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ABSTRACT
We study distributed algorithms for string matching problem in

presence of wildcard characters. Given a string 𝑇 (a text), we look

for all occurrences of another string 𝑃 (a pattern) as a substring of

string 𝑇 . Each wildcard character in the pattern matches a specific

class of strings based on its type. String matching is one of the most

fundamental problems in computer science, especially in the fields

of bioinformatics and machine learning. Persistent effort has led to

a variety of algorithms for the problem since 1960s.

With rise of big data and the inevitable demand to solve problems

on huge data sets, there have been many attempts to adapt classic

algorithms into the MPC framework to obtain further efficiency.

MPC is a recent framework for parallel computation of big data,

which is designed to capture the MapReduce-like algorithms. In this

paper, we study the string matching problem using a set of tools

translated to MPC model. We consider three types of wildcards in

string matching:

• ‘?’ wildcard: In this setting, the pattern is allowed to contain
special ‘?’ characters or don’t cares that match any character

of the text. String matching with don’t cares could be solved

by fast convolutions, and we give a constant round MPC

algorithm for which by utilizing FFT in a constant number

of MPC rounds.

• ‘+’ wildcard: ‘+’ wildcard is a special character that allows

for arbitrary repetitions of a character. When the pattern

contains ‘+’ wildcard characters, our algorithm runs in a

constant number of MPC rounds by a reduction from subset

matching problem.

• ‘*’ wildcard: ‘*’ is a special character that matches with any

substring of the text. When ‘*’ is allowed in the pattern, we

solve two special cases of the problem in logarithmic rounds.
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1 INTRODUCTION
The string matching problem with wildcards, or pattern matching,
seeks to identify pieces of a text that adhere to a certain structure

called the pattern. Pattern matching is one of the most applied

problems in computer science. Examples range from simple batch

applications such as Awk, Sed, and Diff to very sophisticated ap-

plications such as anti-virus tools, database queries, web browsers,

personal firewalls, search engines, social networks, etc. The aston-

ishing growth of data on the internet as well as personal computers

emboldens the need for fast and scalable pattern matching algo-

rithms.

In theory too, pattern matching is a well-studied and central

problem. The simplest variant of pattern matching, namely string
matching, dates back to 1960s. In this problem, two strings 𝑇 and

𝑃 are given as input and the goal is to find all substrings of 𝑇

that are identical to 𝑃 . The celebrated algorithm of Knuth, Mor-

ris, and Pratt [31] (KMP) deterministically solves the problem in

linear time. Since then, attention has been given to many vari-

ants and generalizations of pattern matching [1, 2, 5, 8, 10, 11, 13,

15, 16, 20, 22, 25–27, 31, 34–36, 38–41]. Natural generalizations

of string matching are when either the text or the pattern is a

tree instead of a string [20, 25, 39, 40] or when the pattern has

a more sophisticated structure that allows for ‘?’, ‘+’, ‘*’, or in

general any regular expression [5, 13, 27, 34]. Also, different com-

putational systems have been considered in the literature: from

sequential algorithms [5, 13, 20, 25, 27, 31, 34, 39, 40], to quantum

algorithms [8, 35, 36, 38], to distributed settings [2, 16, 26], to the

streaming setting [1, 15, 37], to PRAM [10, 11, 22, 41], etc.

An obvious application of pattern matching is in anti-virus soft-

wares. In this case, a malware is represented with a pattern and
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a code or data is assumed to be infected if it contains the pattern. 
In the simplest case, the pattern only consists of ascii characters. 
However, it happens in practice that malwares allow for slight mod-

ifications. That is, parts of the pattern code are subject to change. 
This can be captured by introducing wildcards to pattern matching. 
More precisely, each element of the pattern is either an ascii code 
or a special character ‘?’ which stands for a wildcard. The special 
character is allowed to match with any character of the text.

Indeed the desirable property of the ‘?’ case is that the length 
of the pattern is always fixed. However, one may even go beyond 
this setting and consider the cases where the pattern may match to 
pieces of the text with variant lengths. Two classic ways to incorpo-
rate this into the model is to consider two special characters ‘+’ and 
‘*’. The former allows for arbitrary repetitions of a single character 
and the latter allows for arbitrary repetitions of any combination 
of characters. For example, as an application of pattern matching 
in bioinformatics, we might be looking for a set of gene patterns 
in a DNA sequence. Obviously, these pattern are not necessarily 
located consecutively in the DNA sequence, and one might utilize 
‘*’ wildcard to address this problem.

In practice, these problems are formulated around huge data sets. 
For instance, a human DNA encompasses roughly a Gigabyte of 
information, and an anti-virus scans Gigabytes (if not Petabyets) 
of data on a daily basis. Thus, the underlying algorithm has to be 
scalable, fast, and memory efficient. A natural approach to obtain 
such algorithms is parallel computation. Motivated by such needs, 
the massively parallel computation (MPC) model [3, 7, 23, 30] has 
been introduced to understand the power and limitations of parallel 
algorithms. It first proposed by Karloff et al. [30] as a theoretical 
model to embrace Map Reduce algorithms, a class of powerful par-
allel algorithms not compatible with previously defined models for 
parallel computation. Recent developments in the MPC model have 
made it a cornerstone for obtaining massively parallel algorithms.

While in the previous parallel settings such as the PRAM model, 
usually an 𝑂 (log 𝑛) factor in the round complexity is inevitable, 
MPC allows for sublogarithmic round complexity [19, 30, 33]. Karloff 
et al. [30] also compared this model to PRAM, and showed that for 
a large portion of PRAM algorithms, there exists an MPC algorithm 
with the same number of rounds. In this model, each machine has 
unlimited access to its memory, however, two machines can only 
interact in between two rounds. Thus, a central parameter in this 
setting is the round complexity of algorithm since network com-

munication is the typical main bottleneck in practice. The ultimate 
goal is developing constant-round algorithms, which are highly 
desirable in practice.

The MPC model: In this paper, we assume that the input size 
is bounded by 𝑂 (𝑛), and we have M machines of each with a 
memory of S. In the MPC model [3, 7, 23, 30], we assume the 
number of machines and the local memory size on each machine 
is asymptotically smaller than the input size. Therefore, we fix an 
0 < 𝑥 < 1 and bound the memory of each machine by 𝑂 (𝑛1−𝑥 ). 
Also, our goal is to have near linear total memory and therefore 
we bound the number of machines by 𝑂 (𝑛𝑥 ). An MPC algorithm 
runs in a number of rounds. In every round, every machine makes 
some local computation on its data. No communication between 
machines is allowed during a round. Between two rounds, machines

are allowed to communicate so long as each machine receives no

more communication than its memory. Any data that is outputted

from a machine must be computed locally from the data residing

on the machine and initially the input data is distributed across the

machines.

In this work we give MPC algorithms for different variants of

the pattern matching problem. For the regular string matching

and also ‘?’ and ‘+’ wildcard problems, our algorithms are tight in

terms of running time, memory per machine, and round complexity.

Both ‘?’ and ‘+’ wildcard problems are reduced to fast convolution

at the end, and make use of the fact that FFT could computed in

𝑂 (1) MPC rounds with near-linear total running time and total

memory. Also, for the case of ‘*’ wildcard we present nontrivial

MPC algorithms for two special cases that mostly tend to happen

in practice. However, the round complexity of these two cases is

𝑂 (log(𝑛)), and the general case problem is not addressed in this

paper.

1.1 Our Results and Techniques
Throughout this paper, we denote the text by 𝑇 and the pattern by

𝑃 . Also, we denote the set of characters by Σ.
We begin, as a warm-up, in Section 3 by giving a simple MPC

algorithm that solves string matching in 2 rounds. The basic idea

behind our algorithm is to cleverly construct hash values for the

substrings of the text and the pattern. In other words, we construct

an MPC data structure that enables us to answer the following

query in a single MPC round:

Given indices 𝑖 and 𝑗 of the text, what is the hash value for the
substring of the text starting from position 𝑖 and ending at position 𝑗?

Indeed, after the construction of such a data structure, one can

solve the problem in a single round by making a single query for

every position of the text. This gives us a linear timeMPC algorithm

that solves string matching in constant rounds.

Theorem 3.1 (restated). There exists an MPC algorithm that solves
string matching in constant rounds. The total memory and the total
running time of the algorithm are linear.

