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ROBUST AND EFFECTIVE ESIF PRECONDITIONING FOR
GENERAL DENSE SPD MATRICES*

JIANLIN XIAT

Abstract. We propose an unconditionally robust and highly effective preconditioner for general
dense symmetric positive definite (SPD) matrices based on structured incomplete factorization (SIF),
called enhanced SIF (eSIF) preconditioner. The original SIF strategy proposed recently derives a
structured preconditioner by applying block diagonal preprocessing to the matrix and then com-
pressing appropriate scaled off-diagonal blocks. Here, we use an enhanced scaling-and-compression
strategy to design the new eSIF preconditioner. Some subtle modifications are made, such as the
use of two-sided block triangular preprocessing. A practical multilevel eSIF scheme is then designed.
We give rigorous analysis for both the enhanced scaling-and-compression strategy and the multilevel
eSIF preconditioner. The new eSIF framework has some significant advantages and overcomes some
major limitations of the SIF strategy. (i) With the same tolerance for compressing the off-diagonal
blocks, the eSIF preconditioner can approximate the original matrix to a much higher accuracy.
(ii) The new preconditioner leads to much more significant reductions of condition numbers due to
an accelerated magnification effect for the decay in the singular values of the scaled off-diagonal
blocks. (iii) With the new preconditioner, the eigenvalues of the preconditioned matrix are much
better clustered around 1. (iv) The multilevel eSIF preconditioner is further unconditionally robust
or is guaranteed to be positive definite without the need of extra stabilization, while the multilevel
SIF preconditioner has a strict requirement in order to preserve positive definiteness. Comprehen-
sive numerical tests are used to show the advantages of the eSIF preconditioner in accelerating the
convergence of iterative solutions.

Key words. eSIF preconditioning, SPD matrix, enhanced scaling-and-compression strategy,
effectiveness, unconditional robustness, multilevel scheme

AMS subject classifications. 15A23, 65F10, 65F30

1. Introduction. In this paper, we consider the design of an effective and robust
preconditioning strategy for general dense symmetric positive definite (SPD) matri-
ces. An effective preconditioner can significantly improve the convergence of iterative
solutions. For an SPD matrix A, it is also desirable for the preconditioner to be
robust or to preserve the positive definiteness. A commonly used strategy to design
robust preconditioners is to apply modifications or incomplete/approximate Cholesky
factorizations to A together with some robustness or stability enhancement strategies
(see, e.g., [3, 4, 5, 11, 16]).

In recent years, a powerful tool has been introduced into the design of robust SPD
preconditioners and it is to use low-rank approximations for certain dense blocks in
A, A1, or some factors of A. A common way is to directly approximate A by rank-
structured forms such as the ones in [2, 6, 7, 14, 34], but it is usually difficult to
justify the performance of the resulting preconditioners. On the other hand, there
are two types of methods that enable rigorous analysis of the effectiveness. One type
is in [18, 19, 20, 28] based on low-rank strategies for approximating A~!. Another
type is in [1, 9, 12, 13, 21, 33, 35, 36] where approximate Cholesky factorizations are
computed using low-rank approximations of relevant off-diagonal blocks. Both types
of methods have been shown useful for many applications. A critical underlying reason
(sometimes unnoticed in earlier work) behind the success of these preconditioners is
actually to apply appropriate block diagonal scaling to A first and then compress the
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2 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

resulting scaled off-diagonal blocks. A systematic way to formalize this is given in
[35] as a so-called scaling-and-compression strategy and the resulting factorization is
said to be a structured incomplete factorization (SIF'). The preconditioning technique
is called SIF preconditioning.

The basic idea of (one-level) SIF preconditioning is as follows [35]. Suppose A is
N x N and is partitioned as

Ay A )
1.1 A= .
(L.1) < Ay Az
where the diagonal blocks A1 and Ass have Cholesky factorizations of the forms

(1.2) Ay =L LT, Ay =L,LY.

Then the inverses of these Cholesky factors are used to scale the off-diagonal blocks.
That is, let

(1.3) C=L7'AL;7 .

Suppose C' has singular values 01 > 02 > -+ > o} (which are actually all smaller
than 1), where k is the smaller of the row and column sizes of C. Then the singular
values o; are truncated aggressively so as to enable the quick computation of a rank
structured approximate factorization of A.

Thus, the SIF technique essentially employs block diagonal scaling to preprocess
A before relevant compression. This makes a significant difference as compared with
standard rank-structured preconditioners that are based on direct off-diagonal com-
pression. Accordingly, the SIF preconditioner has some attractive features, such as
the convenient analysis of the performance, the convenient control of the approxima-
tion accuracy, and the nice effectiveness for preconditioning [35, 36]. In fact, if only r
largest singular values of C' are kept in its low-rank approximation, then the resulting
preconditioner (called a one-level or prototype preconditioner) approximates A with a
relative accuracy bound o,41. The preconditioner also produces a condition number
if%:*i for the preconditioned matrix. This idea can be repeatedly applied to the
diagonal blocks to yield a practical multilevel SIF preconditioner.

A key idea for the effectiveness of the SIF preconditioner lies in a decay magnifi-
cation effect [33, 35]. That is, although for a matrix A where the singular values o; of
C may only slightly decay, the condition number }f%i decays at a much faster rate
to 1. Thus, it is possible to use a relatively small truncation rank r to get a structured
preconditioner that is both effective and efficient to apply. A similar reason is also
behind the effectiveness of those preconditioners in [18, 19, 20, 28, 33].

However, the SIF preconditioning has two major limitations. One is in the ro-
bustness. In the multilevel case, it needs a strict condition to avoid breakdown and
ensure the existence or positive definiteness of the preconditioner. This condition
needs either the condition number of A to be reasonably small, the low-rank approx-
imation tolerance to be small, or the number of levels to be small. These mean the
sacrifice of either the applicability or the efficiency of the preconditioner, as pointed
out in [36].

Another limitation is in the effectiveness. Although the condition number form
% has the decay magnification effect, if the decay of o; is too slow, using small
r would not reduce the condition number too much. With small r, the eigenvalues of
the preconditioned matrix may not closely cluster around 1 either. The performance
of the preconditioner can then be less satisfactory.
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JIANLIN XIA 3

Therefore, the motivation of this work is to overcome both limitations of the SIF
technique. We make enhancements in several aspects. First, we would like get rid
of the condition in the SIF scheme that avoids breakdown. That is, we produce a
type of structured preconditioners that is unconditionally robust or always positive
definite. Second, we would like to approximate A with better accuracies using the same
truncation rank r. Next, we intend to accelerate the decay magnification effect in the
condition number form. Lastly, we also try to improve the eigenvalue clustering of the
preconditioned matrix. (We originally discussed how to achieve these enhancements
in the presentation [32].)

Our idea to achieve these enhancements is to make some subtle changes to the
original SIF scheme. Instead of block diagonal scaling, we use two-sided block tri-
angular preprocessing which leads to an enhanced scaling-and-compression strategy.
Then a low-rank approximation is still computed for C, but it is just used to acceler-
ate computations related to Schur complements instead of off-diagonal blocks. (This
will be made more precise in Section 2.) This strategy can be repeatedly applied to
Aj1 and Agy in (1.1) so as to yield an efficient structured multilevel preconditioner.

