGA-based acceleration of HD exploiting
Computational Reuse (HD-Core) which significantly improves the computation efficiency of both encoding and associative search
modules. HD-Core enables computation reuse in both encoding and associative search modules. We observed that consecutive inputs
have high similarity which can be used to reduce the complexity of the encoding step. The previously encoded hypervector is reused to
eliminate the redundant operations in encoding the current input. HD-Core, additionally eliminates the majority of multiplication
operations by clustering the class hypervector values, and sharing the values among all the class hypervectors. Our evaluations on
several classification problems show that HD-Core can provide 4.4x energy efficiency improvement and 4.8 x speedup over the
optimized GPU implementation while ensuring the same quality of classification. HD-Core provides 2.4x more throughput than the state-
of-the-art FPGA implementation; on average, 40 percent of this improvement comes directly from enabling computation reuse in the
encoding module and the rest comes from the computation reuse in the associative search module.

Index Terms—Brain-inspired computing, hyperdimensional computing, machine learning, FPGA, energy efficiency

1 INTRODUCTION

ACHINE learning algorithms have shown a promising
Msolution in many tasks, including computer vision, voice
recognition, natural language processing, and health care [1],
[2], [3], [4]. However, existing machine learning algorithms
such as Deep Neural Networks (DNNs) are computationally
expensive and require an enormous amount of resources to
be executed [5], [6], [7]. Moreover, embedded devices (e.g.,
wearable devices, smartphones, etc.) are often constrained in
terms of available processing resources and power budget [8],
[9], [10], [11]. Brain-inspired hyperdimensional (HD) comput-
ing is a computational paradigm performing energy-efficient
cognitive computation with comparable accuracy to computa-
tion-intensive machine learning algorithms [12], [13]. Brain
performs cognition tasks based on the patterns of neural activity
that are not readily associated with numbers [14]. HD com-
puting models such neural activity patterns with vectors in
high-dimensional space, called hypervectors.

HD computing builds upon a well-defined set of opera-
tions with random hypervectors. In addition, it is robust in
the presence of faults due to the holographic distribution of
the patterns in high-dimensional space (random patterns
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with ii.d distributions). HD computing offers a complete
computational paradigm that applies to various learning
problems, including: analogy-based reasoning [15], latent
semantic analysis [16], language recognition [17], prediction
from multimodal sensor fusion [18], speech recognition
[19], activity recognition [20], DNA sequencing [21], and
clustering [22]. In contrast to existing classification algo-
rithms which require significantly complex and costly com-
putation during training and inference [23], [24], [25], HD
provides high parallelism with hardware-friendly training
and inference operations that can be processed on light-
weight embedded devices [13].

All the main steps of HD computing is illustrated in Fig. 1.
The first step of HD computing is representing data with
hypervectors. The encoding module generates a hypervector
for each input as a set of pre-processed features. Encoding
module keeps the information of the input features in a hyper-
vector. To train the HD model, inputs belong to a class are
encoded and added together to generate a hypervector repre-
senting each class. At the inference phase, the incoming input
is encoded to a hypervector, called the query hypervector, and
then the associative search module checks the similarity
between the query and each class hypervector. The class with
the highest similarity to the query hypervector is selected
as the classification result. During training, encoding domi-
nates the entire energy and execution time since the training is
a simple addition operation. In the inference, both associative
search and encoding steps are computationally complex.
Therefore, accelerating HD requires accelerating both
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Fig. 1. HD functionality in training and inference phases using encoding
and associative search modules.

encoding and associative search using algorithmic and hard-
ware optimizations. In this paper, we propose a algorithmic-
hardware co-optimization platform to accelerate both encod-
ing and associative search, resulting in significant acceleration
of the HD computing.

To accelerate encoding module, we exploit similarity
between features in consecutive inputs to eliminate the
redundant computation during the encoding. Our observa-
tion on wide range of applications show that consecutive
inputs have 78 percent average and up to 97 percent similar-
ity. In our experiment we calculated the similarities
between consecutive inputs of four different datasets. In
these datasets most of the inputs are more than 40 percent
similar to the previous input and only a few samples have
less than 20 percent similarity(illustrated in Fig. 9). This sim-
ilarity between consecutive inputs makes the encoded
hypervectors similar in the high dimensional space as well.
Therefore, instead of encoding each input to a hypervector,
HD-Core generates the encoded hypervector of the current
input by modifying the encoded hypervector of the previ-
ous input. This significantly reduces the required resources
to generate each dimension of the encoded hypervector.

After encoding the input, the associative search module
calculates the similarity metric between the encoded input
and the HD model. In order to achieve acceptable accuracy
on practical classification problems (i.e., speech, activity, or
face recognition), HD computing has to use class hypervec-
tors with non-binary elements [26]. The non-binary model,
unlike the binary model that uses a simple hamming distance
metric, uses a more complex cosine metric to find the simi-
larity between a query hypervector and class hypervectors.
The cosine can be calculated using the dot product of an
input hypervector with all stored class hypervectors, which
involves a large number of multiplication/addition opera-
tions. To improve the efficiency of the associative search
step, HD-Core, by taking the statistical properties of the
hypervector, employs a clustering algorithm to share the
values in each class hypervector. Thus, instead of multiply-
ing all pairs of the query and the class hypervector, HD-Core
adds all query elements which are going to multiply with a
shared class element and finally multiplies the result of
addition with the corresponding class value.

The encoding and associative search stages of HD com-
puting consist of a substantial number of binary/fixed-
point addition and multiplication operations. HD comput-
ing operations can be deeply pipelined and parallelized at
dimension level. These inherent characteristics of HD com-
puting make FPGAs, that can provide flexibility in design
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and huge parallelism [13] with high energy efficiency [27],
[28], an excellent match for implementing HD computing
applications. In this paper, we propose novel techniques to
exploit computation reuse for HD computing (HD-Core).
HD-Core reduces the computation complexity of the encod-
ing module by reusing the previously encoded hypervec-
tor. It also increases the performance of the associative
search by replacing the multiplication operations with
addition operations by clustering and sharing the values of
class hypervector elements [29]. We also proposed an
FPGA-based Acceleration of HD-Core, which significantly
reduces the computational cost of both encoding and asso-
ciative search.