For the case of wildcard ‘?’, the hashing algorithm is no longer

useful. It is easy to see that since special ‘?’ characters can be

matched with any character of the alphabet, no hashing strategy

can identify the matches. However, a more sophisticated coding

strategy enables us to find the occurrences of the pattern in the

text. Assume for simplicity that𝑚 = |Σ| is the size of the alphabet
and we randomly assign a number 1 ≤ mp𝑐 ≤ 𝑚 to each character

𝑐 of the alphabet. Moreover, we assume that all the numbers are

unique that is for two characters 𝑐 and 𝑐 ′ we have mp𝑐 = mp𝑐′
if and only if 𝑐 = 𝑐 ′. Now, construct a vector 𝑇 † of size 2|𝑇 | such
that 𝑇

†
2𝑖−1 = mp𝑇𝑖 and 𝑇

†
2𝑖

= 1/mp𝑇𝑖 for any 1 ≤ 𝑖 ≤ |𝑇 |. Also,
we construct a vector 𝑃† of size 2|𝑃 | similarly, expect that 𝑃

†
2𝑖−1 =

𝑃
†
2𝑖
= 0 if the 𝑖’th character of 𝑃 is ‘?’. Let nz𝑃 be the number of the

normal characters (‘?’ excluded) of the pattern. It follows from the

construction of 𝑇 † and 𝑃† that if 𝑃 matches with a position 𝑖 of the

text, then we have:

𝑇 † [2𝑖 − 1, 2𝑖 + 2( |𝑃 | − 1)] .𝑃† = nz𝑃
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where 𝑇 † [2𝑖 − 1, 2𝑖 + 2( |𝑃 | − 1)] is a sub-vector of 𝐴 only containing 
indices 2𝑖 − 1 through 2𝑖 + 2( |𝑃 | − 1). Moreover, it is showed in [21] 
that the vice versa also holds. That is if𝑇 † [2𝑖 −1, 2𝑖 +2( |𝑃 |−1)] .𝑃† = 
nz𝑃 for some 𝑖 then pattern 𝑃 matches position 𝑖 . This reduces the 
problem of pattern matching to the computation of dot products 
which is known to admit a linear time solution using fast Fourier 
transform (FFT) [12].

Theorem 4.2 (restated). There exists an MPC algorithm that com-
putes FFT in constant rounds. The total memory and the total running 
time of the algorithm are 𝑂 (𝑛).

Corollary 4.3 gives us an efficient MPC algorithm for the wildcard 
setting. While the reduction from wildcard matching to FFT is a 
known technique [18] the fact that FFT is computable in 𝑂 (1) MPC 
rounds leads to efficient MPC algorithm for a plethora of problems. 
FFT is used in various combinatorial problems such as knapsack [6], 
3-sum [14], subset-sum [32], tree-sparsity [4], tree-separability [6], 
necklace-alignment [9], etc.

The case of ‘+’ and ‘*’ wildcards are technically more involved. 
In the case of repetition, special characters ‘+’ may appear in the 
pattern. These special characters allow for arbitrary repetitions of a 
single character. For instance, a pattern “a+bb+” matches all strings 
of the form a𝑥 .b𝑦 

such that 𝑥 ≥ 1 and 𝑦 ≥ 2. Indeed this case is 
more challenging as the pattern may match with substrings of the 
text with different lengths.

To tackle this problem, we first compress both the text and the 
pattern into two strings 𝑇 ◦ and 𝑃◦ using the run-length encoding 
method. In the compressed versions of the strings, we essentially 
avoid repetitions and simply write the numbers of repetitions after 
each character. For instance, a text “aabcccddad" is compressed into 
“a[2]b[1]c[3]d[2]a[1]d[1]" and a pattern “ab+ccc+" is compressed 
into “a[1]b[1+]c[3+]". With this technique, we are able to break the 
problem into two parts. The first subproblem only incorporates the 
characters which is basically the conventional string matching. The 
second subproblem only incorporates repetitions. More precisely, 
in the second subproblem, we are given a vector 𝐴 of 𝑛 integer 
numbers and a vector 𝐵 of 𝑚 entries in the form of either 𝑖 or 𝑖+. An 
entry of 𝑖 matches only with indices of 𝐴 with value 𝑖 but an entry 
of 𝑖+ matches with any index of 𝐴 with a value at least 𝑖 . Since we 
already know how to solve string matching efficiently, in order to 
solve the repetition case, we need to find a solution for the latter 
subproblem.

To solve this subproblem, we use an algorithm due to Cole and 
Hariharan [18]. They showed the subset matching problem could 
be solved in near-linear time. The definition of the subset matching 
problem is as follows.

Problem 5.3 (restated). Given 𝑇 , a vector of 𝑛 subsets of the alpha-
bet Σ, and 𝑃 , a vector of 𝑚 subsets in the same format as 𝑇 , find all 
occurrences of 𝑃 in 𝑇 . 𝑃 is occurred at position 𝑖 in 𝑇 if for every 
1 ≤ 𝑗 ≤ |𝑃 |, 𝑃 𝑗 ⊆ 𝑇𝑖+𝑗−1.

We can reduce our problem to an instance of the subset matching 
problem by replacing every 𝑇𝑖 with {1+, 2+, . . . ,𝑇𝑖 +} ∪ {𝑇𝑖 }, and 
keep 𝑆 intact, i.e., replacing each 𝑆𝑖 with {𝑆𝑖 }. This way, if there is 
a match, each 𝑆𝑖 has to be included in the respective 𝑇𝑗 . There is an

algorithm for this problem with 𝑂 (𝑠) running time [18], where 𝑠

shows the total size of all subsets in 𝑇 and 𝑃 . The running time is

good enough for our algorithm to be near linear since 𝑠 is at most

twice the number of characters in the original text and pattern. Each

𝑇𝑖 is the compressed version of𝑇𝑖 consecutive repetitions of a same

character in 𝑇 . We also show that the subset matching problem

could be implemented in a constant number of MPC rounds, and

thus a constant-round MPC algorithm for string matching with ‘+’

wildcard is implied.

Theorem 5.5 (restated). There exists an MPC algorithm that solves
string matching with ‘+’ wildcard in constant rounds. The total mem-
ory and the total running time of the algorithm are 𝑂 (𝑛).

Despite positive results for ‘?’ and ‘+’ wildcards, we do not know

whether a poly-logarithmic round MPC algorithm exists for ‘*’

wildcard in the most general case or not. This wildcard character

matches any substring of arbitrary size in the text. We can con-

sider a pattern consisted of ‘*’ and Σ characters as a sequence of

subpatterns, maximal substrings not having any ‘*’, with a ‘*’ be-

tween each consecutive pair. In the sequential settings, we can solve

the problem by iterating over the subpatterns, and find the next

matching position in the text for each one. If we successfully find a

match for every subpattern in order, we end up with a substring

of 𝑇 matching 𝑃 . Otherwise, it is easy to observe that 𝑇 does not

match the pattern 𝑃 . To find the next matching position, we can

perform a KMP algorithm on 𝑇 and all the subpatterns one at a

time, and make a transition to the next subpattern whenever we

find a match, which is still linear in 𝑛 +𝑚, as the total size of the

subpatterns is limited by𝑚. The algorithm is provided with more

details in Observation 6.1.

However, things are not as easy in the MPC model, because

each subpattern can happen virtually anywhere in the text, and

furthermore the number of subpatterns could be as large as 𝑂 (𝑚).
Thus, intuitively, it is impossible to know which subpatterns match

each location of𝑇 with a linear total memory since the total size of

this data could be Ω(𝑛𝑚), and also we cannot transfer this data in

poly-logarithmic number of MPC rounds. Nonetheless, we provide

two examples of how we can overcome this restriction by adding a

constraint on the input. In both the cases, a near-linear 𝑂 (log(𝑛))-
round MPC algorithm exists for solving ‘*’ wildcard problem.

(1) When thewhole pattern fits in a singlemachine,𝑚 = 𝑂 (𝑛1−𝑥 ),
then the number of subpatterns is limited by𝑂 (𝑛1−𝑥 ). Thus,
each machine could access each subpattern, and finds out if

an interval of subpatterns happens in its part of input. At the

end, we merge these pieces of information using dynamic

programming to obtain the result.

