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ABSTRACT

We study distributed algorithms for string matching problem in
presence of wildcard characters. Given a string T (a text), we look
for all occurrences of another string P (a pattern) as a substring of
string T. Each wildcard character in the pattern matches a specific
class of strings based on its type. String matching is one of the most
fundamental problems in computer science, especially in the fields
of bioinformatics and machine learning. Persistent effort has led to
a variety of algorithms for the problem since 1960s.

With rise of big data and the inevitable demand to solve problems
on huge data sets, there have been many attempts to adapt classic
algorithms into the MPC framework to obtain further efficiency.
MPC is a recent framework for parallel computation of big data,
which is designed to capture the MapReduce-like algorithms. In this
paper, we study the string matching problem using a set of tools
translated to MPC model. We consider three types of wildcards in
string matching:

e ‘2 wildcard: In this setting, the pattern is allowed to contain
special ‘?” characters or don’t cares that match any character
of the text. String matching with don’t cares could be solved
by fast convolutions, and we give a constant round MPC
algorithm for which by utilizing FFT in a constant number
of MPC rounds.

e ‘+’ wildcard: ‘+” wildcard is a special character that allows
for arbitrary repetitions of a character. When the pattern
contains ‘+” wildcard characters, our algorithm runs in a
constant number of MPC rounds by a reduction from subset
matching problem.

o is a special character that matches with any

%o

o “ wildcard:
substring of the text. When “’ is allowed in the pattern, we
solve two special cases of the problem in logarithmic rounds.
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1 INTRODUCTION

The string matching problem with wildcards, or pattern matching,
seeks to identify pieces of a text that adhere to a certain structure
called the pattern. Pattern matching is one of the most applied
problems in computer science. Examples range from simple batch
applications such as Awk, Sed, and Diff to very sophisticated ap-
plications such as anti-virus tools, database queries, web browsers,
personal firewalls, search engines, social networks, etc. The aston-
ishing growth of data on the internet as well as personal computers
emboldens the need for fast and scalable pattern matching algo-
rithms.

In theory too, pattern matching is a well-studied and central
problem. The simplest variant of pattern matching, namely string
matching, dates back to 1960s. In this problem, two strings T and
P are given as input and the goal is to find all substrings of T
that are identical to P. The celebrated algorithm of Knuth, Mor-
ris, and Pratt [31] (KMP) deterministically solves the problem in
linear time. Since then, attention has been given to many vari-
ants and generalizations of pattern matching [1, 2, 5, 8, 10, 11, 13,
15, 16, 20, 22, 25-27, 31, 34-36, 38—-41]. Natural generalizations
of string matching are when either the text or the pattern is a
tree instead of a string [20, 25, 39, 40] or when the pattern has
a more sophisticated structure that allows for ‘?°, ‘+’, “’, or in
general any regular expression [5, 13, 27, 34]. Also, different com-
putational systems have been considered in the literature: from
sequential algorithms [5, 13, 20, 25, 27, 31, 34, 39, 40], to quantum
algorithms [8, 35, 36, 38], to distributed settings [2, 16, 26], to the
streaming setting [1, 15, 37], to PRAM [10, 11, 22, 41], etc.

An obvious application of pattern matching is in anti-virus soft-
wares. In this case, a malware is represented with a pattern and
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a code or data is assumed to be infected if it contains the pattern.
In the simplest case, the pattern only consists of ascii characters.
However, it happens in practice that malwares allow for slight mod-
ifications. That is, parts of the pattern code are subject to change.
This can be captured by introducing wildcards to pattern matching.
More precisely, each element of the pattern is either an ascii code
or a special character ‘?” which stands for a wildcard. The special
character is allowed to match with any character of the text.

Indeed the desirable property of the ‘?’ case is that the length
of the pattern is always fixed. However, one may even go beyond
this setting and consider the cases where the pattern may match to
pieces of the text with variant lengths. Two classic ways to incorpo-
rate this into the model is to consider two special characters ‘+* and
. The former allows for arbitrary repetitions of a single character
and the latter allows for arbitrary repetitions of any combination
of characters. For example, as an application of pattern matching
in bioinformatics, we might be looking for a set of gene patterns
in a DNA sequence. Obviously, these pattern are not necessarily
located consecutively in the DNA sequence, and one might utilize
“** wildcard to address this problem.

In practice, these problems are formulated around huge data sets.
For instance, a human DNA encompasses roughly a Gigabyte of
information, and an anti-virus scans Gigabytes (if not Petabyets)
of data on a daily basis. Thus, the underlying algorithm has to be
scalable, fast, and memory efficient. A natural approach to obtain
such algorithms is parallel computation. Motivated by such needs,
the massively parallel computation (MPC) model [3, 7, 23, 30] has
been introduced to understand the power and limitations of parallel
algorithms. It first proposed by Karloff et al. [30] as a theoretical
model to embrace Map Reduce algorithms, a class of powerful par-
allel algorithms not compatible with previously defined models for
parallel computation. Recent developments in the MPC model have
made it a cornerstone for obtaining massively parallel algorithms.

While in the previous parallel settings such as the PRAM model,
usually an O(logn) factor in the round complexity is inevitable,
MPC allows for sublogarithmic round complexity [19, 30, 33]. Karloff
et al. [30] also compared this model to PRAM, and showed that for
a large portion of PRAM algorithms, there exists an MPC algorithm
with the same number of rounds. In this model, each machine has
unlimited access to its memory, however, two machines can only
interact in between two rounds. Thus, a central parameter in this
setting is the round complexity of algorithm since network com-
munication is the typical main bottleneck in practice. The ultimate
goal is developing constant-round algorithms, which are highly
desirable in practice.