We evaluate the impact of the HD-Core optimizations on
the efficiency of the wide range of classification applica-
tions. Our evaluations on a wide range of classification
problems show that HD-Core encoding provides 5.7x (2.3x)
energy efficiency, and 4.5x (2.1x) speedup as compared to
GPU (state-of-the-art FPGA [13]) implementation. HD-Core
also provides 4.4x (1.4x) energy efficiency improvement
and 4.8x (2.4x) speedup as compared to GPU (state-of-the-
art FPGA) implementation while ensuring the same quality
of classification. We observe that 40 percent of HD-Core per-
formance improvement comes directly from the encoding
acceleration and the rest is coming from our previous opti-
mization that accelerated the associative search [29].

2 BACKGROUND AND RELATED WORK

2.1 HD Computing Algorithm

HD provides a general model of computing which can
apply to various types of learning problems. Classification
is one of the most commonly used learning algorithms.
Fig. 1 shows the overall structure of the HD classification
in both training and inference phases. Encoding module
maps input data to a hypervector, a vector with Dy,
dimensions. Training is performed on hypervectors by
adding all hypervectors corresponding to a particular class
together. During training, a single hypervector is generated
for each existing class. These class hypervectors are stored
as the HD model. HD computing, during the inference, con-
sists of two main steps: encoding and associative search. It
uses the same encoding scheme to map a query to a hyper-
vector with D, dimensions. Finally, on the associative
search step, it performs the reasoning task by searching for
a class hypervector, which has the highest similarity to the
input hypervector.

2.2 Encoding

The first step in both training and inference of HD comput-
ing is encoding the input data to a hypervector. The main
goal of encoding module is to map the input data to a
hypervector with D, dimensions (e.g., Dy, = 10,000), while
keeping important information of a data point in the origi-
nal space, e.g., the feature values and their indexes in the
input feature vector. Based on the input data representation
and the hardware platform, various encoding approaches
have been introduced in the literature [12], [19], [30]. In this
paper, we focus on a method from [31] since it requires less
memory to store the base hypervectors and is more FPGA-
friendly. The encoding is performed in three steps.
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Fig. 2. Similarity between consecutive inputs in two datasets.

1) Base hypervector generation: First, the values of features
based on the distribution of the feature values are quantized
to L levels [31], [32]. Then, each level is assigned to a pre-
generated hypervector, called base hypervector. To generate
the base hypervector for feature level with the minimum
value, BHV) a random binary hypervector with D, dimen-
sions is generated. To generate the base hypervector repre-
senting the maximum value of the features, BHV}, Dy,,/2
dimensions of BHYV}, are selected and flipped randomly to
produce an orthogonal base hypervector to BHVj. To gener-
ate BHYV, for feature with level [, D’H/ 2 dimensions of the pre-
vious base hypervector, starting from the initial base
hypervector, are flipped. As a result, features with closer
values have more similar base hypervectors, while the mini-
mum and maximum level of the features will are nearly
orthogonal. Base hypervectors are generated offline and
stored in the encoder module.

2) Base hypervector permutation: After generating the base
hypervectors, each element (Feature;) of a given input fea-
ture vector is mapped to its corresponding base hypervector
BHYV (Feature;). To take the spatial position of input fea-
tures into account, the encoding module uses a permutation
operation P'(BHV), where i is the index of the feature in
the input feature vector. P'(BHV) can be an i-bit left rota-
tional shift on the base hypervector. Since base hypervectors
have large dimension, and they are randomly generated,
permutation generates an orthogonal hypervector to its
resultant shift orthogonal.

3) Base hypervectors aggregation: Eventually, the permuted
hypervectors are aggregated to generate the encoded hyper-
vector. Each dimension of the encoded hypervector is gener-
ated by adding the corresponding dimension of all the
permuted hypervectors together. Equation (1) represents the
encoding function. For all the input features, we first read
their corresponding base hypervectors, BHV (Feature;). Then
each hypervector is permuted based on its location in the
input feature vector , P'(BHV (Feature;)). Then we perform
an element-wise addition on all the permuted hypervectors

# Features
Encoding(input) = Z P'(BHV (Feature;)). (1)
=0

2.3 HD Model Training

HD computing performs the training procedure on the
encoded hypervectors. For all data corresponding to a par-
ticular class, HD computing adds all hypervectors element-
wise to create a class hypervector. For example, assume
Q' ={4.,4,...,q,} is a hypervector belongs to the class
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ith. As shown in Equation (2), the HD model learns the com-
mon patterns and/or features of a class by adding all the
encoded hypervectors of training data with the same class
tag. To train the HD model, we first encode, all the inputs
belongs to the same class and perform an element-wise
addition on the encoded hypervectors to achieve a hyper-
vector representing the class

C' = {w, w,...,wh} :ZQ}. )
J

Elements of the class hypervectors can have non-binary
values. Non-binary hypervectors significantly increases the
inference cost, as the rest of the reasoning task, i.e., similar-
ity check, will be integer operations instead of binary opera-
tions. To reduce the computational cost, several prior works
tried to binarize the class elements after training by apply-
ing a majority function on each dimension [33], [34]. How-
ever, these techniques lose some of the information stored
in each class hypervector, thereby scarificing the accuracy
forthe performance.

2.4 Associative Search

After training, all class hypervectors are stored as the HD
model (shown in Fig. 1). In inference, an input data is
encoded to the query hypervector using the same encoding
module used for training. The associative search module is
responsible for comparing the similarity of the input query
hypervector with all stored class hypervectors and selecting
a class with the highest similarity. Associative search mod-
ule can use different similarity metrics to find a class which
has the most similarity to a query hypervector. For class
hypervectors with binarized elements, Hamming distance is
an inexpensive and suitable similarity metric, while class
hypervectors with non-binary elements need to use cosine as
the similarity metric. Most existing HD computing techni-
ques are using binarized class hypervectors in order to elim-
inate the costly cosine metric [31], [33]. However, it has been
shown that HD with binary model provides lower classifi-
cation accuracy as compared to the non-binary model [26].