Theorem 6.1 (restated). Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈
{Σ ∪ ‘*’}𝑚 for𝑚 = 𝑂 (𝑛1−𝑥 ), there is an MPC algorithm to
find the solve the string matching problem in 𝑂 (log𝑛) rounds
using 𝑂 (𝑛𝑥 ) machines.

(2) When no subpattern is a prefix of another, then the number

of different subpatterns matching each starting position is

limited by 1. Exploiting this property, we can find out which

subpattern matches each starting position, if any. Next, we

create a graph with positions in𝑇 as vertices, and we put an
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edge from a position 𝑖 which matches a subpattern 𝑃𝑘 , to the

minimum position 𝑗 matching subpattern 𝑃𝑘+1, which is also
located after 𝑖+|𝑃𝑘 |−1. This way, ‘*’ wildcard stringmatching

reduces to a graph connectivity problem; finding whether

there is path from a position matching the first subpattern

to a position matching the last subpattern. Therefore, we

will have a 𝑂 (log(𝑛))-round MPC algorithm for ‘*’ wildcard

problem using the standard graph connectivity results in

MPC [30].

Theorem 6.2 (restated). Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈
{Σ∪ ‘*’}𝑚 such that subpatterns are not a prefix of each other,
there is an MPC algorithm to find the solve the string matching
problem in 𝑂 (log𝑛) rounds using 𝑂 (𝑛𝑥 ) machines.

2 PRELIMINARIES
In the pattern matching problem, we have two strings 𝑇 and 𝑃 of

length 𝑛 and𝑚 over an alphabet Σ. In the string matching problem,

the first string 𝑇 is a text, and the second string 𝑃 is the pattern we

are looking for in𝑇 . For a string 𝑠 , we denote by 𝑠 [𝑙, 𝑟 ] the substring
of 𝑠 from 𝑙 to 𝑟 , i.e., 𝑠 [𝑙, 𝑟 ] = ⟨𝑠𝑙 , 𝑠𝑙+1, . . . , 𝑠𝑟 ⟩. Given two strings𝑇 and

𝑃 , we are looking for all occurrences of the pattern 𝑃 as a substring

of 𝑇 . In other words, we are looking for all 𝑖 ∈ [1, 𝑛 −𝑚 + 1] such
that𝑇 [𝑖, 𝑖 +𝑚 − 1] = 𝑃 . In this case, we say substring𝑇 [𝑖, 𝑖 +𝑚 − 1]
matches pattern 𝑃 .

Problem 2.1. Given two strings 𝑇 ∈ Σ𝑛 and 𝑃 ∈ Σ𝑚 , we want to
find all occurrences of the string 𝑃 (pattern) as a substring of string 𝑇
(text).

Problem 2.1 has been vastly studied in the literature, and there

are a number of solutions that solve the problem in linear time. [31]

However, the main focus of this paper is to designmassively parallel

algorithms for the pattern matching problem. We consider MPC

as our parallel computation model, as it is a general framework

capturing state-of-the-art parallel computing frameworks such as

Hadoop MapReduce and Apache Spark.

We extend the problem of string matching adding wildcard char-

acters to the pattern. A wildcard character is a special character

𝜙 ∉ Σ in pattern that is not required to match by the same character

in 𝑇 . For example, wildcard character ‘?’ can be matched by any

arbitrary character in 𝑇 . For instance, let 𝑇 and 𝑃 be “abracadabra”

and “a?a” respectively. Then, pattern 𝑃 occurs at 𝑖 = 4 and 𝑖 = 6

since 𝑃
?≡ 𝑇 [4, 6] and 𝑃 ?≡ 𝑇 [6, 8]. Notation

𝜙
≡ denoted the equality

of two strings regarding the wildcard character 𝜙 .

We consider three kinds of wildcard characters in this paper:

(1) Character replacement wildcard ‘?’: Any character canmatch

character replacement wildcard.

(2) Character repetition wildcard ‘+’: If character repeat wild-

card appears immediately after a character 𝑐 in the pattern,

then any number of repetition for character 𝑐 is accepted.

(3) String replacement wildcard ‘*’: A string replacement wild-

card can be matched with any string of arbitrary length.

3 STRING MATCHING WITHOUT
WILDCARD

In this section, we provide an algorithm for the string matching

problem with no wildcards; Given strings 𝑇 and 𝑃 , we wish to find

all the starting points in 𝑇 that match 𝑃 . The round complexity of

our algorithm, which is the most important factor in MPC model,

is constant. Furthermore, the algorithm is tight in a sense that the

total running time and memory is linear. For the more restricted

cases, we enhance our algorithm to work in even less rounds.

The algorithm consists of three stages. We discuss the different

stages of the algorithm with details in the following. The main goal

of the algorithm is to compare the hash of each length𝑚 substring of

string𝑇 with the hash of string 𝑃 , and therefore, find an occurrence

if they are equal. We consider the following properties, namely

partially decomposability, for our hash function ℎ,

• Merging the hashes of two strings 𝑠 and 𝑠 ′, to find the hash

of their concatenation 𝑠 + 𝑠 ′, can be done in 𝑂 (1).
• Querying the hash of a substring 𝑠 [𝑙, 𝑟 ] can be done in𝑂 (1),
with 𝑂 ( |𝑠 |) preprocessing time.

Further details regarding a hash function with partially decom-

posability property are provided in Appendix A of the full version

of the paper.

Consider strings 𝑇 and 𝑃 are partitioned into several blocks

of size S, each fit into a single machine. We denote these blocks

by 𝑇 1,𝑇 2, . . . ,𝑇𝑛/S
and 𝑃1, 𝑃2, . . . , 𝑃𝑚/S . It is easy to solve the

problem when 𝑃 is small relative to S. We can search for 𝑃 in each

block independently by maintaining the partial hash for each prefix

of the block. The caveat of this solution is that some substrings lie

in two machines. We can fix this issue by feeding the initial string

chunkswith overlap. If the length of the overlaps is greater than𝑚, it

is guaranteed than each candidate substring is contained as a whole

in one of the initial string chunks. We call this method “Double

Covering”. Utilizing this method, we can propose an algorithm

which leads to Observation 3.1. Therefore, the main catch of the

algorithm is to deal with the matching when string 𝑃 spans multiple

blocks.

Observation 3.1. Given𝑇 ∈ Σ𝑛 and 𝑃 ∈ Σ𝑚 where𝑚 = 𝑂 (𝑛1−𝑥 ),
there is an MPC algorithm for string matching problem with no wild-
cards in 1 MPC round using 𝑂 (𝑛𝑥 ) machines in linear total running
time.

Proof. We provide for each machine, which holds 𝑇 𝑖
, the next

𝑚 characters in the 𝑇 , i.e., 𝑇 [𝑖S + 1 : 𝑖S +𝑚], which is viable since

𝑚 = 𝑂 (S). Therefore, we can compute the hash of each substring

starting in 𝑇 𝑖
as well as 𝑃 in each machine. See Algorithm 1 for

more details. □

Theorem 3.1. For any 𝑥 < 1/2, given 𝑇 ∈ Σ𝑛 and 𝑃 ∈ Σ𝑚 , there
is an MPC algorithm for string matching problem with no wildcards
in 𝑂 (1) MPC rounds using 𝑂 (𝑛𝑥 ) machines in linear total running
time.

Intuitively, we can handle larger patterns by transferring the par-

tial hash of each ending point to the machine which the respective

starting point lies in. In addition, we compute the hash of each 𝑘

first blocks, and by which, we can find the hash of each interval of
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Problem Theorem Rounds Total Runtime Nodes

𝑃 ∈ Σ𝑚 3.1 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛𝑥 )
𝑃 ∈ {Σ ∪ ‘?’}𝑚 4.3 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛𝑥 )
𝑃 ∈ {Σ ∪ ‘+’}𝑚 5.5 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛𝑥 )

𝑃 ∈ {Σ ∪ ‘*’}𝑚 𝑚 = 𝑂 (𝑛1−𝑥 ) 6.1 𝑂 (log(𝑛)) 𝑂 (𝑛) 𝑂 (𝑛𝑥 )
no prefix 6.2 𝑂 (log(𝑛)) 𝑂 (𝑛) 𝑂 (𝑛𝑥 )

Table 1: Overview of results

Algorithm 1: StringMatching(a)

Data: two array 𝑇 and 𝑃 , where𝑚 = 𝑂 (S)
Result: function 𝑓 : {1, 2, . . . , 𝑛 −𝑚 + 1} → {0, 1} such that

𝑓 (𝑖) = 1 iff 𝑇 [𝑖 : 𝑖 +𝑚 − 1] = 𝑃 .