The MPC model: In this paper, we assume that the input size
is bounded by O(n), and we have M machines of each with a
memory of S. In the MPC model [3, 7, 23, 30], we assume the
number of machines and the local memory size on each machine
is asymptotically smaller than the input size. Therefore, we fix an
0 < x < 1 and bound the memory of each machine by O(n! ™).
Also, our goal is to have near linear total memory and therefore
we bound the number of machines by O(n*). An MPC algorithm
runs in a number of rounds. In every round, every machine makes
some local computation on its data. No communication between
machines is allowed during a round. Between two rounds, machines
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are allowed to communicate so long as each machine receives no
more communication than its memory. Any data that is outputted
from a machine must be computed locally from the data residing
on the machine and initially the input data is distributed across the
machines.

In this work we give MPC algorithms for different variants of
the pattern matching problem. For the regular string matching
and also “?” and ‘+’ wildcard problems, our algorithms are tight in
terms of running time, memory per machine, and round complexity.
Both ‘?’ and ‘+” wildcard problems are reduced to fast convolution
at the end, and make use of the fact that FFT could computed in
O(1) MPC rounds with near-linear total running time and total
memory. Also, for the case of **” wildcard we present nontrivial
MPC algorithms for two special cases that mostly tend to happen
in practice. However, the round complexity of these two cases is
O(log(n)), and the general case problem is not addressed in this

paper.

1.1 Our Results and Techniques

Throughout this paper, we denote the text by T and the pattern by
P. Also, we denote the set of characters by 3.

We begin, as a warm-up, in Section 3 by giving a simple MPC
algorithm that solves string matching in 2 rounds. The basic idea
behind our algorithm is to cleverly construct hash values for the
substrings of the text and the pattern. In other words, we construct
an MPC data structure that enables us to answer the following
query in a single MPC round:

Given indices i and j of the text, what is the hash value for the
substring of the text starting from position i and ending at position j?

Indeed, after the construction of such a data structure, one can
solve the problem in a single round by making a single query for
every position of the text. This gives us a linear time MPC algorithm
that solves string matching in constant rounds.

Theorem 3.1 (restated). There exists an MPC algorithm that solves
string matching in constant rounds. The total memory and the total
running time of the algorithm are linear.

For the case of wildcard ‘?°, the hashing algorithm is no longer
useful. It is easy to see that since special ‘?’ characters can be
matched with any character of the alphabet, no hashing strategy
can identify the matches. However, a more sophisticated coding
strategy enables us to find the occurrences of the pattern in the
text. Assume for simplicity that m = || is the size of the alphabet
and we randomly assign a number 1 < mp, < m to each character
c of the alphabet. Moreover, we assume that all the numbers are
unique that is for two characters ¢ and ¢’ we have mp, = mp
if and only if ¢ = ¢’. Now, construct a vector T* of size 2|T| such

7
that T, _,

we construct a vector PT of size 2|P| similarly, expect that P;fi_l =
P,; = 0 if the i’th character of P is *?". Let nzp be the number of the
normal characters (‘?’ excluded) of the pattern. It follows from the

= mpg, and TzTi = 1/mpy, for any 1 < i < |T|. Also,

construction of TT and PT that if P matches with a position i of the
text, then we have:

TT[2i - 1,2i +2(|P| - 1)].PT = nzp
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where TT[2i—1,2i+2(|P| - 1)] is a sub-vector of A only containing
indices 2i — 1 through 2i + 2(|P| — 1). Moreover, it is showed in [21]
that the vice versa also holds. That is if T [2i—1, 2i+2(|P|-1)].PT =
nzp for some i then pattern P matches position i. This reduces the
problem of pattern matching to the computation of dot products
which is known to admit a linear time solution using fast Fourier
transform (FFT) [12].

Theorem 4.2 (restated). There exists an MPC algorithm that com-

putes FFT in constant rounds. The total memory and the total running
time of the algorithm are O(n).

Corollary 4.3 gives us an efficient MPC algorithm for the wildcard
setting. While the reduction from wildcard matching to FFT is a
known technique [18] the fact that FFT is computable in O(1) MPC
rounds leads to efficient MPC algorithm for a plethora of problems.
FFT is used in various combinatorial problems such as knapsack [6],
3-sum [14], subset-sum [32], tree-sparsity [4], tree-separability [6],
necklace-alignment [9], etc.

The case of ‘+” and “*’ wildcards are technically more involved.
In the case of repetition, special characters ‘+’ may appear in the
pattern. These special characters allow for arbitrary repetitions of a
single character. For instance, a pattern “a+bb+" matches all strings
of the form a*.b¥ such that x > 1 and y > 2. Indeed this case is
more challenging as the pattern may match with substrings of the
text with different lengths.

To tackle this problem, we first compress both the text and the
pattern into two strings T° and P° using the run-length encoding
method. In the compressed versions of the strings, we essentially
avoid repetitions and simply write the numbers of repetitions after
each character. For instance, a text “aabcccddad” is compressed into
“a[2]b[1]c[3]d[2]a[1]d[1]" and a pattern “ab+ccc+" is compressed
into “a[1]b[1+]c[3+]". With this technique, we are able to break the
problem into two parts. The first subproblem only incorporates the
characters which is basically the conventional string matching. The
second subproblem only incorporates repetitions. More precisely,
in the second subproblem, we are given a vector A of n integer
numbers and a vector B of m entries in the form of either i or i+. An
entry of i matches only with indices of A with value i but an entry
of i+ matches with any index of A with a value at least i. Since we
already know how to solve string matching efficiently, in order to
solve the repetition case, we need to find a solution for the latter
subproblem.

To solve this subproblem, we use an algorithm due to Cole and
Hariharan [18]. They showed the subset matching problem could
be solved in near-linear time. The definition of the subset matching
problem is as follows.

Problem 5.3 (restated). Given T, a vector of n subsets of the alpha-
bet X, and P, a vector of m subsets in the same format as T, find all
occurrences of P in T. P is occurred at position i in T if for every
1<j<|P|,Pj C Tirj-1.