2.5 Hardware Acceleration

HD comprise numerous but simple operations due to is
high-dimensional nature. Prior work has proposed both
algorithmic innovations as well as hardware accelerators to
accelerate HD computing. The works [33], [35], [36], [37]
proposed processing in-memory platforms, and the
works [38], [39] proposed ASIC accelerators to run binar-
ized HD models. The work in [36] fabricated a 3D VRRAM/
CMOS to support the primary operations of HD computing
(multiplication, addition, and permutation) on 4-layer 3D
VRRAM/FinFET. The work in [33] focuses on accelerating
binarized HD model using digital, they design digital, resis-
tive, and analog associative memories to accelerate Ham-
ming distance similarity in HD inference.

FPGAs provide high parallelism that can significantly
improve the performance and energy efficiency of HD com-
puting. Moreover, FPGA-based accelerators are advanta-
geous over more specialized platforms, ASIC or processing
in-memory, as they allow more flexibility in the HD model
and easier customization of the model parameters such as
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the length of the hypervectors, the precision of the HD
model (binary or non-binary) and the input features charac-
teristics. The works [13], [29], [40], [41] use FPGAs to accel-
erate HD computing. The study in [40] proposes a
synthesizable VHDL library for training and inference of
HD on FPGAs. The accelerator is limited to the binarized
model and it uses logical operations to generate the base
hypervectors during the runtime to reduce the costly mem-
ory accesses to read the base hypervectors. The authors,
additionally, propose approximate logics to compose the
binary class hypervectors without requiring to hold the
summation on hypervector components in a multi-bit for-
mat during the model training. The work in [13] proposed
an automated tool to generate FPGA-based HD accelerator.
Work in [13] supports HD training, retraining, and infer-
ence phases, and supports accelerators for HD model with
different quantizations (power-of-two, binary, and fixed-
point). However, the inference of HD computing is still
time and energy consuming. To reduce the time and energy
consumption of HD inference, we exploited computational
reuse methods to reduce the computation complexity of HD
inference. As we proposed in our previous work [29],
FACH represents class elements of a trained HD model
using clustering algorithms. During runtime, instead of
multiplying all inputs and class elements, FACH adds all
the inputs belonging to the same class cluster centroid and
multiplies the result once at the end. FACH assumes the
encoded hypervector is stored in FPGA BRAM. However,
in our experiments, we observe that the original encoding
m odule, on average, takes 55 percent of the resources.
Many of the previous works either assumed that the
encoded hypervector is available in the memory [29], [33],
[42] or they implemented the original encoding module [13],
[38], [43]. In this work, we exploit the data locality between
consecutive input data to significantly reduce the complex-
ity of the encoding module and thereby accelerating the
encoding module.

3 PROPOSED HD-CORE

In HD computing, the first step in either training or inference is
encoding the input feature vector, V = {V9 V' ... VF},
where F is the number of input features. The encoding uses
basic permutation and binary addition on the base hypervec-
tors to encode the input feature vector to a hypervector. Each
possible value of the input feature vector, {lo, I1,..., I}, hasa
corresponding element in the set of base hypervectors
{BIfVO, BHV, ..., BETVZ} To generate the encoded hyper-
vector, we need to read the base hypervector for each feature
and permute it. All the permuted hypervectors are aggregated
to generate the encoded hypervector. For unchanged features
between consecutive inputs, the permuted hypervectors
remain unchanged therefore, it can be reused for generating
the encoded hypervector of the current input.

By quantizing the value of the feature to L levels, conse-
cutive inputs share more features with the same value. For
unchanged features in consecutive inputs, the permuted
hypervectors will have the same contribution in building
the encoded hypervector for both current and previous
input. Thus, higher similarity between consecutive inputs
results in higher efficiency of the HD-Core encoding. Figure
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shows the similarity of consecutive inputs in the training
data for speech recognition (ISOLET [44]) and face detection
(FACE [45]) dataset. The similarity in the test data would
follow the same trend since the training data was shuffled
for the sake of generalization. Although consecutive inputs
in the ISOLET dataset have shown on average 36 percent
similarity, they can be upto 67 percent similar. This metric
for the FACE dataset is considerably higher, consecutive
inputs share 79 percent of their features on average. By
quantizing the value of the feature to L levels, consecutive
inputs share more features with the same value. HD-Core
leverages the high similarity between consecutive inputs, to
reduce the computation complexity of the encoding step.

HD-Core exploits the statistical characteristic of the HD
computing in order to reduce the HD computational com-
plexity. First, HD encodes all data points to hypervectors
and send it to the training and inference phases. Fig. 3
shows an overview of the HD-Core framework consisting of
five main steps: encoding, training, model quantization and
validation, model refinement, and inference. After encod-
ing the inputs(@®), HD-Core trains the HD model by combin-
ing data points corresponding to each class (@ ). HD
refinement clusters the values that elements in each class
hypervector can take by applying non-linear clustering on
the trained class hypervectors. This method reduces the
possible values that the elements of each class hypervector
can take. Also, HD refinement estimates the accuracy of the
new HD model on the validation data, which is a part of
the training data (@ ). If the error rate is more significant
than a pre-defined e value, HD-Core adjusts the model and
again clusters all values exist in each newly trained class
hypervector. This clustering gives us new centroids, which
better represent the distribution of the values in each class
hypervector. This process continues iteratively until the
convergence condition (AE < ¢) is satisfied, or the algo-
rithm has run for a pre-defined number of iterations (@ ).
When the convergence condition satisfied, HD-Core frame-
work sends a new HD model with the clustered class ele-
ments to inference in order to perform the rest of the
classification task. HD-Core uses the modified HD model
with clustered class elements for inference (@ ). In the fol-
lowing subsections we explain the HD-Core encoding and
associative search in detail.

3.1 HD-Core Encoding

To reduce the complexity of encoding and reduce the
required resources, we exploit locality to generate the cur-
rently encoded hypervector by reusing the encoded
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hypervector of the previous input. The encoded hypervec-
tor is the result of aggregating the permuted hypervectors
over different features. The unchanged features have the
same permuted hypervector while for the other features a
new permuted hypervector is needed. To reuse the previ-
ously encoded hypervector, the permuted hypervector of
the feature that changed from the previous input should be
subtracted from the encoded hypervector. Then, the per-
muted hypervector of the current feature should be added
to the encoded hypervector. Therefore, the operations for
unchanged features are reused from the previous input.
However, for changed features, one subtraction and one
addition are required to generate every dimension of the
encoded hypervector. Therefore, each change in the input
feature vector has one operation overhead.