1 𝑓 (𝑖) ← 0 ∀ 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1;
2 send a copy of 𝑃 as well as 𝑇 [𝑖S + 1 : 𝑖S +𝑚] to the 𝑖-th

machine, which holds 𝑇 𝑖
, truncate if 𝑖S +𝑚 surpasses 𝑛.

3 Run in parallel: for 1 ≤ 𝑖 ≤ 𝑛/S do
4 append 𝑇 [𝑖S + 1 : 𝑖S +𝑚] to 𝑇 𝑖

;

5 for 1 ≤ 𝑗 ≤ S do
6 if ℎ(𝑃) = ℎ(𝑇 𝑖 [ 𝑗 : 𝑗 +𝑚 − 1]) then
7 𝑓 ((𝑖 − 1)S + 𝑗) ← 1;

blocks. Note that we need to assume 𝑥 < 1/2, so that memory of a

single machine be capable of storing 𝑂 (1) information regarding

each machine. The algorithm is outlined in Algorithm 2.

Proof. Assume there are (𝑛 +𝑚)/S + 2 machines as following:

• machines 𝑎1, 𝑎2, . . . , 𝑎𝑛/S which 𝑇 𝑖
is stored in 𝑎𝑖 .

• machines 𝑏1, 𝑏2, . . . , 𝑏𝑚/S which 𝑃𝑖 is stored in 𝑏𝑖 .

• machines 𝑐 and 𝑑 which are used for aggregation purposes.

At the first round, we compute the hash of each block 𝑇 𝑖
and 𝑃𝑖

and send them to machines 𝑐 and 𝑑 respectively. Furthermore, we

compute the partial hashes of each prefix of each block 𝑇 𝑖
, that is

ℎ(𝑇 𝑖 [1, 𝑗]) for 1 ≤ 𝑗 ≤ S. The calculated hash of each prefix should

be sent to the machine containing the respective starting point.

Therefore, 𝑇 𝑖 [1, 𝑗] should be sent to the node containing starting

point (𝑖 − 1)S + 𝑗 −𝑚 + 1. The total communication overhead of

this round is 𝑂 (𝑛 +𝑚).
In the next round, we aggregate the calculated hashes in the

previous round. In node 𝑑 , we calculate the hash of string 𝑃 by

merging the hashes of 𝑇 1,𝑇 2, . . . ,𝑇𝑚/S
. The value of ℎ(𝑃) should

be sent to all 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛/S. Those nodes are supposed to

compare ℎ(𝑃) with the hash of each starting point lying in their

block to find the matches in the last round. Furthermore, in node

𝑐 , the hash of each first 𝑘 blocks of 𝑇 should be calculated, i.e.,

ℎ(𝑇 1 +𝑇 2 + . . . +𝑇 𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑛/S. Each machine 𝑎𝑖 needs

to compute the hash of a sequence of consecutive blocks of 𝑇 that

lie between each starting point in 𝑇 𝑖
and its respective end point.

Therefore, each machine should receive up to𝑂 (1) of these hashes,
because the set of respective ending points spans at most 2 blocks.

In the final round, we have all the data required for finding the

matches with starting point inside block 𝑇 𝑖
at node 𝑎𝑖 . It suffices

to find the hash of each suffix of 𝑇 𝑖
, i.e., ℎ(𝑇 𝑖 [𝑙,S]), in which 𝑙 is

the candidate starting point. Consider 𝑇𝑘
is the block where the

ending point respective to 𝑙 lies inside, and 𝑟 is the index of the

ending point inside 𝑇𝑘
. Then, using the hash of the sequence of

block between𝑇 𝑖
and𝑇𝑘

, andℎ(𝑇𝑘 [1, 𝑟 ]) (both the hashes has been
sent to 𝑎𝑖 in the previous steps) one can decide whether the starting

point 𝑙 in block 𝑇 𝑖
is a match or not. □

Algorithm 2: StringMatching(b)

Data: two array 𝑇 and 𝑃

Result: function 𝑓 : {1, 2, . . . , 𝑛 −𝑚 + 1} → {0, 1} such that

𝑓 (𝑖) = 1 iff 𝑇 [𝑖 : 𝑖 +𝑚 − 1] = 𝑃 .

1 𝑓 (𝑖) ← 0 ∀ 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1;
2 Run in parallel: for 1 ≤ 𝑖 ≤ 𝑚/S do
3 send ℎ(𝑃𝑖 ) to machine 𝑑 ;

4 Run in parallel: for 1 ≤ 𝑖 ≤ 𝑛/S do
5 send ℎ(𝑇 𝑖 ) to machine 𝑐;

6 for 1 ≤ 𝑗 ≤ S do
7 send ℎ(𝑇 𝑖 [1, 𝑗]) to the machine 𝑎𝑘 , where the

corresponding starting point, i.e.,

(𝑖 − 1)S + 𝑗 −𝑚 + 1, lies in 𝑇𝑘
;

8 send ℎ(𝑃) ← merge(ℎ(𝑃1), ℎ(𝑃2), . . . , ℎ(𝑃𝑚/S)) to each 𝑎𝑖

for 1 ≤ 𝑖 ≤ 𝑛/S;
9 for 1 ≤ 𝑖 ≤ 𝑛/S do
10 ℎ(𝑇 1 +𝑇 2 + . . . +𝑇 𝑖 ) ←

merge(ℎ(𝑇 1 +𝑇 2 + . . . +𝑇 𝑖−1), ℎ(𝑇 𝑖 ));
11 send ℎ(𝑇 1 +𝑇 2 + . . . +𝑇 𝑖 ) to each machine 𝑎 𝑗 that needs

it in the next round;

12 Run in parallel: for 1 ≤ 𝑖 ≤ 𝑛/S do
13 for 1 ≤ 𝑙 ≤ S do
14 𝑠 ← (𝑖 − 1)S + 𝑙 ;
15 let 𝑘 be the index of the machine where 𝑠 +𝑚 − 1

lies in 𝑇𝑘
;

16 𝑟 ← 𝑠 +𝑚 − 1 − (𝑘 − 1)S;
17 𝜂 = ℎ(𝑇 𝑖+1 +𝑇 𝑖+2 + . . . +𝑇𝑘−1);
18 ℎ(𝑇 [𝑠, 𝑠 +𝑚 − 1]) ←

merge(ℎ(𝑇 𝑖 [𝑙,S]), 𝜂, ℎ(𝑇𝑘 [1, 𝑟 ]));
19 if ℎ(𝑇 [𝑠, 𝑠 +𝑚 − 1]) = ℎ(𝑃) then
20 𝑓 (𝑠) ← 1;
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4 CHARACTER REPLACE WILDCARD ‘?’
We start this section summarizing the algorithm for string matching 
with ‘?’ in sequential settings, which require Fast Fourier Transform.

Theorem 4.1 (Proven in [21]). Given strings 𝑇 ∈ Σ𝑛 and 𝑃 ∈ 
(Σ ∪ {?})𝑚 , it is possible to find all the substrings of 𝑇  that match 
with pattern 𝑃 in 𝑂 (𝑛 + 𝑚).

The idea behind Theorem 4.1 is taking advantage of fast multi-

plication algorithms, e.g. using Fast Fourier Transform, to find the 
occurrences of 𝑃 which contains ‘?’ wildcard characters. Fischer 
and Paterson [21] proposed the first algorithm for string match-

ing with ‘?’ wildcard. The main idea is to replace each character 
𝑐 ∈ Σ in string 𝑇 or 𝑃 with two consecutive numbers mp𝑐 and 
1/mp𝑐 and each ‘?’ with two consecutive zeros. If we compute the 
convolution of 𝑇 and the reverse of 𝑃 , we can ensure a match if 
the convoluted value with respect to a substring of 𝑇 equals the 
number non-wildcard characters in 𝑃 , aka nz𝑃 . This procedure re-
quires a non-negligible precision in float arithmetic operations that 
adds a log( |Σ|) factor to the order of the algorithm. In the subse-
quent works, the dependencies on the size of alphabet has been 
eliminated. [17, 28, 29]

As stated in Theorem 4.1, we can solve string matching with 
‘?’ wildcards in 𝑂 (𝑛 log(𝑛)) using convolution. Convolution can 
be computed in 𝑂 (𝑛 log(𝑛)) by applying Fast Fourier Transform 
on both the arrays, performing a point-wise product, and then 
applying inverse FFT on the result. Therefore, we should implement 
FFT in a constant round MPC algorithm in order to solve pattern 
matching with wildcard ‘?’. Inverse FFT is also possible with the 
similar approach.