This strategy makes it convenient to analyze the resulting preconditioners. The
one-level preconditioner can now approximate A with a relative accuracy bound o2 11
(in contrast with the bound o, in the SIF case). The preconditione(ileratrix now

o

has condition number #, which is a significant improvement from ﬁ due to
r+1 T

the quadratic form o2 1 and the smaller numerator. Similar improvements are also
achieved with the multilevel preconditioner.

Moreover, the eigenvalues of the preconditioned matrix are now more closely
clustered around 1. With the new one-level preconditioner, the eigenvalues are re-
distributed to [1 — o2, ;,1], with the eigenvalue 1 of multiplicity N — (k —r). In
comparison, the one-level SIF preconditioner only brings the eigenvalues to the inter-
val [1 — 0,41, 1 4 0p41], with the eigenvalue 1 of multiplicity N — 2(k — r). Similarly,
the new multilevel preconditioner also greatly improves the eigenvalue clustering.

In addition, the multilevel generalization of the strategy always produces a pos-
itive definite preconditioner A without the need of extra stabilization or diagonal
compensation. In fact, the scheme has an automatic positive definiteness enhance-
ment effect. That is, A is equal to A plus a positive semidefinite matrix. Thus, the
new multilevel preconditioner is unconditionally robust.

Due to all these enhancements, the new preconditioner is called an enhanced SIF
(eSIF) preconditioner. We give comprehensive analysis of the accuracy, robustness,
and effectiveness of both the one-level and the multilevel eSIF preconditioners in
Theorems 2.1, 2.2, 3.1 and 3.2. All the benefits combined yield significantly better
effectiveness than the SIF scheme. With the same number of levels and the same
truncation rank r, although the eSIF preconditioner is slightly more expensive to
apply in each iteration step, the total iterative solution cost is much lower.

We also show some techniques to design a practical multilevel eSTF scheme and
then analyze the complexity and storage. The practical scheme avoids forming dense
blocks like C' in (1.3) while enabling the convenient low-rank approximation of these
blocks. It also produces structured factors defined by compact forms such as House-
holder vectors.

The performance of the preconditioner is illustrated in terms of some challenging
test matrices including some from [35]. As compared with the SIF preconditioner, the
eSIF preconditioner yields dramatic reductions in the number of conjugate gradient
iterations.

This manuscript is for review purposes only.
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4 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

We would also like to mention some other relevant work. In earlier work [13, 33]
where off-diagonal scaling and compression are used, although local Schur complement
approximations have quadratic accuracy bounds like O(72) in terms of a truncation
tolerance 7, the overall accuracy (in their one-level scheme) is O(7) due to the ap-
proximation of the scaled off-diagonal blocks. There is no accuracy analysis for the
multilevel schemes in [13, 33]. An overall linear accuracy bound also arises in [37]. All
these schemes have factorization complexity quadratic in N unless some structures
are predetermined like in [38]. After the original submission of the current paper, an
arXiv preprint [17] was posted and its latest version also cites the arXiv version [31]
of our paper. The work in [17] deals with sparse SPD matrices instead of dense ones
and uses a related strategy to achieve quadratic approximation accuracy. A condition
number study for its one-level scheme is given in [17], but not for its multilevel one.
Since the work in [17] approximates local Schur complements in the factorization of
sparse matrices, the overall complexity is likely lower than quadratic, which is unclear
from [17] though.

The organization of the remaining sections is as follows. The enhanced scaling-
and-compression strategy and the one-level eSIF preconditioner will be presented and
analyzed in Section 2. The techniques and analysis will then be generalized to mul-
tiple levels in Section 3. Section 4 further gives the practical multilevel design of the
preconditioning scheme and also analyzes the storage and costs. Comprehensive nu-
merical tests will be given in Section 5, following by some conclusions and discussions
in Section 6. For convenience, we list frequently used notation as follows.

e \(A) is used to represent an eigenvalue of A (it is used in a general way and
is not for any specific eigenvalue).

e x(A) denotes the 2-norm condition number of A.

o diag(-) is used to mean a diagonal or block diagonal matrix constructed with
the given diagonal entries or blocks.

e [, is the n x n identity matrix and is used to distinguish identity matrices of
different sizes in some contexts.

2. Enhanced scaling-and-compression strategy and prototype eSIF pre-
conditioner. We first give the enhanced scaling-and-compression strategy and ana-
lyze the resulting prototype eSIF preconditioner in terms of the accuracy, robustness,
and effectiveness.

In the SIF preconditioner in [35], A in (1.1) can be written as a factorized form
as follows based on (1.2) and (1.3):

& =) e D)7 )

where can be viewed as the result after the block diagonal preprocessing

1 C
cr I
or scaling of A. C' is then approximated by a low-rank form so as to obtain a rank-
structured approximate factorization of A.

Here, we make some subtle changes which will turn out to make a significant

difference. Rewrite (2.1) in the following form:

B Ly I LT cL?
(22) A(chT L2>( I—CTC>( )
Suppose C'is m x n and a rank-r truncated SVD of C is
(2.3) C~U 2 VT,

This manuscript is for review purposes only.



184

185

186

187

188

189

190

191
192

193

194
195

196

197

198

199

JIANLIN XIA 5

where 31 = diag(o1,09,...,0,) is for the largest r singular values o1 > 09 > -+ > 0,
of C. For later convenience, we also let the full SVD of C' be

(2.4) C=UxvVT =5,V + U5,V

where U = ( U, Us ) and V = ( Vi W ) are orthogonal and Y5 is a (rectangular)
diagonal matrix for the remaining singular values 0,11 > -+ > Owinfm,n}. We further
suppose T is a tolerance for truncating the singular values in (2.3). That is,

(2.5) Op > T > 0pg1.

Note that all the singular values o; of C' satisfy o; < 1 [35], so 7 < 1.
The apply (2.3) to CTC in (2.2) to get

cTc~wnxive.

In the meantime, we preserve the original form of C' in the two triangular factors in
(2.2). Accordingly,

i L I Lt oLy
26) AxA= ( LyCT o Ly ) ( I-wx3vl ) ( L3

Suppose Dy is the lower triangular Cholesky factor of I — V; X3V
(2.7) I -3l = D,DY.

Let

R IR I B I | A TR}

Then we get a prototype (1-level) eSIF preconditioner
(2.9) A=TLL".

This scheme can be understood as follows. Unlike in the SIF scheme where

Ly

A is preprocessed by the block diagonal factor , here we use a block

Ly
to preprocess A. Note that it is still convenient to

invert < LQLCl’T L ) = ( L Ly ) < C{T 7 ) in linear system solution so the
form of C' does not cause any substantial trouble. Also, we do not need to explicitly
form or compress C. In addition, the Cholesky factor Dj in (2.7) is only used for the
purpose of analysis and does not need to be computed. The details will be given later
in a more practical scheme in Section 4.

This leads to our enhanced scaling-and-compression strategy. We then analyze the
properties of the resulting prototype eSIF preconditioner. Obviously, A in (2.9) always
exists and is positive definite. Furthermore, an additional benefit in the positive
definiteness can be shown. We take a closer look at the positive definiteness of A and
also the accuracy of A for approximating A.