This technique reduces the number of required operations
whenever the similarity between consecutive inputs is higher
than 50 percent. Having higher than 50 percent similarity
between consecutive inputs is a strict condition which is not
practical in all applications. To eliminate the additional opera-
tion overhead, HD-Core introduces transition hypervectors
(THV), which are hypervectors that represent the transition
between one feature level to another feature level. A transition
hypervector is the base hypervector for a feature level sub-
tracted by the base hypervector of the previous feature level.
L — 1 transitions are possible for each level of feature. For
level i of feature, the transition from level ; to {level 0, . . ., level
i —1}and to{leveli +1,... ,level [} are possible. Equation (3)
shows the transition hypervector when the value of a feature
changes from level i to level ¢/

THV, ., = BHV; — BHV,

3
THVy ;= BHV;, — BHVy = THV,_; = =THV; ;. ®

According to the Equation (3), the transition hypervectors
for transition from ¢ to ¢ is the negative form of that for transi-
tion from level ¢’ to level i. HD-Core, instead of storing all the
transition hypervectors, only stores the transition hypervector
for the transitions from a lower level to a higher one. To gener-
ate transition hypervectors to/from the level 0 from/to any
other L — 1 levels, base hypervector of level 0 is subtracted
from the base hypervector of level i to generate transition
hypervector THV;_; . Equation (4) shows all the transition
hypervectors that we store in the memory which includes
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transitions from level i to the higher levels. The rest of the

transition hypervectors are generated and stored as THV}_,;

(Vi' < i) which are the negative form of THV; ., . In total, (})

transition hypervectors are stored while in the original HD

encoding L base hypervectors are stored. Therefore, as shown
L-3

in Equation (5), L x #5° more hypervectors as the regular HD

model are needed to store in the memory

THV. il > > i )
LxL—1 L—3
LXETL g . 5
2 T )

Quantizing the input features to L levels not only increases
the consecutive inputs similarity, but it reduces the the mem-
ory overhead of using the HD-Core encoding as well. Using the
HD-Core encoding reduces the number of required operations
proportional to the similarity of consecutive inputs. Unlike
the original encoding, the number of required operations is
not fixed; it depends on the type application and sequence of
inputs. By pre-processing the training data, a metric for simi-
larity (SM) of the consecutive inputs is calculated. Although
the SM is calculated based on the characteristics of the training
data, the same pattern is observed during the inference. SM
represents the similarity of all two consecutive inputs with a
value. The similarity between each two consecutive input can
be: (i) less than the SM, (ii) equal to the SM, and (iii) higher
than the SM. In the first case, the encoding cannot be done in
one step. Extra steps are required to encode the input; in these
steps, the associative search module will be stalled. In the sec-
ond case, the encoding hardware is fully utilized, and the
input is encoded in one step. In the case of having a higher
similarity than SM, the underutilized encoding module can
encode the input in one step. The function Ency,(d;, d;—1, SM)
returns the number of required cycles to encode input d; while
the encoded hypervector of input d;_; is available. The SM%
is calculated based on the similarity to minimize the opera-
tions, based on the similarity of the consecutive inputs of
training data. Calculating the optimum SM, additionally,
depends on the hardware implementation. HD-Core uses the
average similarity of the consecutive inputs in the training
data for the SM parameter.

3.2 HD-Core Associative Search

Performing cosine similarity between two vectors involves
calculating the dot product of vectors divided by the size of
each vector. Since HD trains the model offline, the normali-
zation of the class hypervectors can be performed offline.
On the other hand, input data is common between all class
hypervectors, thus it does not need to be normalized. There-
fore, cosine similarity between a query Q = {q1,¢,...,qp}
and ith class hypervector, C' = {wi, wi, ..., w)}, requires
calculating their dot product which involves D additions
and D multiplications, where D is the dimension of the
hypervectors.

In this work, model refinement in HD-Core reduces the
class span by carefully selecting a subset from the input
spaces, called “best representatives”. HD-Core limits the
number of values that each class element can take (i.e.,
{wy,...,wp} € {c1,...,¢t} and k < < D)). This enables us
to remove the majority of cosine multiplications by
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factorization. In other words, instead of multiplying the D
elements of query and class hypervector, we add the input
data for all dimensions for which class hypervector has the
same element. Finally, the result of the addition is multi-
plied by the value of that particular class.

Here we explain how HD-Core can limit the number of
each class elements with no or minor impact of classification
accuracy. To find representative class elements, the cluster-
ing algorithm is applied to the pre-trained class hypervec-
tors. For each class hypervector, our design identifies a
specified number of clusters, say k, based on clustering
algorithms. The centroids of clusters are selected as the rep-
resentative weights and stored into the weight table.
Assuming that the actual numerical values belong to a set 6,
the objective of the clustering algorithm is to find a set of k
cluster centroids {c;, ¢, ..., ¢;} that can best represent the
class values (c € N)

{wh wh, ... wh} € {c),ch, ... L} (6)

Formally, the objective is to reduce the Within Cluster

Sum of Squares (WCSS)

k
wess =33 16—l |, (7)

J=1 6;€c;

min
C1, €9, nsCl

where 6; is the ith sample drawn from 6 and £ is the number
of clusters.

We use the k-means clustering algorithm to solve the
minimization objective for each HD class hypervector sepa-
rately, as the distribution of values can vary across different
classes. The calculation of dot product between query, @,
and a class hypervector, C’, can be simplified by adding all
query elements which belong to the same cluster in class
hypervector. For example, for class dimensions with ¢, ele-
ments, our design adds all corresponding query elements
together (s; = >_; = g; where w; = ¢;). In a similar way, our
design calculates the accumulative query elements on all
cluster centroids: {si,ss,...,s;} and s € N. Finally, these
values multiply with each corresponding cluster values and
accumulate together to generate a dot product between @
and C' hypervectors

Q.C' =51 X ¢1 + 89 X Coy 4 ... S X Cp. (8)

This method reduces the number of multiplications
involved in dot product from D to k, where k can be about
three orders of magnitudes smaller than D. Fig. 5 shows an
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example of the dot product between a class and a query vec-
tor using conventional method and clustered model. Since
in the conventional method, the class elements can take any
value, the dot product involves six multiplications (Fig. 5a).
HD-Core exploits the advantage of clustered class values to
first add the query elements corresponding to the same cen-
troid and then multiply the result with the centroid values
(Fig. 5b). This reduces the number of multiplications to two.