We can reduce our problem to an instance of the subset matching
problem by replacing every T; with {1+, 2+,...,T;+} U {T;}, and
keep S intact, i.e., replacing each S; with {S;}. This way, if there is
a match, each S; has to be included in the respective T;. There is an
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algorithm for this problem with O(s) running time [18], where s
shows the total size of all subsets in T and P. The running time is
good enough for our algorithm to be near linear since s is at most
twice the number of characters in the original text and pattern. Each
T; is the compressed version of T; consecutive repetitions of a same
character in T. We also show that the subset matching problem
could be implemented in a constant number of MPC rounds, and
thus a constant-round MPC algorithm for string matching with ‘+°
wildcard is implied.

Theorem 5.5 (restated). There exists an MPC algorithm that solves
string matching with +’ wildcard in constant rounds. The total mem-
ory and the total running time of the algorithm are O(n).

Despite positive results for “?” and ‘+* wildcards, we do not know
whether a poly-logarithmic round MPC algorithm exists for *’
wildcard in the most general case or not. This wildcard character
matches any substring of arbitrary size in the text. We can con-
sider a pattern consisted of “** and ¥ characters as a sequence of
subpatterns, maximal substrings not having any “*’, with a *’ be-
tween each consecutive pair. In the sequential settings, we can solve
the problem by iterating over the subpatterns, and find the next
matching position in the text for each one. If we successfully find a
match for every subpattern in order, we end up with a substring
of T matching P. Otherwise, it is easy to observe that T does not
match the pattern P. To find the next matching position, we can
perform a KMP algorithm on T and all the subpatterns one at a
time, and make a transition to the next subpattern whenever we
find a match, which is still linear in n + m, as the total size of the
subpatterns is limited by m. The algorithm is provided with more
details in Observation 6.1.

However, things are not as easy in the MPC model, because
each subpattern can happen virtually anywhere in the text, and
furthermore the number of subpatterns could be as large as O(m).
Thus, intuitively, it is impossible to know which subpatterns match
each location of T with a linear total memory since the total size of
this data could be Q(nm), and also we cannot transfer this data in
poly-logarithmic number of MPC rounds. Nonetheless, we provide
two examples of how we can overcome this restriction by adding a
constraint on the input. In both the cases, a near-linear O(log(n))-
round MPC algorithm exists for solving “** wildcard problem.

(1) When the whole pattern fits in a single machine, m = O(n'™*)

then the number of subpatterns is limited by O(n'™). Thus,
each machine could access each subpattern, and finds out if
an interval of subpatterns happens in its part of input. At the
end, we merge these pieces of information using dynamic
programming to obtain the result.

Theorem 6.1 (restated). Given stringss € X" and p €
{ZU Y form = O(n'™), there is an MPC algorithm to
find the solve the string matching problem in O(log n) rounds
using O(n*) machines.

When no subpattern is a prefix of another, then the number
of different subpatterns matching each starting position is
limited by 1. Exploiting this property, we can find out which
subpattern matches each starting position, if any. Next, we
create a graph with positions in T as vertices, and we put an

s
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edge from a position i which matches a subpattern Py, to the
minimum position j matching subpattern Py, which is also
located after i+|Py.|—1. This way, *’ wildcard string matching
reduces to a graph connectivity problem; finding whether
there is path from a position matching the first subpattern
to a position matching the last subpattern. Therefore, we
will have a O(log(n))-round MPC algorithm for “** wildcard
problem using the standard graph connectivity results in
MPC [30].

Theorem 6.2 (restated). Given stringss € X" and p €
{Z U “’}™ such that subpatterns are not a prefix of each other,
there is an MPC algorithm to find the solve the string matching
problem in O(log n) rounds using O(n*) machines.

2 PRELIMINARIES

In the pattern matching problem, we have two strings T and P of
length n and m over an alphabet X. In the string matching problem,
the first string T is a text, and the second string P is the pattern we
are looking for in T. For a string s, we denote by s[[, r] the substring
of sfromltor,ie.,s[lr] = (s, S 1,...,sr). Giventwo strings T and
P, we are looking for all occurrences of the pattern P as a substring
of T. In other words, we are looking for all i € [1,n — m + 1] such
that T[i,i+m — 1] = P. In this case, we say substring T[i, i +m — 1]
matches pattern P.

PROBLEM 2.1. Given two strings T € " and P € 3™, we want to
find all occurrences of the string P (pattern) as a substring of string T
(text).

Problem 2.1 has been vastly studied in the literature, and there
are a number of solutions that solve the problem in linear time. [31]
However, the main focus of this paper is to design massively parallel
algorithms for the pattern matching problem. We consider MPC
as our parallel computation model, as it is a general framework
capturing state-of-the-art parallel computing frameworks such as
Hadoop MapReduce and Apache Spark.

We extend the problem of string matching adding wildcard char-
acters to the pattern. A wildcard character is a special character
¢ ¢ 3 in pattern that is not required to match by the same character
in T. For example, wildcard character ‘?’ can be matched by any
arbitrary character in T. For instance, let T and P be “abracadabra”
and “a?a” respectively. Then, pattern P occurs ati =4 and i = 6

since P < T[4,6] and P < T[6,8]. Notation 2 denoted the equality
of two strings regarding the wildcard character ¢.
We consider three kinds of wildcard characters in this paper:

(1) Character replacement wildcard ‘?’: Any character can match
character replacement wildcard.

(2) Character repetition wildcard ‘+’: If character repeat wild-
card appears immediately after a character c in the pattern,
then any number of repetition for character c is accepted.

(3) String replacement wildcard “*’: A string replacement wild-
card can be matched with any string of arbitrary length.
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3 STRING MATCHING WITHOUT
WILDCARD

In this section, we provide an algorithm for the string matching
problem with no wildcards; Given strings T and P, we wish to find
all the starting points in T that match P. The round complexity of
our algorithm, which is the most important factor in MPC model,
is constant. Furthermore, the algorithm is tight in a sense that the
total running time and memory is linear. For the more restricted
cases, we enhance our algorithm to work in even less rounds.