. Ly
triangular factor L,CT L,

This manuscript is for review purposes only.
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6 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

THEOREM 2.1. Let 7 be the truncation tolerance in (2.5). A in (2.9) satisfies
A=A+E,
where E is a positive semidefinite matriz and

1Bl > _
Ay =7+ =T

(2.10)

In addition,

L-L V1—o02
(211) H H2 < c 2O'n7_2’
1L ]|2 1 —oy

where L is the lower triangular Cholesky factor of A, ¢ = 1+ 2[logyn], and oy, is
either the n-th singular value of C" when m > n or is 0 otherwise. On the other hand,
if Dy in L in (2.8) is replaced by (I — ViX3VI)Y/2 and L is modified accordingly as

L= ( LLcl,T Lo(I — VETSVT)I/2 ) so that A = LLT still holds, then
2 2(4 —

L-L
I ll2 <2

(212) 1T

Proof. From (2.4) and (2.6), A can be written as

- Aqq Aqp
Agl LQCTch + LQ(I - WE%VF)LQT
_ A11 A12
Agt Agy + Ly(CTC — T3V LE
_( An A1 _
= ( Aot Agy + Lo(VoXE 5, Vi) LY ) —ArE

where E = diag(0, L2 (Vo223 $5V5) LT) is positive semidefinite and

IE|l2 = | La(VaST 82 V5 LT |l2 < 02411 L2ll3 = 0714 [ Az2ll2 < 0741 ]| All2-

L
T _ 7 _usTyyT _ 1
Also, let DDy =1 —V3*¥V*. Then L < L,CT LoDy ) Thus,
. Rrass Ly
e 1=t (e 5, )= (nlr o, ),

O ~
H( Lo(Dy — D) )H2 < [|L][2[| D2 — D2l

When D, is the lower triangular Cholesky factor of I — VETXVT, an inequality in

[35] gives
i N
1Dy — Dol < Y—"J152

=07 orr1, c¢=1+2[logyn].

This leads to (2.11).

This manuscript is for review purposes only.



242
243

244

O
NN
-~

248

249
250
251
252

260

261

262
263

264

JIANLIN XIA 7

If D, in L is replaced by (I—V1%2V{)1/2 and Dy is replaced by (I-VEToyT)1/2,
then

| Dy — Dylly = (I = Vi22VIHY2 (1 - veTsy T2,
= ||(I - diag(£3,0))'/? — (1 = %),

— 2 2
=1—/1—-0: 1 <044

Then following (2.13), we get (2.12). |

This theorem gives both the accuracy and the robustness of the prototype eSIF
preconditioner. Unlike the SIF framework where a similar prototype preconditioner
has a relative accuracy bound 7, here the bound is 72 that is much more accurate.
In addition, this theorem means the construction of A automatically has a positive
definiteness enhancement effect: it implicitly compensates A by a positive semidefinite
matrix E. This is similar to ideas in [13, 33]. Later, we will show that this effect
further carries over to the multilevel generalization, which is not the case for the SIF
preconditioner.

The effectiveness of the prototype eSIF preconditioner can be shown as follows.

THEOREM 2.2. The eigenvalues of L~*AL™T are
MLTYALTT)y =102, ., 1 =02, 1,..,1,
——
N—(k—r)
where k = min{m, n}. Accordingly,

|\i_1Ai_T —1I|2 = ofﬂ <7

k(LYAL™T) = 12 <1
-0, ~ 1-72

Proof. Tt is not hard to verify
(2.14) LPAL™T = diag(In—n, D3 (I, — VETSVTYD;T).
The eigenvalues of Dy (I, — VETSVT)D; T are
ND; (I, = veTsvT) Dy Ty = XDy T Dy (1, — vETsvT))

A
M(I, —n2vihH~ Y1, —vETsvT)).

Further derivations can be done via the Sherman-Morrison-Woodbury formula or in
the following way:

(I, —viz2vih=Yr1, —veTsvT)
= (V(I, — diag(x3,0)V") 'V (I, - =T)v7"
= Vdiag((I, - )1 I,_,.) (I, - £T2)v7
= Vdiag(I,, I,—, — X3 52)V7T.

Thus,

(2.15) NDy (1, = veTsvT) Dy T) = Adiag(1,, I, — XT%5)),

This manuscript is for review purposes only.



8 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

which are just 1 —o02,,...,1 — 0f,1. The eigenvalue 1 is a multiple eigenvalue. If
k = n, then the eigenvalue 1 in (2.15) has multiplicity r. If k = m, I,,_, — X35,
also has n — k eigenvalues equal to 1 so the eigenvalue 1 in (2.15) has multiplicity
n— (k—r). For both cases, the eigenvalue 1 of L~ 'AL~T has multiplicity N — (k—r)
according to (2.14). 0

To give an idea on the advantages of the prototype eSIF preconditioner over the
corresponding prototype SIF preconditioner in [35], we compare the results in Table
2.1 with L and A from the eSIF or SIF scheme. The eSIF scheme yields a much higher

approximation accuracy than SIF (72 vs. 7) for both ”‘?lAfllz and |[L7AL™T — I||s.

The eigenvalues of the preconditioned matrix L=YAL™T from eSIF are also much
more closely clustered around 1 and eSIF produces a lot more eigenvalues equal to 1
than SIF. This is further illustrated in Figure 2.1.

TABLE 2.1
Comparison of prototype SIF and eSIF preconditioners that are used to produce L and A, where
k = min{m, n} and the results for the SIF preconditioner are from [35, 30].

SIF eSIF
[A—Al, 2
AT =7 =T
|IL—L||2 cy/1-02 o cy/1-02 o
B ST+ T S T T
MLTYAL™T) |[1+0,419,...,1%0%, 1,...,1 1—0’%+1,...,1—0'Z,17...,1
N—— ~——
N—2(k—r) N—(k-r)
IL7YAL=T — 1|, Ori1 < T o2, <71?
F_1AT7-T 140,41 147 1 1
H(L AL ) 1—0r41 < -7 lfaf_*_l = 1-72
0 1—-7 1 1+7
SIF | O e B B e s
0 1—72 1
eSIF | |

Fic. 2.1. How the eigenvalues )\(i_lAi_T) cluster around 1 when LLT is obtained with the
prototype SIF and eSIF preconditioners.

Specifically, SIF produces x(L™'AL™T) = I¥ores  while eSIF leads to much

l1—0or41

smaller k(L TAL™T) = 17;7%“ . (Notice the quadratic term o2 in the denominator

and the smaller numerator.) To further illustrate the difference in x(L~*AL~T), we
use an example like in [35]. In the example, the singular values of C look like those in
Figure 2.2(a) and are based on the analytical forms from a 5-point discrete Laplacian
matrix [36]. The singular values of C' in (1.3) only slowly decay. Figure 2.2(b) shows
k(L~YAL™T) from both schemes. We can observe two things.
1. Like in SIF, the modest decay of the nonzero singular values o; of C’ is further
dramatically magnified in ;=—. That is, even if 0; decays slowly, 1= decays

much faster so that o; can stlll be aggressively truncated so as to produce
reasonably small (L 1AL~ Ty, This is the decay magnifying effect like in

This manuscript is for review purposes only.
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[35].
2. Furthermore, the decay magnification effect from eSIF is more dramatic
since ﬁ is smaller than }f—‘; by a factor of (1 + 0;)2. For a large range of

r values, eSIF gives much better condition numbers than SIF.