Error Estimation. Sharing the elements of input and class
hypervectors reduces the HD classification accuracy. After
the training, our design replaces the elements of the class
hypervectors with the closest representative values (cluster
centroids). We estimate the error rate of the new model by
cross-validating the cluster HD on a validation data, which
is a part of the training data. The quality loss, AE is defined
as the error rate difference between the HD using original
and modified models (AE = Euysterca — Eoriginal)-

Model Adjustment. If the error rate does not satisfy the tol-
erance AE < ¢, HD-Core adjusts the new model by retrain-
ing the network over the same training dataset. In
retraining process, HD composer looks at the similarity of
each input hypervector to all stored class hypervectors; (i) if
an input data correctly matches with the corresponding
class in associative memory, our design does not change the
mode. (ii) if an input hypervector, (), wrongly matches with
the ith class hypervector (C') while it actually belongs to jth
class (CY), our retraining procedure subtracts the input
hypervector from the ith class and add it to jth class
(C'=C"-Q & Ci=C'+(Q). After adjusting the model
over the training data, HD refinement again clusters the
data in each class hypervector and estimate the classifica-
tion error rate. We expect the model retrained under the
modified condition to better fit with the clustered values.
Since we start clustering from first iterations, both baseline
and HD-Core show almost the same pattern in increasing
the accuracy of the model during the retraining. If an error
criterion is not satisfied, we follow the same procedure until
an error rate, ¢, is satisfied or we reach to a pre-specified
number of iterations. After the iterations, the new model,
which is compatible with the proposed accelerator, is used
for real-time inference.

Fig. 6a shows the classification accuracy of applications
during different retraining iterations when the class ele-
ments are clustered to 32 values. Our evaluation shows that
HD refinement can compensate for quality loss due to clus-
tering by using less than 30 iterations. Since the maximum
number of retraining iterations is limited to 30 and the base-
line HD model also requires the refinement iterations, the
overhead of the HD-Core training is negligible. All pre-proc-
essing operations in the HD refinement module are
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Fig. 7. FPGA-based implementation to calculate the dot product between a
class elements.

performed offline and their overhead is amortized among
all future executions of HD-Core accelerator. Fig. 6b shows
the final quality loss, AE, when HD-Core clusters the class
hypervector to a different number of centroids. We con-
sider the cluster sizes of 4, 8, 16 and 32. The results show
that different applications can provide AE = 0% while
using a different number of class clusters. For example,
face recognition can achieve AE = 0% when the class ele-
ments are clustered to 16 centroids, while human activity
recognition (UCIHAR) achieves AE = 0% using 32 cluster
centroids. In Section 5, we will explain the accuracy-effi-
ciency trade-off in HD-Core using different clusters.

4 HD-CoRE FPGA ACCELERATION

We use FPGA to accelerate HD computing encoding and infer-
ence. In this we implement the HD-Core on an FPGA and use
the platform proposed in [13] as the baseline FPGA implemen-
tation. Fig. 7A shows that the FPGA-based implementation of
the baseline HD requires multiplication for S parallel dimen-
sions to calculate the dot product between the query and class
hypervectors. Then, the results of all S multiplications accu-
mulate in a tree-based adder. The size of the S, the number of
input dimensions which FPGA reads at a time, depends on the
number of classes, and the number of available resources (e.g.,
LUTs, BRAM, and DSPs) in FPGA. In this case, our design
sequentially generates the first S elements of the query vector
and multiply it to the corresponding class elements (S < D).
Then, the computations on the rest of the query elements are
performed sequentially. In the following, we explain how each
design can be accelerated on FPGA.

4.1 HD-Core Encoding Acceleration

The first step in HD is encoding the input feature vector ¥ into
the query hypervector Q, using fundamental permutation
and addition on the transition hypervectors (the baseline
encoding instead of using transitions hypervectors, uses base
hypervectors). As previously shown in Section 3.1, for input
features that are not changed from the previous input no addi-
tional operation is needed, while for the others, the transition
hypervector should be either added or subtracted from the
previously encoded hypervector. Recall that the dimensions
of transition hypervectors binary numbers that aggregate in a
dimensionwise pattern to generate each dimension of the
encoded hypervector. Dimensions of the encoded hypervector
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query and class hypervectors in baseline HD and HD-Core with clustered

can be in various widths and representations (e.g., fixed-point,
binary, etc.). HD computing can be parallelized at dimension
level since the similarity metric for each generated dimensions
of the encoded hypervector can be calculated independent of
the other dimensions. The final similarity metric is the aggre-
gation of dimensions similarity. The encoding and associative
search blocks are working in a pipeline structure; therefore, to
maximize the resource utilization, the number of encoded
dimensions generated in each cycle should be equal to the
number of dimensions that the associative search module can
process. Therefore, we segregate the encoded hypervector
into the segments of S dimensions whereby at each clock
cycle, one segment is generated. The generated S dimensions
are passed to the associative search module to calculate the
similarity metrics between the query hypervector and the
class hypervectors. Thus, processing the entire query hyper-
vector takes T’ = Z cycles.

The value of S, which represents the parallelism level, is lim-
ited by the available resources. Ry shows the required resour-
ces to generate a dimension of the encoded hypervector. R4 5
shows the required resources for the associative search module
to process a dimension of the encoded hypervector. Therefore
S X (Rpne + Ras) should be less than the available resources
of the FPGA. Since the number of operations executed in each
cycle in the HD-Core encoding as compared to the baseline
encoding is reduced by SM%, the required resources to imple-
ment the HD-Core encoding module is also SM% less than the
baseline Ryp_core—mne = SM% x Rg. These resources dedi-
cated to the HD-Core encoding module can generate S dimen-
sions of the encoded hypervector when the similarity of current
input and the previous input is higher than or equal to SM. In
general, Equation (9) shows the number of iterations required
to generate S dimensions of the encoded hypervector, while
RuD—Core— mne resources are dedicated to the encoding module

9)

1 — Similaritu(d .. d.
Latency(d;, d;_1, SM) = [ SZlef;’X;y(dz 17dz)“.