The algorithm consists of three stages. We discuss the different
stages of the algorithm with details in the following. The main goal
of the algorithm is to compare the hash of each length m substring of
string T with the hash of string P, and therefore, find an occurrence
if they are equal. We consider the following properties, namely
partially decomposability, for our hash function h,

e Merging the hashes of two strings s and s’, to find the hash
of their concatenation s + s’, can be done in O(1).

e Querying the hash of a substring s[I, r] can be done in O(1),
with O(|s|) preprocessing time.

Further details regarding a hash function with partially decom-
posability property are provided in Appendix A of the full version
of the paper.

Consider strings T and P are partitioned into several blocks
of size S, each fit into a single machine. We denote these blocks
by T T2, ..,T”/S and P!, P2, . ..,Pm/s. It is easy to solve the
problem when P is small relative to S. We can search for P in each
block independently by maintaining the partial hash for each prefix
of the block. The caveat of this solution is that some substrings lie
in two machines. We can fix this issue by feeding the initial string
chunks with overlap. If the length of the overlaps is greater than m, it
is guaranteed than each candidate substring is contained as a whole
in one of the initial string chunks. We call this method “Double
Covering”. Utilizing this method, we can propose an algorithm
which leads to Observation 3.1. Therefore, the main catch of the
algorithm is to deal with the matching when string P spans multiple
blocks.

OBSERVATION 3.1. GivenT € 2" andP € 3™ wherem = O(n'™%),
there is an MPC algorithm for string matching problem with no wild-
cards in 1 MPC round using O(n*) machines in linear total running
time.

Proor. We provide for each machine, which holds T%, the next
m characters in the T, i.e., T[iS + 1 : iS + m], which is viable since
m = O(S). Therefore, we can compute the hash of each substring
starting in T’ as well as P in each machine. See Algorithm 1 for
more details. m]

THEOREM 3.1. Foranyx < 1/2, givenT € 3" and P € 3™, there
is an MPC algorithm for string matching problem with no wildcards
in O(1) MPC rounds using O(n*) machines in linear total running
time.

Intuitively, we can handle larger patterns by transferring the par-
tial hash of each ending point to the machine which the respective
starting point lies in. In addition, we compute the hash of each k
first blocks, and by which, we can find the hash of each interval of



Paper Presentation

SPAA 21, July 6-8, 2021, Virtual Event, USA

Problem Theorem Rounds Total Runtime  Nodes
Pexm 3.1 0(1) O(n) o(n¥)
Pe{zu7m 43 0(1) O(n) o(n*)
Pe{Zu‘+}ym 5.5 0(1) O(n) o(n*)

worm | m=0(n1) 6.1 O(log(n)) O(n) o(n¥)
Pe{zu™} no prefix 6.2 O(log(n)) O(n) o(n¥)

Table 1: Overview of results

Algorithm 1: StringMatching(a)
Data: two array T and P, where m = O(S)
Result: function f : {1,2,...,n—m+1} — {0, 1} such that
fG)=1iff T[i:i+m—-1] = P.
1 f(i) <0 ViI<i<n-m+1;
2 send a copy of P as well as T[iS + 1 : iS + m] to the i-th
machine, which holds T%, truncate if iS + m surpasses .
3 Run in parallel: for 1 < i < n/S do
4 append T[iS + 1 : iS + m] to T%;
5 for1<j<Sdo
6 Lifh(P)=h(Ti[j:j+m—1])then

| f(-1DS+)) <1
blocks. Note that we need to assume x < 1/2, so that memory of a
single machine be capable of storing O(1) information regarding
each machine. The algorithm is outlined in Algorithm 2.

N

PrOOF. Assume there are (n+ m)/S + 2 machines as following:
e machines ay, az, . . ., a,s which T! is stored in ;.
e machines by, by, ..., bm/S which P! is stored in b;.
e machines ¢ and d which are used for aggregation purposes.

At the first round, we compute the hash of each block T! and P!
and send them to machines ¢ and d respectively. Furthermore, we
compute the partial hashes of each prefix of each block T%, that is
h(T[1, j]) for 1 < j < S. The calculated hash of each prefix should
be sent to the machine containing the respective starting point.
Therefore, T![1, j] should be sent to the node containing starting
point (i — 1)S + j — m + 1. The total communication overhead of
this round is O(n + m).

In the next round, we aggregate the calculated hashes in the
previous round. In node d, we calculate the hash of string P by
merging the hashes of T!, T2, ..., T™/S . The value of h(P) should
be sent to all g; for 1 < i < n/S. Those nodes are supposed to
compare h(P) with the hash of each starting point lying in their
block to find the matches in the last round. Furthermore, in node
¢, the hash of each first k blocks of T should be calculated, i.e.,
R(T*+T%+...+ T forall 1 <i < n/S. Each machine a; needs
to compute the hash of a sequence of consecutive blocks of T that
lie between each starting point in T* and its respective end point.
Therefore, each machine should receive up to O(1) of these hashes,
because the set of respective ending points spans at most 2 blocks.

In the final round, we have all the data required for finding the
matches with starting point inside block T* at node a;. It suffices
to find the hash of each suffix of T, i.e., h(T![I, S]), in which [ is

279

the candidate starting point. Consider T¥ is the block where the
ending point respective to [ lies inside, and r is the index of the
ending point inside Tk Then, using the hash of the sequence of
block between T and TX, and h(T*[1, ]) (both the hashes has been
sent to a; in the previous steps) one can decide whether the starting
point [ in block T* is a match or not. O

Algorithm 2: StringMatching(b)
Data: two array T and P
Result: function f: {1,2,...,n—m+ 1} — {0, 1} such that
f()=1iffT[i:i+m—1] = P.
1 f(i) <=0 V1i<i<n-m+1;
2 Run in parallel: for 1 < i < m/S do
3 L send h(P') to machine d;