’
0.8
0.6
S
0.4
0.2
0 10°
10° 10! 102 108 104 10° 10" 102 108 104
Index i Index i
(a) Nonzero singular values o; of C (b) K(L7*AL™T)

FiG. 2.2. For an ezample where the singular values o; of C' slowly decay, how n([:’IAfFT)
decays when L is from the prototype SIF or eSIF preconditioner obtained by truncating o; with r
set to be i in (b).

Remark 2.3. The approximation accuracy 0,1 depends on the ordering and par-
titioning of A. It is desirable to reorder and partition A so as to make 0,41 as small
as possible. Since it is generally unknown in advance what 0,41 would be like (other
than 0,41 < 1), we may try to reduce the numerical rank of A;5 as much as possible.
However, just like most other hierarchical rank-structured methods, there is no quick
way to reorder a general dense matrix to reduce its off-diagonal numerical ranks.
For some cases, heuristics might be used. For example, if A corresponds to certain
underlying mesh or data points, then we may permute and partition A following a
partitioning of the mesh or point set so that the connection or interaction between the
resulting subsets is as weak as possible. Sometimes, this may also be combined with
randomized processes (see, e.g, [10]). Since we deal with general dense SPD matrices,
our studies do not require any specific ordering and the ordering issue is expected to
be considered in future work. In addition, one thing that is worth mentioning is that,
as pointed out in [35, 36], the scaling of the off-diagonal blocks often has an effect
of enhancing the decay of off-diagonal singular values. For instance, for the matrix
example used in Figure 2.2, the original A5 block has a negative identity matrix and
the nonzero singular values do not decay at all. After scaling, the nonzero singu-
lar values o; of C have reasonable decay. See Figure 2.2(a). This is also a feature
exploited in [18, 19, 20, 28].

3. Multilevel eSIF preconditioner. The prototype preconditioner in the pre-
vious section still has two dense Cholesky factors L; and Lo in (2.8). To get an efficient
preconditioner, we generalize the prototype preconditioner to multiple levels. That
is, apply it repeatedly to the diagonal blocks of A. For convenience, we use eSIF(1)
to denote the prototype 1-level eSIF scheme. A 2-level eSIF scheme or eSIF(2) uses
eSIF(1) to obtain approximate factors Ly ~ Li and Ly ~ Ly for (1.2). Similarly,
an [l-level eSIF scheme or eSIF (1) uses eSIF(I — 1) to approximate Ly and Lo. With
a sufficient number of levels (usually I = O(log N)), the finest level diagonal blocks
are small enough and can be directly factorized. The overall resulting factor L is an
eSIF(I) factor. The resulting approximation matrix A is an eSIF(I) preconditioner.

This manuscript is for review purposes only.
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10 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

We prove that the eSIF(l) preconditioner A is always positive definite and show
how accurate A is for approximating A.

THEOREM 3.1. Let 7 be the tolerance for any singular value truncation like (2.3)-
(2.5) in the eSIF(l) scheme. The approzimate matriz A resulting from eSIF(l) is
always positive definite and satisfies

(3.1) A=A+E,

where E is a positive semidefinite matriz and

£l N
<(1+7°)—1.
[[All2

Proof. We prove this by induction. [ =1 corresponds to eSIF(1) and the result is
in Theorem 2.1. Suppose the result holds for eSIF(/—1) with [ > 1. Apply eSIF(I—1)
to Ay and Asy to get approximate Cholesky factors Ly and EQ, respectively. By
induction, we have

LiL\T = A+ B, LoLo™ = A + B,
where F7 and F5 are positive semidefinite matrices satisfying
1Bz < [(1+ 737 = 1] Anllz < [+ 7)1 = 1] || 4],
1B2]l2 < [(1+ 737 = 1] |zl < [(1+ 7)1 = 1] [|Al2.
Thus, o
A~ LL,T ~A2Tl
Asr LoLo™

Clearly, Ais always positive definite.
Then apply eSIF(1) to A to yield

) = A+ diag(F1, Es) = A.

A~A=LL",
where L is the eSIF({) factor. With Theorem 2.1 applied to A, we get
A=A+E,
where E is a positive semidefinite matrix satisfying |||y < 72||Al|2. Then
A=A+ (diag(Ey, Ey) + E)= A+ E,
where F = diag(E1, F2) + Eis positive semidefinite. Thus, Ais positive definite and
IE|2 < || diag(E1, E)ll2 + || E]2
< || diag(E1, Ea)ll2 + 7| Al
= || diag(E1, 2|2 + 72| A + diag(E1, E») |2
< 72| All2 + (1 +7°)| diag(E1, E2) |2
<Al + (472 [(L+ 727 = 1] (Al
= [(1+ 7" = 1] | Allo-

~  ~—

The result then holds by induction. 0

This manuscript is for review purposes only.
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Thus, Hi”g is roughly O(I72) for reasonable 7, which indicates a very slow lev-
elwise approximation error accumulation. Moreover, like eSIF(1), eSIF(l) also has a
positive definiteness enhancement effect so that A remains positive definite. In con-
trast, the multilevel SIF scheme in [35] may breakdown due to the loss of positive
definiteness.

Then we can look at the effectiveness of the eSIF(I) preconditioner.

THEOREM 3.2. Let 7 be the tolerance for any singular value truncation like (2.3)-

(2.5) in the eSIF(1) scheme and € = [(1 + 72)! — 1] k(A). Let L be the eSIF(1) factor.
Then the eigenvalues of the preconditioned matriz L~ AL™T satisfy
1 ~ ~
3.2 <MNLTPALTT) <1
(32) < )<
Accordingly,
LYAL T —Jy < —
|| I < 5,
/@(i_lAi_T) <l+e
Proof. Let A= LLT be the Cholesky factorization of A. With (3.1),
LA T =14 L7 Y A- AL T=1+L'EL7T,
According to Theorem 3.1, L' EL~T is positive semidefinite. Thus, A(L~'AL~T) >

1.
Theorem 3.1 also yields

ILTEL™ |2 < | Bll2l L7217l
<[+ =1] [ Al2lAT 2 = e

Therefore, .
1< AMLTPALTT) <1+

Since the eigenvalues of L~ 'AL~T are the inverses of those of L~'AL™T we get
(3.2). 0

A comparison of the multilevel eSIF and SIF preconditioners is given in Table
3.1. The multilevel eSIF preconditioner has several significant advantages over the
SIF one.

1. The multilevel eSIF preconditioner is unconditionally robust or is guaranteed
to be positive definite, while the SIF one needs a strict (or even impractical)
condition to ensure the positive definiteness of the approximation. That is,
the SIF one needs ¢ = [(1+7)! — 1] k(A) < 1. This means 7 needs to be
small and/or the magnitudes of [ and k(A) cannot be very large.

2. The eSIF one gives a more accurate approximation to A with a relative error
bound (1 4 72)! — 1 instead of (14 7)! — 1.

3. The eSIF one produces a much better condition number for the preconditioned
matrix (1 + € vs. 3£ with e further much smaller than é).

4. The eSIF one further produces better eigenvalue clustering for the precondi-
tioned matrix. The eigenvalues of the preconditioned matrix from eSIF lie in
[l%re, 1], while those from SIF lie in a much larger interval [%ﬁ, lig].

A combination of these advantages makes the eSIF preconditioner much more
effective, as demonstrated later in numerical tests.

This manuscript is for review purposes only.



12 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

TABLE 3.1
Comparison of l-level SIF and eSIF preconditioners that are used to produce L and A, where
the results for the SIF preconditioner are from [35].