Given an array 𝐴 = ⟨𝑎0, 𝑎1, . . . , 𝑎𝑛−1⟩, we want to find the Dis-
crete Fourier Transform of array 𝐴. Without loss of generality, we 
can assume 𝑛 = 2𝑘 

, for some 𝑘 , to avoid the unnecessary compli-

cation of prime factor FFT algorithms; it is possible to right-pad 
by zeroes otherwise. By Fast Fourier Transform, applying radix-2 
Cooley-Tukey algorithm for example, one can compute the Discrete 
Fourier Transform of 𝐴 in 𝑂 (𝑛 log(𝑛)) time, which is defined as:

𝑎∗
𝑘
=

𝑛−1∑
𝑗=0

𝑎 𝑗 · 𝑒−2𝜋𝑖 𝑗𝑘/𝑛 (1)

Where 𝐴∗ = ⟨𝑎∗
0
, 𝑎∗

1
, . . . , 𝑎∗

𝑛−1⟩ is the DFT of 𝐴. We interchange-

ably use the alternative notation𝑊𝑛 = 𝑒−2𝜋𝑖/𝑛 , by which Equality

1 becomes

𝑎∗
𝑘
=

𝑛−1∑
𝑗=0

𝑎 𝑗 ·𝑊 𝑗𝑘
𝑛 (2)

We state the following theorem regarding the FFT in the MPC

model.

Theorem 4.2. For any 𝑥 ≤ 1/2, a collection of 𝑂 (𝑛𝑥 ) machines
each with a memory of size𝑂 (𝑛1−𝑥 ) can solve the problem of finding
the Discrete Fourier Transform of 𝐴 with 𝑂 (1) number of rounds
in MPC model. The total running time equals 𝑂 (𝑛 log(𝑛)), which is
tight.

Roughly speaking, our algorithm is an adaptation of Cooley-

Tukey algorithm in the MPC model. In Appendix B of the full

version of the paper, we justify Theorem 4.2 by giving an overview

of the algorithm, and then we show how it results in a 𝑂 (1)-round
algorithm for computing the DFT of an array in the MPC model.

Corollary 4.3. Given strings 𝑇 ∈ Σ𝑛 and 𝑃 ∈ (Σ ∪ {?})𝑚 , it
is possible to find all the substrings of 𝑇 that match with pattern 𝑃

with a 𝑂 (1)-round MPC algorithm with total runtime and memory
of 𝑂 (𝑛 +𝑚).

Proof. Build vectors 𝑇 † and 𝑃† as following:

𝑇 † = ⟨mp𝑇1 ,mp−1𝑇1 ,mp𝑇2 ,mp−1𝑇2 , . . . ,mp𝑇𝑛 ,mp−1𝑇𝑛 ⟩

𝑃† = ⟨mp𝑃1 ,mp−1𝑃1 ,mp𝑃2 ,mp−1𝑃2 , . . . ,mp𝑃𝑛 ,mp−1𝑃𝑛 ⟩

Note that mp𝑐 for all characters 𝑐 ∈ Σ has a positive integer

value, and mp−1𝑐 equals 1/mp𝑐 . However, let mp
?
= mp−1

?
= 0

for wildcard character ‘?’. For example, for text “abracadabra” and

pattern “a?a”, considering𝑚𝑝𝑐 equals the index of each letter in

the English alphabet, we will have

𝑇 † = ⟨1, 1
1

, 2,
1

2

, 18,
1

18

, 1,
1

1

, 3,
1

3

, 1,
1

1

, 4,
1

4

, 1,
1

1

, 2,
1

2

, 18,
1

18

, 1,
1

1

⟩

𝑃† = ⟨1, 1
1

, 0, 0, 1,
1

1

⟩

Let C = 𝑇 † ⊛ rev(𝑃†), where operator ⊛ shows the convolution

of its two operands. We can observe that for all 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1
we have

C2𝑖+2𝑚−1 =
2𝑚∑
𝑗=1

𝑇
†
2(𝑖−1)+𝑗 · 𝑃

†
𝑗

(3)

It is clear that if𝑇 [𝑖, 𝑖+𝑚−1] matches pattern 𝑃 , then C2𝑖+2𝑚−1 =
2nz𝑃 since each the wildcard characters add up to 0, and for any

other character 𝑐 ,mp𝑐×1/mp𝑐+mp𝑐×1/mp𝑐 = 2. According to [21],

the other side of this expression also holds, i.e.,𝑇 [𝑖, 𝑖+𝑚−1] matches

pattern 𝑃 if C2𝑖+2𝑚−1 = 2nz𝑃 . Therefore, to find that whether a

substring 𝑇 [𝑖, 𝑖 +𝑚 − 1] matches pattern 𝑃 or not, it suffices to

(1) Compute C = 𝑇 † ⊛ rev(𝑃†) utilizing FFT, which can be

implemented in 𝑂 (1) rounds in MPC model as stated in

Theorem 4.2.

(2) For all 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1, substring 𝑇 [𝑖, 𝑖 +𝑚 − 1] matches

pattern 𝑃 iff C2𝑖+2𝑚−1 = 2nz𝑃 .

□

5 CHARACTER REPETITIONWILDCARD ‘+’
The character repetition wildcard, shown by ‘+’, allows expressing

“an arbitrary number of a single character" within the pattern. An

occurrence of ‘+’ which is immediately after a character 𝑐 , matches

arbitrary repetition of character 𝑐 . For example, text “bookkeeper”

has a substring that matches pattern “oo+k+ee+”, but none of its

substrings match pattern “oo+kee+”. In Subsection 5.1, we reduce

pattern matching with wildcard ‘+’ to greater-than matching in

𝑂 (1) MPC rounds. The greater-than matching problem is defined

with further details in Problem 5.1. Afterwards, we show a reduction
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of greater-than matching from subset matching problem, explained 
in 5.3. Then, by showing subset matching could be implemented in 
𝑂 (1) MPC rounds, we propose an 𝑂 (1)-round MPC algorithm for 
string matching with wildcard ‘+’ in Theorem 5.5.

5.1 Relation to greater-than matching
Problem 5.1. Greater-than matching: Given two arrays 𝑇 and 𝑃 , 

of length 𝑛 and 𝑚 respectively, find all indices 1  ≤ 𝑖  ≤ 𝑛 −𝑚 + 1 such 
that the continuous subarray of 𝑇 starting from 𝑖 and of length 𝑚 is 
element-wise greater than 𝑃 , i.e., 𝑇𝑖+𝑗−1 ≥ 𝑃 𝑗 ∀ 1 ≤ 𝑗 ≤ 𝑚.

To reduce pattern matching with wildcard ‘+’ to greater-than 
matching, we perform run-length encoding 5.2 on both the text and 
the pattern. This way, we have a sequence of letters each along with 
a number showing the number of its repetitions, or a lower-bound 
restricting the number of repetitions in case we have a ‘+’ wildcard. 
Subsequently, we can solve the problem for letters and numbers 
separately, and merge the result afterwards. Note that pattern 𝑃 
matches a substring of 𝑇 if and only if the both the respective letters 
and the respective repetition restrictions match. We also show we 
can find the run-length encoding of a string in 𝑂 (1) MPC rounds 
in Observation 5.1.

Definition 5.2. For an arbitrary string 𝑠 , let 𝑠◦ be the run-length 
encoding of 𝑠 , computed in the following way:
• Ignoring ‘+’ characters, decompose string 𝑠 into maximal blocks
consisting of the same character representing by pairs ⟨𝑐𝑖 , cnt𝑖 ⟩
which show a block of cnt𝑖 repetitions of character 𝑐𝑖 .
• If a ‘+’ character is located immediately after a block or within
a block, that block becomes a wildcard block, and represented
as ⟨𝑐𝑖 , cnt𝑖+⟩, where cnt𝑖 is still the number of the occurrences
of character 𝑐𝑖 in the block.
• 𝑠◦ equals the list of these pairs ⟨𝑐𝑖 , cnt𝑖 ⟩ or ⟨𝑐𝑖 , cnt𝑖+⟩, con-
catenated in a way that preserves the original ordering of the
string.