4 Run in parallel: for 1 < i < n/S do

5 send h(T*) to machine c;
6 for1<j<Sdo
7 send h(T'[1, j]) to the machine aj, where the

corresponding starting point, i.e.,
(i-1)S+j—m+1,lies in T¥;

s send h(P) — merge(h(PY), h(P?), ..., h(P™/S)) to each a;
for1 <i<n/S;
9 for1<i<n/Sdo
R(TY+T?+... +T) «
merge(h(T! + T2 + ...+ T, h(TY));
send h(T! +T? +...+T?%) to each machine aj that needs
it in the next round;

10

11

Run in parallel: for 1 < i < n/S do

for1<1<Sdo

s—(i-1)S+1

let k be the index of the machine where s + m — 1

12
13
14
15
lies in Tk;
r—s+m-1-(k-1)8S;
n=h(TH +TH2 4 4 Tk-1),
h(T[s,s+m—1]) «
merge(h(T'[1, S]), 1, H(TF[1,r]));
if h(T[s,s + m — 1]) = h(P) then
| f(s) — 1

16

17

18

19
20
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4 CHARACTER REPLACE WILDCARD ‘?

We start this section summarizing the algorithm for string matching
with ‘?” in sequential settings, which require Fast Fourier Transform.

THEOREM 4.1 (PROVEN IN [21]). Given stringsT € X" and P €
(ZU{?H)™, it is possible to find all the substrings of T that match
with pattern P in O(n + m).

The idea behind Theorem 4.1 is taking advantage of fast multi-
plication algorithms, e.g. using Fast Fourier Transform, to find the
occurrences of P which contains ‘?° wildcard characters. Fischer
and Paterson [21] proposed the first algorithm for string match-
ing with “?” wildcard. The main idea is to replace each character
¢ € X in string T or P with two consecutive numbers mp, and
1/mp, and each ‘?* with two consecutive zeros. If we compute the
convolution of T and the reverse of P, we can ensure a match if
the convoluted value with respect to a substring of T equals the
number non-wildcard characters in P, aka nzp. This procedure re-
quires a non-negligible precision in float arithmetic operations that
adds a log(|2|) factor to the order of the algorithm. In the subse-
quent works, the dependencies on the size of alphabet has been
eliminated. [17, 28, 29]

As stated in Theorem 4.1, we can solve string matching with
‘?” wildcards in O(nlog(n)) using convolution. Convolution can
be computed in O(nlog(n)) by applying Fast Fourier Transform
on both the arrays, performing a point-wise product, and then
applying inverse FFT on the result. Therefore, we should implement
FFT in a constant round MPC algorithm in order to solve pattern
matching with wildcard ‘?’. Inverse FFT is also possible with the
similar approach.

Given an array A = (ag, a1, . . ., n-1), we want to find the Dis-
crete Fourier Transform of array A. Without loss of generality, we
can assume n = 2K, for some k, to avoid the unnecessary compli-
cation of prime factor FFT algorithms; it is possible to right-pad
by zeroes otherwise. By Fast Fourier Transform, applying radix-2
Cooley-Tukey algorithm for example, one can compute the Discrete
Fourier Transform of A in O(nlog(n)) time, which is defined as:

n-1
az - Z aj - e—Zm'jk/n (1)
Jj=0
Where A* = (as, aj,..., afkl) is the DFT of A. We interchange-
ably use the alternative notation W,, = e~27/" by which Equality
1 becomes

n-1

% _ jk
ak—Zaj-Wn
Jj=0

@)

We state the following theorem regarding the FFT in the MPC
model.

THEOREM 4.2. For any x < 1/2, a collection of O(n*) machines
each with a memory of size O(n'™) can solve the problem of finding
the Discrete Fourier Transform of A with O(1) number of rounds
in MPC model. The total running time equals O(nlog(n)), which is
tight.
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Roughly speaking, our algorithm is an adaptation of Cooley-
Tukey algorithm in the MPC model. In Appendix B of the full
version of the paper, we justify Theorem 4.2 by giving an overview
of the algorithm, and then we show how it results in a O(1)-round
algorithm for computing the DFT of an array in the MPC model.

COROLLARY 4.3. Given stringsT € 3" and P € (T U {?})™, it
is possible to find all the substrings of T that match with pattern P
with a O(1)-round MPC algorithm with total runtime and memory
of O(n+m).

ProOOF. Build vectors T' and PT as following:

t -1 -1 -1
T" = (mpg,, mpy', mpg,, mpy’,...,mpy, ,mpp )
i -1 -1 -1
P' = (mppl,mppl,mppz,mppz,...,mppn,mppn>
Note that mp, for all characters ¢ € ¥ has a positive integer
=0
for wildcard character ‘?’. For example, for text “abracadabra” and

pattern “a?a”, considering mp, equals the index of each letter in
the English alphabet, we will have

value, and mp;! equals 1/mp,. However, let mp, = mp?_1

11
1)

Tt —
18 1

2

(1 18,

1

7277718

1
1,-,0,0,1, =

( 1>

1 1
1,2, 5,18,
1 2

pf

1
T
1
ey

Let C =TT @ rev(P"), where operator ® shows the convolution
of its two operands. We can observe that forall1 <i<n-m+1
we have

2m
Coivam-1 = Z T;(i—1)+j 'P}L (3)
j=1
Itis clear that if T[i, i+m—1] matches pattern P, then Cajyom-1 =
2nzp since each the wildcard characters add up to 0, and for any
other character ¢, mp,X1/mp+mp,.Xx1/mp, = 2. According to [21],
the other side of this expression also holds, i.e., T[i, i+m—1] matches
pattern P if Ciy2m-1 = 2nzp. Therefore, to find that whether a
substring T[i, i + m — 1] matches pattern P or not, it suffices to
(1) Compute C = TT @ rev(PY) utilizing FFT, which can be
implemented in O(1) rounds in MPC model as stated in
Theorem 4.2.
(2) Forall1 <i <n-—m+ 1, substring T[i,i + m — 1] matches
pattern P iff Cojy2m—1 = 2nzp.
O