4.2 HD-Core Associative Search Acceleration

Fig. 7 illustrates the HD-Core architecture, which supports dot
product between a query and a single class hypervector. The
class hypervector has £ clustered values, i.e., the class ele-
ments can take one of the k cluster centroids, {ci,cs, ..., ¢}
To accelerate HD-Core, our design creates %k index buffers,
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where each buffer represents one of the cluster centroids (@).
Each buffer stores the indices of the class elements which
have clustered to the same value. For example, the first index
buffer, shown in Fig. 7B, stores all class indices which have
the value as ¢;. Since each class has D dimensions, we require
log> D bits to store each index.

Due to resource limitation of FPGA, we can only read S
dimensions of the query hypervector at a time and process
the remaining dimensions in sequential windows. How-
ever, sequentially accessing the query elements increases
the number of resource requirements, since all S elements
in a read window might belong to any of the clusters. In this
case, each index buffer requires a tree-based adder with S
inputs in order to take care of the worst case scenario, when
all S query dimensions correspond to a single cluster.
Instead, in this work, each read window accesses to b = S/k
indices from each index buffer. This method ensures that
the number of required resources to add the element of
each index buffer is less than b. We define this b window
size as the batch size. In order to speed up the computation,
HD-Core stores the index buffers, which are a compressed/
trained HD model, inside the FPGA. These buffers are
implemented using distributed memory using LookUp
Table (LUT) and Flip-Flop (FF) blocks.

Each element of the index buffer points to one dimension
of the query hypervector. In order to maximize the FPGA
resource utilization, for all elements of index buffer in a
batch window, HD-Core pre-fetches the query elements and
store them in query buffers (@). Next to each query bulffer,
a tree-based adder accumulates all S/k indices correspond-
ing to a particular centroid (®). The results of these addi-
tions are stored in registers. Next, FPGA processes the next
batch sequentially. HD-Core is implemented in a pipeline,
where the pre-fetching of the elements to query buffer per-
forms simultaneously with the addition of the query ele-
ments which have been pre-fetched to query buffers in the
last iteration. This pipeline can perform very efficiently
since these two tasks require different types of FPGA
resources. The indexing and pre-fetching are memory-inten-
sive tasks and mostly utilize BRAM, LUTs, and FFs, while
the addition of query elements mostly utilizes DSPs.

After every iteration, the values corresponding to the
registers are accumulated. Once HD-Core has processed all
D dimensions of the hypervector, each register has the accu-
mulated query elements in all the dimensions for which
class hypervector has the same clustered value. For each
index buffer, our design multiplies the value of the register
with the corresponding cluster value. The results of multi-
plication for all cluster centroids are then accumulated in
order to generate the final dot product (@). Regardless of
the method used for calculating dot product, our design
needs to compare the dot products for all existing classes
and select the class which has the maximum similarity with
the input vector.

5 RESULTS

5.1 Experimental Setup

The proposed HD-Core has been implemented with software
and hardware modules. For software support, we use
Python to find the similarity metric between consecutive
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inputs in the training data. To eliminate the dependency of
the SM to the distribution of the training data, we shuffle
the training data for 10 times and calculate the average simi-
larity each time and use the average as the SM. We exploit
Scikit-learn library [46] for clustering and C++ software
implementation for the HD model training and verification.
For hardware support, we use FPGA to accelerate HD com-
puting. We fully implement HD-Core inference functionality
in RTL using Verilog HDL. HD-Core is deeply pipelined to
run with 200 MHz clock frequency. We verify the timing
and functionality of the design using both synthesis and
real implementation of the HD-Core using Xilinx Vivado
Design Suite [47]. To estimate the power consumption of
the FPGA we use the builtin Xilinx Power Estimation tool in
Vivado Desigh suite. HD-Core is implemented on the Kintex-
7 FPGA KC705 Evaluation Kit. We compare the perfor-
mance and energy efficiency of the FPGA-based implemen-
tation of HD-Core with the NVIDIA GTX 1080 GPU. The
GPU-based implementation uses the same algorithmic opti-
mization for the associative search as HD-Core; however, to
maximize the performance of the GPU-based implementa-
tion, it uses the baseline encoding since we observed it pro-
vides a higher performance on GPU. The performance and
energy of GPU are measured by the nvidia-smi tool. We
also compare the HD-Core implementation with the state-of-
the-art FPGA-based accelerator proposed in [13] as the
FPGA baseline.

5.2 Workloads

We evaluate the efficiency of the proposed HD-Core on four
popular classification applications, as listed below:

Speech Recognition (ISOLET). The goal is to recognize voice
audio of the 26 letters of the English alphabet. The training
and testing datasets are taken from ISOLET dataset [44].

Face Recognition (FACE): We exploit Caltech dataset of
10,000 web faces [45]. Negative training images, i.e., non-
face images, are selected from CIFAR-100 and Pascal VOS
2012 datasets [48].

Activity Recognition (UCIHAR) [49]: The dataset includes
signals collected from motion sensors for 8 subjects per-
forming 19 different activities. The objective is to recognize
the class of human activities.

Physical Activity Monitoring (PAMAP) [50]. This dataset
includes logs of 8 users and three 3D accelerometers posi-
tioned on arm, chest and ankle. They were collected over
different human activities such as lying, walking and,
ascending stairs, and each of them corresponded to an activ-
ity ID. The goal is to recognize 12 different activities.

5.3 HD-Core Encoding

The computation complexity of the encoding step increases
with the number of input features. In both training and
inference, encoding consumes a great portion of resources.
Fig. 8 shows the ratio of the LUT utilization in the encoding
module to the LUT utilization of the entire accelerator. We
compared the resource utilization of the baseline encoding
with the HD-Core encoding when the associative search
module is the HD-Core with 4 and 8 centroids (C4 and C8
respectively). In the ISOLET dataset, due to its higher num-
ber of classes, the complexity of the associative search is
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Fig. 8. LUT utilization ratio of the encoding module to the entire accelerator
for the baseline encoding and HD-Core encoding with associative search
modules with 4 and 8 centroids.

higher. Therefore, the associative search in ISOLET requires
more resources to calculate the similarity metric for a
dimensions than other applications. As shown in the figure,
the baseline encoding module consumes 23 percent of
the entire LUT resources, while the proposed HD-Core enco-
ding module drops the LUT utilization to 18 percent. In
the FACE dataset, most of the resources are dedicated to
the encoding module as there are only 2 classes in the data-
set. Therefore, the baseline encoding module consumes
82 percent of the entire resources. Nevertheless, by using
the HD-Core encoding, only 54 percent of the resources are
dedicated to the encoding module. Note that, HD-Core
encoding not only utilizes less LUTs than the baseline
encoding module, it generates more dimensions (2.1x) of
the encoded hypervector per cycle than the baseline encod-
ing. In PAMAP, since the number of input features are rela-
tively low, the complexity of the encoding is significantly
less than the other datasets.