For example, for 𝑇 = “bookkeeper” and 𝑃 = “o+o+k+ee+p”,

𝑇 ◦ = ⟨⟨b, 1⟩, ⟨o, 2⟩, ⟨k, 2⟩, ⟨e, 2⟩, ⟨p, 1⟩, ⟨e, 1⟩, ⟨r, 1⟩⟩
𝑃◦ = ⟨⟨o, 2+⟩, ⟨k, 1+⟩, ⟨e, 2+⟩, ⟨p, 1⟩⟩

We alternatively show the compressed string as a string, for

example,

• 𝑇 ◦ = “b[1]o[2]k[2]e[2]p[1]e[1]r[1]”.
• 𝑃◦ = “o[2+]k[1+]e[2+]p[1]”.

Observation 5.1. We can perform run-length encoding in 𝑂 (1)
MPC rounds.

Proof. Suppose string 𝑠 is partitioned amongM machines such

that 𝑖’th machine contains 𝑠𝑖 for 1 ≤ 𝑖 ≤ M. Run-length encoding

of each 𝑠𝑖 could be computed separately inside each machine. Let

𝑠◦𝑖 = ⟨⟨𝑐𝑖,1, 𝑐𝑛𝑡𝑖,1⟩, ⟨𝑐𝑖,2, 𝑐𝑛𝑡𝑖,2⟩, . . . , ⟨𝑐𝑖,𝑙𝑖 , 𝑐𝑛𝑡𝑖,𝑙𝑖 ⟩⟩

be the run-length encoding of 𝑠𝑖 , where 𝑙𝑖 is its length. Then in

the next round, we can merge ⟨𝑐𝑖,𝑙𝑖 , 𝑐𝑛𝑡𝑖,𝑙𝑖 ⟩ and ⟨𝑐𝑖+1,1, 𝑐𝑛𝑡𝑖+1,1⟩ if
𝑐𝑖,𝑙𝑖 = 𝑐𝑖+1,1 for all 1 ≤ 𝑖 ≤ M − 1, and we will end up with 𝑠◦ if we
concatenate all 𝑠◦

𝑖
s. □

As we mentioned before, in order to reduce from greater-than

matching, it is possible to divide the problem into two parts: match-

ing the letters, and ensuring whether the repetition constraints

are hold, and solve each part separately. The former is a simple

string matching problem, but the latter requires could be solved

with greater-than matching. Formally, we need to find all indices

1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1 such that for every 1 ≤ 𝑗 ≤ 𝑚, the following

constraints holds:

(1) 𝑇 ◦
𝑖+𝑗−1 = ⟨𝑐 𝑗 , 𝑥⟩ for some 𝑥 ≥ cnt𝑗 if 𝑃◦𝑗 = ⟨𝑐 𝑗 , cnt𝑗+⟩.

(2) 𝑇 ◦
𝑖+𝑗−1 = ⟨𝑐 𝑗 , cnt𝑗 ⟩ if 𝑃

◦
𝑗
= ⟨𝑐 𝑗 , cnt𝑗 ⟩ and 2 ≤ 𝑗 ≤ 𝑚 − 1.

(3) 𝑇 ◦
𝑖+𝑗−1 = ⟨𝑐 𝑗 , 𝑥⟩ for some 𝑥 ≥ cnt𝑗 if 𝑃◦𝑗 = ⟨𝑐 𝑗 , cnt𝑗 ⟩ and
𝑗 ∈ {1,𝑚}.

Constraint 3 needs to be considered to allow the substring in

the original text 𝑇 starts and ends in the middle of a block of 𝑐1
or 𝑐𝑚 letters. By considering only those substrings which their

letters match, we can get rid of letter constraints. Also to ensure

constraint 2, we can perform a wildcard ‘?’ pattern matching by

replacing each cnt𝑗+ and also cnt1 and cnt𝑚 by a ‘?’ wildcard, and

keep only the numbers that constraint 2 checks. Thus, if a substring

𝑇 ◦
𝑖,𝑖+𝑚−1 matches according to this wildcard ‘?’ pattern matching,

what remains is a greater-than matching, as we only need to check

constraints 1 and 3, andwe can replace numbers we already checked

for constraint 2 by some 0’s.

Observation 5.2. We can reduce pattern matching with wildcard
‘+’ from greater-than matching in 𝑂 (1) MPC rounds.

Using Observation 5.1, it only remains to perform𝑂 (1) wildcard
‘?’ matchings to obtain an instance of greater-than matching that

already satisfies constraint 2, as well as letter constraints. Thus,

Observation 5.2 is implied.

5.2 Reduction from subset matching
Problem 5.3. Subset Matching: Given 𝑇 , a vector of 𝑛 subsets of

the alphabet Σ, and 𝑃 , a vector of𝑚 subsets in the same format as 𝑇 ,
find all occurrences of 𝑃 in 𝑇 . 𝑃 is occurred at position 𝑖 in 𝑇 if for
every 1 ≤ 𝑗 ≤ |𝑃 |, 𝑃 𝑗 ⊆ 𝑇𝑖+𝑗−1.

The subset matching problem is a variation of pattern matching

where pattern matches text if each of the pattern entries is a subset

of the respective entries in text. Keeping this in mind, we use subset

matching to solve greater-than matching in𝑂 (1) MPC rounds, and

thereby achieving a𝑂 (1)-round solution for the problem of pattern

matching with ‘+’ wildcard character using the subset matching

algorithm proposed by Cole and Hariharan [18].

Observation 5.3. We can reduce greater-than matching to subset
matching in 𝑂 (1) MPC rounds with total runtime and total memory
of 𝑂 (𝑄), where 𝑄 is the sum of all 𝑇𝑡 ’s, i.e. 𝑄 =

∑𝑚
𝑖=1𝑇𝑖 .

The idea behindObservation 5.3 is to have a subset {0, 1, 2, . . . ,𝑇𝑖 }
instead of each entry of𝑇𝑖 , and a subset {𝑃𝑖 } instead of each 𝑃𝑖 . This
way if 𝑇 matches 𝑃 in a position 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1, then we have

𝑃 𝑗 ∈ {0, 1, 2, . . . ,𝑇𝑖+𝑗−1} since 𝑃 𝑗 ≤ 𝑇𝑖+𝑗−1 for all 1 ≤ 𝑗 ≤ 𝑚. This

way, we can solve pattern matching with wildcard ‘+’ in𝑂 (1) MPC

rounds if subset matching could be solved in 𝑂 (1) MPC rounds.

In the following, Lemma 5.4 shows it is possible to solve subset

matching w.h.p in a constant number of MPC rounds. The algorithm

utilizes 𝑂 (𝑙𝑜𝑔(𝑛)) invocations of wildcard ‘?’ matching.
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the size all 𝑇𝑖 ’s, i.e. 𝑄 =

Lemma 5.4. We can solve subset matching in 𝑂 (1) MPC rounds 
with total runtime and ∑total memory of 𝑂 (𝑄), where 𝑄 is the sum of

𝑛
𝑖=1 |𝑇𝑖 |.

Proof. First, consider solving an instance of the greater than

matching problem in 𝑂 (1) MPC rounds. We partition the entries

inside all 𝑇 𝑖
’s into Σ sequences 𝑇 𝑖,1,𝑇 𝑖,2, . . . ,𝑇 𝑖,Σ

inside each ma-

chine, where𝑇 𝑖, 𝑗 = {𝑘 | 𝑗 ∈ 𝑇𝑖𝑆+𝑘 }. We just create a subset of these

sets which are not empty, i.e., T𝑖 = {𝑇 𝑖, 𝑗 | |𝑇 𝑖, 𝑗 | > 0}, so that T𝑖 fits
inside the memory of each machine. P𝑖 also can be defined similarly.

We can sort all the union of all T𝑖 ’s and P𝑖 ’s in a non-decreasing

order of 𝑗 and breaking ties using 𝑖 in 𝑂 (1) MPC rounds [24].