5 CHARACTER REPETITION WILDCARD ‘+’

The character repetition wildcard, shown by ‘+’, allows expressing
“an arbitrary number of a single character" within the pattern. An
occurrence of ‘+” which is immediately after a character ¢, matches
arbitrary repetition of character c. For example, text “bookkeeper”
has a substring that matches pattern “oo+k+ee+”, but none of its
substrings match pattern “oo+kee+”. In Subsection 5.1, we reduce
pattern matching with wildcard ‘+° to greater-than matching in
O(1) MPC rounds. The greater-than matching problem is defined
with further details in Problem 5.1. Afterwards, we show a reduction
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of greater-than matching from subset matching problem, explained
in 5.3. Then, by showing subset matching could be implemented in
O(1) MPC rounds, we propose an O(1)-round MPC algorithm for
string matching with wildcard ‘+” in Theorem 5.5.

5.1 Relation to greater-than matching

PROBLEM 5.1. Greater-than matching: Given two arrays T and P,
of length n and m respectively, find all indices1 < i < n—m+ 1 such
that the continuous subarray of T starting from i and of length m is
element-wise greater than P, i.e, Tiyj_1 2 P; V1< j<m.

To reduce pattern matching with wildcard ‘+’ to greater-than
matching, we perform run-length encoding 5.2 on both the text and
the pattern. This way, we have a sequence of letters each along with
a number showing the number of its repetitions, or a lower-bound
restricting the number of repetitions in case we have a ‘+” wildcard.
Subsequently, we can solve the problem for letters and numbers
separately, and merge the result afterwards. Note that pattern P
matches a substring of T if and only if the both the respective letters
and the respective repetition restrictions match. We also show we
can find the run-length encoding of a string in O(1) MPC rounds
in Observation 5.1.

DEFINITION 5.2. For an arbitrary string s, let s° be the run-length
encoding of's, computed in the following way:

o Ignoring +’ characters, decompose string s into maximal blocks
consisting of the same character representing by pairs {c;, cnt;)
which show a block of cnt; repetitions of character c;.

o Ifa “+’ character is located immediately after a block or within
a block, that block becomes a wildcard block, and represented
as (ci, cntj+), where cnt; is still the number of the occurrences
of character c; in the block.

o s° equals the list of these pairs {c;, cnt;) or {cj, cntj+), con-
catenated in a way that preserves the original ordering of the
string.

For example, for T = “bookkeeper” and P = “o+o+k+ee+p”,

T° = ((b, 1), (0, 2), (k, 2), (e, 2), (p, 1), (e, 1), {r, 1))
P° = ({0, 2+), (k, 1+), (e, 24), (p, 1))

We alternatively show the compressed string as a string, for
example,
o T° =“b[1]o[2]k[2]e[2]p[1]e[1]r[1]".
o P° =%o[2+]k[1+]e[2+]p[1]".

OBSERVATION 5.1. We can perform run-length encoding in O(1)
MPC rounds.

PRrROOF. Suppose string s is partitioned among M machines such
that i’th machine contains s; for 1 < i < M. Run-length encoding
of each s; could be computed separately inside each machine. Let

s; = ((ci1, entin), {ciz, entiz), ..., (cip,, cntip))

be the run-length encoding of s;, where I; is its length. Then in
the next round, we can merge {(c;;,, cnt;;,) and {cj+1,1, cnti+1,1) if
Cil, = Ci+l,1 forall1 <i < M -1, and we will end up with s° if we
concatenate all s7’s. O
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As we mentioned before, in order to reduce from greater-than
matching, it is possible to divide the problem into two parts: match-
ing the letters, and ensuring whether the repetition constraints
are hold, and solve each part separately. The former is a simple
string matching problem, but the latter requires could be solved
with greater-than matching. Formally, we need to find all indices
1 < i < n—m+ 1 such that for every 1 < j < m, the following
constraints holds:

U~

() T
®)

= {(cj, x) for some x > cnt; ifP}? = (cj, cntj+).
= (cj, cntj) ifP}? ={cj,entj)and2 < j<m-—1.
= {cj,x) for some x >

itj—1
T
je{1,m}.

Constraint 3 needs to be considered to allow the substring in
the original text T starts and ends in the middle of a block of c{
or ¢y, letters. By considering only those substrings which their
letters match, we can get rid of letter constraints. Also to ensure
constraint 2, we can perform a wildcard ‘?’ pattern matching by
replacing each cntj+ and also cnt; and cnty, by a “?” wildcard, and
keep only the numbers that constraint 2 checks. Thus, if a substring
Tl°l +m_1 Matches according to this wildcard “?’ pattern matching,
what remains is a greater-than matching, as we only need to check
constraints 1 and 3, and we can replace numbers we already checked
for constraint 2 by some 0’s.

cnt;j if P; = {cj,cntj) and

OBSERVATION 5.2. We can reduce pattern matching with wildcard
+’ from greater-than matching in O(1) MPC rounds.

Using Observation 5.1, it only remains to perform O(1) wildcard
‘?” matchings to obtain an instance of greater-than matching that
already satisfies constraint 2, as well as letter constraints. Thus,
Observation 5.2 is implied.

5.2 Reduction from subset matching

PROBLEM 5.3. Subset Matching: Given T, a vector of n subsets of
the alphabet 3, and P, a vector of m subsets in the same format as T,
find all occurrences of P in T. P is occurred at position i in T if for
everyl < j <|P|, Pj C Tixj-1.

The subset matching problem is a variation of pattern matching
where pattern matches text if each of the pattern entries is a subset
of the respective entries in text. Keeping this in mind, we use subset
matching to solve greater-than matching in O(1) MPC rounds, and
thereby achieving a O(1)-round solution for the problem of pattern
matching with ‘+” wildcard character using the subset matching
algorithm proposed by Cole and Hariharan [18].