We implement the HD-Core encoding on FPGA and
exploit input similarity to accelerate the encoding step. As
explained in Section 3.1, quantizing the value of the input
features increases the similarity between consecutive
inputs. However, quantization may drop the classification
accuracy. Table 1 shows the impact of feature quantization
on the classification accuracy as well as the average similar-
ity between consecutive inputs. As illustrated in Table 1, for
all of the datasets, accuracy starts dropping when the input
features quantized to 2 bits. However, the classification
accuracy for FACE drops 0.2 percent when the input fea-
tures are quantized to 2 bits. In the rest of the paper, we use
the minimum bit width for the input features that provides
the maximum accuracy. Thus, in in our experiments, we
quantize the input features to 2 bits for FACE application,
and to 3 bits for the rest of the applications. In Fig. 9, blue
bars show the histogram of the similarity between consecu-
tive inputs in training data, and the red line shows the

TABLE 1
Impact of Input Quantization on the Average Similarity of
Consecutive Inputs and the Classification Accuracy

1 bit 2 bits 3 bits 4 bits
Acc(%) SM(%) Acc(%) SM(%) Acc(%) SM(%) Acc(%) SM(%)
ISOLET 93.6 93 94.7 59 95.5 36 95.5 23
UCIHAR 95.9 99 97.3 75 98 51 98.1 36
FACE 89.9 99 92.9 79 93.1 55 93.1 38
PAMAP 943 72 95.9 56 96.7 44 96.8 39
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Fig. 9. Histogram and CDF of similarities between consecutive inputs for
each dataset.

Cumulative Distribution of the similarities between conse-
cutive inputs for each dataset. As illustrated in the figure,
only a few of the inputs in all of the datasets have less than
20 percent similarity and most of the inputs have higher
similarity than the SM mentioned in Table 1.

HD-Core encoding stores the transition hypervectors
instead of base hypervectors; thus, BRAM usage in HD-Core
encoding is higher than the baseline encoding. In Fig. 10,
the blue line shows the required memory to store the transi-
tion hypervectors in MB (left axis) for different quantization
levels, while the dashed red line shows the available BRAM
in the Kintex FPGA. The green line in Fig. 10 shows the
average similarity between consecutive inputs in all the
datasets for different quantization levels. In our experi-
ments we observed that quantizing the input features to
even to 4 bits has no impact on the prediction accuracy,
while observing 34.8 percent similarity between consecutive
inputs in all the datasets on average. Due to the limitation
of the FPGA BRAMSs, HD-Core encoder can support inputs
with features 2° = 32 levels, where still inputs are on aver-
age 30.4 percent similar.

HD-Core encoding exploits the similarities between conse-
cutive inputs to reuse the previously encoded hypervector,
thereby reducing the required hardware to generate each
dimension of the encoded hypervector. Fig. 11 compares
the throughput and energy consumption of HD-Core encod-
ing module with the GPU and FPGA baseline implementa-
tions. Throughput and energy consumption of HD-Core and
the FPGA baseline are normalized to those of the GPU
implementation. HD-Core encoding can encode 4.5x and
2.1x more inputs in a second as compared to GPU and
FPGA baseline respectively. HD-Core encoding reduced the
energy required to encode each input for 5.7x and 2.3x as
compared to the GPU and FPGA baseline respectively.
Fig. 11, additionally, shows that for applications with a

higher similarity between inputs the throughput
25MB 100%
20 80
T i 60
10 | =>¢=BRAM Usage 40
== == Available BRAM
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Fig. 10. HD-Core BRAM utilization and average similarity of consecutive
inputs for different quantization levels of input features.
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Fig. 11. Throughput and energy improvement of HD-Core encoding in
comparison with GPU and the FPGA baseline [13].

improvement will be higher. In the FACE dataset which has
the highest SM among the other datasets, HD-Core encodes
9x more inputs per second with 13.2x less energy as com-
pared to the GPU implementation.

5.4 HD-Core Accuracy-Efficiency Trade-Off

Table 2 shows the throughput and the energy consumption
of the HD-Core when it first encodes the data and then per-
forms the associative search (Encoding and Associative
Search), as well as when the encoded hypervector of inputs
are stored in memory and HD-Core only performs the asso-
ciative search. Throughput and energy consumption of
HD-Core are compared with the baseline FPGA implementa-
tion. C4, C8, C16, C32 show the number of shared elements
(centroids) in each class hypervector. Associative Search
column shows the impact of HD-Core when the encoded
hypervector is stored in BRAM, and all of the FPGA resour-
ces are dedicated to the associative search module. Compar-
ing the results of baseline HD with the HD-Core shows that
HD-Core can improve the efficiency of the HD computing by
reducing the number of operations in encoding and reduc-
ing the number of multiplication in the associative search
step. HD-Core performance depends on the number of
shared class elements. HD-Core with more number of cent-
roids requires more FPGA resources to implement and
therefore, its throughput is less than HD-Core with less
number of centroids while providing a higher accuracy.
The power consumption of the FPGA is highly correlated
with the resource utilization and HD-Core with various
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number of centroids have close resource utilization and
consequently close power consumption. Therefore, the
energy consumption of the HD-Core with more centroids is
higher since increasing the number of centroids reduces
the throughput; consequently, increasing the execution
time. As we discussed in Section 3.2, HD-Core accuracy
depends on the number of shared class elements. Fig. 6b
shows the impact of the number of centroids on the classi-
fication accuracy. As illustrated in this figure, as the num-
ber of centroids increases, the accuracy increases. For
example, in UCIHAR, increasing the number of centroids
from 4 to 32 increases the accuracy for 3 percent, at the
cost of decreasing the performance and energy efficiency
for 19, and 22 percent respectively.