SIF eSIF

Existence/ Conditional .
Positive definiteness | (¢ = [(1+ 7)" — 1] K(A4) < 1) Unconditional

A-A
I HAH2H2 S (1 + T)l -1 S (1 + ,7_2)l -1
AMLTTAL™T) € [tz =] € (g1
|L~YAL=T — I, < & <15
K(L7TAL™T) < 1 <l+e
413 4. Practical eSIF(!) scheme. In our discussions above, some steps are used

114 for convenience and are not efficient for practical preconditioning. In the design of a
115 practical scheme for eSIF(1), we need to take care of the following points.

416 1. Avoid expensive dense Cholesky factorizations like in (2.7).

417 2. Avoid the explicit formation of C' in (1.3) (needed in (2.8)) which is too costly.
418 3. Compute the low-rank approximation of C' without the explicit form of C.
419 For the first point, we can let @ be an orthogonal matrix extended from V; in
120 (2.3) so that

421 QT = ( é ) .

422 Since V; has column size r which is typically small for the purpose of preconditioning,
123 @ can be conveniently obtained with the aid of » Householder vectors. Due to this,
124 Q is generally different from V in (2.4). Then (2.7) can be replaced by

425 I -2Vl = Q(I — diag(X%,0)Q".

126 Accordingly, A in (2.6) can be rewritten as

Ao I I I I LT cr?
A= net L Q I — diag(%3,0) QT Ly )

128 Thus, we can let

129 (4.1) ﬂ:(Ll L2>(C{T I)<I Qi1>’ with

430 ¥ = diag((I — £H)V2, 1) = diag(y/1 — 02,...,/1—02,1,...,1),

432 so that (2.9) still holds.
433 Next, we try to avoid the explicit formation of C' in (1.3) which is too expensive.
134 Note (4.1) means

B -1
c ) () )

136 If C is not formed but kept as the form in (1.3), then the application of L' to a
137 vector involves four smaller solution steps: one application of Ll_1 to a vector, one
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application of Ll_T to a vector, and two applications of Ly ! to vectors. To reduce the
number of such solutions, we rewrite L in (4.1) as

2 =(" ) o ) os)
_<L1 I) (AlTQILlT I) (I LzQ&)'

L~ now has the following form and can be conveniently applied to a vector:

~ —1
(4.3) L= ( ' S QTLy! ) ( —AlTjL;T I ) ( " I )

In fact, the application of L™! to a vector now just needs the applications of Lfl,
L7, L3 to vectors. In the eSIF(l) scheme, L; and Ly are further approximated
by structured factors from the eSIF(I — 1) scheme. In addition, Q' is a Householder
matrix defined by r Householder vectors and can be quickly applied to a vector.
A%, is just part of A. With (4.2), there is no need to form C explicitly. From these
discussions, it is also clear how L1 can be applied to vectors in actual preconditioning
as structured solution.

Remark 4.1. With the form of L in (4.2), it is clear that (2.9) still holds for A in
(2.6). Thus, the approximation error result (2.10) in Theorem 2.1 and the effectiveness
results in Theorem 2.2 remain the same. This further means that Theorems 3.1 and
3.2 for the multilevel scheme still hold.

Thirdly, although C' needs not to be formed, it still needs to be compressed so
as to produce ¥; and @ in (4.2). We use randomized SVD [22] that is based on
matrix-vector products. That is, let

(4.4) Y =C"7Z =Ly (ATy(L77 2)),

where Z is an appropriate skinny random matrix with column size r + « and « is a
small constant oversampling size. ¥ can be used to extract an approximate row basis
matrix VI for C. After this, let

(4.5) T =0V, = L7 (Aw(Ly; ).

T‘71T essentially provides a low-rank approximation to C'. Many studies of randomized
SVDs in recent years have shown the reliability of this process. The tall and skinny
matrix 7" can then be used to quickly extract r approximate leading singular values of
C. Accordingly, this process provides an efficient way to get approximate @ and ;.
That is, we can compute an SVD T = Uy Elf/lT and set V; = VlVl To improve the
quality of the randomized approximation, a power iteration may also be used [15].

Computing Y in (4.4) and T in (4.5) uses linear solves in terms of L; and Lo
and matrix-vector multiplications in terms of Aj5. When L results from the eSIF (1)
scheme, L; and Lo are approximated by structured eSIF(I — 1) factors.

Algorithms 4.1 and 4.2 show the construction and application of the eSIF(l) pre-
conditioner, respectively. The construction algorithm uses the solution algorithm.
Algorithm 4.1 includes a simple randomized SVD scheme without the use of power
iterations. To make it convenient to understand, the [-level schemes are constructed
by calling the (I—1)-level schemes. In practical implementations, this may be changed
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14 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

to the traversal of a binary tree so as to get scalable algorithms. Operations associ-
ated with each diagonal block correspond to a node of the binary tree. Operations
associated with an off-diagonal block correspond to a pair of sibling nodes. Thus, at
each level of the tree, the operations can be performed in parallel. This is very similar
to the situations in various existing hierarchical rank-structured methods so that the
parallelization can conveniently take advantage of techniques well developed in, say,
[23, 24, 27, 39]. For example, like in the parallel randomized algorithms in [23] for
hierarchically semiseparable (HSS) matrices [7, 34], a process grid can be used for the
operations associated with each node of the tree. Distributed structured operations
can then be conveniently designed. Since our focus here is on the design of the eSIF
preconditioner and the theoretical analysis, the reader is referred to those references
for relevant techniques for parallel implementations.

Algorithm 4.1 eSIF(]) factorization scheme (for constructing the preconditioner)

1: procedure L = eSIF(I, A, r, a)
2 if [ =0 then > Finest level diagonal block
3 A=LL"T > Cholesky factorization
4: else > Structured factorization
5 Partition A into a block 2 x 2 form like in (1.1)
6 [~/1 <—eSIF(l—1,A11,r,a), izg — eS”:(l—l,AgQ,?”,Oé)
> Diagonal block factorizations with eSIF(l —1)
7 Z < skinny random matrix with column size r + «
> Lines 7-1/: randomized SVD
8 Y « eSIFsol(l — 1, Ly, Z,‘bwd’) > L7
9: Y « eSIFsol(l — 1, Ly, AT, Y, ‘fwd’) > Y like in ({.4)
10: 171 + leading r left singular vectors of Y
11: T < eSIFsol(l — 1, Lo, V1, ‘bwd’) > Ly TV,
12: T < eSIFsol(l — 1, Ly, AyoT,fwd’) > T like in (4.5)
13: T=U VT > SVD
14: Vi« Vlf/l
15: Extend V7 to an orthogonal matrix @
> @ given in terms of Householder vectors
16: L+ {Zl, Ly, 31, Q} > L gwen in terms of a series of structured factors
17: end if

18: end procedure

We then study the costs to construct and apply the eSIF() factor L and the
storage of L. In practice, we specify r instead of 7 in low-rank compression so as to
explicitly control the cost. Also see Remark 4.3 below.