OBSERVATION 5.3. We can reduce greater-than matching to subset
matching in O(1) MPC rounds with total runtime and total memory
of O(Q), where Q is the sum of all Ty ’s, i.e. Q = X, T;.

The idea behind Observation 5.3 is to have a subset {0, 1,2, ..., T;}
instead of each entry of T;, and a subset {P;} instead of each P;. This
way if T matches P in a position 1 < i < n — m + 1, then we have
Pj €{0,1,2,...,Tj1j-1} since P; < Tj1j—1 forall 1 < j < m. This
way, we can solve pattern matching with wildcard ‘+’ in O(1) MPC
rounds if subset matching could be solved in O(1) MPC rounds.
In the following, Lemma 5.4 shows it is possible to solve subset
matching w.h.p in a constant number of MPC rounds. The algorithm
utilizes O(log(n)) invocations of wildcard ‘?” matching.
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LEMMA 5.4. We can solve subset matching in O(1) MPC rounds
with total runtime and total memory of O(Q), where Q is the sum of
the size all Ty’s, i.e. Q = 21| |Til.

Proor. First, consider solving an instance of the greater than
matching problem in O(1) MPC rounds. We partition the entries
inside all T%’s into sequences TH, 752, T2 inside each ma-
chine, where T*/ = {k | j € T;s,x}. We just create a subset of these
sets which are not empty, i.e., 7; = {T%/ | |T5/| > 0}, so that 7; fits
inside the memory of each machine. #; also can be defined similarly.
We can sort all the union of all 77’s and #;’s in a non-decreasing
order of j and breaking ties using i in O(1) MPC rounds [24].

This way, we end up with a sparse wildcard matching for each
character in ¥, because we want to check in which substrings of
T each occurrence of character j € X in P is contained in the
corresponding T;. We can put a ‘1’ instead of each occurrence of j
in P,a “?’ instead of each j in T, and a ‘0’ in all other places since
we are considering a greater than matching instance. Using the
similar algorithm as in [18], we can easily reduce each instance of
sparse wildcard matching to O(log(k)) normal wildcard matching
with size of O(k) in O(1) MPC rounds, where k is the number of
non-zero entries. Using Corollary 4.3, we can give a O(1) round
MPC algorithm for subset matching when the input is an instance
of greater than matching. We can easily extend these techniques to
solve subset matching algorithm in O(1) MPC rounds, as Cole and
Hariharan [18] showed it is analogous to sparse wildcard matching.

]

THEOREM 5.5. There exists an MPC algorithm that solves string
matching with ‘+” wildcard in constant rounds. The total memory and
the total running time of the algorithm are O(n).

Proor. We can also simplify the algorithm for pattern matching
with wildcard ‘+’, by exploiting subset matching flexibility. We
can also use subset matching to verify constraint 2 of greater-than
matching reduction (instead of wildcard “?° pattern matching), as
well as letter constraint (instead of regular string matching with
no wildcard). We define T” and P’ as follows:

cnt;
T/ = (e i Ullenent)y T = (cient))  (4)
j=1
P} = {{ci,cnt;)} if P = (ci,cent;)  (5)
P! = {{ci, cnt;+)} if P = (ci, cnti+)  (6)

It could easily be observed that subset matching of T’ and P’
is equivalent to pattern matching with wildcard ‘+’ of T and P,
and also this simpler reduction is straight-forward to implement in
O(1) MPC rounds. In addition, the total runtime and memory of
this subset matching which is 0(Q) is equal to O(n) in the original
input. Note that T’ is resulted form T° whose sum of its numbers,
that each of them shows the repetitions of the respective letter,
equals n. O

6 STRING REPLACE WILDCARD

In this section we consider the string matching problem with wild-

(T3]

card ™.
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Given strings s € 3" and p € {Z U “’}'™, we say a substring of p
is a subpattern if it is a maximal substring not containing “*’. We
present the following results in this section:

(1) A sequential algorithm for string matching with wildcard *’

in time O(n + m).

(2) An MPC algorithm for string matching with wildcard
in O(log n) rounds using O(n*) machines if the length of
pattern p is at most O(n'=).

(3) An MPC algorithm for string matching with wildcard *’ in
O(log n) rounds using O(n*) machines if all the subpatterns
of p are not prefix of each other.

%)

6.1 Linear time sequential algorithm

OBSERVATION 6.1. Given stringss € X" andp € {2 U “’}'", there
is a sequential algorithm to decide if s matches with pattern p in time
O(n+m).

Let the subpatterns of p to be Py, Py, ..
gorithm is StringMatchingWithStar(a).

., Pyy. Our sequential al-

Algorithm 3: StringMatchingWithStar(a)
Data: s€ " andp € {ZT U}
Result: Yes or No.

1 Seti« 1;

2 for j=1,2,...,wandi < ndo

3 Run KMP for the string s[i, n] and pattern Pj;

4 If KMP fails, then Return No;

5 Let i’ be the position satisfying s[i’,i" + |Pj| — 1] = P;
obtained by KMP;

6 Seti « i’ +|Pjl;

7 Return Yes.

6.2 MPC algorithm for small subpattern

THEOREM 6.1. Given stringss € X" and p € {ZU “}'" for
m = O(n=), there is an MPC algorithm to find the solve the string
matching problem in O(log n) rounds using O(n*) machines.

We assume string s is partitioned into sy, s, ..., s; for some t =
O(n*) such that every s; has length at most O(n!=*). We say string
s is an exact matching of p if there is a partition of s into |p| (possibly
empty) substrings such that if p[i] is not “*’, then i-th substring is
same to p[i].

Given indices i, j € [t] of string s and position k of pattern p, let
f(i, j, k) be the largest position of p such that the concatenation of
Si, Si+1, . - -, Sj matches pattern p[k, f(i, j, k)].