This way, we end up with a sparse wildcard matching for each

character in Σ, because we want to check in which substrings of

𝑇 each occurrence of character 𝑗 ∈ Σ in 𝑃 is contained in the

corresponding 𝑇𝑖 . We can put a ‘1’ instead of each occurrence of 𝑗

in 𝑃 , a ‘?’ instead of each 𝑗 in 𝑇 , and a ‘0’ in all other places since

we are considering a greater than matching instance. Using the

similar algorithm as in [18], we can easily reduce each instance of

sparse wildcard matching to 𝑂 (log(𝑘)) normal wildcard matching

with size of 𝑂 (𝑘) in 𝑂 (1) MPC rounds, where 𝑘 is the number of

non-zero entries. Using Corollary 4.3, we can give a 𝑂 (1) round
MPC algorithm for subset matching when the input is an instance

of greater than matching. We can easily extend these techniques to

solve subset matching algorithm in 𝑂 (1) MPC rounds, as Cole and

Hariharan [18] showed it is analogous to sparse wildcard matching.

□

Theorem 5.5. There exists an MPC algorithm that solves string
matching with ‘+’ wildcard in constant rounds. The total memory and
the total running time of the algorithm are 𝑂 (𝑛).

Proof. We can also simplify the algorithm for pattern matching

with wildcard ‘+’, by exploiting subset matching flexibility. We

can also use subset matching to verify constraint 2 of greater-than

matching reduction (instead of wildcard ‘?’ pattern matching), as

well as letter constraint (instead of regular string matching with

no wildcard). We define 𝑇 ′ and 𝑃 ′ as follows:

𝑇 ′𝑖 =

𝑐𝑛𝑡𝑖⋃
𝑗=1

{⟨𝑐𝑖 , 𝑗+⟩} ∪ {⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖 ⟩} if 𝑇 ◦𝑖 = ⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖 ⟩ (4)

𝑃 ′𝑖 = {⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖 ⟩} if 𝑃◦𝑖 = ⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖 ⟩ (5)

𝑃 ′𝑖 = {⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖+⟩} if 𝑃◦𝑖 = ⟨𝑐𝑖 , 𝑐𝑛𝑡𝑖+⟩ (6)

It could easily be observed that subset matching of 𝑇 ′ and 𝑃 ′

is equivalent to pattern matching with wildcard ‘+’ of 𝑇 and 𝑃 ,

and also this simpler reduction is straight-forward to implement in

𝑂 (1) MPC rounds. In addition, the total runtime and memory of

this subset matching which is𝑂 (𝑄) is equal to𝑂 (𝑛) in the original

input. Note that 𝑇 ′ is resulted form 𝑇 ◦ whose sum of its numbers,

that each of them shows the repetitions of the respective letter,

equals 𝑛. □

6 STRING REPLACE WILDCARD ‘*’
In this section we consider the string matching problem with wild-

card ‘*’.

Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈ {Σ ∪ ‘*’}𝑚 , we say a substring of 𝑝

is a subpattern if it is a maximal substring not containing ‘*’. We

present the following results in this section:

(1) A sequential algorithm for string matching with wildcard ‘*’

in time 𝑂 (𝑛 +𝑚).
(2) An MPC algorithm for string matching with wildcard ‘*’

in 𝑂 (log𝑛) rounds using 𝑂 (𝑛𝑥 ) machines if the length of

pattern 𝑝 is at most 𝑂 (𝑛1−𝑥 ).
(3) An MPC algorithm for string matching with wildcard ‘*’ in

𝑂 (log𝑛) rounds using𝑂 (𝑛𝑥 ) machines if all the subpatterns

of 𝑝 are not prefix of each other.

6.1 Linear time sequential algorithm
Observation 6.1. Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈ {Σ∪ ‘*’}𝑚 , there

is a sequential algorithm to decide if 𝑠 matches with pattern 𝑝 in time
𝑂̃ (𝑛 +𝑚).

Let the subpatterns of 𝑝 to be 𝑃1, 𝑃2, . . . , 𝑃𝑤 . Our sequential al-

gorithm is StringMatchingWithStar(𝑎).

Algorithm 3: StringMatchingWithStar(𝑎)

Data: 𝑠 ∈ Σ𝑛 and 𝑝 ∈ {Σ ∪ ‘*’}𝑚 .

Result: Yes or No.

1 Set 𝑖 ← 1;

2 for 𝑗 = 1, 2, . . . ,𝑤 and 𝑖 ≤ 𝑛 do
3 Run KMP for the string 𝑠 [𝑖, 𝑛] and pattern 𝑃 𝑗 ;

4 If KMP fails, then Return No;

5 Let 𝑖 ′ be the position satisfying 𝑠 [𝑖 ′, 𝑖 ′ + |𝑃 𝑗 | − 1] = 𝑃 𝑗

obtained by KMP;

6 Set 𝑖 ← 𝑖 ′ + |𝑃 𝑗 |;
7 Return Yes.

6.2 MPC algorithm for small subpattern
Theorem 6.1. Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈ {Σ ∪ ‘*’}𝑚 for

𝑚 = 𝑂 (𝑛1−𝑥 ), there is an MPC algorithm to find the solve the string
matching problem in 𝑂 (log𝑛) rounds using 𝑂 (𝑛𝑥 ) machines.

We assume string 𝑠 is partitioned into 𝑠1, 𝑠2, . . . , 𝑠𝑡 for some 𝑡 =

𝑂 (𝑛𝑥 ) such that every 𝑠𝑖 has length at most𝑂 (𝑛1−𝑥 ). We say string

𝑠 is an exact matching of 𝑝 if there is a partition of 𝑠 into |𝑝 | (possibly
empty) substrings such that if 𝑝 [𝑖] is not ‘*’, then 𝑖-th substring is

same to 𝑝 [𝑖].
Given indices 𝑖, 𝑗 ∈ [𝑡] of string 𝑠 and position 𝑘 of pattern 𝑝 , let

𝑓 (𝑖, 𝑗, 𝑘) be the largest position of 𝑝 such that the concatenation of

𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠 𝑗 matches pattern 𝑝 [𝑘, 𝑓 (𝑖, 𝑗, 𝑘)].
To illustrate our idea, we need the following definitions:

(1) 𝑔(𝑘) for position 𝑘 of 𝑝 : the largest position which is smaller

than or equal to 𝑘 such that 𝑝 [𝑘] is ‘*’.
(2) ℎ(𝑘) for position 𝑘 of 𝑝 such that 𝑝 [𝑘] ≠ ‘*’: the smallest

integer 𝑟 such that 𝑝 [𝑔(𝑘)+1, 𝑘−𝑟 ] is a prefix of 𝑝 [𝑔(𝑘)+1, 𝑘].
Consider the following equation for an arbitrary 𝑖 ≤ 𝑖 ′ < 𝑗 (let

𝛽 = 𝑓 (𝑖, 𝑖 ′, 𝑘))
• if 𝑝 [𝛽] = ‘*’:

𝑓 (𝑖, 𝑗, 𝑘) = 𝑓 (𝑖 ′ + 1, 𝑗, 𝛽)
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• if 𝑝 [𝛽] ≠ ‘*’:

𝑓 (𝑖, 𝑗, 𝑘) = max


𝑓 (𝑖 ′ + 1, 𝑗, 𝑔(𝛽)),
max

0≤ℓ≤⌊ 𝛽−ℎ (𝛽 )
𝑔 (𝛽 ) ⌋

{𝑓 (𝑖 ′ + 1, 𝑗, 𝛽 − ℓ · ℎ(𝛽))}

(7)

Our algorithm is StringMatchingWithStar(b).

of 6.1. We show that Eq. 7 correctly computes 𝑓 (𝑖, 𝑗, 𝑘) for an
arbitrary 𝑖 ≤ 𝑖 ′ < 𝑗 . Then the theorem follows from the description

of StringMatchingWithStar(b), Eq. 7 and Observation 6.1.

Let 𝛼 be the largest position of 𝑝 such that there is an exact

matching of the concatenation of 𝑠𝑖 , . . . , 𝑠 𝑗 and 𝑝 [𝑘, 𝛼]. If 𝑓 (𝑖, 𝑖 ′, ·)
and 𝑓 (𝑖 ′ + 1, 𝑗, ·) are correct, and 𝑓 (𝑖, 𝑗, 𝑘) is computed by Eq. 7,

then 𝑓 (𝑖, 𝑗, 𝑘) ≤ 𝛼 , since Eq. 7 implies a feasible exact matching.