PROPOSITION 4.2. Suppose A is repeatedly bipartitioned into | = |log N| levels
with the diagonal blocks at each partition level having the same size (for convenience).
Let &5 be the complexity to compute the eSIF(l) factor L where each intermediate

low-rank approximation step uses rank r. Let £ be the complexity to apply L tta
vector. Then

(4.6) & =6(r+a)N?+O(r(r +a)N'"&3) ¢ =2N? 4+ O(rN'"823),

where « is a small constant oversampling size in randomized SVDs. (Here, we suppose
no power iteration is used in randomized SVDs. Otherwise, the number of iterations
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Algorithm 4.2 eSIF(() solution via forward or backward substitution

1: procedure z = eSIFsol(l, L, b,s) 3 y
> Solving Lz = b or LTz = b, depending on the variable s

2: if s = ‘fwd’ then > Forward substitution for solving Lx = b
3: if [ =0 then > Finest level dense solution
4 x4 L'
5: else > Structured solution (see (4.3))
6: < Z; ) b > Conformable partition following the sizes of L1, Lo
7. z1 + eSIFsol(l — 1, Ly, by ,‘fwd’)
8: zo by — AT, - (eSIFsol(l — 1, Ly, z1,'bwd’))
9: zo — QT - (eSIFsol(l — 1, Ly, x5, ‘fwd’))
10: To(1:7) (I —%2)"225(1 : 1)
> 3y = diag((I — £2)V2, 1) like in ({.1); xo(1:7): first r entries of o
11: e [
)
12: end if
13: else if s = ‘bwd’ then > Backward substitution for solving LTz = b
14: if [ =0 then > Finest level dense solution
15: z+— L Tg
16: else > Structured solution (see the transpose of (4.3))
17: ( Z; > —b > Conformable partition following the sizes of Ly, Lo
18: bo(1:7) = (I —%2)"12by(1:7)
> %y = diag((I — X3)V2,1) like in (4.1); by(1:7): first r entries of by
19: 9 < eSIFsol(l — 1, Ly, Qby,'bwd’)
20: x1 < by— eSIFsol(l — 1, Ly, Ajpxo,fwd’)
21: 1 « eSIFsol(l — 1, Ly, x1,'bwd’)
22: T ( . )
T2
23: end if
24: end if

25: end procedure

will appear in £5.) The storage 0fI~/ 18
0 =O(rNlogN),

excluding any storage for the blocks of A.

Proof. Let Ly and Ly be the eSIF (I — 1) factors that approximate L; and Lo,
respectively. For the eSIF(l) factor L, we use &(N) to denote the cost to apply L~*
to a vector. According to (4.3),

&) =36 o2 Loy,

2 7
where the first term on the right-hand side is for applying [~/1_ L EIT, i; ! to vectors,

the second term is the dominant cost for multiplying A%, in (4.3) to a vector, and the
third term is for the remaining costs (mainly to multiple Q7 to a vector). This gives
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16 ROBUST AND EFFECTIVE ESIF PRECONDITIONING

a recursive relationship which can be expanded to yield

l ; l ;
- 2 9 7 32
=2N? 4+ O(r3") = 2N? + O(rN'>e:3),

Then consider the cost £;(N) to compute L. We have

&(N) = 26, (5) 440 + )& (5) +4(r +0)(5)? + OGN,
where the first term on the right-hand side is for constructing Ly and Lo, the second
term is for applying the relevant inverses of these factors as in (4.4) and (4.5) during
the randomized SVD, the third term is the dominant cost for multiplying A7, and
Aqz to vectors as in (4.4) and (4.5), and the last term is for the remaining costs.
According to (4.7),

§r(N) = 25}“(%) +3(r+ a)N? + O(r(r + a)N'823),

Based on this recursive relationship, we can obtain the count &7 in (4.6).

Finally, the storage 6(N) for L (excluding the blocks of A) mainly includes the
storage for L1, Lo and the r Householder vectors for @ in (4.2):

O(N) = 29(%) +O(rN).

At the finest level of the partitioning of A, it also needs the storage of O(rN) for the
Cholesky factors of the small diagonal blocks. Essentially, the actual storage at each
level is then O(rN) and the total storage is 6 = O(rIN). d

We can see that the storage for the structured factors is roughly linear in IV since
7 is often fixed to be a small constant in preconditioning. The cost of applying L~ to
a vector has a leading term 2/N2. However, note that it costs about 2/N2 to multiply A
with a vector in each iteration anyway. For the SIF case in [35], the application cost is
lower but each iteration step still costs O(N?) due to the matrix-vector multiplication.
It also costs O(rN?) to construct the multilevel SIF preconditioners. The precise
constant factor of the flop count is not given in [35]. There are two SIF versions
in [35]. One also uses repeated block 2 x 2 partitioning of A like above and uses
randomized SVDs. We can similarly show that the leading term of the complexity is
2(r + a)N2. The second version involves nested off-diagonal basis matrices and has
better robustness. Its cost is slightly higher in general, based on some counts from
[30]. Thus, the construction of the eSIF preconditioner is a little more expensive.
Nevertheless, the construction cost is just a one-time expense and the preconditioner
can be used for multiple solves. Furthermore, SIF preconditioners may not exist for
some cases due to the loss of positive definiteness. In the next section, we can see
that the eSIF preconditioner can often dramatically reduce the number of conjugate
gradient iterations so that it saves the solution cost significantly.

Remark 4.3. During the construction of the preconditioner, we specify r so as to
explicitly control the cost of the preconditioner. Since the practical scheme uses ran-
domized SVDs to avoid forming large dense blocks, it is actually not very convenient

This manuscript is for review purposes only.



w

ot ot Ot Ot Ot
N

~

v v v Ot Qou Ot Ot Ot Qv QOu ot ot Ot Ot Ot Qou gt gt Ot

S

(=2}
oo

U W N =

oo

b B B S B AR B RN B B |

e}

v v Ov Ot Ot Ot Ut Ut Ut ot ot Ut

}Fl—(i

JIANLIN XIA 17

to control the approximation accuracy via a tolerance 7 for singular values. This is
because there is not a direct mechanism to explicitly monitor the accuracy of singular
values in the randomized process. With a certain number of random vectors, if the
resulting singular values from randomized SVDs do not reach the desired tolerance,
more random vectors are used, but then it is not immediate to get the next singular
values. Instead, it needs to go through some reorthogonalizations, multiplications,
and moreover, SVD updates. In other words, adaptive sampling with more random
vectors does not immediately produce new (smaller) singular values on top of exist-
ing singular values, and the monitoring of the approximation accuracy is then not
very convenient. This is why a probabilistic strategy is used to roughly estimate the
approximation accuracy in a somewhat nontrivial adaptive scheme in previous work
such as [15, 23, 24, 29]. To ensure reasonable reliability of the error estimate, if the
estimated error satisfies a certain bound for a consecutive number of times, it assumes
the approximation error meets the desired accuracy. This not only needs extra costs
but can also highly overestimate the actual numerical rank for a desired accuracy. It
may lead to r much larger than necessary and also varying a lot for different runs
and different tolerances. This would then defeat the purpose of designing an efficient
preconditioner since we want r to be quite small. Thus, directly using a prespecified
r is much more convenient.

5. Numerical experiments. We then show the performance of the multilevel
eSIF preconditioner in accelerating the convergence of the preconditioned conjugate
gradient method (PCG). We compare the following three preconditioners.

e bdiag: the block diagonal preconditioner.

e SIF: an SIF preconditioner from [35] (for the two versions of SIF precondi-
tioners in [35], we use the one with better robustness).

e eSIF: the multilevel eSIF preconditioner.