To illustrate our idea, we need the following definitions:

(1) g(k) for position k of p: the largest position which is smaller

than or equal to k such that p[k] is .
(2) h(k) for position k of p such that p[k] # “’: the smallest
integer r such that p[g(k)+1, k—r] isa prefix of p[g(k)+1, k].

Consider the following equation for an arbitrary i < i’ < j (let
B=fGi.i".k)

. ifplfl ="

fG.j.k)=f(i" +1,],p)
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° ifp[ﬂ] # ¥

f+1,j.9(h),

f (0. K) = max M8 o<es| £ | {FfG'+1,j,p-¢-h(P)}

™)
Our algorithm is StringMatchingWithStar(b).

OF 6.1. We show that Eq. 7 correctly computes f(i, j, k) for an
arbitrary i < i’ < j. Then the theorem follows from the description
of StringMatchingWithStar(b), Eq. 7 and Observation 6.1.

Let « be the largest position of p such that there is an exact
matching of the concatenation of s;,...,s; and p[k, ]. If f(i, i’,")
and f(i’ + 1, j,-) are correct, and f(i, j, k) is computed by Eq. 7,
then f(i, j, k) < a, since Eq. 7 implies a feasible exact matching.

Now we show that (i, j, k) > aif f(i, j, k) is computed by Eq. 7.
There is an exact matching of the concatenation of s;,...,s; and
plk, a]. Let y be the position of pattern p such that the last symbol
of sy is matched to p[y]. By the definition of function f, y < f.

Consider the case of p[y] =" or p[y] #™ but p[y] ="". We
have g(f) > y and f(i’ + 1, j,y) = . By the monotone property of
f.wehave f(i,j.k) > f(i" +1,j,9(B)) > f(i' + 1, j.y) = a.

Consider the case of p[y] #™ and p[f] #™. If y and f are in dif-
ferent subpatterns, then using above argument, we have f (i, j, k) >
a. Otherwise, p[h(p) + 1,y] is a suffix of p[h(f) + 1, f], which im-
plies that there is a non-negative integer ¢ such thaty = f—¢- h(f).
Hence, f(i, j k) = a. O

Algorithm 4: StringMatchingWithStar(b)

Data: two array s and p.
Result: Yes or No.
1 Distribute s1, s, . . ., sy to distinct machines, and distribute p

to every machine;
2 Compute f(i, i, k) for all the k on the machine containing s;
by algorithm StringMatchingWithStar(a) in parallel;
3 form=1,2,...,[log,t] do
4 For every i > 1, put f(i,i+ om=1_ 1 k) and
f(i+2m71 i +2™ —1,k) into same machine for all the
k in parallel;
5 For every i > 1, compute f(i,i + 2™ — 1, k) for all the k
by Equation 7 with j = i +2™ - land i’ = i + 2™ 1 -1
in parallel;

6 Return Yes if f(1,t,1) = w, otherwise return No.

6.3 MPC algorithm for non-prefix subpatterns

THEOREM 6.2. Given stringss € X" and p € {ZU ™’} such that
subpatterns are not a prefix of each other, there is an MPC algorithm
to find the solve the string matching problem in O(log n) rounds using
O(n*) machines.

Proor. We show that algorithm StringMatchingWithStar(c) solves
the problem.

We first prove the correctness of the algorithm. Since all the
subpatterns are not a prefix of each other, for every position i of
string s, there is at most one subpattern Py, such that P,, is a prefix of

283

SPAA 21, July 6-8, 2021, Virtual Event, USA

s[i, n]. On the other hand, if s[i, j] is not a prefix of any subpattern,
then A(s[i, j]) does not equal to any of the hash value obtained in
Step 1, otherwise, h(s[i, j]) is equal to some hash value obtained
in Step 1. Hence, for every i € [n], the “for" loop of Step 2 finds the
subpattern P, such that Py, is a prefix of s[i, n] by binary search if
P, exists.

If string s matches pattern p, then any set of positions ay, a, . . ., ay
with the following two conditions

(1) P; is a prefix of s[a;, n] for every i € [w].

(2) ai +|Pi| < ajyq foreveryi € [w—1].
corresponds to a matching between s and p. Hence, string s matches
pattern p if and only if vg and v;,41 are connected in the constructed
graph of Step 15 and 16.

Now we consider the number of MPC rounds required. Using
the argument of Section 3, computing hash of all the prefixes of
every subpattern or a set of n substrings of s needs constant MPC
rounds. Hence Step 1 needs constant rounds, and the “for" loop
of Step 2 needs O(log n) rounds. Step 15 naturally needs a single
round. Step 16 can be done in O(log n) rounds by sorting all the
(i, f(i)) pairs according to the f function values and selecting j
such that j > i+|Pg(;| and f(j) = f(i) +1 for all the pairs (i, f(i)).
The graph connectivity needs O(log n) rounds. O

Algorithm 5: StringMatchingWithStar(c)

Data: two array s and p.
Result: Yes or No.
1 For each subpattern P; in parallel compute the hash value

of every prefix of p;;
2 for each position i of string s in parallel do

3 Set j = 0 and k = n initially;

4 while j < k do

5 Lett=[(j+k)/2];

6 Compute the hash h(s[i, i+ ¢]);

7 if there is a hash obtained in step 2 same to
h(s[i, i+ £]) then

8 L Set j « ¢;

9 else

10 L Setk «—¢—-1;

1 if there is a subpattern p,, same to s[i, i + j| then

12 | Set f(i) — u;

13 else

14 L Set f (i) — 0;

o
@

Construct an empty graph in parallel with vertices
0,01, - . ., Unt1. Add edge (vo,vs) and (vt vp41) Where s is
the smallest integer such that f(s) = 1, t is the largest
integer such that f(t) = w;

16 For every i € [n] such that (i) > 0, in parallel add edge
(vi,vj) to the graph where j is the smallest integer such
that j > i +|Pr;)land f(j) = f() +1;

17 Run graph connectivity algorithm on the graph constructed.

return Yes if vy and v+ are in the same connected

component of the graph, otherwise return No ;
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