HD-Core with 4 centroids, on average, shows 2.4x and
1.4x performance and energy improvement as compared
to the baseline FPGA while dropping the accuracy for
2 percent. HD-Core encoding contributes to 40 percent of this
performance improvement. Enabling the computation reuse
in the encoding module significantly accelerates the design.
HD-Core, by exploiting the computational reuse in the
encoding module is 96 percent faster than HD-Core with the
original encoding.

HD-Core with 32 centroids provides the same classifica-
tion accuracy as the baseline HD while on average shows
1.8x with 13 percent energy overhead. Comparing these
results with the GPU-based approach shows that HD-Core
with 32 centroids can provide 2.7x higher energy efficiency
and 3.6x speedup. Performance and energy improvement
can increase up to 4.8x and 4.3x by using 4 centroids.
Fig. 12 compares the throughput and energy efficiency
improvement normalized to those of the GPU. As illus-
trated in Fig. 12 the energy improvement for FACE dataset
is significantly higher, while for PAMAP, the energy
improvement is slightly higher than the FPGA baseline. In
FACE dataset, since it has 2 classes, the required computa-
tion is less than the other datasets. Also, the similarity
between consecutive inputs in this dataset is significantly
higher than the other datasets. In PAMAP the number of
input features is less than the other datasets; thus, the
encoding will be significantly less complex. In this dataset,
the associative memory is the bottleneck of performance
since the encoding module requires fewer resources as com-
pared to the others.

TABLE 2
Comparison of HD-Core With the FPGA Baseline Implementation in Terms of Throughput (1000x Classification Per Second)
and Energy Consumption for Classifying an Input (mJule)

Dataset Encoding and Associative Search Associative Search
Baseline FPGA [13]  C4 C8 Cl6  C32 Baseline FPGA[13] C4 cs C16 C32
ISOLET Throughput 258.5 621.1 565.0 537.6 507.6 560.0 621.1 565.0 537.6 507.6
Energy 17.1 126 140 147 157 17.0 121 133 140 147
UCIHAR Throughput 1119.4 2873.9 2816.9 2666.7 2020.2 1440.0 3076.9 2816.9 2666.7 2531.6
Energy 3.5 3.2 3.1 3.9 3.2 2.4 2.6 2.8 2.9
FACE Throughput 3348.2 7692.3 6666.7 5263.2 5000.0 4320.0 7692.3 6896.6 6451.6 6451.6
Energy 3.2 1.2 1.3 1.7 1.9 1.0 1.1 1.1 1.2
PAMAP Throughput 562.2 12422 1129.9 10753 10152 720.0 12422 1129.9 10753 1015.2
Energy 5.8 5.7 5.8 6.6 7.0 6.0 6.3 6.8 7.2
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Fig. 12. Throughput and energy improvement in comparison with the
GPU and FPGA baseline [13].

5.5 HD-Core Resource Utilization

Table 3 shows the resource utilization of the HD-Core as
well as the encoding resource utilization breakdown for
FACE and ISOLET datasets with 4, 8, 16, and 32 cluster
centroids. For the HD-Core encoding, all the operations are
implemented on LUTs, while the associative search mod-
ule uses FPGA DSPs to calculate the similarity metric.
HD-Core tries to fully utilize the FPGA resources; however,
in our experiments, when the resource utilization is above
90 percent, design may face routing congestion issues. In
HD-Core Encoding, BRAM utilization is independent of the
number of centroids since BRAMs are only used to store
the transition hypervectors. Due to the higher number of
transition hypervectors in ISOLET, HD-Core encoding
requires more BRAMs to implement ISOLET data encoding
as compared to encoding the FACE dataset. Associative
search module utilizes DSPs to calculate the similarity met-
ric between the class hypervectors and the query hypervec-
tor. Therefore, as the number of classes increases, the
number of operations in the associative search will also
increase. Therefore, for ISOLET with 26 classes, since the
number of operations in the associative search is much
higher than the that in the FACE dataset with 2 classes, the
number of DSPs limits the parallelism. While in the FACE
dataset the encoding module is the bottleneck of parallel-
ism. Increasing the number of centroids increases the
HD-Core computation complexity; thus, more resources are
required to provide the same parallelism. Since, the num-
ber of the available resources are fixed, increasing the
number of clusters reduces the parallelism, which reduces
the required resources to implement HD-Core encoding.

6 CONCLUSION

We propose a novel hyperdimensional computing FPGA
implementation exploiting computation reuse, called
HD-Core, which significantly reduces the cost of classifica-
tion. The framework reuses previously encoded hypervec-
tor to reduce the complexity of the encoding step. It also
extracts representative operands of a trained HD model
using clustering algorithms. At runtime, instead of multi-
plying all inputs and class elements, our design adds all the
inputs belonging to the same class cluster centroid and mul-
tiplies the result once in the end. Our evaluation over a
wide range of applications shows that HD-Core can provide
4.8x faster execution and 4.3x higher energy efficiency as
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TABLE 3
Resource Utilization of HD-Core Encoding and HD-Core for FACE
and ISOLET Datasets

HD-Core Encoding Resource Utilization

Dataset

HD-Core

HD-Core Resource Utilization

LUT(%)

FF(%)

BRAM(%)

DSP(%)

LUT(%)

FF(%)

BRAM(%)

DSP(%)

FACE

C4
c8
C16
C32

74.8
70.7
69.2
732

14
12
13
13

27
2.7
2.7
27

0.0
0.0
0.0
0.0

89.5
86.7
84.9
90.2

58
33
3.4
5.1

187
9.4
6.1
5.8

36.8
318
30.2
30.3

C4a

15.0

0.3

8.4

0.0

64.9

12.7

443

95.7

16.4 .3 .4 . .4 12.2 24. .7

ISOLET c8 6. 0. 8. 0.0 68 5 96.
C16 17.3 0.4 8.4 0.0 68.6 12.2 13.7 98.3
C32 18.3 0.4 84 0.0 73.5 12.6 12.6 98.3

compared to the GPU implementation. The HD-Core encod-
ing provides 2.1x more throughput and 2.3x energy effi-
ciency as compared to the FPGA baseline implementation
proposed in [13]. This efficiency in the encoding module
contributes to 40 percent of the 2.4x performance improve-
ment of the HD-Core as compared to the state-of-the-art
FPGA accelerator [13]. In future, we are going to apply
HD-Core algorithmic optimizations on other hardware plat-
forms including GPUs and ASIC.
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