In [35], it has been shown that SIF is generally much more effective than a pre-
conditioner based on direct approximations by HSS forms. Here, we would like to
show how eSIF further outperforms SIF. The following notation is used to simplify the
presentation of the test results.

oy = %: 2-norm relative residual for a numerical solution x, with b
generated using the exact solution vector of all ones.

® Niter: total number of iterations to reach a certain accuracy for the relative
residual.

o A,ec: matrix preconditioned by the factors from the preconditioners (for
example, Aprec = L~PAL™T in the eSIF case).

e 7: numerical rank used in any low-rank approximation step in constructing
SIF and eSIF.

e [: total number of levels in SIF and eSIF.

When SIF and eSIF are constructed, we use the same parameters r, [, and finest
level diagonal block size. Also in the construction of eSIF, one step of power iteration is
used in randomized SVDs and the oversampling size is set to be 3. The preconditioner
bdiag is constructed with the same diagonal block sizes as those of the finest level
diagonal block sizes of SIF and eSIF. Just like in [35], all the test matrices are treated
as general dense SPD matrices and are not specifically reordered.

ExAMPLE 1. We first test the methods on the matrix A with the (i, 7) entry

(ij)"/*m

A'L" = )
720+ 0.8(i — j)2
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which is modified from a test example in [35] to make it more challenging.

In the construction of SIF and eSIF, we use r = 5. With the matrix size N
increases, [ increases accordingly for SIF and eSIF so that the finest level diagonal block
size is fixed. Table 5.1 shows the results of PCG iterations to reach the tolerance 1072
for the relative residual v. Both SIF and eSIF help significantly reduce the condition
numbers. The both make PCG converge much faster than using bdiag. eSIF is further
much more effective than SIF and leads to x(Aprec) close to 1. PCG with eSIF only
needs few steps to reach the desired accuracy. The numbers of iterations are lower
than with SIF by about 12 to 15 times.

TABLE 5.1
Example 1. Convergence results of PCG with bdiag, SIF, and eSIF preconditioners. (For the
two largest matrices, it is very slow to form Aprec, so the condition numbers are not computed.)

N 1280 2560 5120 | 10,240 | 20,480 | 40,960
l 8 9 10 11 12 13
K(A) 2.66e7 | 3.85¢7 | 5.55¢7 | 7.95¢7

bdiag| 1.41e5 1.42e5 1.42e5 1.42e5
K(Aprec)| SIF | 5.03¢l | 5.03¢l | 5.03el | 5.03el

eSIF 1.01 1.01 1.02 1.02

bdiag| 570 562 546 551 526 525
Titer SIF o7 60 61 60 60 60

eSIF 4 4 4 4 4 5

bdiag|9.65e—13]9.49e—13|9.50e—13|6.33e—13|7.89e—13|7.93e—13
vy SIF |8.02¢—13|8.42¢—13|3.54e—13|9.36e—13|7.36e—13|8.28¢—13
eSIF [5.90e—15|5.48¢—15|1.34e—13|4.28¢—13|5.00e—14|9.61e—15

Figure 5.1(a) shows the actual convergence behaviors for one matrix and Figure
5.1(b) reflects how the preconditioners change the eigenvalue distributions. With eSIF,
the eigenvalues of Ap.ec are all closely clustered around 1.

10°

—+—bdiag
——SIF
—o—eSIF

S 10°® @

e [}

0 =

[ ©

° g

2 g

S 1010 i

o

1071 )
0 200 400 600 0 500 1000 1500 2000 2500
Titer Index
(a) Convergence (b) Eigenvalues

Fic. 5.1. Example 1. Convergence of PCG with bdiag, SIF, and eSIF preconditioners and
eigenvalues of the preconditioned matrices for N = 2560 in Table 5.1.

To confirm the efficiency of eSIF, we plot the storage requirement of eSIF and
the costs to construct and apply the preconditioner in each step. Since r is fixed, the
storage of eSIF is O(NNlog N) and the construction and application costs are O(N?),
which is confirmed in Figure 5.2.
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——o—eSIF storage —=—¢eSIF construction
- - =N*(log N) reference line —&—eSIF application

g 106 1010 - = =N reference line
I
5
5 g
o T
310° 108
€
>
4
¢ 106 == -
1280 2560 5120 10240 20480 40960 1280 2560 5120 10240 20480 40960
N N
(a) Storage (b) Costs

Fic. 5.2. Example 1. Storage for the structured factors of the eSIF preconditioner (excluding
the storage for A) and the construction and application costs with varying N.

To see how the efficiency is related to the number of levels [, we vary [ for the
matrix with size N = 10240. See Figure 5.3. A larger [ leads to lower storage for the
structured factors. When [ is too small, the finest level diagonal blocks are large and
it is costly to factorize these diagonal blocks and store the factors. When [ increases,
the cost for constructing the preconditioner decreases quickly at the beginning. The
cost for applying the preconditioner slightly increases initially (since more levels need
multiplications involving dense off-diagonal blocks of A), but then remains roughly
steady (since the dominant cost is from higher levels). For larger I, the cost for the
construction also becomes roughly steady. Thus, it makes sense to use relatively larger

I so as to reduce the storage.
100 \\————‘_—_‘

8107
o)
N
5
5 g
o [
F O
€10
> 8
z 10
——eSIF construction
—&¢—eSIF storage ——eSIF application
1 3 5 7 9 " 1 3 5 7 9 11
1 l
(a) Storage (b) Costs

Fic. 5.3. Example 1. Storage for the structured factors of the eSIF preconditioner (excluding
the storage for A) and the construction and application costs with varying | for the matriz with size
N = 10240.

EXAMPLE 2. In the second example, we consider to precondition some RBF (ra-
dial basis function) interpolation matrices which are known to be notoriously chal-
lenging for iterative methods due to the ill condition with some shape parameters
(see, e.g., [8]). We consider the following four types of RBF's:

1 1
VI4e22' 1+e2?
where ¢ is the shape parameter. The interpolation matrices are obtained with grid
points 0,1,..., N — 1.

2,2
e <", sechet,
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We test the RBF interpolation matrices A with various different shape parameters.
With N = 1280, r = 6, and [ = 8, the performance of PCG to reach the tolerance
10~!2 for ~ is given in Table 5.2. When the shape parameter ¢ reduces, the condition
numbers of the interpolation matrices increase quickly. SIF improves the condition
numbers more significantly than bdiag. However, for smaller ¢, the condition numbers
resulting from both bdiag and SIF get much worse and the convergence of PCG slows
down.

TABLE 5.2

Example 2. Convergence results of PCG using bdiag, SIF, and eSIF preconditioners with r = 6
in SIF and eSIF.