Now we show that 𝑓 (𝑖, 𝑗, 𝑘) ≥ 𝛼 if 𝑓 (𝑖, 𝑗, 𝑘) is computed by Eq. 7.

There is an exact matching of the concatenation of 𝑠𝑖 , . . . , 𝑠 𝑗 and

𝑝 [𝑘, 𝛼]. Let 𝛾 be the position of pattern 𝑝 such that the last symbol

of 𝑠𝑖′ is matched to 𝑝 [𝛾]. By the definition of function 𝑓 , 𝛾 ≤ 𝛽 .

Consider the case of 𝑝 [𝛾] =‘*’ or 𝑝 [𝛾] ≠‘*’ but 𝑝 [𝛾] =‘*’. We

have 𝑔(𝛽) ≥ 𝛾 and 𝑓 (𝑖 ′ + 1, 𝑗, 𝛾) = 𝛼 . By the monotone property of

𝑓 , we have 𝑓 (𝑖, 𝑗, 𝑘) ≥ 𝑓 (𝑖 ′ + 1, 𝑗, 𝑔(𝛽)) ≥ 𝑓 (𝑖 ′ + 1, 𝑗, 𝛾) = 𝛼 .

Consider the case of 𝑝 [𝛾] ≠‘*’ and 𝑝 [𝛽] ≠‘*’. If 𝛾 and 𝛽 are in dif-

ferent subpatterns, then using above argument, we have 𝑓 (𝑖, 𝑗, 𝑘) ≥
𝛼 . Otherwise, 𝑝 [ℎ(𝛽) + 1, 𝛾] is a suffix of 𝑝 [ℎ(𝛽) + 1, 𝛽], which im-

plies that there is a non-negative integer ℓ such that 𝛾 = 𝛽 − ℓ ·ℎ(𝛽).
Hence, 𝑓 (𝑖, 𝑗, 𝑘) ≥ 𝛼 . □

Algorithm 4: StringMatchingWithStar(b)

Data: two array 𝑠 and 𝑝 .

Result: Yes or No.

1 Distribute 𝑠1, 𝑠2, . . . , 𝑠𝑡 to distinct machines, and distribute 𝑝

to every machine;

2 Compute 𝑓 (𝑖, 𝑖, 𝑘) for all the 𝑘 on the machine containing 𝑠𝑖

by algorithm StringMatchingWithStar(𝑎) in parallel;
3 for𝑚 = 1, 2, . . . , ⌈log

2
𝑡⌉ do

4 For every 𝑖 ≥ 1, put 𝑓 (𝑖, 𝑖 + 2𝑚−1 − 1, 𝑘) and
𝑓 (𝑖 + 2𝑚−1, 𝑖 + 2𝑚 − 1, 𝑘) into same machine for all the

𝑘 in parallel;
5 For every 𝑖 ≥ 1, compute 𝑓 (𝑖, 𝑖 + 2𝑚 − 1, 𝑘) for all the 𝑘

by Equation 7 with 𝑗 = 𝑖 + 2𝑚 − 1 and 𝑖 ′ = 𝑖 + 2𝑚−1 − 1
in parallel;

6 Return Yes if 𝑓 (1, 𝑡, 1) = 𝑤 , otherwise return No.

6.3 MPC algorithm for non-prefix subpatterns
Theorem 6.2. Given strings 𝑠 ∈ Σ𝑛 and 𝑝 ∈ {Σ ∪ ‘*’}𝑚 such that

subpatterns are not a prefix of each other, there is an MPC algorithm
to find the solve the string matching problem in𝑂 (log𝑛) rounds using
𝑂 (𝑛𝑥 ) machines.

Proof. We show that algorithm StringMatchingWithStar(c) solves
the problem.

We first prove the correctness of the algorithm. Since all the

subpatterns are not a prefix of each other, for every position 𝑖 of

string 𝑠 , there is at most one subpattern 𝑃𝑢 such that 𝑃𝑢 is a prefix of

𝑠 [𝑖, 𝑛]. On the other hand, if 𝑠 [𝑖, 𝑗] is not a prefix of any subpattern,

then ℎ(𝑠 [𝑖, 𝑗]) does not equal to any of the hash value obtained in

Step 1, otherwise, ℎ(𝑠 [𝑖, 𝑗]) is equal to some hash value obtained

in Step 1. Hence, for every 𝑖 ∈ [𝑛], the “for" loop of Step 2 finds the

subpattern 𝑃𝑢 such that 𝑃𝑢 is a prefix of 𝑠 [𝑖, 𝑛] by binary search if

𝑃𝑢 exists.

If string 𝑠 matches pattern 𝑝 , then any set of positions𝑎1, 𝑎2, . . . , 𝑎𝑢
with the following two conditions

(1) 𝑃𝑖 is a prefix of 𝑠 [𝑎𝑖 , 𝑛] for every 𝑖 ∈ [𝑤].
(2) 𝑎𝑖 + |𝑃𝑖 | ≤ 𝑎𝑖+1 for every 𝑖 ∈ [𝑤 − 1].

corresponds to a matching between 𝑠 and 𝑝 . Hence, string 𝑠 matches

pattern 𝑝 if and only if 𝑣0 and 𝑣𝑚+1 are connected in the constructed
graph of Step 15 and 16.

Now we consider the number of MPC rounds required. Using

the argument of Section 3, computing hash of all the prefixes of

every subpattern or a set of 𝑛 substrings of 𝑠 needs constant MPC

rounds. Hence Step 1 needs constant rounds, and the “for" loop

of Step 2 needs 𝑂 (log𝑛) rounds. Step 15 naturally needs a single

round. Step 16 can be done in 𝑂 (log𝑛) rounds by sorting all the

(𝑖, 𝑓 (𝑖)) pairs according to the 𝑓 function values and selecting 𝑗

such that 𝑗 ≥ 𝑖 + |𝑃𝑓 (𝑖) | and 𝑓 ( 𝑗) = 𝑓 (𝑖) +1 for all the pairs (𝑖, 𝑓 (𝑖)).
The graph connectivity needs 𝑂 (log𝑛) rounds. □

Algorithm 5: StringMatchingWithStar(c)

Data: two array 𝑠 and 𝑝 .

Result: Yes or No.

1 For each subpattern 𝑃𝑖 in parallel compute the hash value

of every prefix of 𝑝𝑖 ;

2 for each position 𝑖 of string 𝑠 in parallel do
3 Set 𝑗 = 0 and 𝑘 = 𝑛 initially;

4 while 𝑗 < 𝑘 do
5 Let ℓ = ⌈( 𝑗 + 𝑘)/2⌉;
6 Compute the hash ℎ(𝑠 [𝑖, 𝑖 + ℓ]);
7 if there is a hash obtained in step 2 same to

ℎ(𝑠 [𝑖, 𝑖 + ℓ]) then
8 Set 𝑗 ← ℓ ;

9 else
10 Set 𝑘 ← ℓ − 1;

11 if there is a subpattern 𝑝𝑢 same to 𝑠 [𝑖, 𝑖 + 𝑗] then
12 Set 𝑓 (𝑖) ← 𝑢;

13 else
14 Set 𝑓 (𝑖) → 0;

15 Construct an empty graph in parallel with vertices

𝑣0, 𝑣1, . . . , 𝑣𝑛+1. Add edge (𝑣0, 𝑣𝑠 ) and (𝑣𝑡 , 𝑣𝑛+1) where 𝑠 is
the smallest integer such that 𝑓 (𝑠) = 1, 𝑡 is the largest

integer such that 𝑓 (𝑡) = 𝑤 ;

16 For every 𝑖 ∈ [𝑛] such that 𝑓 (𝑖) > 0, in parallel add edge

(𝑣𝑖 , 𝑣 𝑗 ) to the graph where 𝑗 is the smallest integer such

that 𝑗 ≥ 𝑖 + |𝑃𝑓 (𝑖) | and 𝑓 ( 𝑗) = 𝑓 (𝑖) + 1;
17 Run graph connectivity algorithm on the graph constructed.

return Yes if 𝑣0 and 𝑣𝑛+1 are in the same connected

component of the graph, otherwise return No ;
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