RBF et sech et
€ 0.4 0.36 0.32 0.3 0.25 0.2
k(A) 2.49e6 | 9.27e7 | 1.46el0 | 3.48e¢6 | 9.34e7 | 1.30el0

bdiag| 1.26e5 4.50e6 7.11e8 1.52e5 4.24e6 6.28¢8
K(Aprec)| SIF 2.38 2.11e3 2.14e6 1.34 5.02¢2 7.58eb

eSIF 1.00 1.00 1.00 1.00 1.00 1.30

bdiag 700 2193 4482 047 1271 3211
Niter SIF 15 107 549 9 52 282

eSIF 1 1 2 1 1 3

bdiag |8.82e—13|8.62e—13|8.97e—13|7.97e—13]9.28e—13|8.25e—13
¥ SIF [4.94e—13|5.16e—13|9.86e—13|4.02e—13|9.44e—13|9.91e—13
eSIF |6.16e—16|7.34¢—15|2.63¢—16|6.96e—15|1.85¢—13|4.91e—14

€ 0.3 0.25 0.2 1/4 1/5 1/6
k(A) 2.64eb 2.27e6 5.62e7 1.42e5 3.29¢6 7.59e7
bdiag| 1.15e4 9.64e4 2.40e6 6.18e3 1.41e5 3.34e6
#(Aprec)| SIF 1.74 6.30 2.22e2 1.94 2.66el 8.91e2
eSIF 1.00 1.00 1.26 1.00 1.00 1.03
bdiag| 195 375 937 190 541 1222
Niter SIF 13 27 86 14 43 104
eSIF 3 3 6 2 3 5
bdiag|9.21e—13|7.19e—13|8.92e—13|9.84e—13|9.16e—13|7.52e—13
0 SIF 4.23e—13|5.14e—13|6.20e—13|2.72e—13|7.15e—13|1.95¢—13
eSIF |1.77e—15]1.62e—15|8.16e—15|2.36e—13|5.58¢ —13|2.05¢ —15

On the other hand, eSIF performs significantly better for all the cases. Dramatic
reductions in the numbers of iterations can be observed. In Table 5.2, the number of
PCG iterations with eSIF is up to 274 times lower than with SIF and up to 2241 times
lower than with bdiag. Overall, PCG with eSIF takes just few iterations to reach the
desired accuracy.

Figure 5.4(a) shows the actual convergence behaviors for one case and Figure
5.4(b) illustrates how the preconditioners improve the eigenvalue distribution. Again,
the eigenvalue clustering with eSIF is much better.

We also try different numerical ranks r and the results are reported in Table
5.3. SIF is more sensitive to r. For some cases, SIF with r = 4 leads to quite slow
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Fic. 5.4. Example 2. Convergence of PCG and etgenvalues of the preconditioned matrices for

the case with RBF m%t?’ e = é in Table 5.2.

convergence of PCG. In contrast, eSIF remains very effective for the different r choices
and yields much faster convergence.

EXAMPLE 3. In the last example, we compare eSIF with SIF in terms of the
following test matrices from different application backgrounds.

e MHD3200B (N = 3200, x(A) = 1.60e13): The test matrix MHD3200B from
the Matrix Market [25] treated as a dense matrix. » = 9 and | = 8 are used
in the test.

e ElasSchur (N = 3198, x(A) = 8.91e6): A Schur complement in the factor-
ization of a discretized linear elasticity equation as used in [33]. The ratio
of the so-called Lamé constants is 10°. The original sparse discretized ma-
trix has size 5,113,602 and A corresponds to the last separator in the nested
dissection ordering of the sparse matrix. 7 = 5 and [ = 9 are used in the test.

e LinProg (N = 2301, x(A4) = 2.09¢11): A test example in [35] from linear
programming. The matrix is formed by A = BDB7T, where B is from the
linear programming test matrix set Meszaros in [26] and D is a diagonal
matrix with diagonal entries evenly located in [107°,1]. » =3 and [ = 9 are
used in the test.

e Gaussian (N = 4000, x(A) = 1.41e10): a matrix of the form sI + G with

Nt —thll2
G from the discretization of the Gaussian kernel e 2.2 Such matrices

frequently appear in applications such as Gaussian processes. Here, s = 1079,
pu = 2.5 and the t; points are random points distributed in a long three
dimensional rectangular parallelepiped. r = 20 and [ = 8 are used in the test.

The convergence behaviors of PCG with SIF and eSIF preconditioners are given
in Figure 5.5. Much faster convergence of PCG can be observed with eSIF. For the
four matrices listed in the above order, the numbers of PCG iterations with SIF are
about 11, 7, 7, and 21 times of those with eSIF, respectively.

6. Conclusions. We have presented an eSIF framework that enhances a recent
SIF preconditioner in multiple aspects. During the construction of the preconditioner,
two-sided block triangular preprocessing is followed by low-rank approximations in
appropriate computations. Analysis of both the prototype preconditioner and the
practical multilevel extension is given. We are able to not only overcome a major
bottleneck of potential loss of positive definiteness in the SIF scheme but also signifi-
cantly improve the accuracy bounds, condition numbers, and eigenvalue distributions.
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TABLE 5.3
Example 2. Convergence results of PCG using SIF and eSIF preconditioners with different r.

RBF et sech et
€ 0.3 0.25 0.2 1/4 1/5 1/6
g SIF| 1.01 2.35 3.64¢e4 1.00 1.23 4.80e3
(o) eSIF|  1.00 1.00 1.00 1.00 1.00 1.06
pree .4 SIF| 5.17¢2 | 7.51e4 | 6.94e7 | 1.41e2 | 4.6led | 1.82e7
eSIF|  1.00 1.00 5.58 1.00 1.01 1.58€2
h_ s SIF 5 13 245 4 7 69
. eSIF 1 1 1 1 1 2
ter . SIF| 178 751 3972 92 410 1613
eSIF 2 3 17 2 3 14
. SIF |7.95¢—15(2.90e—13[4.95e—13|2.64e—15|3.18e—13|4.28¢ — 13
eSIF|6.89¢—16[1.08¢—15|1.23e—14(6.28¢—15|1.85e—13(8.59¢—13
K . SIF [9.09¢—13(9.42¢—13]4.36e—11|8.11e—13]6.92¢—13[6.06e — 13
eSIF|1.20e—15(4.63¢—15|7.58¢ —13|9.14¢—16|8.64e—14(6.33¢—13
€ 0.3 0.25 0.2 1/4 1/5 1/6
s SIF| 1.39 3.66 1.06€2 1.45 6.32 6.21el
(Aree) eSIF|  1.00 1.00 1.00 1.00 1.00 1.00
pree 4| SIF| 6.96el | 74de2 | 2.47ed 2.98 9.42el | 1.91e4
eSIF| 1.03 1.56 1.18 1.00 1.06 4.34
s SIF 10 19 75 11 27 64
- eSIF 2 2 2 2 2 3
. SIF 7 224 761 19 87 368
eSIF 5 8 19 4 5 14
g SIF [9.73e—14|7.71e—13[4.63e—13|1.11e—13|2.50e— 13|6.97¢ — 13
eSIF|1.78¢—15(2.19¢—14|1.09¢ —13|1.44¢—15|3.02e—15[1.95¢—15
i . SIF [5.93¢—13]9.84¢—13[9.21e—13|4.81e—13[9.20e—13|5.71e—13
eSIF|8.38¢—14[9.19e—13|1.87e—13|3.84¢—15|2.67e—13|1.05e—13

Thorough comparisons in terms of the analysis and the test performance are given.

In our future work, we expect to explore new preprocessing and approximation
strategies that can further improve the eigenvalue clustering and accelerate the de-
cay magnification effect in the condition number. The current work successfully im-
proves the relevant accuracy, condition number, and eigenvalue bounds by a significant
amount (e.g., from % to 1+e¢ in Table 3.1 with € much smaller than ¢). We expect to
further continue this trend and in the meantime keep the preconditioners convenient
to apply. We will also explore the feasibility of extending our ideas to nonsymmetric
and indefinite matrices.

Acknowledgements. Thank the two anonymous referees for providing useful
suggestions that help improve this paper.
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